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ABSTRACT

With recent development in natural language processing (NLP) and
automatic speech recognition (ASR), voice-based interfaces have be-
come a necessity for applications such as chatbots, search engines,
and databases. In this demonstration, we introduceVoiceQuerySys-
tem, a voice-based database querying system that enables users to
conduct data operations with natural language questions (NLQs).
Different from existing voice-based interfaces such as SpeakQL
or EchoQuery, which restricts the voice input to be an exact SQL
or follow a pre-defined template, VoiceQuerySystem attempts to
achieve data manipulation via common NLQs, and thus does not
require the user’s technical background in SQL language.

The underlying techniques in VoiceQuerySystem is a new task
named Speech-to-SQL, which aims to understand the semantic in
speech and then translate it into SQL queries. We explore two pro-
posed approaches - the cascaded one and the end-to-end (E2E)
one towards speech-to-SQL translation. The cascaded method first
converts the user’s voice-based NLQs into text by a self-developed
ASR module, and then conducts downstream SQL generation via
a text-to-SQL model (i.e., IRNet). In contrast, the E2E method is
a novel neural architecture named SpeechSQLNet designed by us,
which converts the speech signals into SQL queries directly with-
out the middle medium as text. Extensive experiments and demon-
strations validate the rationale of the speech-to-SQL task and the
effectiveness of the proposed SpeechSQLNet model. To the best of
our knowledge, this is the first system that provides a voice-based
querying functionality on DBMS from common NLQs.
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1 INTRODUCTION

With recent development in natural language processing (NLP)
and automatic speech recognition (ASR), voice-based interfaces
have become a new trend for applications such as chatbots, search
engines, and databases. Since a large volume of data is stored in
the relational database, it would be very helpful for non-technical
users to conduct data analysis with the voice-based interfaces using
natural language questions (NLQs) rather than SQL queries.

In the community, there are already a substantial amount of stud-
ies on voice-based interfaces for databases. For example, Utama et
al. [9] designed an EchoQuery system to support querying the data-
base with voice-based commands. However, these systems usually
restrict the spoken query to be an exact SQL query (e.g., “Select
Salary From Employees Where Name Equals John” by SpeakQL
[4]) or strictly follow some pre-defined templates (e.g., “What is
the {Aggregation} {Columns(s)} of {Table(s)}?” by Echo-
Query). None of them achieved translating common NLQs (i.e.,
questions without being restricted by any template or SQL gram-
mar) into SQL queries, which is an easier and flexible way for
user-database interaction that requires limited SQL background.

To achieve the aforementioned goal, this demonstration intro-
duces VoiceQuerySystem, a voice-based database querying system
that attempts to handle NLQs onDBMS.VoiceQuerySystem is built
on a new task named Speech-to-SQL together with a constructed
dataset named SpeechQL [6] proposed by us, which aims to under-
stand the information conveyed by human speech and directly con-
vert it into SQL queries. The success of VoiceQuerySystem relies
on the seamless integration of multiple ASR and NLP technologies.
The backbone SQL generation techniques in VoiceQuerySystem
can be categorized into two proposed approaches - the cascaded one
and the end-to-end (E2E) one. The cascaded method first converts
the user’s voice questions into text by a self-developed ASR module,
and then conducts downstream SQL generation via a text-to-SQL
model like EditSQL [13] or IRNet [1]. In contrast, the E2E method
in VoiceQuerySystem is a novel neural architecture named Speech-
SQLNet [6] designed by us, which consists of advanced speech
encoder, schema encoder, SQL-aware decoder, and pre-training
mechanisms towards accurate SQL query generation from com-
mon NLQs. Serving as a bridge between end-users and the DBMS
systems, VoiceQuerySystem can not only help users with a non-
technical background to manipulate the data, but also significantly
improve the efficiency in interacting with DMBS. We expect that
VoiceQuerySystemwill inspire more research on integrating state-
of-the-art NLP and ASR techniques to improve database usability.
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2 RELATEDWORK

We briefly survey the related work from two closely related areas,
text-to-SQL and voice-driven querying systems.
Text-to-SQL. Text-to-SQL has drawn great attention from the
research communities since it provides a text-based interface for
the database. Existing studies generally belong to two approaches:
the rule-based one and the learning-based one. The classical rule-
based approach includes studies such as QUICK [12], SINA [5], and
NLQ/A [14]. With the popularity of deep neural networks (DNNs),
methods such as Seq2SQL [15], EditSQL [13], and IRNet [1] were
developed with advanced neural network structures working in
an E2E style. Commonly-used public benchmark datasets includes
Spider [11] and WikiSQL [15].
Voice-driven Querying Systems. Voice-driven querying systems
cover a wide range of applications from AI-powered assistants
(e.g., Alexa, Siri, and Cortana) and voice-based search engines (e.g.,
Google, Baidu, Bing) to recent SQL-related systems such as Echo-
Query [2]. In the database area, speech-driven SQL-related systems
have also been extensively studied. For example, EchoQuery [2]
designs a system to translate the voice input into SQL queries.
SpeakQL [4] proposes a system to support a subset of SQL gram-
mar which helps the users to manipulate the system with a speech-
based interface. TalkSQL [3] implements the speech-based interface
through a three-step pipeline: that is, first requires the user to input
a voice query, then translates this query into SQL query, and finally
execute the query to give the results. CiceroDB-Zero [8] provides
a voice-based interface to help the users to explore large data sets.
However, differing from these existing studies, SpeechSQLNet [6]
is the first that synthesize SQL queries from NLQs expressed in
human speech with an E2E neural network.

3 SYSTEM ARCHITECTURE

Weare ready to introduce the details of the proposedVoiceQuerySys-
tem, from the following aspects - the task, system overview, the
two speech-to-SQL approaches used, and performance analysis.

3.1 The Speech-to-SQL Task

Formally, the training corpus D is composed of 𝑀 instances, de-
noted as D = {d1, · · · , d𝑀 }, where d𝑖 (𝑖 ∈ {1, · · · , 𝑀}) represents
the 𝑖-th instance. We ignore the superscript 𝑖 for clarity. Each in-
stance d contains a speech-based NLQ 𝑥 , its schema 𝑠 of the corre-
sponding database, and the target SQL query 𝑦. The Speech-to-SQL
problem focuses on translating an unseen speech-based NLQ 𝑥 ′

into the desired SQL query𝑦′, with restriction from the schema 𝑠 ′ of
the corresponding database. In our scenario, the database includes
a collection 𝑇𝑥 of tables, a collection 𝐶𝑥 of columns for each table
in 𝑇𝑥 . The schema greatly affects the desired SQL query, even for
the same NLQ. To promote the further development of this task,
we construct a benchmark dataset named SpeechQL [6] by piggy-
backing the widely-used text-to-SQL datasets, where the speech
NLQs are generated by a text-to-speech (TTS) [7] component.

3.2 VoiceQuerySystem Overview

Figure 1 gives the system overview and pipeline of the Voice-
QuerySystem. The system can be roughly divided into three layers
- Interface, Model, and Data. The interface layer enables users to
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Figure 1: Architecture overview of the VoiceQuerySystem,

including three layers - Interface, Model, and Data. The core

Speech-to-SQL techniques belongs to two categories: the cas-

caded one and the E2E one (SpeechSQLNet).

interact with the VoiceQuerySystem, i.e., input the voice query,
select the corresponding database, check the predicted SQL queries,
and view the SQL execution results. The model layer provides
the backbone techniques for Speech-to-SQL translation in Voice-
QuerySystem, which can be categorized into two approaches - the
cascaded one and the E2E one. The cascaded method first converts
the user’s voice questions into text by a well-trained ASR module,
and then conducts downstream SQL generation via a text-to-SQL
model (i.e., IRNet [1]). In contrast, the E2E method is a novel self-
designed neural architecture named SpeechSQLNet which directly
converts the speech signals into SQL queries without the middle
medium as text. The data layer covers the datasets (i) Spider and
WikiSQL for constructing the text-to-SQL models, (ii) SpeechQL for
constructing the speech-to-SQL models, and (iii) Databases where
the predicted SQL will be executed with.

3.3 The Cascaded Approach

The cascaded approach is a straightforward solution that combines
an ASR component with a well-trained text-to-SQL component. In
VoiceQuerySystem, we deploy a self-developed ASR module (i.e.,
Kaldi “Chain” model and a trigram LM) trained on around 8000-
hour labeled data. The text-to-SQL model aims to translate the
NLQs into SQL queries, with existing studies such as Seq2SQL [15],
EditSQL [13], and IRNet [1]. In our scenario, we directly employ an
advanced text-to-SQL model - IRNet due to its good performance.
In addition to IRNet, any other text-to-SQL models can also be
employed here, and in our experiments, we also employ a vanilla
Seq2Seq model similar to [15] as a baseline to conduct performance
comparison and we refer this baseline as Seq2SQL.

The cascaded approach is quite straightforward, but it suffers
from error-compounding problems (i.e., small ASR errors leads to
larger SQL generation errors) which greatly affect its performance.
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Figure 2: The network structure of our proposed SpeechSQLNet model, which is comprised of a speech-encoder, a schema-

encoder, a speech-schema relation-aware encoder, and a SQL-aware decoder.

3.4 The End-to-End Approach

Directly synthesizing SQL queries from speech signals is hard due
to the huge modality gap between the two modalities of speech
NLQ and SQL queries. Our proposed SpeechSQLNet model con-
sists of four main components, namely a speech-encoder, a schema-
encoder, a speech-schema relation-aware encoder, and a SQL-aware
decoder. The speech-encoder uses a convolutional neural network
(CNN)-based architecture to convert the speech signals into hid-
den representations. Meanwhile, the schema, which greatly affects
the desired SQL, is first converted into a graph structure and then
encoded into hidden representation by a GNN-based encoder to
preserve its structural information. The speech-schema relation-
aware encoder aims to identify the references of the tables and
columns in the NLQ and then fuses a joint representation for the
speech and the schema. The SQL-aware decoder is inspired by the
common text-to-SQL architectures [1, 10], which first predicts an
intermediate abstract syntax tree (AST) using SemQL [1], and then
convert the SemQL into SQL query. The overall structure of the
proposed model is illustrated in Figure 2. To further promote the
performance, we design two pre-training mechanisms to bridge the
modality gap between speech and text representations. The first
pre-training task learns to predict if an item from the schema is
mentioned by a speech NLQ, while the second one tries to encode
then decode the speech and the schema inputs respectively to en-
force them to map into the same hidden space. A introduce and
comprehensive evaluation of SpeechSQLNet can be found in [6].

3.5 Performance Analysis

We also conduct some comparison among four methods belong-
ing to two approaches, namely ASR + Seq2SQL, ASR + IRNet,
SpeechSeq2Seq, and SpeechSQLNet. The SpeechSeq2Seq model
is a vanilla Seq2Seq network that directly converts speech signals
into SQL queries. We adopt the widely-used metric - exact match ac-
curacy [1, 11] as our main indicator. All these models are trained on

Table 1: Performance of different Speech-to-SQL methods.

Method Validation Set Testing Set

ASR + Seq2SQL 0.0236 0.0195
ASR + IRNet 0.4264 0.4373
SpeechSeq2SQL 0.0700 0.0695
SpeechSQLNet 0.5355 0.5395

the same training set from our constructed SpeechQL dataset, and
then the accuracies of all these models on the SpeechQL validation
and testing datasets are presented in Table 1.

The performance of the cascaded approaches is not competi-
tive compared with the E2E ones, due to the error-compounding
problem. The SpeechSQLNet could alleviate this problem since it
naturally retains the rich linguistic information in the speech with
an advanced network structure, and is optimized globally in an
E2E-style to reduce the errors. The dominating performance of
the E2E models compared with the cascaded ones validates the
necessity of exploring the E2E approach that bypasses the text for
the speech-to-SQL problem. What is more, compared with a vanilla
Seq2Seq model (i.e., SpeechSeq2Sql), the designed SpeechSQLNet
could greatly improve the performance, proving the effectiveness
of the designed network structure and pre-training mechanisms.

4 DEMONSTRATION OVERVIEW

This demonstration aims to provide an interactive system for users
to learn the working mechanisms of the speech-to-SQL techniques
introduced above. Figure 3 gives a screenshot of the user interface
of the VoiceQuerySystem, which mainly includes the following
three functionalities.
Speech Question Input: Currently VoiceQuerySystem supports
audio NLQs input using pre-recorded audio files, and next we will
include real-time NLQs recorded by the microphone provided in
the interface.
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Figure 3: The user interface of our proposed VoiceQuerySystem.

Database Selection: Since the desired SQL is greatly affected by
the schema, the system requires the user to select the corresponding
database that the user wants to execute the target SQL query.
Predicted Query: After the speech NLQ and the database schema
are fixed, the user need to click the “Decoding” button in the in-
terface. Then the VoiceQuerySystem will generate the desired
SQL query. The result in the top left area is from the cascaded ap-
proach, while the one from the lower left area is from the E2E (i.e.,
SpeechSQLNet) one. The system also supports the user to modify
the generated SQL query, in case there are some errors.
Execution Result Display: If the SQL query and the database
are correctly set, a further click on the “⊲” button will trigger the
execution of the query on the selected database, and the querying
result will be displayed on the webpage.
Case Study: We also list a case in Table 2 to give vivid illustration.
The results given by the ASR engine, the cascaded approach (i.e.,
ASR + IRNet), and the E2E approach (i.e., SpeechSQLNet) are dis-
played. We can see that the E2E approach correctly predicts the
desired SQL query but the cascaded one fails for this case.

Table 2: A SQL Example Returned by VoiceQuerySystem

Input

Speech NLQ return the number of music festivals of each category

Selected DB
& Schema

music_4: artist(Artist_ID, Artist, Age, Famous_Title,
Famous_Release_date); volume(Volume_ID,
Volume_Issue, Issue_Date, Weeks_on_Top, Song,
Artist_ID); music_festival(ID, Music_Festival,
Date_of_ceremony, Category, Volume, Result)

Expected

Output

Target SQL select category, count(*) from music_festival group
by category

Output

ASR Result return the number of music festivals of each category
Cascaded Approach select count(music_festival) from music_festival
E2E Approach select category, count(*) from music_festival group

by category

5 CONCLUSION

In this demonstration, we show a novel VoiceQuerySystem to
achieve voice-based database querying using common NLQs. Our
contributions can be summarized as (i) we propose a new task
named Speech-to-SQL with a constructed dataset SpeechQL to pro-
mote this field; (ii) we explore two approaches (i.e., the cascaded one
and the E2E one) to validate the rationale of the proposed speech-to-

SQL task; (iii) we design the first E2E-style neural network - Speech-
SQLNet with an advanced network structure that achieves direct
speech-to-SQL conversion; (iv) we develop the VoiceQuerySystem
to demonstrate SQL translation from voice-based NLQs.
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