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Image retrieval keeps attracting a lot of attention from both academic and industry over past years due to

its variety of useful applications. Due to the rapid growth of deep learning approaches, more better feature

vectors of images could be discovered for improving image retrieval. However, most (if not all) existing deep

learning approaches consider the similarity between two images locally without considering the similarity

among a group of similar images globally, and thus could not return accurate results. In this article, we study

the image retrieval with manifold ranking (MR) which considers both the local similarity and the global

similarity, which could give more accurate results. However, existing best-known algorithms have one of the

following issues: (1) they require to build a bulky index, (2) some of them do not have any theoretical bound on

the output, and (3) some of them are time-consuming. Motivated by this, we propose two algorithms, namely

Monte Carlo-based MR (MCMR) and MCMR+, for image retrieval, which do not have the above issues. We are

the first one to propose an index-free manifold ranking image retrieval with the output theoretical bound.

More importantly, our algorithms give the first best-known time complexity result of O (n logn) where n is

the total number of images in the database compared with the existing best-known result of O (n2) in the

literature of computing the exact top-k results with quality guarantee. Lastly, our experimental result shows

that MCMR+ outperforms existing algorithms by up to four orders of magnitude in terms of query time.
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1 INTRODUCTION

Image retrieval [5] keeps attracting a lot of attention from both academic and industry over past
years due to its variety of useful applications. In academic, before the growth of deep learning
studies, most researchers [5, 6, 67] studied how to “engineer” good image features (manually) such
that any two given images should have a high “pre-defined” similarity measure if they look similar
to human. Recently, due to the growth of deep learning approaches, researchers focused on how
to use deep learning models [64] like convolutional neural networks (CNNs) to capture or find
the “embedded” features to get rid of (manual) feature engineering. Besides, it is found [14, 40, 44,
49, 64] that the embedded features capture a lot of important and good ingredients in the image,
resulting a good performance of some tasks (e.g., similarity search) in image retrieval. In industry,
giant technology companies in the world have large research teams for image retrieval due to their
attractive applications. One example is Taobao, the biggest mobile e-commerce platform in China,
with its famous application of “similar item search” which returns a list of items which are similar
to the photo of an item that a customer would like to buy [63]. Another example is Google, the
world leading search company hosted in US, with its image search engine function which returns
a list of images similar to an image uploaded by users.

1.1 Feature Extraction and Similarity Search

Specifically, image retrieval involves two phases [6, 13, 14, 22, 40, 41, 49, 51, 64], namely the feature
extraction and the similarity search. The feature extraction is to learn a representation of each
image as a feature vector which is a d-dimensional vector. The similarity search is to find a list of
images which are “similar” to the given image.

Feature extraction is a very fundamental and important phase for image retrieval. With good fea-
ture extraction, the similarity search (in the second phase) could be done more accurately and more
effectively. Due to the successful development of deep learning approaches, the features found by
these approaches could capture image ingredients well [14, 40, 41, 44, 64]. These deep learning
approaches employ the CNN frameworks to find the features. Some representative approaches are
the basic CNN approaches [14, 40, 44] and the advanced CNN approach called MAC [40, 41] which
exploits a feature of focusing essential parts of images and could be regarded as the state-of-the-art
in the literature. In [64], it was found that the features could help to improve the accuracy of the
similarity search by up to 51.3%.

Although feature extraction is well-studied among deep learning approaches, since most stud-
ies [14, 40, 41] directly adopt a “traditional” Lp -norm-based measure (e.g., the Euclidean Distance
and Inner Product) of evaluating the similarity of two images, the performance of similarity search
is not that good. It is because this traditional measure only captures the similarity between two im-
ages locally based on their d-dimensional representation vectors (termed local similarity) without
considering the similarity among a group of similar images globally (termed global similarity) [65].
Note that the d-dimensional representation vectors of all images can form a d-dimensional fea-
ture space. However, two similar images are not always adjacent in the Lp -space, and hence, the
similarity score between two images by the Lp -norm-based measures might be incorrect [8]. For
example, for two images with same color but different shape, the Euclidean distance of their repre-
sentation vectors might be very small and hard to distinguish clearly. However, by considering the
global similarity that exploits more information revealed by a group of similar images, the error
inside above local similarity could be narrowed. For example, if the query image is blue triangle,
we could utilize more similar images in the image dataset that contains the triangle shape and
aggregate the information revealed by these triangle images, it is of high probability that the “sim-
ilarity distance” of the query image and an image of blue circle could be enlarged. In this case, the
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image of blue circle can be excluded from the similar images results of the query one. Thus, both
local similarity and global similarity are important to be included in a similarity measurement.

1.2 Manifold Ranking: A Better Similarity Search Approach

However, Manifold ranking (MR) [13, 65, 66], one similarity measure for similarity search, is
found to be an effective measure of capturing the similarity both locally and globally. Due to this
diverse ability, in recent years, MR is applied for not only image retrieval but also other problems
such as person re-identification [3, 34], document similarity search [50], identifying quantitative

chemical relationship [42], saliency detection [19, 38, 47, 55, 60], and object co-segmentation [39].
Next, we would like to give two case studies showing how MR has better performance compared

with some best-known models. We included three deep learning approaches (all of which use the
Lp -norm-based measure for similarity search) for comparison, namely VGG16 [44], ResNet101 [14],
and MAC [40, 41], where MAC is considered as the state-of-the-art in the literature. We also
included two popular similarity approaches for comparison, namely Personalized PageRank

(PPR) [59] and Weighted Personalized PageRank (WPPR). We call the MR framework as the
manifold ranking image retrieval (MRIR). Note that since PPR, WPPR, and MRIR require the
feature space for computation, we adopt the feature space learnt by the state-of-the-art deep learn-
ing approach, MAC, for this purpose. We denote these three models with PPR(MAC), WPPR(MAC),

and MRIR(MAC) where the feature space is denoted in the bracket of the notation of the model
names. The implementation details of the case studies could be found in Section 6.9.

Figure 1 shows the results of two case studies on a benchmark dataset Roxford5k which contains
a list of images of buildings in Oxford. In Figure 1(a), the query image is given on the left-hand side
where the object in the red dotted circle denotes the “special” part/characteristics of the building
which should be found in the “correct” output. On the right-hand side, we could see the result of
the top-5 query returned by each mentioned model. For each model, the result has two parts: (1)
the first part contains the five images with an ordering from the most similar image (on the left
side) to the least similar image (on the right side) in the output of this model, and (2) the second
part is the precision of this model based on these five images. Besides, in the first part, if the image
in the result of each model is incorrect (i.e., the building in the image is different from that in
query image), it is enclosed with a red border boundary. In this case study, we found that only
MRIR(MAC) could obtain 100% precision but all others returned incorrect images. In Figure 1(b),
similar results are obtained for another query image. It is because the similarity measurements the
baselines used are not good. Specifically, for the VGG16, ResNet101, and MAC methods, they used
the traditional Lp -based similarity measure (i.e., Inner Product), which computes the similarity
between two images based on their representation vectors (termed as local similarity) and cannot
reveal the global similarity by exploiting more information in the whole image datasets. Although
both the PPR(MAC) and WPPR(MAC) methods could combine both local and global similarity,
they still suffer from a limitation that they consider only the graph topological information, and
so, the global similarity they used is not that accurate as our method. However, our method MRIR

considers not only the local similarity but also the global similarity which combines the graph
topology with a weighted information computed by a heat kernel on the feature space revealed by
the whole image dataset. Thus, compared with these baselines, MRIR is more effective to improve
the accuracy of image retrieval task.

1.3 Our Proposed Methods: MCMR and MCMR+

Given a querying image, MR exploits both the local similarity and the global similarity to compute
a score called the MR score for each image. In a top-k query, the images with the greatest MR
scores are returned as an output.
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Fig. 1. Top-5 Query Results on Dataset Roxford5k Returned by VGG16 [44], ResNet101 [14], MAC [41],

PPR(MAC) [59], WPPR(MAC), and MRIR(MAC) (ours).

Definition 1 (Top-k MR Search). Given an image database, a query image q and a constant k , the
top-k MR search finds the top-k images with the highest MR scores w.r.t q.

As shown above, MR is good for accurate image retrieval. We consider the following three re-
quirements for evaluating a method M for MR:

— Index-free: M has no index for computing MR scores.
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Table 1. Summary of Existing Methods for MR

Method Mogul-E [8] (the
fastest exact algorithm)

Mogul [8] (the fastest
approximate algorithm)

MCMR and MCMR+

(Our Methods)
Index-free? No No Yes

Output Bound? Yes No Yes

Efficiency? No Yes Yes

— Output bound: The MR scores of images returned by M should have a theoretical quality
guarantee.

— Efficiency: M is computationally cheap to return the MR scores.

For the first index-free requirement, unfortunately, most (if not all) existing algorithms about com-
puting MR scores require to build a bulky index, hindering the flexibility of any image database
update. For example, in the Taobao platform involving at least 2 billion items (or images) [54], the
existing algorithms are not scalable in this large dataset due to the bulky index. For the second
output bound requirement, all existing approximate algorithms compute only the approximate
MR scores without any theoretical guarantee. Then, to answer the top-k MR search problem, all of
them return the top-k nodes with the largest approximate MR scores based on their approximate
computation. Thus, the top-k nodes they returned are very likely to be inaccurate. Besides, they
cannot provide the theoretical analysis to guarantee the accuracy of the returned top-k results. Al-
though existing exact algorithms could return answers with theoretical guarantee (i.e., the exact
MR scores), they suffer from the bulky index size problem. For the third efficiency requirement,
all exact algorithms are time-consuming. Although existing approximate algorithms could return
answers in a short time, they still have no theoretical guarantee on the output. Therefore, none of
existing algorithms can satisfy the three requirements simultaneously.

To tackle these issues, we propose two approaches termed MCMR and MCMR+, both of which
satisfy all these requirements simultaneously. Table 1 summarizes existing algorithms and our
proposed algorithms in terms of above three requirements.

The following shows our contributions.

— We propose two algorithms, namely MCMR and MCMR+, both of which adopt the random
walk sampling strategy without pre-computing any index. Besides, we provide a non-trivial
theoretical analysis on the proposed unbiased weighted random walk sampling strategy in
terms of correctness. Based on MCMR, MCMR+ is further enriched with a refinement step
to prune the nodes that are not in the top-k results, leading to higher efficiency.

— To the best of our knowledge, we are the first to propose index-free algorithms for computing
MR scores. All existing algorithms require to build an index for efficient computation.

— The time complexities of MCMR and MCMR+ are O (n logn) where n is the total number of
images in the database. This is the first best-known time complexity result in the literature
of returning the exact top-k results with quality guarantee. The existing best-known time
complexity in this literature [8] is O (n2).

— We conducted comprehensive experiments on four real-world image datasets. The experi-
mental results show that MCMR+ outperforms existing algorithms by up to four orders of

magnitudes in terms of query time.

This manuscript is a journal extension to our previous conference paper [28]. We summarize
the main differences from our conference version below. (1) Although MCMR in [28] has shown
its ability to balance the tradeoff between efficiency and accuracy, it wastes time to estimate the
MR scores of a large number of unnecessary nodes who are not in the top-k set. In Section 5, we

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 5, Article 61. Publication date: April 2023.



61:6 D. Lin et al.

Table 2. The List of Symbols

Symbol Description
G (V , E ) The k -NN graph G with nodes set V and edges set E

n, m The number of nodes and edges in the graph, respectively
d (u ) The degree of node u in the k -NN graph

A The adjacency matrix of graph G
C The diagonal matrix of A where Cii =

∑n
j=1 Ai j for i ∈ [1, n] and Cik = 0 for each i � k

W The symmetrically normalized matrix of A such that W = C−1/2AC−1/2

D The diagonal matrix of W where Dii =
∑n

j=1 Wi j for i ∈ [1, n] and Dik = 0 for each i � k

q The query node
α The constant parameter of MR
k The number of answered nodes in the top-k search
q The n × 1 query vector of zeros except that q (q ) = 1

x∗q The exact MR scores vector w.r.t the query node q

x ∗q (v ) The exact MR score of node v w.r.t q

π (q, v ) The estimated MR score of v w.r.t q
vk The node whose exact MR score w.r.t q is the k th largest
nr The number of weighted random walks

дapk The difference between the k th and (k + 1)-th largest exact MR scores w.r.t q such that дapk = x ∗q (vk ) − x ∗q (vk+1 )

r f (q, v ) The residue of node v w.r.t q in Local Search

π f (q, v ) The reserve of node v w.r.t q in Local Search

r
f
max The residue threshold used in Local Search

r
f
sum The sum of residues of all nodes w.r.t q such that r

f
sum =

∑
v∈V r f (q, v )

β (q, v ) The confidence bound of node v w.r.t q

propose a more efficient algorithm called MCMR+, which is enriched with a refinement step to
prune iteratively the nodes that are not in the top-k results, leading to higher efficiency. Although
our newly developed algorithm MCMR+ in this article adopts MCMR as an inherent component,
the newly developed algorithm MCMR+ is non-trivial by returning the exact top-k results with
accuracy guarantee in the refinement step and the whole algorithm could not be found in [28]. (2)
In Section 5.5, we prove that the prune technique designed in MCMR+ can correctly compute the
lower and upper bounds of exact MR scores of all nodes with high probability. This theoretical
analysis shows the correctness of the newly developed algorithm MCMR+. Besides, in Section 5.6,
we provide the time complexity analysis of MCMR+, which takes O (n logn) time cost. Both the-
oretical analysis could not be found in [28]. Besides, our experimental results demonstrate that
MCMR+ further achieves better practical performance than MCMR in [28] by up to two orders of

magnitude in terms of query time. Furthermore, in Section 6.4, we examined the effectiveness of
MCMR+ compared with MCMR to see how MCMR+ reduces the query time cost for achieving the
exact top-k results. (3) In this article, we also provide comprehensive experiments on evaluating
the performance of our proposed methods MCMR and MCMR+ in terms of parameter sensitivity
of proposed methods (see Section 6.5), preprocessing time cost of proposed methods when the
dataset is dynamically updated (see Section 6.6) and query time cost for out-of-sample queries in
datasets (see Section 6.7). However, these experiments cannot be found in [28].

The remainder of this article is organized as follows. We give the preliminaries of MR in Section 2.
Next, Section 3 reviews the related work. Then, Sections 4 and 5 present the details of the MCMR

and MCMR+ algorithms, respectively. Section 6.9 presents the case study. In Section 6, we show
the results of our experiments. Finally, Section 7 gives our conclusion.

2 PRELIMINARIES

In this section, we introduce the background of MRIR. Table 2 lists the symbols used in this article.
In MRIR, an image database is modelled as a k-NN graph where each node represents an im-

age [13]. Let G (V ,E) denote an undirected k-NN graph where V and E are the set of nodes and
edges, respectively. Given two nodes u and v , e (u,v ) ∈ E exists only when (i) u is one of the
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k-nearest neighbours of v or (ii) v is one of the k-nearest neighbours of u, according to [8, 13].
Thus, the k-NN graph is undirected. Note that the k-NN graph is regarded as an off-the-shelf com-
ponent in MRIR since it is easy to construct and dynamically maintained [7]. Our exactk-NN graph
construction method is discussed in Section 6.8.

MRIR can be formulated as follows: Given a query node q ∈ V , it computes the MR scores of all
nodes in the graph w.r.t node q. Let A ⊂ Rn×n be the adjacency matrix of the graph G. Normally,

the edge weight can be defined by the heat kernel [8]: Ai j = exp{−d2 (vi ,vj )/2σ
2} if there is an

edge linking nodevi withvj ; otherwise,Ai j = 0, where function d(vi ,vj ) is the Euclidean distance
between vi and vj . Node vi and node vj are defined in the Lp -space (which are obtained by the
feature extraction methods like deep learning approaches), and σ is a hyper-parameter. Note that
the sum of each row/column in A can be smaller or larger than 1. Let q be an n × 1 column vector
of zeros except that the qth entry is set to 1, i.e., q(q) = 1. Let x∗q denote an n × 1 column exact MR

scores vector w.r.t node q where x∗q (v ) denotes the exact MR score of node v w.r.t node q. Thus,

the MR score x∗q (v ) measures how similar node v is to node q.
Intuitively, MR can be understood from the perspective of information spreading from the query

node in the k-NN graph. Initially, the query node q owns a fixed number of information to be
propagated along the edges in the graph. Then, each node in the graph constantly receives the
information from its neighbours until the total information held by each node remains unchanged,
reaching a stationary state (i.e., convergence). After the spreading process, the “similarity” score of
each nodev ∈ V w.r.t node q can be represented as the final information held byv , which is exactly
the MR score of node v w.r.t node q. The larger the MR score of node v is, the more similar node
node v is to node q. Next, we introduce how to compute MR scores by the information spreading
process. Firstly, it symmetrically normalizes the adjacency matrix A and constructs a new matrix

W such that W = C−1/2AC−1/2 where C is the diagonal matrix of A such that Cii =
∑n

j=1 Ai j

for each i ∈ [1,n] while other entries are zeros. To be distinguished from A, W is called the sym-
metrically normalized matrix. This normalization is necessary for the convergence of information
spreading later. Next, MR scores are computed by iteratively using the following equation until
the convergence is reached:

x(t+1) = αWx(t ) + (1 − α )q, (1)

where x(t ) is the MR score vector obtained in the t th iteration and x(0) = 0. In each iteration, each
node receives the information from its neighbours (the first term), and also retains its initial infor-
mation (the second term) [65, 66]. The parameter α specifies the relative amount of the information
from its neighbours and itself. This iterative process is denoted as Power. When it converges, the
exact MR scores x∗q of all nodes w.r.t node q are obtained. Besides, it has been shown in [8, 13, 65]
that after convergence, the vector x∗q holds the following equation:

x∗q = (1 − α ) (I − αW)−1q. (2)

This equation indicates that the exact MR scores x∗q can be obtained by computing the inverse of a
matrix. As such, a straightforward solution to solve the top-k MRIR search is to firstly compute the
MR scores of all nodes w.r.t node q by Equation (2), and then returns the top-k nodes by sorting the
MR scores in decreasing order. However, this solution takes O (n2.373) time since it takes O (n2.373)
time to compute the inverse of a matrix, which is expensive when the graphs (i.e., image databases)
are large. Thus, a fast solution is essential.

3 RELATED WORK

Manifold Ranking-based Image Retrieval (MRIR). Recently, FMR [15], EMR [62], Mogul [8],
and Mogul-E [8] were proposed to improve the efficiency of computing MR scores. However, all of
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them cannot satisfy the three requirements simultaneously mentioned in Section 1. Among them,
Mogul-E is exact method which compute the exact MR scores, and others are approximate meth-
ods which compute approximate MR scores. All of them can be classified as matrix-based methods
since their basic idea is to compute the MR scores by solving Equation (2). Specifically, they ex-
ploit existing matrix decomposition techniques to construct several pre-computed indices in the
preprocessing phase for accelerating the computation of Equation (2) in the query phase. In the
preprocessing phase, FMR partitions the graph into several blocks and decomposes the matrix by
using SVD [15]. EMR computes an anchor graph by selecting a set of anchor nodes and decom-
poses the adjacency matrix by using Woodbury formula [62]. Mogul and Mogul-E compute and
store the decomposed matrices by using Incomplete Cholesky Factorization and Modified Cholesky

Factorization, respectively. Since all the matrix decomposition techniques they used except Mod-

ified Cholesky Factorization are approximate, the MR scores computed by them except Mogul-E

are with errors. None of these approximate methods satisfies the requirement of “output bound”.
Furthermore, all existing algorithms need to construct several special-purpose indexes in the pre-
possessing phase, and thus, they are not index-free. Mogul-E requires O (n2) preprocessing time
and O (n2) space cost which will introduce a huge overhead. For example, in a dataset with one
billion images whose graph size is 300 GB, the index size of Mogul-E is expected to be over 6 TB,
which cannot be handled by most of servers with their limited memory size. Mogul requires O (n)
preprocessing time and O (n) space overhead cost. Though Mogul has a better prepossessing time
and a better space cost than Mogul-E, it still needs to build the index. Furthermore, the query time
complexities of Mogul and Mogul-E are O (n) and O (n2), respectively. Although the time complex-
ity of Mogul is small, it does not return accurate results due to its inability of returning an output
with an output bound. Besides, Mogul-E is very time-consuming due to its quadratic time complex-
ity. For example, in our experimental result, Mogul-E could run more than four days in our real
Flick with only 503,509 images.

Following the previous work [8, 15, 62], there are several possible index-based methods [1, 11,
12], which were originally designed for efficiently computing the inverse of a matrix by decompos-
ing the matrix into sub-matrices where the number of non-zero elements in the matrix are reduced.
The basic matrix decomposition methods include LU decomposition [1], QR decomposition [12],
Singular Vector decomposition [11] and so on. However, none of them have been applied for solv-
ing our MRIR problem yet. Besides, most of them do not outperform the state-of-the-art Mogul

in terms of efficiency since the number of non-zero elements in their decomposed matrix is more
than that in Mogul. Thus, we excluded them for comparison in experiments.

Top-k Similarity Search. MR is a similarity search method to compute the similarity score of
a node w.r.t all other nodes in the graph. In graph-based similarity search area, there exist other
two classical methods, i.e., SimRank [18, 20, 25, 31, 53, 58] and PPR [16, 29, 30, 37, 43, 52, 56, 57, 59],
both of which consider the local similarity and the global similarity in the graph simultaneously.
However, different from MR, these two similarity search methods have different definitions of how
to compute the similarity score between two nodes in the graph. Specifically, Simrank is based on
two intuitive statements: (1) two nodes are similar if they are referenced by similar nodes in the
graph, and (2) a node is most similar to itself [58]. PPR focuses on the relative significance of a
target node t w.r.t a source node s in a graph. The PPR value of node t w.r.t node s represents the
probability that a random walk from s terminates at t on the graph which is usually unweighted,
and thus, the value reveals the original graph topology between node s and node t . Both Simrank
and PPR haven’t been applied to image retrieval tasks yet. However, a comprehensive study about
graph-based similarity measurements has empirically verified that PPR has better performance
than Simrank as a similarity measurement on some real-world applications [27]. Besides, from
our case studies in Section 6.9, MR outperforms PPR in image retrieval task by achieving higher
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precision of top-k results. It is because MR considers not only the graph topology between two
nodes but also the symmetrically normalized weights on the edges obtained by heat kernel, while
PPR considers only the graph topology.

For the top-k similarity search problem, it highly depends on which one similarity measure-
ments are used. For different similarity measurements, the top-k search methods are different
since different pruning strategies are exploited. In the area of MR, only Mogul [8] and Mogul-E [8]
were proposed to solve the top-k MR search. Both of them computes the lower and upper bound of
MR score of each candidate node that is likely in the top-k results. Based on the bounds computed
in each iteration, they prune the nodes that must be not in the top-k results and narrow the size of
candidate set. However, as mentioned above, both methods cannot satisfy the three requirements
simultaneously. However, our proposed methods, namely MCMR and MCMR+ can satisfy the three
requirements simultaneously since we design a non-trivial unbiased weighted random walk sam-
pling strategy for computing MR scores and theoretically proved that our method could answer
the top-k MR search problem with guarantees. Moreover, comprehensive experiments verified that
our proposed methods are more efficient than Mogul and Mogul-E.

Message Passing Neural Networks. Due to rapid development of deep learning-based ap-
proaches, the idea of information diffusion (which is the major idea of MR) has also been adopted
to several existing graph neural networks (GNNs) since it helps to learn the feature representa-
tions by considering the graph structures [10, 21, 24, 61]. For comprehensiveness, we discuss these
studies below. In 2017, Message Passing Neural Network (MPNN)-based algorithms [10] were
proposed to learn the representation of a node in a given graph. Specifically, for each node v in
the graph, MPNN aggregates the message of all neighbours of node v to node v itself, and then
updates the hidden representation of each node v . Although MPNN -based algorithms for semi-
supervised classification on graphs have recently achieved a great success, these methods only
consider passing the messages in a few iterations, which is not enough for learning the feature
vectors of nodes based on the graph structure. To solve this issue, Klicpera et al. [21] proposed
the Approximate Personalized Propagation of Neural Predictions (APPNP) by connecting
Graph Convolutional Network (GCN) with PPR to learn the high-order information of any node
in the graph. However, APPNP propagates the information along the edges in the graph by treating
each neighbour of a node equally, which is always not true in reality. In Section 6.10, our experi-
mental results show that our proposed method MCMR+ can achieve higher precision than APPNP

by up to 2.9% for the node classification task. It is because MCMR+ can treat each neighbour of a
node discriminatively by assigning a “discriminative” weight to each neighbour in the graph.

4 FIRST ALGORITHM: MCMR

To address the deficiencies of existing algorithms about computing MR scores, we propose an algo-
rithm called the Monte Carlo-based Manifold Ranking (MCMR) algorithm, which is efficient
without index and can return the true top-k nodes with accuracy guarantee. In other words, it sat-
isfies all the three requirements simultaneously. The idea behind MCMR is to utilize Random Walk
Sampling on the graph (i.e., one of the Graph Sampling approaches [26]).

It is well known that graph sampling is a promising paradigm to address the computational
challenge of graph analysis tasks since it generates representative samples of the graphs with-
out traversing the whole graph [26]. Among various graph sampling approaches, Random Walk
Sampling is the mainstream one due to its scalability and simplicity to implementation. The gen-
eral idea of Simple Random Walk Sampling strategy is as follows. A single random walk starts at
a given node, then repeatedly jumps to another node by choosing from the current node’s neigh-
bours uniformly at random. After many steps, the probability of a node being visited tends to reach
a stationary probability distribution [26].
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In addition, we observed that the MR score of a node v w.r.t the query node q (i.e., x∗q (v )) can
be regarded as a stationary probability of v being visited by a walk starting from q multiplied by
a coefficient (which is decided by the symmetrically normalized matrix W and the parameter α ).
It is because x∗q (v ) is obtained by repeatedly receiving the information from its neighbours. Thus,
Random Walk Sampling can be a possible solution for our problem.

Challenge. To perform unbiased general Random Walk Sampling on the graph, the whole pro-
cess can be divided into two phases: (1) the simulation phase (which simulates enough number of
samples, i.e., random walks), and (2) the estimation phase (which performs an unbiased estimation

on simulated samples). However, it is non-trivial and challenging to apply Random Walk Sampling
to our problem since the scheme of MR is based on the symmetrically normalized matrix W, which
is not a stochastic matrix. In particular, the sum of entries in each row in W is not exactly 1. It
means that we cannot simulate the random walks as the general Random Walk Sampling strategy
does. Thus, the new simulation and estimation phases are needed.

4.1 Overview

The major idea behind MCMR is to simulate weighted random walks instead of the simple random
walks. Given a query nodeq, MCMR consists of two phases: the simulation phase and the estimation

phase. In particular, in the simulation phase, it simulate a specified number of weighted random

walks from q. In the estimation phase, it estimates the MR score of each node in the graph w.r.t q
based on the simulated weighted random walks.

4.2 The Simulation Phase

Before going into the details, we firstly formally define the weighted random walk in Definition 2.

Definition 2 (Weighted Random Walk). Given a parameter α , and a query node q, a weighted

random walk is simulated as follows: it starts from node q; then, at each step, it chooses one of the
following two options: (i) terminate with (1 − α ) probability; (ii) with α probability, moves to one
neighbour of the current node according to our transition policy (to be introduced later).

Note that the expected length of the weighted random walk is O ( 1
1−α

) since it terminates with
1 − α probability. Next, we introduce the transition policy. Suppose that the walk is currently at
nodev . The idea behind the policy is to choose a neighbour ofv with a weighted probability instead
of uniformly at random. Definition 3 gives the details of the transition policy.

Definition 3 (Transition Policy). At each step, the weighted random walk jumps to a neighbour

u of the current node v with probability
Wv,u

Dvv
where Dvv =

∑
u ∈N (v )Wv,u and N (v ) is the set of

neighbours of v .

Here, we say that Dvv is the (v,v)-th entry of the diagonal matrix D of matrix W such that
Dii =

∑n
j=1Wi j for i ∈ [1,n] while other entries are zeros. In this way, it is ensured that the

sum of the probabilities that node v chooses one of its neighbours as the next node is equal to
1. Besides, we construct an Alias structure [48] on the matrix W so that one neighbour u can be

sampled according to probability
Wv,u

Dvv
in constant O (1) time. Note that selecting a neighbour u of

the current node v with constant time complexity is very important since it ensures that the time
complexity of simulating a weighted random walk is bounded by the length of this walk.

Alias structure. The Alias structure [23, 26] is an optimal data structure for the weighted sam-
pling problem. To keep this article self-contained, we present the alias structure below. Algorithm 1
illustrates the pseudocodes of constructing the alias structure for a node v , which takes as input
the set N (v ) of neighbours of v and the symmetrically normalized matrix W. Its major idea is to
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ALGORITHM 1: Build Alias Structure

Input: a node v , the set N (v ), the degree d (v ) of node v , matrix W

Output: The switch probability p (u) and the alias a(u) for each u ∈ N (v )

1: p (u) ← Wv,u

Dvv
for each u ∈ N (v );

2: a(u) ← u for each u ∈ N (v );
3: Let Bl = {u ∈ N (v ) |p (u) > 1

d (v ) } and Bs = {u ∈ N (v ) |p (u) < 1
d (v ) };

4: while Bl is not empty do

5: Pick any node ui ∈ Bs and uj ∈ Bl ;

6: a(ui ) ← uj ;

7: p (uj ← p (uj ) − ( 1
d (v ) − p (ui ));

8: Remove ui from Bs ;

9: if p (uj ) ≤ 1
d (v ) then

10: Remove uj from Bl ;

11: if p (uj ) < 1
d (v ) then

12: Add uj into Bs ;

13: Return p (u) and a(u) for each u ∈ N (v )

compute a switch probability p (u) and an alias a(u) for each node u ∈ N (v ). As such, a neighbour
u can be selected from N (v ) with constant time complexity by exploiting p (u) and a(u).

Initially, for each node u ∈ N (v ), its switch probability p (u) is set as
Wv,u

Dvv
, and its alias a(u)

is set as u (Lines 1 and 2). Denote Bl (resp. Bs ) as the set of nodes u whose p (u) > 1
d (v ) (resp.

p (u) < 1
d (v ) ) (Line 3). Then, we iteratively modify the switch probability p (u) so that each switch

probability could be 1
d (v ) (Lines 4–12). Specifically, in each iteration, we pick a node ui from Bs

and a nodeuj from Bl , respectively (Line 5). After that, we update the alias ofui as a(ui ) = uj , and

decrease the switch probability of uj by ( 1
d (v ) − p (ui )), referred as p (uj ) = p (uj ) − ( 1

d (v ) − p (ui ))

(Lines 6 and 7). As ui is processed, we remove ui from Bs since the switch probability of ui has
been “filled” to be 1

d (v ) (which is unnecessary to be updated) (Line 8). Besides, if p (uj ) ≤ 1
d (v ) ,

node uj should be removed from Bl , and furthermore, if p (uj ) <
1

d (v ) , we add uj into Bs since the

switch probability of uj should be filled in to be 1
d (v ) (Lines 9–12). The process continues until the

set Bl is empty. Finally, we have p (u) and a(u) for each node u ∈ N (v ) as the results. Since each
node inN (v ) is inspected only once, the time complexity of this construction algorithm isO (d (v )).
We construct such alias structure for each node v ∈ V so that we can sample a neighbour of any
node v in O (1) time (to be introduced later). Thus, the total time complexity of this construction
algorithm for a graph is O (n) since the number of edges in a k-NN graph is O (n).

To select a node u from N (v ) for a node v ∈ V with the computed alias structure, we first uni-
formly sample a nodeu ′ with probability 1

d (v ) . Then, a probability threshold z ∈ [0, 1] is generated

by random If z ≤ p (u ′), then we haveu ′ as the final sampled node; otherwise, we have the alias ofu ′

(i.e., a(u ′)) as the final sampled node. It is easy to see that selecting a sampled node takesO (1) time.

4.3 The Estimation Phase

Now, we present how to estimate the MR score of each node v ∈ V w.r.t the query node q in the
estimation phase.

One limitation of using the transition policy defined in Definition 3 in the simulation phase is
that the information from a node v to a node u could not be captured appropriately. Specifically,
during the information spreading process defined by Equation (1), at each iteration, the
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ALGORITHM 2: MCMR

Input: Graph G = (V ,E), query node q, matrices W and D, constant parameter α , number of random walks

nr

Output: Estimated MR score π (q,v ) for each v ∈ V
1: π (q,v ) ← 0,S (q,v ) ← 0 for each v ∈ V ;

2: for i from 1 to nr do

3: Si ← 1; v ← q;

4: while rand () > 1 − α do

5: Pick one neighbor u of v with the probability
Wv,u

Dvv
;

6: Si ← Si · Dvv ; v ← u;

7: S (q,v ) ← S (q,v ) + Si ;

8: π (q,v ) ← S (q,v )/nr for each v ∈ V ;

information that v transfers to its neighbour u should be Wv,u , instead of
Wv,u

Dvv
in our transition

policy. The basic idea of our estimation phase is to compute u’s information appropriately at each

step of a weighted random walk by using some derivations involving Wv,u (instead of
Wv,u

Dvv
). In

addition, we regard the MR score of a node v w.r.t q as the “expected” amount of information
that node v obtains from node q (via the weighted random walks). Let π (q,v ) be the estimated
MR score of a node v ∈ V obtained by MCMR. Let nr denote the number of weighted random
walks simulated. Suppose that the ith weighted random walk {Xl }0<l ≤L of length L starts from
the query node q. First, we define the scalar of the ith walk for each v ∈ V , denoted as Si (v ), to
be the amount of the information that the ith walk should transfer to node v as follows:

Si (v ) =
⎧⎪⎨⎪⎩

∏L−1
l=1 DXl Xl

, if the i-th walk ends at v,

0, otherwise,
(3)

where i ∈ {1, 2, . . . ,nr } and Xl is the lth node in this walk. Next, we define the total scalars of all
walks for eachv ∈ V , denoted by S (q,v ), to be

∑nr

i=1 Si (v ). Finally, the estimated MR score π (q,v ) of

nodev is computed as follows: π (q,v ) =
S (q,v )

nr
. The correctness of MCMR is proved in Theorem 1.

4.4 Implementation Details of MCMR

Algorithm 2 gives the pseudocode of our MCMR algorithm. It firstly initializes the estimated MR
score π (q,v ) and the sum of scalars S (q,v ) to 0 for each node v ∈ V (Line 1). Then, it generates
nr random walks as follows: for the ith walk, it initializes the scalar of this walk Si as 1 (Line 3);
at each step, it uniformly generates a random value; if the value is greater than 1 − α , it picks up

one neighbour u of current node v with probability
Wv,u

Dvv
and multiplies Si by Dvv (Lines 4–6);

otherwise, the walk terminates at v , it adds the scalar of this walk Si to S (q,v ) (Line 7). After

the simulation phase finishes, the estimated MR score π (q,v ) is computed as
S (q,v )

nr
for each node

v ∈ V (Line 8).

4.5 Theoretical Analysis

In this section, we first prove that the estimated MR scores obtained from MCMR are unbiased as
shown in Theorem 1 and then give a time complexity analysis of MCMR.

Theorem 1. Let π (q,v ) be the estimated MR score by Algorithm 2. We have E[π (q,v )] = x∗q (v ).

Proof. Firstly, we have E[π (q,v )] = E[
S (q,v )

nr
] =

E[
∑nr

i=1 Si (v )]

nr
= E[Si (v )]. Next, we prove that

E[Si (v )] is the expected amount of the information of a weighted random walk from q propagating
to node v by considering all possible walks from q, which is exactly the MR score x∗q (v ).
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Now, consider the ith random walk {Xl }0<l ≤L of length L that starts from the query node q, i.e.,
X1 = q, and terminates at node v , i.e., XL = v . As defined, the scalar of this walk (i.e., Si (v )) is
the amount of the information that this walk should transfer to v . That is, Si (v ) =

∏L−1
l=1 DXl Xl

,

where Xl is the lth node in this walk. To distinguish different values of length L, we denote SL
i (v )

to be equal to Si (v ). Next, let PrL
i (v ) denote the probability of the ith random walk of length

L that terminates at v . From the simulation phase of MCMR, at the lth step of this walk where

0 < l < L, node Xl moves to one of its neighbours Xl+1 with α · WXl ,Xl+1

DXl Xl

probability. At the

Lth step, it terminates with 1 − α probability and ends at node v . Therefore, we can compute the

probability that this walk terminates at node v as follows: PrL
i (v ) = (1 − α )αL−1 ∏L−1

l=1

WXl ,Xl+1

DXl Xl

. If

L = 1, it indicates that this walk terminates at the source node at the first step. By considering
all possible walks with different length L where L ∈ {1, 2, . . . ,∞}, the expected amount of the
information that this walk should transfer to node v , i.e., E[Si (v )], is computed as follows:

E[Si (v )] =
∞∑

L=1

PrL
i (v ) · SL

i (v )

= (1 − α )
∞∑

L=1

�
�
αL−1

L−1∏
l=1

(
WXl ,Xl+1

DXl Xl

· DXl Xl

)
�
	

= (1 − α )
∞∑

L=1

�
�
αL−1

L−1∏
l=1

WXl ,Xl+1
�
	
.

Now, we would like to show that for this walk, the value of
∏L−1

l=1 WXl ,Xl+1
can be computed by

using the multiplication of the matrix W and the vector q. According to the graph theory [45], the
Lth power of matrix W is a matrix where each entry (u,v ) indicates the amount of the information
that nodeu propagates to nodev by a path of length (L+1). So, the result of WLq is a vector where
thevth entry is the amount of the information that node q propagates to nodev by a path of length
(L + 1). Since the value of

∏L−1
l=1 WXl ,Xl+1

is the amount of the information that the query node q
(i.e., the first node) propagates to node v (i.e., the last node of this walk) by a path of length L, it is
easy to get that

∏L−1
l=1 WXl Xl+1

= [WL−1q](v ), where [·](v ) stands for the vth entry of this vector
in square bracket. Thus, the following equation can be obtained:

E[Si (v )] = (1 − α )
∞∑

L=1

[αL−1WL−1q](v )

= (1 − α )
⎡⎢⎢⎢⎢⎣
⎧⎪⎨⎪⎩

∞∑
L=0

(αW)L
⎫⎪⎬⎪⎭

q

⎤⎥⎥⎥⎥⎦
(v ).

As shown in [37], [9] and [65], if liml→∞ (αW)L = 0,

(I − αW)−1 = I + αW + α2W2 + · · · =
∞∑

L=0

(αW)L . (4)

By letting (αW)0 = I. Thus, we have the following equations:

E[Si (v )] = (1 − α )[(I − αW)−1q](v ) = x∗q (v ).

The proof completes. �

Time complexity. We give the time complexity of MCMR for solving the top-k search. The
straightforward way is to firstly compute the estimated MR scores π (q,v ) of each node v w.r.t
q by using Algorithm 2, and then returns the top-k nodes with the highest estimated scores. By
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using Bernstein Inequality [35], it is easy to prove that if generating
10 ln(1/pf ail )

3·
√

2k ·(дapk )2
random walks,

Algorithm 2 returns the exact top-k set with high probability, as shown in Theorem 2. This theorem
indicates that MCMR satisfies the output-bound requirement.

Theorem 2. Given a graphG (V ,E), a query node q, a failure probability pf ail , and the number of

random walks nr =
10 ln(1/pf ail )

3·
√

2k ·(дapk )2
, Algorithm returns the top-k set Vk such that for any node u in Vk ,

if x∗q (u) − x∗q (vk+1) ≥ дapk , with probability at least 1 − pf ail , the following holds:

π (q,u) − π (q,vk+1) > 0,

where vk+1 is node whose exact MR score is the (k + 1)-th largest and дapk = x∗q (vk ) − x∗q (vk+1).

Proof. For the ith walk simulated by Algorithm 2, let Zi be the following random variable:
Zi = Si (u), if this walk ends at u, Zi = −Si (vk+1), if this walk ends at node vk+1, and Zi = 0
otherwise. Then from Theorem 1, we can know that E[Zi ] = E[Si (u)] − E[Si (vk+1)] = x∗q (u) −
x∗q (vk+1) ≥ дapk > 0. Estimating MR scores from nr random walks, the event of interchanging u
and vk+1 in the rankings in the final top-k set is equivalent to taking nr independent Zi variables
and having

∑nr

i=0 Zi < 0. The probability of this event can be upper bounded by using Bernstein’s

inequality [35] and the fact thatVar (Zi ) = x∗q (u)+x∗q (vk+1)−(x∗q (u)−x∗q (vk+1))2 ≤ x∗q (u)+x∗q (vk+1).
The derivation is as follows:

Pr {π (q,u) − π (q,vk+1) < 0} = Pr
⎧⎪⎨⎪⎩

1

nr

nr∑
i=0

Zi < 0
⎫⎪⎬⎪⎭

≤ exp

(
−nr

(E[Zi ])2

2Var (Zi ) + 4/3E[Zi ]

)
≤ exp

��
�
−nr

(
x∗q (u) − x∗q (vk+1)

)2

2
(
x∗q (u) + x∗q (vk+1)

)
+ 4/3

(
x∗q (u) − x∗q (vk+1)

) ��
	

≤ exp
��
�
−nr

(
x∗q (u) − x∗q (vk+1)

)2

10/3x∗q (u) + 2/3x∗q (vk+1)
��
	
.

In addition, for any v ∈ V , x∗q (v ) <
√
Cvv (see Equation (6) in [66]). Recall that matrix C is the

diagonal matrix of matrix A. Let Cmax denote the largest value in matrix C. In the following, we
would like to prove thatCmax < 2k . From the definition of MRIR, each entry in matrix A is smaller
than 1. Besides, for each node in the undirected k-NN graph, it has at most 2k neighbours. Thus,

Cmax < 2k and x∗q (v ) <
√

2k for any node v ∈ V .
So, we can drive as follows:

Pr {π (q,u) − π (q,vk+1) < 0}

≤ exp
(
−0.3 ·

√
2k · nr

(
x∗q (u) − x∗q (vk+1)

)2
)

= exp �
�
−0.3 ·

√
2k ·

10 ln(1/pf ail )

3 ·
√

2k · (дapk )2

(
x∗q (u) − x∗q (vk+1)

)2�
	

≤ exp �
�
−0.3 ·

√
2k ·

10 ln(1/pf ail )

3 ·
√

2k · (дapk )2
(дapk )2�

	
≤ pf ail .

The proof completes. �

Since the expected length of a single walk is 1
1−α

, we have the time complexity as shown in
Theorem 3.
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Theorem 3. Let nr ≥ 10 ln(1/pf ail )

3·
√

2k ·(дapk )2
and pf ail = 1

n
, MCMR returns the top-k set in

O ( ln(n)

(1−α ) ·
√

k ·(дapk )2
) time with 1 − 1

n
probability.

Since дapk is not pre-known, in our experiments, we set a parameter c for tune the number of

walks to be simulated, i.e., nr = c · 10 ln(1/pf ail )

3 . Obviously, the more random walks are simulated,
the longer query time of MCMR and the higher the precision of top-k results. In other words,
MCMR can balance the tradeoff between efficiency and accuracy. Besides, if Chernoff Inequality
(see Lemma 1) is applied, it is easy to show that the time complexity of MCMR is O (n logn) which
is independent of дapk , as shown in Theorem 4.

Lemma 1 (Chernoff Ineqality [32, 35]). Let Y1, . . . ,Yi be the i.i.d random variables such that

Yi ∈ [0, 1]. Let Y =
∑n

i=1 Yi . The following inequality holds:

Pr {|Y − E[Y ]| ≤ ϵ · E[Y ]} ≤ 2 exp

(
−ϵ

2 · E[Y ]

3

)
, (5)

where ϵ is a real value such that ϵ ∈ (0, 1).

Theorem 4. Given a graphG (V ,E), a query node q, a failure probability pf ail , and the number of

random walks nr =
3·n ·log(2n)

ϵ 2 , Algorithm returns the top-k set Vk such that for any node u in Vk , if

x∗q (v ) > 1
n

, then the following holds:

(1 − ϵ ) · x∗q (v ) ≥ π (q,v ) ≤ (1 + ϵ ) · x∗q (v ),

with probability at least 1 − 1
n

, where ϵ is a user-specified error such that ϵ ∈ (0, 1).

Proof. As shown in Algorithm 2, we will average over nr =
3·n ·log(2n)

ϵ 2 weighted random walks.
We denotev as the last node of the ith walk. LetYi = Si (v ). Besides, from Algorithm 2, we can know
that the estimated MR score π (q,v ) of node v is equal to 1

nr
·∑nr

i=1 Yi . Now, we start our proofs

based on these definitions. Firstly, from Theorem 5, we have that E[π (q,v )] = E[Yi ] = x∗q (v ) > 1
n

where the last inequality is the given condition. Next, we define Y =
∑nr

i=1 Yi . Since E[Yi ] >
1
n

, we

have E[Y ] > nr

n
. Now, we show concentration of the estimated MR score by applying Lemma 1:

Pr {|π (q,v ) − x∗q (v ) | ≥ ϵ · x∗q (v )}
= Pr {|Ȳ − E[Yi ]| ≤ ϵ · E[Yi ]} = Pr {|Y − E[Y ]| ≤ ϵ · E[Y ]}

< 2 exp

(
−ϵ

2 · E[Y ]

3

)
< 2 exp

(
−ϵ

2 · nr

3 · n

)
= 2 exp

(
−ϵ

2 · 3 · n · log(2n)

3 · n · ϵ2

)
=

1

n
.

Thus, the proof completes. �

Based on Theorem 4, we can derive that the time complexity of MCMR is O (n logn) since the
user-specified error ϵ is generally set to be 0.5. Thus, MCMR satisfies the efficiency requirement.

In summary, as elaborated above, MCMR satisfies all three requirements.

5 EFFICIENT TOP-K SEARCH ALGORITHM: MCMR+

Although MCMR has shown its ability to balance the tradeoff between efficiency and accuracy, it
wastes time to estimate the MR scores of a large number of unnecessary nodes who are not in the
top-k set. To address this deficiency, we propose a more efficient algorithm called MCMR+, which
combines Local Search (to be introduced later) and MCMR in a non-trivial way.
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Fig. 2. Illustration of MCMR+ algorithm.

5.1 Overview

MCMR+ is an algorithm by utilizing the incremental refinement for efficiently finding the top-k
nodes. Specifically, MCMR+ contains a number of iterations, and in each iteration, it has two phases:
the local search phase and the prune phase, as illustrated in Figure 2. In particular, the local search
phase performs Local Search from the query node without traversing the whole graph so that only
some “special” nodes need to simulate the weighted random walks (i.e., the nodes in the dotted
rectangle in Figure 2). Then, the prune phase simulates a number of weighted random walks from
these special nodes by using MCMR, and then estimates the lower and upper bounds to prune
the nodes who are definitely not in the top-k set, called the non-top-k nodes, to avoid unnecessary
computations. After each iteration, all nodes in the graph would be categorized into three sets: (i)
the top-k set, denoted as Vk , which contains the nodes whose MR scores are definitely the top-k
largest; (ii) the non-top-k set, which contains the non-top-k nodes which are definitely not in the
top-k set; (ii) the candidate set, denoted asC , which contains the nodes which are probably in the
top-k set. As a whole, MCMR+ gets a finer top-k set after each iteration until the exact top-k set is
found.

5.2 Local Search

Before going into the details of MCMR+, we present the Local Search algorithm in this section. As
a whole, the Local Search algorithm can be regarded as an efficient variant of Power. Firstly, we
show that Power can be interpreted from a slightly different perspective. Specifically, for any node
v ∈ V , the MR score of v w.r.t q consists of two parts: (1) the amount of the information reaching
v as the result of the propagation starting from the query q along the edges in the graph; and (2)
the amount of the information to be retained (only affecting the case where v = q). Thus, we can
write that

x∗q (v ) =
∑

u ∈N (q )

α ·Wq,u · x∗u (v ) +
⎧⎪⎨⎪⎩

(1 − α ), if v = q,

0, otherwise,
(6)

where the first term indicates that the amount of the information reaching v from the query q
is equal to the amount of the information received by each neighbour u of q from the query q
(i.e., α ·Wq,u ) multiplied by the amount of the information that v can receive from u (i.e., x∗u (v )).
Similarly, the MR score of v w.r.t each u, can be further represented as follows:

x∗u (v ) =
∑

w ∈N (u )

α ·Wu,w · x∗w (v ) +
⎧⎪⎨⎪⎩

(1 − α ) if v = u

0 otherwise.
(7)

By recursively applying this, at the end, x∗q (v ) can be represented by the sum of x∗u (v ) for each
u ∈ V with different coefficients and a constant related to the query q, as shown in the following
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equation:

x∗q (v ) =
∑

u ∈V
r f (q,u)x∗u (v ) + π f (q,v ), (8)

where r f (q,u) is the coefficient part for x∗u (v ), denoted by residue, and π f (q,v ) is the constant

related to q, denoted by reserve. Besides, the reserve π f (q,v ) can be regarded as the amount of the
information that has been propagated to node v from q, while the residue r f (q,v ) as the amount
of the information that has been propagated to u from q but has not been transferred to v from
u. Equation (8) is the main intuition of Local Search (see Algorithm 3). The algorithm maintains
π f (q,v ) and r f (q,v ) for each node v ∈ V . Initially, it starts with π f (q,v ) = 0 and r f (q,v ) = 0 for
all v , while r f (q,q) = 1 (Line 1–2). Then, it performs a series of push operations by adjusting the
reserves and residues based on Equation (6). The algorithm recursively conducts a push operation

on the node v whose residue exceeds a residue threshold r
f
max · d (v ) where d (v ) is the degree

of node v . The algorithm terminates when no such node v could be found. Finally, it returns the
reserve and residue of each node v ∈ V w.r.t the query node q.

Time complexity. Now, we show that the time cost of Local Search in Lemma 2.

Lemma 2. Let r
f
max be the residue threshold. The total cost of Local Search is O ( 1

(1−α ) ·r f
max

).

Proof. The time cost of Local Search is bounded by the total number of push operations. Firstly,
we prove that the total number of push operations conducted at any node v can be bounded by
x ∗q (v )

r
f
max

. For each push operation at a nodev , the algorithm transfers (1−α ) portion fromv’s residue

tov’ reserve, which is at least (1−α ) ·r f
max ·d (v ) since r f (q,v ) must be at least r

f
max ·d (v ). Thus, it

follows that the total number of push operations on v is bounded by
x ∗q (v )

(1−α ) ·r f
max ·d (v )

since the total

reserve ofv is exactly the MR score ofv w.r.t q. Note that each push operation visits all neighbours

of v , and thus, the cost of all push operations on node v is bounded by
x ∗q (v ) ·d (v )

(1−α ) ·r f
max ·d (v )

. Summing

up over all v ∈ V and we have the total time cost is at most
∑

v ∈V
x ∗q (v ) ·d (v )

(1−α ) ·r f
max ·d (v )

. Since the matrix

W used by MR is symmetrically normalized such that
∑

v ∈V x∗q (v ) is O(1) [66], the total time cost

is O ( 1

(1−α ) ·r f
max

). �

5.3 MCMR+

As stated in Section 4, MCMR estimates the MR scores of all nodes w.r.t a query node q by simu-
lating a number of random walks, which is very expensive since the number of weighted random
walks simulated is large to provide a required accuracy guarantee. To reduce the number of ran-
dom walks required for guaranteeing the accuracy of results, MCMR+ uses a new approach to
estimate the MR scores by incorporating the Local Search algorithm and MCMR in a non-trivial
way.

The idea behind MCMR+ is to apply Equation (8) since this equation demonstrates the rela-
tionship between x∗q (v ) and x∗u (v ) of node v w.r.t each node u in the graph. However, it is time-

consuming to compute the exact MR score x∗u (v ) of nodev w.r.t each nodeu in the graph. To speed
up the computation, MCMR+ estimates a rough approximation πo (u,v ) of MR score x∗u (v ) for each
u ∈ V by exploiting MCMR. Thus, given a query node q, for any node v ∈ V , MCMR+ computes
the estimated MR score π (q,v ) of node v w.r.t node q by applying the following equation:

π (q,v ) = π f (q,v ) +
∑
u ∈V

r f (q,u) · πo (u,v ). (9)

By exploiting Local Search, MCMR+ needs to simulate the weighted random walks from only the
nodes whose residue is non-zero, instead of all nodes in the graph, leading to high efficiency.
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ALGORITHM 3: Local Search

Input: Graph G = (V ,E), query node q, matrix W, constant parameter α , threshold π
f
max

Output: Residue r f (q,v ) and reserve π f (q,v ) for each v ∈ V
1: r f (q,q) ← 1 and r f (q,v ) ← 0 for all v � q;

2: π f (q,v ) ← 0 for all v ;

3: while ∃v ∈ V such that r f (q,v ) ≥ r
f
max · d (v ) do

4: for each u ∈ N (v ) do

5: r f (q,u) ← r f (q,u) + α ·Wv,u · r f (q,v );

6: π f (q,v ) ← π f (q,v ) + (1 − α ) · r f (q,v );

Besides, to obtain the top-k nodes with the largest MR scores w.r.t a query node, a straightfor-
ward solution is similar to MCMR which estimates the MR scores of all nodes and after that, finds
out the top-k nodes, which is very time-consuming since it takes huge amount of time cost for
the unnecessary computations of the nodes which are not in the top-k nodes. To avoid this defi-
ciency, MCMR+ adopts an iterative refinement strategy to compute the estimated MR scores, and
the lower/upper bounds of the exact MR score of each node w.r.t the query node q, based on which
the non-top-k nodes are pruned iteratively.

As stated in Section 5.1, MCMR+ contains two phases: the Local Search phase and the Prune

phase. Algorithm 4 gives the pseudocode of MCMR+. Given a k-NN graphG (V ,E), a query node q,
the matrix W, the constant parameters α and k , MCMR+ finds the exact top-k node set of q with
high probability. Initially, it sets the top-k setVk = ∅ and the candidate setC = V (Line 1). Next, it
iteratively starts the Local Search phase by invoking Algorithm 3 and the Prune phase by invoking
the Prune algorithm (to be introduced later) to refine C and to construct Vk . It first sets the initial
number nr of weighted random walks to be simulated as logn (which is small so that the random

walks can be simulated quickly) and set the initial residue threshold r
f
max as 1

m
(which is large so

that Local Search can terminate quickly) wherem is the number of edges in the graph, nr and r
f
max

are the parameters used in Prune phase and the Local Search phase, respectively (Line 2). In each

iteration, it firstly performs Local Search with r
f
max which returns π f (q,v ) and r f (q,v ) for each

node v ∈ V (Line 4). Then, it calls the Prune algorithm to perform Random Walk Sampling (by
using MCMR) and update candidate set C and the top-k set Vk (Line 5). If the number of nodes in

Vk is still smaller than k , it halves r
f
max and doubles the number of random walks nr so that the

estimated MR scores of candidate nodes could be more “accurate” (Line 6).

5.4 Prune Algorithm

The Prune algorithm updates the candidate set C and top-k set Vk by estimating the lower and
upper bounds of each node in C by applying the empirical Bernstein Inequality, as shown in the
following lemma.

Lemma 3 (Empirical Bernstein Ineqality [2]). Let X1, . . . ,Xnr
be real-valued i.i.d random

variables, such that Xi ∈ [0, r ], E[Xi ]=μ andVar [Xi ]=σ
2. Let X̄nr

= 1
nr

∑nr

i=1 Xi denote the empirical

mean, and σ̄ 2= 1
nr

∑nr

i=1 (Xi − X̄nr
)2. With probability 1 − pf , we have

|X̄nr
− μ | ≤

√
2σ̄ 2 log(3/pf )

nr
+

3r log(3/pf )

nr
= β .

Based on Lemma 3, the lower and upper bounds for each v ∈ V can be estimated. Let π (q,v ) be
the estimator of x∗q (v ) by simulating nr walks, and σ̄ 2 (q,v ) be the empirical variance. We define
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ALGORITHM 4: MCMR+

Input: Graph G = (V ,E), query node q, matrix W, constant parameters α and k
Output: Vk , the set of the exact top-k nodes

1: Vk ← ∅, C ← V ;

2: nr ← logn, r
f
max ← 1

m ;

3: while |Vk | < k do

4: [r f ,π f ]←Local Search(r
f
max );

5: [Vk ,C]←Prune(r f ,π f ,Vk ,C );

6: nr ← 2nr , r
f
max ←

r
f
max

2 ;

7: Return Vk ;

β (q,v ) =
√

2σ̄ 2 (q,v ) log(3n)
nr

+
3r

f
sum log(3n)

nr
. (10)

where r
f
sum =

∑
v ∈V r f (q,v ). Next, we define π (q,v ) − β (q,v ) and π (q,v ) + β (q,v ) as the lower

and upper bounds of node v , respectively.
Algorithm 5 gives the pseudocode of Prune algorithm. It starts by performing nr random walks.

For each random walk, it samples a node u according to the probability r f (q,u)/r
f
sum inO (1) time

(Line 2), and performs the weighted random walks (1 − α ) from u (Line 4–7). If the random walk
terminates at node v , it updates the estimator π (q,v ) and empirical variance σ̄ 2 (q,v ) (Line 8 and
9). After all random walks are processed, it computes the final estimator π (q,v ) (Line 11) and
β (q,v ) for each v ∈ C (Line 12). Finally, it updates the top-k node set Vk and the candidate set C
as follows. For each node v ∈ C , it counts the number of nodes v ′ ∈ C with the upper bounds
π (q,v ′) + β (q,v ′) that are equal to or smaller than the lower bound π (q,v ) − β (q,v ) of node v
(Line 13). If this number exceeds |C |+ |Vk | −k , it implies that with high probability, there are more
than n − k nodes whose optimal MR scores are lower than that of v , and thus, v is a true top-k
node. In this case, we movev fromC toVk (Line 14). Besides, it counts the number of nodesv ′ inC
with lower bounds π (q,v ′) − β (q,v ′) that are higher or equal to the upper bound π (q,v ) + β (q,v )
of node v (Line 15). If this number exceeds k − |Vk |, it implies that with high probability, there are
more than k nodes whose optimal MR scores are higher than that of v , and thus, v is unable to be
a top-v node. In this case, v is removed from C (Line 16).

5.5 Correctness of MCMR+

In this section, we show the correctness MCMR+. Based on the Bernstein Inequality [2] (i.e.,
Lemma 3), we prove that MCMR+ computes all lower and upper bounds correctly with high
probability.

Lemma 4. With probability 1 − 1/n, at any iteration of MCMR+, we have x∗q (v ) ∈ [π (q,v ) −
β (q,v ),π (q,v ) + β (q,v )] for any v ∈ V .

It is easy to understand this lemma since we set the failure probability pf in Lemma 3 to be 1
n

and use the fact that each independent random variable Xi ∈ [0, r
f
sum]. From Lemma 4, we can

derive Theorem 5 which indicates that MCMR+ satisfies the output-bound requirement.

Theorem 5. Given a query node q and parameter k , MCMR+ returns the exact top-k nodes set

with probability 1 − 1/n.

Proof. We prove the lemma by induction. Assume that at the end of the (i − 1)-th iteration,
all nodes in Vk are top-k nodes, and all nodes in V \(C ∪ Vk ) are the non-top-k nodes. At the ith
iteration, recall that MCMR+ moves a node v from C to Vk if the number of v ′ ∈ C such that
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ALGORITHM 5: Prune

Input: Graph G = (V ,E), query node q, constant parameters α and k , forward reserves π f , Alias structure

of forward residues r f , candidate set C , top-k set Vk , number of random samples nr

Output: Updated candidate set C and top-k set Vk

1: for j from 1 to nr do

2: Sample a node u from Alias structure r f with probability r f (q,u)/r
f
sum and set v ← u;

3: Sj ← 1; //scalar of the j-th walk

4: while rand () > 1 − α do

5: Sj ← Sj · Dvv ;

6: Uniformly pick w with probabilityWv,w /Dvv ;

7: v ← w ;

8: π (q,v ) ← j−1
j π (q,v ) + 1

j r
f
sum · Sj ;

9: σ̄ 2 (q,v ) ← j−1
j σ̄ 2 (q,v ) + 1

j (r
f
sum · Sj )2

10: for each node v ∈ C do

11: π (q,v ) ← π (q,v ) + π f (q,v );
12: compute β (q,v ) by Equation (10);

13: if Number of v ′ ∈ C such that π (q,v ′) + β (q,v ′) < π (q,v ) − β (q,v ) exceeds |C | + |Vk | − k then

14: Vk ← |V |k ∩ {v},C ← C − {v};
15: else if Number of v ′ ∈ C such that π (q,v ′) − β (q,v ′) > π (q,v ) + β (q,v ) exceeds k − |Vk | then

16: C ← C − {v};

π (q,v ′) + β (q,v ′) ≤ π (q,v ) − β (q,v ) exceeds |C | + |Vk | − k . By Lemma 4.2, all lower and upper
bounds are correctly computed by MCMR+, and thus, the number v such that π (q,v ′) ≤ π (q,v )
exceeds |C |+ |Vk |−k . This proves that there are less than k nodes inVk andC with MR scores larger
than π (q,v ). Since by the induction hypothesis, nodes outside C and Vk are non-top-k nodes, it
follows that the top-k nodes are either in C or Vk , and thus, v is also a top-k node. Similarly, we
can prove that if MCMR+ removes a nodev fromC , then there are at least k nodes with MR scores
larger or equal to π (q,v ) and thus v is a non-top-k node. Hence, the induction holds and the
theorem follows. �

5.6 Time Complexity Analysis

Each iteration of MCMR+ takesO ( 1

(1−α ) ·r f
max

) time for the local search phase andO (n1 ·nr ) time for

the pruning phase where n1 is the number of nodes that can simulate random walks. Recall that at

the ith iteration of MCMR+, we have r
f
max =

1
2im

and nr = 2i logn. Besides, in each iteration, we

can reuse the results obtained in the previous iteration such as r f (q,v ) for eachv ∈ V . So, the total
time cost of MCMR+ is O (2T ·m + 2T+1 · n1 logn) where T is the number of iterations. Since the
number of edges in the k-NN graph is O (n) and n1 is at most n, the time complexity of MCMR+ is
O (2T+1 (n logn)). Our experiments show thatT is always small and can be omitted since our lower
and upper bounds are tight. Thus, the time complexity of MCMR+ can be simplified as O (n logn),
satisfying the efficiency requirement.

In summary, as elaborated above, MCMR+ satisfies all the three requirements.

6 EXPERIMENTS

In this section, we performed experiments to evaluate the effectiveness and efficiency of MCMR

and MCMR+, all of which were conducted on a machine with Intel(R) Xeon(R) E5-2650 @ 2.2GHz
CPU and 500GB memory. We implemented our algorithms in C++.
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Table 3. Datasets (K = 103)

Dataset Name k -NN n m T (Power)

COIL

C5 5

7.2K

58.5K

50
C10 10 111.1K
C15 15 164.9K
C20 20 216.7K

Pub-Fig

P5 5

57.2K

500.2K

55
P10 10 936.3K
P15 15 1.4M
P20 20 1.8M

NUS-WIDE

N5 5

269.7K

2.2M

1000
N10 10 4.3M
N15 15 6.4M
N20 20 8.5M

Flickr

F5 5

503.5K

4.0M

1000
F10 10 7.9M
F15 15 11.7M
F20 20 15.3M

6.1 Experimental Setting

Methods. We compared our two approaches with three algorithms: Mogul [8], Mogul-E [8], and
Power [66]. Note that we did not include other approximate algorithms, i.e., EMR and FMR, since
Mogul outperforms them in terms of both efficiency and accuracy as shown in [8]. Since the source
codes of Mogul and Mogul-E are not publicly available, we implemented them strictly following
the pseudocode in [8]. All of our source codes are publicly published. We set α = 0.99, following

previous work [13, 65, 66]. For MCMR, we set nr as 103 · 10 log n

3 for each dataset.
Datasets. We used the four images datasets following [8]:

(1) COIL [36]: It contains 7,190 images taken in Columbia University. We use SIFT algorithm
[33] to obtain the feature vector of each image.

(2) Pub-Fig [23]: It has 57,244 images of 200 famous persons, each of which has 73 attributes
[23]. Each attribute itself is a semantic description of images relevant to human faces; they
were automatically detected by pre-trained classifiers.

(3) NUS-WIDE [46]: It consists of 269,648 images, each of which has 144 attributes.[23]. This
dataset was collected by randomly downloading photographs from Flickr through its public
API. The dataset was created by a research group of National University of Singapore.

(4) Flickr [17]: It has 503,510 images. We use SIFT algorithm [33] to obtain the feature vector of
each image.

We constructed the k-NN graph for each dataset. Table 3 shows the statistics of each dataset. For
each dataset, in order to obtain quickly the k-NN graph for a given value k in the query phase,
we pre-constructed a 500-NN graph for each dataset which contains 500 nearest neighbours for
each image (or node) in the dataset. Here, we chose 500 as the number of nearest neighbours used
in the constructed graph since the top-k search in real-world applications generally assumes that
k ≤ 500 [8, 13, 56, 57, 59]. More details about constructing k-NN graph online could be found in
Section 6.8. Besides, following the previous work in [8], we used k from the set of {5, 10, 15, 20}.

Accuracy metric. For each dataset, we randomly selected 50 query nodes. The ground truth

for each dataset is obtained by using Power which stops when the absolute error |x(t+1) − x(t ) |
dropped below 10−10 (see Table 3 for the number of iterations T required). Note that we cannot
directly compute the matrix inverse to obtain the ground truth since it runs out of memory for
the large datasets. We evaluated the accuracy of the top-k search results obtained by each method

by using the classic metrics: Precision P@k =
|Vk∩V ′

k
|

k
, where Vk is the ground-truth top-k set and

V ′
k
= {v ′1, . . . ,v ′k } is the approximate top-k set returned by the method to be evaluated.
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Fig. 3. Query time (in seconds) of the top-k query on different datasets.

Fig. 4. Precision of the top-k query on different datasets.

6.2 Efficiency of MCMR and MCMR+

In this section, we evaluated the efficiency of our proposed methods in the query phase. For each
dataset, the average query time of each method is plotted in Figure 3. Note that we did not include
Mogul-E in Figure 3(c) and Figure 3(d) because the query time of Mogul-E on both datasets is very
large (i.e., more than four days). From Figure 3, we can see that MCMR+ and MCMR are faster
than Mogul and Mogul-E by 1 to 4 orders of magnitude, satisfying the efficiency requirement. It is
because that Mogul and Mogul-E need to compute the approximate MR scores for almost all the
nodes in the graph while ours do not. MCMR is slightly slower than MCMR+ because MCMR+ can
prune the non-top-k nodes to avoid unnecessary computations.

6.3 Precision of MCMR and MCMR+

In this section, we evaluated the quality of the top-k results obtained by each method. Over 50
queries, the average precision of each method is shown in Figure 4. The results show that MCMR+

can return the exact top-k results on all datasets, satisfying the output-bound requirement. Al-
though Mogul-E and Power can return the exact top-k results, their query time is slower than
MCMR+ by up to four orders of magnitude. Besides, MCMR+ dominates the fastest approximate
method Mogul on all datasets as well. Besides, on the largest dataset Flickr, the precision of the
state-of-the-art Mogul is below 0.3. It is because Mogul directly sets some entries in the factorized
matrices to zero for achieving high efficiency, making the estimated MR scores be approximate
with high error. The result quality of Mogul for top-k search deteriorate when the dataset becomes
larger since the number of “bad” entries in the factorized matrices increases accordingly.

In addition, as an approximate method, the precision of MCMR outperforms the existing best-
known approximate method Mogul on most of datasets. Although Mogul can achieve higher preci-
sion on Pub-Fig than MCMR, its performance is not stable, for example, Mogul achieves with lower
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Fig. 5. Fair comparison of MCMR and MCMR+ for the top-k query (where k is set as 20).

precision on some larger datasets, e.g., NUS-WIDE and Flickr, than MCMR. Finally, the results also
show that MCMR+ has higher precision than MCMR on all datasets. It is because the number of
weighted random walks simulated by MCMR is not enough.

6.4 Fair Comparison of MCMR and MCMR+

In this section, we examined the performance of MCMR in terms of precision for the top-k query
by varying the number of weighted random walks nr . Besides, we examined the effectiveness of
MCMR+ compared with MCMR to see how MCMR+ reduces the number of random walks required
for achieving precision 1 for the top-k query. We included four datasets for comparison and set k
to be 20 for each dataset. Thus, we have four graphs, namely C20, P20, N20, and F20, where C20
denotes thek-NN graph of dataset COIL whenk is 20, and P20, N20, and F20 have similar meanings.
Furthermore, for each dataset, we chose 50 query nodes uniformly at random and reported the
average precision. The results are shown in Figure 5. Specifically, Figure 5(a) shows the precision of
MCMR for top-k query by varyingnr . In this figure, the legend shows four graphs. The results show
that the precision of MCMR increases when nr increases on all datasets. In particular, the precision
of MCMR achieves 1 when nr is large enough. For example, for datasets COIL and Pub-Fig (i.e., C20

and P20, respectively), MCMR returns the 100% correct top-k nodes when nr ≥ 105 · 10 log(n)
3 , while

for datasets NUS-WIDE and Flickr (i.e., N20 and F20, respectively), MCMR returns the true top-k

results when nr ≥ 107 · 10 log(n)
3 , which is consistent with Theorem 2.

Figure 5(b) shows the number of weighted random walks used by MCMR and MCMR+ to achieve
precision 1 for the top-k query on all datasets. Specifically, MCMR+ generates fewer random walks
than MCMR by up to six orders of magnitude. It is because MCMR+ reduces the number of random
walks by utilizing Local Search and the lower/upper bounds to avoid unnecessary computations
on the nodes which are not in the top-k results.

6.5 Parameter Sensitivity

In this section, we evaluated the effect of the number of weighted random walks simulated by
MCMR. We varies the number nr of walks for the top-k search by tuning the coefficient value of
nr from {101, 102, 103, 104, 105, 106}. The results of dataset COIL are illustrated in Figure 6. We can
see that the precision increases when nr increases, which is consistent with Theorem 2. Besides,
when nr is not large enough (e.g., 101), the precision of top-k search decreases when k increases.
It is because the value of дapk decreases when k increases. From Theorem 2, the smaller the value
of дapk , the more random walks required to guarantee the quality of top-k results. Thus, for the
same number of random walks, the larger the value of k , the smaller the value of дapk , and so
the lower the precision of top-k search. Besides, when nr approaches 106, the precision of MCMR

reaches 1 for all top-k queries.
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Fig. 6. Precision of MCMR on COIL dataset varying the number of random walks nr .

Fig. 7. Preprocessing time (in seconds) of each method on two datasets. Mogul-E is not plotted in Flickr since

it ran over four days.

6.6 Preprocessing Cost for Dynamic Updating

In the following, we would like to conduct experiments on dynamic datasets to study the perfor-
mance of our proposed algorithms.

For datasets COIL and Flickr, we removed 50 randomly selected nodes as well as their linking
edges from the graph to measure the preprocessing cost of dynamic updates: (1) the preprocessing
time and (2) the index size. The reconstruction time of k-NN graph for all methods are the
same and so not reported here (more details about dynamic k-NN graph construction could be
found in Section 6.8). The preprocessing time of each method is plotted in Figure 7. Since our
proposed methods MCMR+ and MCMR satisfy the index-free requirement, it requires zero time
cost in the preprocessing phase. The same case for Power. However, without any mechanism
supporting dynamic updates for Mogul and Mogul-E, we have to rebuild the indices from scratch
with highly expensive preprocessing cost. For example, Mogul takes nearly 100,000 seconds to
rebuild the index for Flickr, and the rebuilding must be carried out repeatedly with updates, which
is completely time-consuming in the dynamic settings. However, our proposed methods can be
easily adapted to any dynamic update without extra cost. Besides, the index size of Mogul and
Mogul-E are illustrated in Figure 8. To present how large of their indices, the graph size is plotted
as well, denoted by Graph. The results show that the index size of Mogul-E is larger than the
graph size by up to 20 times, which is not practical for real-world applications.

6.7 Query Time for Out-of-Sample Queries

In the previous sections, we assumed that the query node is in the database by following the
previous work [8, 13]. However, in real applications, the user can select a query node outside the
database (the out-of-sample query). Our approach for the out-of-sample query follows the previous
work [13]. By following the previous work [8, 13], our approach is to first project the query node
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Fig. 8. Index size of each method on each dataset. Mogul-E is not plotted in Flickr since it ran over four days.

Fig. 9. Query time and preprocessing time (in seconds) for out-of-sample query on four datasets.

in the out-of-sample query to a node in the feature space. Next, it connects the query with its
k-nearest neighbours in the image database, and calculates the symmetrically normalized matrix
W. Thirdly, we add one row and one column to the symmetrically normalized matrix W, with
each element equal to the corresponding edge weight. More details about constructing a new k-
NN graph for a newly inserted image could be found in Section 6.8. All the other operations are
performed similarly using this enlarged matrix W. Figure 9 shows the query time of each method
for an out-of-sample query on four datasets. For Mogul and Mogul-E, their indices need to be rebuilt
from scratch for the out-of-sample query. The results show that our proposed method can work
well and solve the out-of-sample query by taking less query time than the existing algorithms.

6.8 Exact k-NN Graph Construction

In this section, we present how to build a k-NN graph for a given value of k in the query phase.
Recall that existing work about MR [8, 13, 15, 47, 55] requires exact k-NN graph for computing
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Fig. 10. Build time and the space size of a large 500-NN graph on four datasets.

the MR scores w.r.t a given query. The (naive) greedy method for constructing a k-NN graph for
a dataset containing n images (i.e., nodes) takes O (n2) query time by computing distance of each
pair of images (i.e., nodes) in the dataset, which is very time-consuming for large image datasets.
Recall that by providing the k-NN graph in advance, our proposed algorithms could return the
top-k nodes with the highest MR score w.r.t a query node in only O (n logn) query time. Thus, to
efficiently obtain the k-NN graph in the query phase, we include our construction method below.

Based on the learnt feature vectors of images in the dataset, our construction method has two
phases: (1) the preprocessing phase, and (2) the query phase (for computing MR scores w.r.t a
query node). In the preprocessing phase, it constructs and stores a large 500-NN graph which con-
tains 500 nearest neighbours of each image in each dataset by exploiting CoverTree [4] which
is a widely used structures for high-dimensional nearest neighbours search. Here, we choose
500 as the number of nearest neighbours used in the constructed graph since the top-k search
in real-world applications generally assumes that k ≤ 500 [56, 57, 59]. Thus, our construction
method creates a cover tree for a dataset in O (c6n logn) time where c ∈ (1.3, 3) is a user pa-
rameter for splitting [3] and also creates the 500-NN graph in O (c12n logn) time since it takes
O (c12 logn) time to find the nearest neighbours for a node in the graph using CoverTree [4]
and there are n nodes required. In addition, storing 500-NN graph and the cover tree takes only
O (n) space size. Figure 10 shows the build time and the space size of our construction method on
four datasets.

In the query phase, there are two cases: (1) the query image is in the dataset, and (2) the query
image is out-of-sample. For the first case, we could directly use the large 500-NN graph with the
given value of k and so it does not require any time for building a k-NN graph. For the second
case, for a query image q which is out-of-sample, it is required to find its k nearest neighbours
and its reverse nearest neighbours (which contain q in their k-NN set). Following previous work
[8, 13], the out-of-sample query image will not be put into the image dataset for the top-k image
retrieval search for other query images. Thus, it is no need to update the 500-NN graphs and the
cover tree in the indexing since this query image is just for one use and is no need to be inserted.
Motivated by this, in the query phase, we directly find out its k nearest neighbours and reverse
nearest neighbours by taking O (n) time, which is smaller than the query time of our proposed
methods (excluding the k-NN graph construction time). Thus, the total time complexities of our
proposed methods are still O (n logn). Besides, in Section 6.7, we can see that in the query phase,
our proposed method MCMR+ runs faster than all existing algorithms.

Besides, in our case study of image retrieval, we show the breakdown of time cost of our pro-
posed method in terms of the preprocessing phase and the query phase. The results are shown in
Table 6. From the results, we can see that the build time for constructing the 500-NN graph for
dataset Roxford5k is much smaller than the training time for the deep learning model MAC by up
to five orders of magnitude. Thus, the preprocessing time for constructing the 500-NN graph is
acceptable in the real-world applications.
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Table 4. Details of Each Method Used in Case Study

Method VGG16 ResNet101 MAC PPR (MAC) WPPR (MAC) MRIR (MAC)
Feature extraction model VGG16 ResNet101 MAC MAC MAC MAC

Similarity measure Inner Product Inner Product Inner Product PPR WPPR MRIR
Reference [44] [14] [41] [41] [59] Adaption ours

6.9 Case Study of Image Retrieval

In this section, we evaluated the superiority of MRIR over the existing similarity measures in terms
of effectiveness by a case study.

Methods. For this case study, six methods were compared and the details of each method are
shown in Table 4. Specifically, for the top-k search, each method contains two phases: (i) feature
extraction and (ii) similarity measure. For most of existing methods, they apply Inner Product as
similarity measure to return the top-k results after the feature extraction, e.g., VGG16 [44] (a tra-
ditional CNN network with 16 layers), ResNet101 [14] (a widely used powerful CNN network
with 101 layers), and MAC [41] (the state-of-the-art CNN network for the image retrieval tasks).
Besides, MRIR(MAC) is our methods which returns the top-k results by using our proposed ap-
proach MCMR+ (since MCMR+ can empirically retrieve the exact top-k results with the highest
exact MR scores). To better illustrate the effectiveness of MRIR, we include PPR and WPPR as
alternative similarity measures and implement two adaptive methods, namely, PPR(MAC) and
WPPR(MAC), respectively. PPR is a popular graph-based similarity measure used for link predic-
tion and friend-recommendation in social media. For WPPR, its transition probability for random
walk sampling is the same as MRIR(MAC) for fair comparison. The latter three methods extract
the feature vectors by MAC.

Datasets. Following the state-of-the-art of image retrieval [40, 41], we used Roxford5k for eval-
uating, which contains 5,063 images of different buildings in Oxford.

Implementation issues. We conducted the experiments for six methods by taking complete
fair principles. Specifically, during the process of feature extraction, we used the same whitening
and multi-scale representation as in [41], and used generalized-mean (GeM) pooling method.
Moreover, since PPR and WPPR are graph-based similarity measures, we use the same k-NN graph
as MRIR to ensure fair comparison.

Accuracy metric. In this study, our focus is : Whether or not the top-k results retrieved by MRIR
really have the same objects as the query? We denote P@k as the precision, which measures the
percentage of how many images who have the same object as the query are returned as the top-
k results. Besides, to show the performance of each method on a dataset where the number of
images with the same object are not distributed evenly, we included Mean Average Precision as
another metric, denoted by MAP@k . Specifically, MAP@k for a set of queries is the mean of the
average precision score for a query image q, denoted by AvдP (q), such that

MAP@k =

∑Q
i=1 AvдP (qi )

Q
,

where qi is the ith query image,Q is the number of query images, andAvдP (qi ) =
∑k

i=1 (P@i ) ·true (i )

k

where P@i is the precision for the top-i queries as defined above and true (i ) is an indicator func-
tion where it is equal to 1 if the ith image returned by a method has the same object as the query
image, 0 otherwise.

Results. The results in terms of both P@k and MAP@k are shown in Table 5. We can see
that MRIR(MAC) has the best performance in terms of both P@k and MAP@k . Specifically, by
using the same feature extraction method, MRIR(MAC) has higher P@k than MAC, PPR(MAC),

and WPPR(MAC) by up to 12%, indicating that MRIR is a more effective similarity measure than
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Table 5. Performance of Each Method on Dataset Roxford5k in Case Study

Method VGG16 ResNet101 MAC PPR (MAC) WPPR (MAC) MRIR (MAC)
P@k 0.750 0.791 0.852 0.894 0.907 0.93

MAP@k 0.621 0.637 0.7883 0.7964 0.854 0.897

Table 6. Time Cost of MRIR(MAC) in Case Study

Dataset Preprocessing Phase Query Phase

Roxford5k
MAC model training time (s) Time for obtaining feature vectors (s) Time for building 500-NN graph (s) Query time (s)

28545.31 5418.16 0.241 0.02128

Table 7. Datasets for Node Classification

Dataset Number of nodes Number of edges Number of nodes for training
CiteSeer 2,110 3,668 1,900
Pubmed 19,717 44,324 1,900

MS-Academic 18,333 81,894 6,000

Table 8. Results of MCMR+ and APPNP

for Node Classification

CiteSeer Pubmed MS-Academic

APPNP 53.7% 75.4% 86.9%
MCMR+ 54.5% 78.3% 87.5%

Inner Product, PPR and WPPR. The reasons are presented in Section 1. Besides, both VGG16 and
ResNet101 have lower P@k than MRIR(MAC) due to two reasons: (1) the feature extraction meth-
ods they used are not superior to MAC and (2) the similarity measure they used only focuses on the
locally nearest neighbours in the feature space. Similar results could be found in terms of MAP@k
where MRIR(MAC) has the highest MAP@k among all methods, indicating that MRIR(MAC) is
more effective to return the top-k results with correct orderings. To sum up, MRIR can further
improve the quality of results with powerful feature extraction methods.

6.10 MCMR+ for Node Classification

This section evaluated the performance of MCMR+ and APPNP [21] for the node classification
task on a graph since both of them adopt the idea of information diffusion. Following previous
work [21], we used three datasets for evaluation, namely CiteSeer, Pubmed, and MS-Academic, as
shown in Table 7. All datasets except MS-Academic are citation graphs and use a bag-of-words
representation of the papers’ abstracts as features, and MS-Academic is a co-authorship graph
where edges denote the co-authorships. Given a graph and a set of nodes which are with class
labels, node classification aims to predict the class label of each unlabelled node in the graph.
Besides, each dataset is split into two sets of nodes: (i) the training set for training the model,
and (ii) the test set for evaluating the final performance of the trained model. Table 7 shows the
number of training nodes for each dataset. To adapt MCMR+ for node classification, we firstly
use the same GCN structure as APPNP to learn the hidden representations of nodes in the graph,
and then propagate the learned hidden representations of nodes by using MCMR+ (instead of PPR
in APPNP). For fair comparison, the value of propagation probability α is set to 0.01, and for the
setting of other parameters, we strictly follow [21]. In addition, we use the metric precision to
evaluate the performance of each method, i.e., the ratio of the number of nodes with correct label
over all testing nodes.

Table 8 shows the results of MCMR+ and APPNP. The results show that MCMR+ achieves higher
precision than APPNP on all datasets. Specifically, on datasets Pubmed and Citeseer, the precision
of MCMR+ is higher than APPNP by up to 2.9%. It is because MCMR+ pays more attention on the
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k-nearest neighbours of each node and adopts a “discriminative” weight on each edge for propa-
gating the information but APPNP considers each neighbour of a node equally.

7 CONCLUSION

To efficiently address the top-k MRIR search, this article proposes two novel approaches by exploit-
ing the basic idea of Random Walk Sampling. We theoretically proved the correctness of our new
weighted Random Walk Sampling strategy used in MCMR and MCMR+ as well as their time com-
plexity for answer the top-k MRIR search. Comprehensive experiments show that our proposed
method MCMR+ dominates the state-of-the-arts in terms of query time, accuracy, and space cost.
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