1774

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 10, OCTOBER 2012

Finding Top-k Preferable Products

Yu Peng, Raymond Chi-Wing Wong, and Qian Wan

Abstract—The importance of dominance and skyline analysis has been well recognized in multicriteria decision-making applications.
Most previous studies focus on how to help customers find a set of “best” possible products from a pool of given products. In this paper,
we identify an interesting problem, finding top-£ preferable products, which has not been studied before. Given a set of products in the
existing market, we want to find a set of k “best” possible products such that these new products are not dominated by the products in
the existing market. We study two problem instances of finding top-k preferable products. In the first problem instance, we need to set
the prices of these products such that the total profit is maximized. We refer such products as top-k profitable products. In the second
problem instance, we want to find k products such that these & products can attract the greatest number of customers. We refer these
products as top-k products. In both problem instances, a straightforward solution is to enumerate all possible subsets of size k and find
the subset which gives the greatest profit (for the first problem instance) or attracts the greatest number of customers (for the second
problem instance). However, there are an exponential number of possible subsets. In this paper, we propose solutions to find the top-%
profitable products and the top-k popular products efficiently. An extensive performance study using both synthetic and real data sets is
reported to verify the effectiveness and efficiency of proposed algorithms.

Index Terms—Skyline, spatial database.

INTRODUCTION

OMINANCE analysis is important in many multicriteria
decision-making applications.

Example 1 (Skyline). Consider that a customer is looking for
a vacation package to Hannover using some travel
agencies like Expedia.com and Priceline.com. The custo-
mer uses two criteria for choosing a package, namely price
and distance-to-beach, where price is the price of a package
and distance-to-beach is the distance between a hotel in a
package and a beach. For two packages p and g, if p is

the best possible tradeoffs between the two factors in
question. In Example 1, ps is in the skyline but p, is not.

Consider that a new travel agency wants to start some
new packages from a pool of potential packages as shown in
Table 2. Table 2 shows three potential packages, namely
q1,q2, and ¢3. In this table, attribute distance-to-beach and
attribute cost of each package are given. However, attribute
price is to be determined by the agency.

Example 2 (Profitable price with one package). Suppose

better than ¢ in atleast one factor, and is not worse than ¢in
any other factors, then p is said to dominate q. Table 1 shows
four packages: p1,p2,ps, and ps. We know that a lower
price and a shorter distance-to-beach are more preferable.
Thus, p; dominates ps because p; has a lower price and a
shorter distance-to-beach than p,. However, p; does not
dominate p; because p; has a lower price than ps.
Similarly, p; does not dominate p; because p; has a shorter
distance-to-beach.

A package which is not dominated by any other packages
is said to be a skyline package or it is in the skyline. Recently,
skyline analysis has received a lot of interest in the literature
[16], [10], [21], [7], [14], [24]. The packages in the skyline are

o Y. Peng and R.C.-W. Wong are with the Department of Computer Science
and Engineering, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong.

E-mail: {gracepy, raywong|@cse.ust.hk.

o Q. Wan is with the Computer Science Department, University of
Wisconsin-Madison, Room 3387, 1210 W. Dayton St., Madison, WI
53706. E-mail: quan@cs.uwm.edu.

Manuscript received 1 June 2011; revised 28 Nov. 2011; accepted 26 Jan.
2012; published online 2 Mar. 2012.

Recommended for acceptance by S. Abiteboul, C. Koch, K.-L. Tan, and |. Pei.
For information on obtaining reprints of this article, please sende-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDESI-2011-06-0314.

Digital Object Identifier no. 10.1109/TKDE.2012.52.

1041-4347/12/$31.00 © 2012 IEEE

that we select only one new package, say ¢;. What price
should we set for package ¢;? If we set the price of ¢; to be
$100, since the cost of ¢; is $100, the profit of ¢, is equal to
$100 — $100 = $0. In other words, we cannot earn any
profit. If we set the price to be $400, although we can earn
$400 — $100 = $300, this new package ¢; is dominated by
p2 in the existing market. In other words, it is likely that
no customer will select ¢; since p, is better than g.
However, if we set the price to be $300, not only can we
earn $300 — $100 = $200 but also ¢; is not dominated by
any packages in the existing market. We say that $300 is a
profitable price of ¢ but $100 and $400 are not profitable
prices of g;.

Let us consider another example that we want to
select only one new package ¢» (instead of ¢;). Similarly,
if we set the price to be $200, the profit is $0. If we set
the price to be $400, ¢; is dominated by p,. However, if
we set the price to be $300, we can earn $100 and ¢ is
not dominated by any packages in the existing market.
Thus, $300 is a profitable price of ¢, but $200 and $400
are not. ad

Unfortunately, how we set the price of a new package may

affect how we set the price of another new package.

Example 3 (Profitable price with two packages). Suppose

that we are interested in selecting two new packages,
says ¢; and ¢, instead of only one new package. From

Published by the IEEE Computer Society

PENG ET AL.: FINDING TOP-K PREFERABLE PRODUCTS

TABLE 1
Packages in the Existing Market
Package | Distance-to-beach (km) | Price
P1 7.0 200
P2 4.0 350
p3 1.0 500
P4 3.0 600

Example 1, if we set both the price of ¢; and the price of ¢,
to be $300 separately, then we can earn some profits and
they are not dominated by any packages in the existing
market. However, after we set these prices, the new
package ¢; is dominated by another new package ¢». An
alternative price setting/assignment is that the prices of
¢ and ¢, are set to $250 and $300, respectively. In this
assignment, it is easy to verify that ¢; (¢2) is not
dominated by not only any packages in the existing
market but also another new package ¢» (¢1). Besides, the
profits of ¢; and ¢, are $150 and $100, respectively. The
sum of these profits is equal to $250. 0

From the above example, we learn that how we set the
price of a new package may affect how we set the price of
another new package. Let () be the set of potential new
packages. In general, we want to select k packages from @
where £ is a positive integer and is an input parameter. For
example, k is equal to 2 in Example 3. We denote the set of
these selected packages by @)'. Let F'(Q)') be a utility function
on Q' which returns a real number. Different sets for Q' can
give different values of F. If the value of F is larger, then
the set for @)’ is more preferable. One example of F is a
function which returns the sum of the profits of all packages
in @’ as illustrated in Example 3.

In this paper, we study the following problem: given a
set P of packages in the existing market and a set @ of
potential new packages, we want to select a set Q' of
k packages from @ such that F(Q’) is maximized and each
selected package is not dominated by any packages in the
existing market and any selected new packages. We call this
problem finding top-k preferable products.

Setting different utility functions in this problem gives
different problem instances. In this paper, we study two
instances of the problem with two different utility func-
tions. The first instance is called finding top-k profitable
products (TPP) (Section 1.1) where the utility function on Q'
is set to the function returning the sum of the profits of all
packages in @'. The second instance is called finding top-k
popular products (Section 1.2) where the utility function on @’
is set to the function returning the total number of
customers who are interested in some packages in @’ when
customers’ preferences are available.

1.1 Finding Top-% Profitable Products

The first instance is called finding top-k profitable products. A
naive way for this instance/problem is to enumerate all
possible subsets of size k from (@, calculate the sum of the
profits of each possible subset, and choose the subset with
the greatest sum. However, this approach is not scalable
because there are an exponential number of all possible
subsets. This motivates us to propose efficient algorithms for
problem TPP.

1775

TABLE 2
Potential Packages in the New Travel Agency
Package | Distance-to-beach (km) | Price | Cost
q1 5.0 ? 100
q2 4.5 ? 200
q3 0.5 ? 400

Although how we set the price of a new package may
affect how we set the price of another new package and there
are an exponential number of possible subsets, interestingly,
we propose a dynamic programming approach which finds an
optimal solution when there are two attributes to be
considered. But, we show that this problem is NP-hard
when there are more than two attributes to be considered.
Thus, we propose two greedy algorithms for this problem.
One greedy algorithm has a theoretical guarantee on the
profit returned while the other greedy algorithm performs
well empirically.

Finding top-k profitable products is common in many
real-life applications. Other applications include finding
profitable laptops in a new laptop company, finding profit-
able delivery services in a new cargo delivery company and
finding profitable e-advertisements in a webpage.

In some cases, data sets are dynamic and change from
time to time. In this paper, we also study how to find top-k
profitable products when data sets change. For example,
some new products are launched in the existing market
while some products which were present in the existing
market become unavailable. Besides, the prices of existing
products in the market may change due to various reasons,
such as inflation and cost increase.

1.2 Finding Top-% Popular Products

The second instance is called finding top-k popular products. In
some cases, if we know how many customers are interested
in some potential products, we can better find potential
products. One well-known application which allows custo-
mers to provide their preferences is “Name Your Own Price”
developed by “Priceline.com.” If customers indicate their
preferences on some hotels, “Name Your Own Price” service
will return some potential hotels to customers.

Similarly, a naive way is to enumerate all possible subsets
of size k from @, calculate the total number of customers
interested in some packages in this subset, and choose the
subset with the greatest number of customers. But, it is not
scalable. We show that this problem is NP-hard. But,
interestingly, we propose a 0.63-approximate algorithm
which runs in polynomial time.

Our contributions are summarized as follows: first, to the
best of our knowledge, we are the first to study how to find
top-k preferable products. Finding top-k preferable products
can help the effort of companies to find a subset of products
together with their corresponding profitable prices, which
cannot be addressed by existing methods. Second, for the
first problem of finding top-k profitable products, we
propose a dynamic programming approach which can find
an optimal solution when there are two attributes to be
considered. We show that this problem is NP-hard when
there are more than two attributes. Thus, we propose two
greedy approaches to solve the problem efficiently. Third,
we also propose an incremental approach for the first
problem when data sets change over time. Fourth, we show

1776

that the second problem of finding top-k popular products is
NP-hard and propose a 0.63-approximate algorithm for this
problem. Fifth, we present a systematic performance study
using both real and synthetic data sets to verify the
effectiveness and the efficiency of our proposed approaches.
The experimental results show that finding top-k profitable
products and top-k popular products is interesting.

The rest of the paper is organized as follows: in Section 2,
we formally define the first problem instance. In Sections 3
to 5, we discuss algorithms and issues for the first problem
instance. Specifically, in Section 3, we describe an algorithm
for finding the sum of the profits given a set of k selected
packages. The proposed approaches are presented in
Section 4. In Section 5, we give a discussion on the
proposed approaches for finding top-k profitable products.
In Section 6, we discuss how to find top-k profitable
products when data change over time. In Section 7, we
address the second problem instance and describe how to
find top-k popular products when customer preferences are
given. A systematic performance study is reported in
Section 8. Related work is given in Section 9. The paper is
concluded in Section 10.

2 PROBLEM DEFINITION

The skyline of a given data set D is denoted by SKY (D). We
have a set P of m tuples in the existing market, namely
P1,D2,--.,pm- Each tuple p has [attributes, namely
Ay, As, ..., A;. The domain of each attribute is IR where a
smaller value is more preferable. The value of attribute A; for
tuple p is given and is denoted by p.A; where j € [1,1]. In
particular, the last attribute A; represents attribute price and
all other attributes represent the attributes other than price.
Besides, we have a set () of n potential new tuples, namely
q1, 42, - - -, gn- Similarly, each tuple ¢ has the same [attributes,
namely A;, Ay, ..., A;. The value of attribute A; for tuple ¢ is
denoted by ¢.A; where j € [1,1]. However, the value of
attribute 4, for tuple ¢ is not given and the value of each of
the other attributes is given. We assume that no two potential
new tuplesin () are identical (i.e., no two tuples in) have the
same attribute values for Aj, As,...,A;_1). In addition to
these [attributes, each tuple ¢ is associated with one
additional cost attribute C. The value of attribute C for q is
denoted by ¢.C. We assume that for any two tuples in P U Q,
they have at least one attribute value different among the
first [— 1 attributes. This assumption allows us to avoid
several complicated, yet uninteresting, “boundary” cases. If
this assumption does not hold, the proposed algorithms can
be modified accordingly.

In our example, P contains four tuples, namely pi, p2, p3,
and py (Table 1), and @ contains three tuples, namely ¢, g2,
and g3 (Table 2). Attribute A; and attribute A, are “Distance-
to-beach” and “Price,” respectively. Attribute C is “Cost.”

Let pricey,q, be the greatest possible price of a tuple in P.
We assume that the price of each tuple in () should be set to a
value at most price,,,. This assumption makes sense since
we do not want the price of each package too high compared
with all existing packages. Besides, since there are an infinite
number of possible values in IR, we assume the domain of
attribute “Price” (i.e., 4;) is defined to be D ={i-oli is a
nonnegative integer and i - o < price;q,} where o is a real
number and a user parameter. If we want to have a finer
granularity, we should set o to a smaller value. This

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 10, OCTOBER 2012

assumption makes sense in real applications where attribute
Price involves discrete values instead of continuous values.

2.1 Finding Top-ik Profitable Products

A new company is interested in selecting k tuples from @ as
the final tuples where k is a positive integer and a user
parameter. It wants to maximize the profit of this selection.
There are many possible subsets containing & tuples from Q).
Let us consider one particular subset Q'. The price of each of
these k tuples (represented by attribute A;) in Q' is to be
assigned with a value in D. Given a tuple ¢ in (), after we set
q.A; to a value v, the profit of g, denoted by A(g,v), is defined
to be v — ¢q.C.

We define a price assignment vector of ¢)', denoted by v, in
form of (vi,vs,...,vy,). v; is said to be ith entry of v. If
g; € Q where i € [1,n], then v; is assigned with a value in D.
Otherwise, v; is set to 0.

A price assignment vector v is said to be feasible if after
we set the price of each ¢; € Q' to v;, each ¢; € @' is in the
skyline with respect to P U @Q'.

Definition 1 (Profit of selection). Let Q)" be a set of k tuples
selected from Q. Let v be the price assignment vector of Q' in
form of (v1,va,...,v,). The profit of Q" with v, denoted by
Profit(Q',v), is defined to be 3 o L(gi, i)

Definition 2 (Optimal price assignment vector). Let ()’ be a
set of k tuples selected from Q). Let V be a set of all possible
feasible price assignment vectors for Q'. The optimal price
assignment vector of Q' is defined to be the price assignment
vector v, for Q' such that

Profit(Q',v,) = max Profit(Q',v').
v'e

The optimal profit of Q', denoted by Profit,(Q'), is defined
to be Profit(Q',v,) where v, is the optimal price assignment
vector of Q).

In Section 3, we describe an efficient algorithm to find the
optimal price assignment vector given a set Q' of k selected
tuples.

We just learned that given a particular set (), we can
determine the optimal profit of ¢'. However, there are many
possible subsets of @ containing k tuples. The company
wants to find a selection containing k tuples from @) such that
the total profit is maximized.

Problem 1 (Finding top-k profitable products). Let Q be the
set of all possible subsets containing k tuples from Q). We want
to select a set Q' of k tuples from Q such that Profit,(Q') =
maxgregProfit,(Q").

This problem is called finding top-k profitable products.
Some notations used in this paper are in Table 3.

A naive way for this problem is to enumerate all possible
subsets of size k from @), calculate the optimal profit of each
possible subset, and choose the subset with the greatest
profit. However, this approach is not scalable because there
are an exponential number of all possible subsets. This
motivates us to propose efficient algorithms for problem TPP
which will be described in Section 4.2.

PENG ET AL.: FINDING TOP-K PREFERABLE PRODUCTS

TABLE 3
Notation Table

Notation Description

P a set of tuples in the existing market

Q a set of potential new tuples

m the size of P

n the size of @

k the total number of tuples in Q to be selected

q.A; the j-th attribute value of tuple q
l the number of the attributes of tuples in P

7

the set of top-k profitable products
total profit of Q" when the price vector is v
the optimal profit of Q"

Profit(Q’,v)
Profito(Q")

v(X,q) the set of all tuples in X which quasi-dominate q
SKY (P) the skyline of P
o the granularity of attribute price
S(i,t) the set Q' of size t where i € [1,n]
and t € [0,k] such that Profito(Q') =
maxgcg Profito(Q") where Q is the set of all
possible subsets containing t tuples from Q(3)
v(i,t) the optimal price assignment vector of set S(i,t)
T(i,t) the (optimal) profit of set S(i, 1)
N N is a positive integer where N << m +n

3 FINDING OPTIMAL PRICE ASSIGNMENT

In this section, we present an algorithm for finding the
optimal price assignment called AOPA in O(k(m +n + N))
time given a set Q' of size k where N << (m + n).

Suppose that Q' is a selection set. Our objective is to find
the optimal price assignment vector of Q'. After setting the
prices of all tuples in Q" according to this vector, the tuples in
Q' are in the skyline with respect to P U Q'

Let X=PUQ'. Given p€ X and p' € X, p is said to
quasidominate p’ if 1) p dominates p’ with respect to the first
[— 1 attributes, namely A;, Ay, ..., A;_1, or 2) p has the same
[— 1 attribute values as p’. Let v(X, ¢;) be a set containing all
tuples in X which quasidominate g;.

The following lemma gives us an intuition of how to
design an algorithm to find the optimal price assignment
vector of Q"

Lemma 1 ([20]). Suppose that p € X and q; € Q)'. Consider that
we are given a price assignment vector of Q' equal to v =
(v1,v9,. .. ,v,) such that we set the price of each q; (i.e., q;. A;) in
Q' to v;. If p dominates g;, then p € v(X, q;).

According to the above lemma, we divide the tuples in X
into two groups:

e Group1(Outside 7). Group 1is the set of all tuples not
iny(X, ¢) (more specifically, all tuplesin X — v(X, ¢)).
The tuples in this group do not dominate g regardless
of any price assignment vector of '

e Group 2 (Inside 7). Group 2 is the set of all tuples in

~v(X, q). For a particular price assignment vector of
@', some tuples in this group may dominate ¢ while
for another particular price assignment vector of @,
they may not dominate g.

Our objective is to make sure that each tuple g € Q' is in
the skyline with respect to X(= P U @’). That s, each tuple g
in @' is not dominated by any tuple in X. This is our goal.
Consider Group 1 (Outside 7). We can achieve the goal
because all tuples in this group do not dominate g. Consider
Group 2 (Inside 7). It is possible that some tuples in (X, q)

1777

dominate ¢ for a particular price assignment vector. For
another price assignment vector, they do not dominate q.

In the above, we learn that if we want to determine the
price of ¢; in @’ such that ¢; is in the skyline, we only need to
consider the tuples in (X, q).

Given a tuple ¢ € Q', we know that only the tuples in X
quasidominating g affect the price of ¢q. Note that the prices
of all tuples in P are given and the prices of all tuples in @’
are to be found. Thus, according to the quasidominance
relationship, we design a progressive algorithm which finds
the price of each tuple ¢ in @’ by the following principle:

Principle 1. Whenever we want to find the price of q; in Q', we
make sure that the prices of all tuples in Q' quasidominating q;
have already been determined.

Next, we need to determine the ordering of processing
tuples in ' which follows the above principle.

We define the following monotonically increasing func-
tion f which can determine the ordering Given a tuple ¢ in
Q, function f is defined as f(q) = ZZ 144

With this function f, we know the following lemma:

Lemma 2 ([20]). Suppose p and p' are in X. If p quasidominates
v/, then f(p) is smaller than or equal to f(p').

With the above lemma, we can first compute the f values
of all tuples in Q'. We sort the tuples in)’ in ascending order
of these f values. Then, we determine the price of each tuple
g in @' according to this ordering, which follows Principle 1.

After we obtain the ordering of processing the tuples in
Q', we present an algorithm to determine the optimal price
assignment vector of ' incrementally.

Without loss of generality, we assume that ¢, g, .., g
are the tuples in Q' sorted in ascending order of the f values.
Let Qo =0.Let Q; = Q;_1 U{q;} wherei=1,2,3,... k.

Lemma 3 ([20]). Suppose that p € X and ¢; € Q'. Consider that
we are given the optimal price assignment vector of QQ;_; equal
to v,y = (v1,va,...,vy,) such that we set the price of each g;
(ie., gj.A;) in Q;_1 to v;. Suppose that v(X, q;) # 0. Let v; bea
price assignment vector equal to v;_, except that ith entry of v;
is set to (mineyxq)p-A;) —o. v; is the optimal price
assignment vector of Q.

By Lemma 3, we can derive a progressive algorithm as
shown in Algorithm 1. It is easy to verify the following
theorem:

Algorithm 1. Algorithm AOPA(Q’)

Input: A set Q' of tuples in Q

Output: the optimal profit assignment vector .of Q'
1: Q// — 0

: v~ (0,0,..,0)

for each ¢; € Q' (which is processed in the sorted

ordering) do

4: v — findOptimallncrementalPrice(g;, Q",

Algorithm 2)

Q" — Q" U{q}

6: return v

LN

v)(See

54

1778

Theorem 1 ([20]). Given a set Q' of k tuples from Q, Algorithm 1
returns the optimal price assignment of @Q'.

Implementation and time complexity. We first analyze
the time complexity of Algorithm 2 and then the time
complexity of Algorithm 1.

In Algorithm 2, the most time-consuming operation is the
step of finding all tuples in P U Q" which quasidominate ¢;
(Line 2). In our implementation [20], we have two substeps
for this step: 1) we perform a range query with range equal to
“A; < g;.A;” foreach j € [1,1 — 1] on an R*-tree index built on
data set P U @ (instead of P U Q') according to the first [— 1
attributes, and 2) we perform a postprocessing step of
selecting all the tuples in the answer of the above range query
which are also in P U @'. The cost of a range query (in (1)) is
O(|P|] +|Q| + N) where N is the total number of tuples
returned in a range query. Typically, NV is extremely small
compared with (|P|+|Q|). That is, N << |P|+|Q|. In the
worst case, N ~ |P| + |Q|. But, this situation rarely happens.
The postprocessing step (in 2) takes O(N) time. Thus, the step
of finding all tuples in P U Q" which quasidominate ¢; takes
O(|P| +|Q| + N) time. Thus, it is easy to verify that
Algorithm 2 takes O(|P| + |Q| + N) time.

Algorithm 2. Algorithm findOptimallncremental
Price(qi, Qi—1,Vi-1)
Input: tuple ¢; in Q', a set Q;_1(= {q1, ¢, ..., ¢i—1}) and the
optimal price assignment vector v;_; of Q;—
Output: the optimal price assignment vector v; of Q;
1. v, — v
2: find a set Y containing all tuples in P U @ which
quasi-dominate g;
3: if Y # () then
4: v« (minyeyp.4;) — o
5: else
6: vV 00
7: set the i-th entry in v; to v
8. return v;

Consider Algorithm 1. Since there are |Q'| iterations
(in lines 3-5) and each iteration calls Algorithm 2 (which
takes O(|P| 4 |Q|+ N) time), the overall time complexity
of Algorithm 1 is O(|Q'|(|P|+|Q|+ N)). Since m =
|Pl,n=1]Q|, and k=|Q'|, the time complexity becomes
O(k(m + n+ N)).

4 ALGORITHM

In [20], we described a dynamic programming approach
which finds an optimal solution when [= 2. However,
when [> 2, we show that the problem is NP-hard. Since the
problem is NP-hard, we propose two greedy algorithms for
this problem when [> 2. In the following, we give a brief
description of the dynamic programming approach when
I =2 in Section 4.1. When [> 2, we show the hardness of
this problem and give two greedy algorithms for this
problem in Section 4.2.

4.1 Dynamic Programming Approach

Consider I = 2. Without loss of generality, we assume that
qi,¢2,. - .,y are sorted in ascending order of the f values in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 10, OCTOBER 2012

Q. In this dynamic programming approach, we define a
notation of a general problem statement denoted by X[i, t]
where ¢ € [1,n] and ¢ € [0, k] to denote problem TPP except
that we consider the first i tuples in @ instead of all tuples in
@ and we select ¢ tuples only instead of k tuples.

With the problem statement notation, our final goal is to
find the solution for problem X|n, k] (where n is the size of
Q). We solve problem X|n, k] by first solving a number of
subproblems X|i,¢] where i € [1,n] and t € [0, %] and then
combining the solutions for the subproblems for the solution
of problem X[n, k]. Specifically, we solve all subproblems in
a particular ordering since solving a subproblem may need
the solutions of some other subproblems ordered pre-
viously. In the following, we first describe the ordering of
processing subproblems. Then, we give a general idea of
how to solve a given subproblem X[i,¢] based on the
solutions of some subproblems ordered previously.

First, we process subproblems in the following ordering.
We start with the first iteration. In this iteration, we initialize
the solution of problem X|1,0] and then the solutions of
problems X[2,0], X[3,0]...,X[n,0] to (. For the second
iteration, we solve problems X[1,1], X[2,1]..., X[n,1]. We
do this iteratively. In the last iteration (or the (k+ 1)th
iteration), we solve problems X[1,k], X[2,k]..., X[n,k].
Finally, we obtain the solution for problem X|n, k]. Second,
we can find the solution of a given subproblem X[i, t| based
on the solutions of subproblems X[i — 1,¢] and X[i — 1,¢ — 1]
according to whether including ¢; in the final selection set of
size t gives a greater profit. Details can be found in [20].

4.2 Greedy Algorithms

However, when [> 2, we show that the problem is NP-hard
as follows:

Theorem 2. When [> 2, problem TPP is NP-hard.

Since the problem is NP-hard, we propose two greedy
algorithms for this problem. As we described in Example 3,
the price of a new selected tuple may affect the price of
another new selected tuple. We call this phenomenon a price
correlation. The first version of the greedy algorithm is the
algorithm which selects tuples in @ iteratively without
considering the price correlation. The first greedy algorithm
returns a solution with a theoretical guarantee on the profit.
The second version is the algorithm which selects tuples in
Q iteratively considering the price correlation. Since the
second greedy algorithm considers the price correlation, it
returns a greater profit compared with the first version but
it takes more time.

4.2.1 Greedy-Based Algorithm |

The first version of the greedy algorithm is the algorithm
which selects tuples in @ iteratively without considering the
price correlation.

For each tuple ¢ in Q, we first define the optimal profit of
the selection set containing ¢ only. We call this profit the
stand-alone profit of g;.

Definition 3 (Stand-alone profit). Given a tuple q in (), the
stand-alone profit of g, denoted by SP(q), is defined to
Profit,({q}).

PENG ET AL.: FINDING TOP-K PREFERABLE PRODUCTS

The first version of the greedy algorithm called Greedy1 is
described as follows. Specifically, for each tuple ¢ in Q), we
find the stand-alone profit of ¢. Then, we choose k tuples
which have the greatest stand-alone profits.

Although this greedy approach is a heuristical ap-
proach, it has theoretical guarantees on the profit returned
by the algorithm.

Suppose that O is the optimal selection set for problem TPP
(i.e., the selection set which has the greatest profit). Note
that the optimal profit of O is equal to Profit,(O). Recall
that we want to maximize the profit, due to the heuristical
nature of the greedy algorithm, this algorithm may return a
selection @' which has a lower profit (which is equal to
Profit,(Q")). That is,

Profit,(Q") < Profit,(O).

In the following, we give two theoretical results about the
error guarantee on the profit returned by the algorithm. The
first result corresponds to an additive error guarantee while the
second one corresponds to a multiplicative error guarantee.

We first show the result about the additive error
guarantee.

Theorem 3 ([20]). Let O be the optimal selection set and Q'
be the selection set returned by Greedyl. Profit,(O) —
k(k—1)

€add < PTOf’L'tO(Q,) where €440 = =50

Next, we show the result about the multiplicative error
guarantee.

Theorem 4 ([20]). Let O be the optimal selection set and Q' be
the selection set returned by Greedyl. Suppose that
Profit,(Q') > 0. Let A=3" o SP(g;). Greedyl is a
(1 — €mun)-approximate algorithm. That is, Profit,(Q') >
(1 = €muir) Profit,(O) where € = k(];_Al)”.

Time complexity. Consider Greedyl. We need to
calculate the stand-alone profit of ¢ for each tuple g € Q.
This step takes O(n(m +n + N)) time. Then, we need to
choose the k tuples which have the greatest stand-alone
profits, which can be done in O(klogn) time. Thus, the time
complexity of Greedyl is O(n(m +n + N) + klogn). Since
k= O(n), the complexity becomes O(n(m + n + N)).

4.2.2 Greedy Based Algorithm Il
In the previous section, we describe the first version of the
greedy algorithm which does not consider the price correla-
tion. In this section, we describe the second version of the
greedy algorithm called Greedy2 which selects tuples in Q
iteratively considering the price correlation.

The second version of our greedy algorithms is shown in
Algorithm 3:

Algorithm 3. Greedy algorithm (Version 2)
1. Q 0

2: while |Q'| < k do

3: foreach ¢g; € Q do

4: z; — AOPA(Q' U {q})

5: find the tuple ¢; in @ such that ¢; has the greatest
value of z;

6: Q —Q U{g}

7: return Q'

1779

Time complexity. Consider Greedy?2 (Algorithm 3). There
are O(k) iterations where statements from lines 3 to 6
correspond to an iteration. Consider an iteration. Statements
from lines 3 to 4 take O(n - k((m +n+ N)) = O(nk(m +n +
N)) time. Statements from lines 5 to 6 take O(n) time. Thus,
each iteration takes O(nk(m +n+ N) +n) = O(nk(m +n +
N)) time. The overall time complexity of Algorithm 3 is
O(k-nk(m +n+ N)) = O(nk*(m +n + N)). Note that com-
pared with the time complexity of Greedyl (i.e., O(n(m +
n+ N)), the time complexity of Greedy2 (Algorithm 3) is
higher.

5 DISCUSSION

In problem TPP, after we set the price of each tuple in the
selection set (), we know that each of these tuples is in the
skyline with respect to P U Q'. In other words, after we set
the price of each tuple in), each of these tuples is one of the
best choices for the customer to choose (because there may
be more than one tuple in the skyline). In order to make
sure that each tuple in Q' will be chosen by a customer in
the market with a higher probability, we would like to set
the price of each of these tuples such that not only each of
these tuples is in the skyline but also each of these tuples
dominates at least h tuples in the existing market P where h
is an input parameter. This problem is called Finding top-
k profitable products with the h-dominance constraint. The
h-dominance constraint corresponds to that each of these
tuples dominates at least % tuples in the existing market P.
If we set h =0, then the new problem becomes problem
TPP without the h-dominance constraint. The algorithm
proposed for the original problem can be adapted easily for
the new problem. Details can be found in [20].

6 TPP over DynAMmIC DATA SETS

In previous sections, we discussed how to find top-k
profitable products over static data sets P and (). However,
in some cases, data sets are dynamic and change from time to
time. In this section, we study the problem of finding top-k
profitable products on dynamic data sets. In this paper, there
are two kinds of data sets, namely P and @, which can
change over time. In the following, for the interest of space,
we focus on studying how to find top-k profitable products
when P changes. We do not discuss the case when @
changes because similar conclusions can also be drawn.

We study three kinds of operations on P, namely insertion,
deletion, and modification. Suppose that o is one of the three
operations. After o is executed on P, we obtain a new data set
denoted by P,.,. Specifically, we have the following
operations and the corresponding P,

1. Insertion. A tuple py., is inserted into P. Then,
RL(—?U’ =PU {pnew}'
2. Deletion. A tuple p is removed from P. Then,
Poew =P — {p}
3. Modification. Some of the attribute values of a tuple p
in P are changed and p becomes p'. Then,
Prew = (P - {p}) U {p,}'
Note that a modification operation can be regarded as a
sequence of the other two operations (i.e., a deletion
operation and then an insertion operation). It is sufficient

1780

to describe how we execute the deletion operation and the
insertion operation. In the following, for the sake of space,
we focus on how we execute the insertion operation only.
Details of the deletion operation can be found in [19].

Problem 2 (Dynamic TPP). Let o be an operation and P,.,, be
the resulting set P after o is executed on P. We want to find a
set Q.. of top-k profitable products based on P, and Q.

A straightforward approach is to run one of the algo-
rithms in Section 4.2 on the new data sets P,., and @ from
scratch whenever there is an operation. However, it is very
costly because this approach does not make use of some
useful results computed before the operation is executed.
Instead, we propose an incremental algorithm to find a set

! e OF top-k profitable products based on not only the new
data sets P, and @ but also the previous result @’
(computed based on the previous data sets P and Q).

Since P changes over time, it is desirable to design an
efficient algorithm. In the following, we give an incremental
version of Greedyl because Greedyl is more efficient
compared with Greedy?2. This incremental version which is
based on not only the new data sets P,.,, and @ but also the
previous result @, and returns the same selection set as the
original Greedyl which is based on the new data sets only.

Now, we focus on describing how the insertion operation
is executed. Suppose that a new tuple p,.,, is inserted into P
and then P,.,, is formed. Before we discuss our incremental
algorithm, we first give two lemmas or properties for the
insertion operation.

Lemma 4 (P,.,-based property). If pyey, € SKY (Pye), then
new = @"
Lemma 5 (Q)’-based property). There does not exist q € Q'
such that pe,, dominates q if and only if Q. = @'

new

According to Lemmas 4 and 5, we design an incremental
algorithm as shown in Algorithm 4:

Algorithm 4. Incremental Algorithm for Insertion
1: // Checking P,.,-Based Property (specified in

Lemma 4)
2: if ppew € SKY (Pe) then
3. ;Lew — Ql
4: else
5: // Checking @’-Based Property (specified in
Lemma 5)
6: if there does not exist ¢ € Q' such that p,,.,, dominates
q then
7' ;7,871/' — Q’
8: else
9 // need to calculate @, incrementally
10: for each ¢ € @ which is quasi-dominated by p,,, do
11: re-compute the standalone profit of ¢
12: ! — a set of the k tuples in) which have the

greatest standalone profits
13: return Q'

new

It is easy to verify the following theorem:

Theorem 5. Algorithm 4 returns a selection set), which is
equal to the selection set returned by Greedyl.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 10, OCTOBER 2012

The complexity of checking the P,.,-Based Property
(Lines 2 to 3) is O(m). Otherwise, we can check the Q’-Based
Property (Lines 6 to 7), which takes O(k) time. If both of the
properties are not satisfied, then we need to recompute
SP(q) for each g € Q which is quasidominated by pj..,. For
other ¢ which is not quasidominated by p..,, their stand-
alone profits are the same as before. Similar to the time
complexity analysis in Section 4.2.1, the step (Lines 10 to 11)
takes O(u - (m + n + N)) time where w is the total number of
tuples in) quasidominated by py.,. Finally, we choose
k tuples which have the greatest stand-alone profits. It can be
done in O(klogn) time. So, the total complexity is O(m + w -
(m +n+ N)+ klogn).

7 FINDING ToP-£ POPULAR PRODUCTS

7.1 Problem Definition

In this section, we extend our problem when the prefer-
ences of customers are given. The preferences of customers
can be collected by conducting surveys where customers
can provide their preferences on products by questionnaire.
The preferences can also be obtained by extracting
customers’ preferences from their past histories [7]. Besides,
they can also be obtained directly by some online systems
such as “Name Your Own Price” where customers can
provide their preferable prices directly.

In our running example, a customer would like to choose
a package which is not too expensive and the hotel in the
package is not too far away from a beach. For example, she/
he gives his/her preference that the price is at most $450 and
the distance to the beach is at most 4.0 km. $450 and 4.0 km
are said to be the greatest possible acceptable values of attribute
price and attribute distance-to-beach, respectively.

Formally, each customer preference cp is represented by a
set of [values, namely gi,g2,...,9, where [is the total
number of attributes and g; is the greatest possible acceptable
value of attribute A; for j € [1,1]. If a customer does not have
any special preference on a particular attribute A;, she/he
can simply specify the greatest possible acceptable value of
attribute A; to be co. In addition, each customer preference cp
is associated with a weight, denoted by w(cp), denoting the
total number of customers who give this customer preference
cp. Let C'P be a set of customer preferences.

In the following, in order to simplify the discussion,
following the spatial database literature [8], [9], [15], [22],
[23], we assume that each potential tuple can satisfy as many
customer preferences as possible. There are a lot of
applications following this assumption. Generating popular
laptops is an example since the components in the market for
assembling laptops is abundant and we can assume that a
laptop can meet as many customer preferences as possible.
Finding popular delivery services in a new cargo company is
another example where a delivery service can serve a lot of
customers. Finally, finding popular cell phone plans in a
new phone company is one example where a plan can be
subscribed by a lot of customers. Considering the capacities
of potential packages (i.e, how many units of potential
packages which are available) is left as a future work.

Given a tuple ¢ in a final selection set @)’, we have to set
the price of ¢. Since we do not want to lose any money, we

PENG ET AL.: FINDING TOP-K PREFERABLE PRODUCTS

should set the price of ¢ at least the cost of ¢. Besides, we
want to guarantee that ¢ is in the skyline with respect to
PUQ' after we set the price of ¢. Given a tuple ¢ € Q, we
define the set of all possible prices of ¢, denoted by PS(q),
which satisfy the above conditions to be {vjv>gq.
C and ¢ € SKY (P U{q}) if we set q.A; = v}.

Note that ()’ is the selection set. Suppose that for each
tuple ¢ € Q', we set the price of ¢ to a positive real number
v € PS(q). Given ¢ € Q' and a customer preference repre-
sented by {g1,¢2,...,91}, q is said to satisfy cp if for each
Jje L), ¢4; <y,

Given a tuple ¢ € Q and a value v € PS(q), the influence
set of ¢ with respect to v, denoted by I.5(q,v), is defined to
be the set of customer preferences which are satisfied by ¢ if
we set the price of g to v.

Definition 4 (Influence set and influence value). Given a
tuple q € Q, the influence set of ¢, denoted by 15(q), is
defined to be U,cps(q1S(q,v). Given q € Q, the influence
value of g, denoted by 1V (q), is defined to be 3, 15, w(cp).

Let Q' be a subset of Q. The in fluenceset of Q)', denoted by
IS(Q"), is defined to be UgeqrIS(q). The in fluencevalue of
Q', denoted by 1V(Q'), is defined to be 3 e 5o w(cp).

Problem 3 (Finding top-k popular products). Let Q be the set
of all possible subsets containing k tuples from (). We want to
select a set Q' of k tuples from Q such that 1) IV(Q') =
maxqgreolV(Q") and 2) each tuple in () is in the skyline with
respect to PUQ'.

The tuples in the output of the above problem are called
top-k popular products. Note that in the above problem, setting
different values of k gives different influence values of the
final selection set. Let IV; be the optimal influence value of
the final selection set of size ¢. It is easy to verify that V] is
monotonically increasing with ¢ since more customers are
interested in the tuples in the final selection set when more
tuples are included in the final selection set. It is also easy to
see that when the final selection set contains a certain number
of tuples, says k., the influence value keeps unchanged
even if the selection set contains more tuples. We define the
greatest possible influence value denoted by IV}, to be
max;e(1, g1 Vi- We also define k,,,, to be the smallest possible
number of tuples in the final selection set such that its
influence value is equal to IV,,4,. Thatis, ke = min{i|IV; =
IV,0:}. In the following, we assume k < kyjqq. If k> gy,
then the additional k— k., tuples are redundant for
influencing customers.

Theorem 6. Problem Finding Top-k Popular Products is NP-
hard.

7.2 Algorithm

We propose a greedy approach to find top-k popular
products. Before we give the algorithm, we define the
concept of “optimal price” as follows. Given a tuple ¢ € Q
and a set X C 15(q), the optimal price of q satisfying tuples in
X, denoted by optPrice(q, X), is the greatest possible price
v € PS(q) we can set such that X C I15(q,v).

The algorithm is shown in Algorithm 5. In line 3 of
Algorithm 5, we find ¢ € @ such that IV(Q' U{q}) is the
greatest. In some cases, there are ties. That is, there are at

1781

least two tuples ¢ and ¢ in @ which give the same greatest
values of IV(Q' U {¢})(=IV(Q' U{d})). Let Y be the set of
tuples ¢ in @ which give the same greatest values of
IV(Q U {q}). In this case, we choose ¢ in Y such that f(q) is
the smallest where f is the function defined in Section 3.

Algorithm 5. Algorithm for Finding Top-k Popular
Products
1. Q<0
while || < k do
find ¢ € @ such that IV(Q' U {q}) is the greatest
X — IS(@Q U{q}) — IS(Q)
set the price of ¢ to be optPrice(q, X)
Q—Q—{d}
Q —Q U{q}

return Q’

Note that there are two criteria in Problem 3. The first
criterion is to maximize the influence value of a selection set
while the second criterion is to make sure that each tuple in
the selection set is in the skyline with respect to PUQ'.
Interestingly, although Algorithm 5 finds ¢ iteratively
according to the influence value of a selection set Q U {q}
but not the criterion on whether ¢ can be in the skyline with
respect to P U (', it also returns a set ()’ such that each tuple
in @' is in the skyline with respect to P U @)'. This result can
be found in the following lemma:

Lemma 6. Let Q' be the selection set returned by the algorithm
for finding top-k popular products (i.e., Algorithm 5). Each
tuple in Q' is in the skyline with respect to P U Q'

This algorithm not only can satisfy the second criterion but
also can give a theoretical guarantee for the first criterion
(even though the problem is NP-hard).

Theorem 7. The algorithm for finding top-k popular products
(i.e., Algorithm 5) is 0.63-approximate. Let @ be the
selection set returned by the algorithm and O be the optimal
set (which gives the greatest influence wvalue). We have
IV(Q') > 0.63 - IV(O).

8 EMPIRICAL STUDIES

We have conducted extensive experiments on a Pentium IV
2.4 GHz PC with 4 GB memory, on a Linux platform. We
implemented all algorithms we proposed, namely DP, GR1,
and GR2. DP corresponds to our dynamic programming
approach [20] while GR1 and GR2 correspond to the first
version and the second version of the greedy algorithms
(Section 4). We also implemented a naive (or brute-force)
algorithm described in Section 2. We name it as BF. All the
programs were implemented in C++. In the following, we
consider problem TPP with the h-dominance constraint
discussed in Section 5 since it is more general than problem
TPP without the h-dominance constraint.

We measured the algorithms with four measurements,
namely:

1. Execution time. The execution time of an algorithm
corresponds to the time it takes to find the final
selection.

1782

TABLE 4
Experimental Setting on Synthetic Data Sets

Values
0.5M, 1M, 1.5M, 2.0M
0.5M, IM, 2M, 3M

Parameter
P)| (the size of P)
Q)| (the size of Q)

d (discount rate) 0.25, 0.5, 0.75, 1
1 (the number of the attributes of tuples in P) 2,5 10,15, 20
k (the total number of tuples in Q to be | 10, 20, 50, 100

selected)

o (the granularity of attribute price)

h (the minimum number of tuples that are
dominated by a tuple in Q')

50, 100,750, 200
0, 10,20,30

2. Preprocessing time. The preprocessing of an algorithm
corresponds to the time it builds an R*-tree index for
quasidominance checking.

3. Memory cost. The memory cost of an algorithm is the
memory occupied by the algorithm.

4. Profit. The profit of an algorithm corresponds to the
profit returned by the algorithm.

The experiments were conducted over real data sets and
synthetic data sets. For the real data sets, same as [20], we
obtained real data sets from Priceline.com and Expedia.com.
We have 149 packages in P and create 4,787 packages in Q.
For each package ¢ in @, we set ¢.C to be the price of this
package multiplied by a discount rate d where d is a user
parameter. Note that although there are values in attribute
price in this set (), we discard all these values in the data sets
because our problem is to find these values. Details of this
data sets can be found in [20]. For synthetic data sets, we
also generated P and @ as anticorrelated data sets [2].
Details of the data sets generation can be found in [20].

In the following, we first give the experimental results
for finding top-k profitable products in Section 8.1. Then, in
Section 8.2, we present the results when dynamic data are
considered. Finally, we show the experimental results for
finding top-k popular products in Section 8.3.

8.1 Experimental Result for Finding Top-&
Profitable Products

8.1.1 Result over Synthetic Data Sets

In this section, we conducted experiments over both small
and large synthetic data sets to study the scalability of GR1
and GR2. We varied |P|,|Q|,d,l,k,0, and h in our experi-
ments. The values of each parameter used over large
synthetic data sets are given in Table 4 where the default
values are in bold. For the sake of space, we show the results
when we varied |@)| only in Fig. 1. Other experimental results
over small synthetic data sets and large synthetic data sets
can be found in [20].

10000 10000

GR1+PREP ===
GR2+PREP memmm

1000 1000

Total Time (s)

100 100

Execution Time (s)

10 10

500 1000 1500 2000

500 1000 1500 2000
1Ql (x 1k) 1Ql (x 1k)

(a) (b)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 10, OCTOBER 2012

Execution time. Fig. 1a shows the effect on the execution
times of all algorithms. GR2 runs slower than GRI1. As we
discussed in Section 4, the time complexity of GR2 is higher
than that of GRI.

Total time. Fig. 1b shows the effect on the total time of
each greedy algorithm which corresponds to the sum of the
execution time of the greedy algorithm and the execution
time of the preprocessing time of the greedy algorithm. We
denote the total times of GR1 and GR2 by “GR1 + PREP”
and “GR2 + PREP,” respectively. It is clear that when |Q)|
increases, the total times of the algorithms increase.

Memory cost. Fig. 1c shows the effect on the memory
cost of the algorithms. Since the memory cost of both GR1
and GR?2 is the memory occupied by the R*-tree on data sets
PUQ, when |Q)]| increases, the memory cost increases, as
shown in Fig. 1.

Profit. Fig. 1d shows the effect on the profit returned by
the algorithms. In most cases, GRI and GR2 give similar
profits.

8.1.2 Result over Real Data Sets

We also conducted experiments on real data sets. We varied
four factors, namely h, k, d, and o. For the sake of space, we
only show the results with two factors h and k as shown in
Figs. 3 and 4, respectively. The default setting configuration
is: k=150, h = 20, d = 0.6, and o = 50. The results for real
data sets are similar to those for synthetic data sets. Note that
there is a big difference in execution times between GR1 and
GR2 in the real data sets but this big difference cannot be
found in the synthetic data sets. As we described in
Section 4.2.2, the time complexity of GR2 is quadratic with
respect to kbut the time complexity of GR1 is not. Thus, when
k is larger, then the difference in execution times between
GR1 and GR2 is larger. Compared with the synthetic data sets
where k is set to 10, 20, 50, or 100, in the real data sets, since k
is set to a larger value (e.g., 100, 150, 200, and 250), the
difference in execution times between GR1 and GR2 is larger.

In order to see whether the prices of the top-k profitable
packages we found are consistent with the original prices of
the packages listed in Priceline.com in the market, we
conducted experiments by regarding some of the existing
products in Pricline.com as new packages in our problem
and comparing the prices of the top-k profitable packages
we found with their original prices listed in Priceline.com.

We conducted experiments over 100 trials. For each trial,
we randomly select 30 percent of the 149 existing packages in
Priceline.com to form a new package set Q. In the
experiment, we set k=15, h =0, d =0.5, and o = 50. The
experimental results show that the price of a package we

— 10000 GRe
g ° _
% 6 < 1000
: ml o :
> z
% 4 W | H H - H|P‘P|P‘
s |
LN L NN E
500 1000 1500 2000 500 1000 1500 2000
1l (x 1K) 1l (x 1K)
(c) (d)

Fig. 1. Effect of |Q| (the number of potential new tuples) on synthetic data sets.

PENG ET AL.: FINDING TOP-K PREFERABLE PRODUCTS

12

GR1 ——1

Top | Found ($) | Original ($) 1 A —
1 1014.5 1158 2 o8
2 1084.5 1087 T s
3 800.5 844 3 os
4 898.5 965 &,
5 655.5 577 0

100 200 300 400
101 (x 1k)

(b) Effect of |O)|

(a) Results for one trial

Fig. 2. Results about top % prices and the effect of |O|.

returned is 10.53 percent different from its original price in
Priceline.com on average (among all trials). Fig. 2a shows the
result for one trial which contain the prices of the top-5
profitable packages we returned and their original prices. In
this trial, the average price difference is 7.65 percent.

8.2 Results for TPP over Dynamic Data

In this section, we want to study the performance of our
proposed incremental algorithm proposed in Section 6. We
denote this algorithm by IA. We compare it with an
algorithm which finds top-k profitable products from
scratch. Since I A is similar to GR1 which finds the products
from scratch, in this experiment, we choose GR1 for
comparison. Since /A and G R1 have the same preprocessing
time, in the following, we do not show PREP in the figure.

We conducted experiments over synthetic data sets and
real data sets. The default values for the experiments over
these data sets are the same as in Section 8.1.1.

In this dynamic case, we have three types of operations,
namely insertion, deletion, and modification. As we
discussed before, we focus on the former two operations.
In the experiments, we generate operations in this dynamic
case as follows. Consider a data sets D. If the operation to be
generated is an insertion, we randomly generate a tuple by
the method of generating tuples in P and regard it as the
tuple to be inserted. If the operation to be generated is a
deletion, we randomly pick one of the tuples in D and
regard it as the tuple to be removed. In the experiment, for
each data sets, we create a batch O of operations. We did
three types of batches for experiments. The first type is the
batch containing all insertion operations, the second type is
the batch containing all deletion operations, and the third
type is the batch containing 50 percent insertion operations
and 50 percent deletion operations. In our experiments, we
varied the size of O (denoted by |0|) from 100k to 400k. We
evaluate the algorithms with their execution times.

1e+06

PREP c—— 14000 GR1 ——
100000 GR1 Bz GR2 mmmm
@ GR2 mm—m 12000 |
< 10000 _
E o0 £ 10000
< 100 :f__‘* 8000 ‘
3 10 g eo00f | | 1
8
g ool (NIRIH
01 H H 2000 ‘ ‘
0.01
15 20 25 30 15 20 25 30
h h
(a) (b)

Fig. 3. Effect of L (the minimum number of tuples dominated by each
tuple in the selection set) on a real data sets.

1783
1e+06 PREP 1 A 20000 GR1 ——
100000 gg; [GR2 mesmm
@ f— L
<@ 10000 15000

1000
10000

BTV IR

100 150 200 250 100 150 200 250
k k

(a) (b)

Fig. 4. Effect of k (the size of the final selection set) on a real data sets.

Execution Time
Profit (x 1K)

=)

For the sake of space, we only show the experimental
results over the real data sets as shown in Fig. 2b when the
third batch type is considered. The execution times of both
algorithms increase with |O|. Besides, IA is much more
efficient than GR1.

8.3 Results for Finding Top-% Popular Products

In this section, we study how our proposed algorithm in
Section 7 performs when we want to find top-k popular
products. The preprocessing time of this algorithm (which
includes the time to build an R*-tree) is denoted by PREP
while the main processing time of this algorithm is denoted
by GA. We compare it by a brute-force algorithm which
enumerates all possible subsets of size k and finds the subset
which gives the greatest influence value. We denote itby BF.

As before, we conducted experiments over the real data
sets. The default values of parameters except &k and h are the
same as in Section 8.1.2. Besides, since running BF' is time
consuming, we set k=3 in our experiments in order that
the execution time of BF is shorter. Since finding top-k
popular products does not have any h-dominance con-
straint described in Section 5, h is set to 0.

In the problem of finding top-k popular products,
customer preferences are generated as follows. Suppose
that we want to generate a customer preference cp. First, we
generate a tuple ¢ by the method of generating a tuple in P.
Second, for each attribute A; of tuple c where i =1,2,...,1,
we set g; to ¢; + 1 x C(A;) where r is a positive real number
and a user parameter (set to 0.1 by default), and C(A4;) is the
cardinality of attribute A;. We varied the number of
customer preferences from 10k (1k) to 40k (4k) where its
default value is 10k (1k) in synthetic (real) data sets. We
evaluate the algorithms with two measurements, namely
the execution time of the algorithms and the in fluence value
of a selection set returned by the algorithms. We also did
experiments to compare the price of a hotel found by our
algorithm with its original price. The result is similar to the
one shown in Fig. 2a.

Figs. 5 and 6 show the experimental results on a real data
sets. In Fig. 5a, GA runs at least 2 orders of magnitude faster
than BF'. In Fig. 5b, the influence values of the selection sets
returned by GA and BF are nearly the same. Similar results
can be found in Fig. 6. All the results are consistent with our
theoretical result about the 0.63-approximation.

Fig. 7 shows the experiments on large synthetic data sets.
Since BF is not scalable, we do not include it in the figure. In
the figures, the execution time of G A increases with the size
of CPandr.

Summary. In the problem of finding top-k profitable
products, although DP finds the optimal solution, it is not

1784

3000

PREP C—— —
GA mmm= BF m—
- 100 BF s 2500
O °
2 10 ;; 2000
L 1 Y
5 8 1500
Ef S
g 0.1 £ 1000
£ £
w
0.01 ’_‘ 500 "I
0.001 ‘ ‘ | 0
1 2 3 4 1 2 3 4
ICPI (x 1K) ICPI (x 1k)
(a) (b)

Fig. 5. Effect of |CP| on a real data sets.

scalable and is limited to problem TPP when [= 2. GR1 and
GR2 are scalable to large data sets. It is shown that they can
find a selection set @' with high profits. In most cases, GR1
and GR2 return similar profits. However, GR2 sometimes
gives a higher profit than GR1 but the execution time of
GR2 is greater. In addition, when data sets change, the new
incremental algorithm IA performs much more efficient
compared with the algorithm which recomputes top-k
profitable products from scratch.

In the problem of finding top-k popular products, our
proposed greedy algorithm G A performs at least two orders
of magnitude faster than a brute-force approach BF in a
small data sets. GA is also scalable to large data sets.
Besides, the influence values of the selection sets returned
by GA and BF are nearly the same.

9 RELATED WORK

Skyline queries have been studied since 1960s in the theory
field where skyline points are known as Pareto sets and
admissible points [5] or maximal vectors [3]. However,
earlier algorithms such as [3], [4] are inefficient when there
are many data points in a high-dimensional space. Skyline
queries in database was first studied by Borzsonyi [2] in 2001.

After that, various techniques were proposed to accel-
erate the computation of skyline and its variations. Here, we
briefly summarize some of them. Some representative
methods include a bitmap method [16], a nearest neighbor
(NN) algorithm [10], and a branch-and-bound skylines
(BBS) method [13].

Top-K queries about skyline were studied in [13], [12],
[17]. Papadias et al. [13] discussed ranked skyline and
K-dominating queries. Given a set of points in d-dimensional
space, ranked skyline specifies a monotone ranking function,
and returns k tuples in the d-dimensional space which have
the smallest (or greatest) scores according to an input
function. Given a set of points in d-dimensional space,
K-dominating queries retrieve K points that dominate the

y—
BF m—

PREP c——
100 G m— 1000
BF

800

600

400

Execution Time (s)
Influence Value

200

0.001

10% 20% 30% 40% 10% 20% 30% 40%

r r

(a) (b)

Fig. 6. Effect of on a real data sets.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24,

NO. 10, OCTOBER 2012

300

300

PREP ——
GA

PREP ——
GA mmm

250 250

Execution Time (s)
Execution Time (s)

10 20 30 40 10% 20% 30% 40%
ICPI (x 1k) v

(a) (b)

Fig. 7. Effect of |C'P| and r on large synthetic data sets.

greatest number of points. It is similar to the h-dominance
constraint introduced in Section 5.

Lin et al. [12], [17] studied representative skyline queries.
The problem is to select k£ points among all skyline points
according to a predefined objective function. The k points in
the output are said to be representative.

Lin et al. [12] were the first to introduce representative
skyline queries. Lin et al. [12] find a set of k£ points among all
skyline points such that the number of points dominated by
this set is maximized. However, the method in [12] cannot
be applied in our problem because we consider both the
profitability (or popularity) of products and the dominance
relation of products, but Lin et al. [12] consider the
dominance relation only. Besides, the price of each product
is to be found in our problem.

Another definition of representative skyline queries was
proposed by Tao et al. [17]. In [17], representative skyline
queries are to find k points (or k representative points)
among all skyline points such that the sum of the distances
between each skyline point and its “closest” representative
point is minimized.

All of the above studies are to find k points or tuples given
a single table where all attribute values of each tuple in the
table are given. This paper has the following differences.
First, we want to find k tuples given fwo tables (one is P and
the other is) where one of the attribute values of each tuple
in one table (Q) is not given and is to be found. Second, the
concept of profit is considered in this paper but not in the
above studies.

Although some existing studies focus on profit optimiza-
tion, since they do not consider the skyline techniques, they
are different from this paper. The two representative studies
are [1] and [11]. Other related studies about profit optimiza-
tion can be found in a recent work [11]. Archak et al. [1] use
an existing economic model, Rosen’s hedonic price model, to
find customer preferences from reviews given by customers
in the web and then find profitable products. Li et al. [11]
propose a regression model to find profitable products. But,
since Ghose et al. [1] and [11] do not consider the skyline
techniques, some products found by Ghose et al. [1], [11] can
dominate some other products and thus these studies cannot
guarantee that the products found are in the skyline, which is
one of the goals studied in this paper.

The most closely related work is [18]. Given a set P of
existing tuples and a number of source tables, Wan et al. [18]
find all tuples “generated” from the source tables such that
these tuples are in the skyline with respect to the tuples in
the existing market. Those tuples are called competitive
tuples or products. Note that the set of all competitive tuples
generated in [18] can be regarded as set) described in this

PENG ET AL.: FINDING TOP-K PREFERABLE PRODUCTS

paper. However, in [18], too many competitive products are
generated. In their experimental studies, there are
10,000 competitive products in a real data sets. In most
cases, it is good to choose some of the competitive products
instead of all for promotion. One criterion is to maximize the
total profit of the selection set which is studied in the first
problem of this paper.

A preliminary version of this paper was published in [20].
However, [20] does not consider the dynamic case for finding
top-k profitable products and the problem of finding top-k
popular products which are studied in this paper.

10 CONCLUSION

In this paper, we identify and tackle the problem of finding
top-k preferable products, which has not been studied
before. We study two instances of preferable products,
namely profitable products and popular products. We
propose methods to find top-k profitable products and top-
k popular products efficiently. An extensive performance
study using both synthetic and real data sets is reported to
verify its effectiveness and efficiency. As future work, we
will study other instances of the problem of finding top-k
preferable products by setting the utility function to other
meaningful objective functions. One promising utility
function is the function which returns the sum of the unit
profits of the selected products multiplied by the number
of customers interested in these products.

APPENDIX

PROOF OF LEMMAS/THEOREMS

Proof of Theorem 2. Note that problem TPP (in Problem 1)
is a maximization problem. In order to show the NP-
hardness of the problem we are studying, we first give a
decision problem for problem TPP called DTPP: given a
nonnegative real number X, does there exist a set @ of k
tuples from @ such that Profit,(Q’) > X?

The NP-hardness proof can be achieved by transform-
ing an NP-complete problem, the d-coverage problem
[19], to the DTPP problem.

d-coverage problem. Given a set U of elements, a
collection J of sets containing elements in U, a positive
integer d and a positive integer ¢t where 1 < d < |J| and
t < |U|, does there exist a subset I C J such that |I| =d
and ‘ Ucer C‘l€t7

Given an instance of the d-coverage problem. We want
to construct an instance of the DTPP problem from the
above instance. We define two positive real numbers, M
and m, where M >>m and % > m. We construct the
instance as follows. We set o =4, k=d +|U|, | = |U| +
|[J|+1, and X =d-m+|U|- M —t-4. Next, we set P
and Q according to U and J. Specifically, we set P to be the
set containing only one tuple p, and @ to be the set
containing |U| + |J| tuples.

Note that tuple p is associated with [attributes,
namely A, As,...,A;, where the last attribute A4
corresponds to attribute Price. All [attribute values of p
are to be set. Besides, each tuple in () is also associated
with the same [attributes together with an additional
cost attribute C where only the first [— 1 attribute values

1785

and the cost attribute value of each tuple in () is to be set
for the problem instance construction.

Now, we describe in detail how we generate |U| + |J]|
tuples in Q. Initially, Q is an empty set. Then, for each set
Sin J, we create a tuple gg and insert it into). There are
|.J| tuples generated from J and these tuples are called
type I tuples. Each of these tuples is arbitrarily given a
unique label which is a positive integer € [1, |J|]. For each
element e in U, we create a tuple ¢, and insert it into Q.
There are |U| tuples generated from U and these tuples
are called type II tuples. Similarly, each of these tuples is
arbitrarily given a unique label which is a positive
integer € [|J| + 1,|U]| + |J|]. For each set S in J and each
element e in S, we say that tuple gg (of type I) is a parent
of tuple ¢, (of type II).

Next, we set the attribute values of the tuples in P and
Q. Consider tuple pin P.Foreach j € [1,1 — 1], we setp.A;
tom. We set p.A4; to M + m + ¢. Consider tuples in Q. For
each g; € Q, weset ¢;.C to M if g; is a type I tuple and set it
to m if ¢; is a type II tuple. Then, we set the first | — 1
attribute values with the following three major steps. For
Step 1, we initialize a variable i to 1. Let the tuple with label
equal to 4 in @) be ¢;. We set ¢;.A; to any real number b such
that m < b < M. Note that ¢;.4; is not set in this step and
will be set in later steps for j € [i + 1,1 — 1]. For Step 2, we
increment the variable ¢ by 1. Tuple g; is another tuple with
label equal to an updated value i. We execute three
substeps. Step 2a: we set ¢;.A; to be M for j e [1,i—1].
Step 2b: we set g;.A; to be any real number b such that
m < b < M. Similarly, note that ¢;.A; is not set and will be
set in later steps for je[i+1,l—1]. Step 2c: for
y € [1,4 — 1], we set g,.A4; to m if g, is a parent of ¢;, and
we set it to M otherwise. Step 3: we repeat Step 2 until 7 is
equal to |U| + |J|. After this construction of @, we know
that a tuple ¢ is a parent of another tuple ¢ if and only if ¢’
quasidominates g.

We have just defined the constructed problem
instance for DTPP. Next, we analyze some properties
from the final solution of this constructed problem
instance. Note that in the final solution of DTPP, we
have to set the attribute A; value of each tuple ¢ in Q'. In
the following, we determine how to set the A; value of
each tuple in Q.

It is easy to verify that for each tuple g€ Q, ¢ is
quasidominated by tuple p. Now, we consider how to set
the A; value of a tuple ¢ in . Consider two cases: Case 1:
q is a type I tuple. ¢.A; must be set to M + m so that the
profit of ¢ is the greatest and ¢ is in the skyline with
respect to P U Q' (no matter what @' is). This is because if
g.A; is set to a value greater than M +m, then ¢ is
dominated by p. Besides, ¢ is not dominated by any other
tuples in Q' no matter what the A, values of these tuples
in @ are set. In Case 1, the profit of ¢ is equal to
(M +m) — M =m. Case 2: q is a type II tuple. ¢q.4, is set
to different values according to two different subcases.
Case 2a: there does not exist any type I tuple in ¢’ which
quasidominates tuple ¢. This case is similar to Case 1.
g.A; must be set to M + m so that the profit of ¢ is the
greatest and ¢ is in the skyline with respect to P U @’ (no
matter what @’ is). In Case 2a, the profit of ¢ is equal to
(M + m) —m = M. Case 2b: there exists a type I tuple ¢

1786

Proof of Lemma 5. Suppose @/, = @'. Since @/

in ' which quasidominates tuple g. Note that ¢ must be
a parent of ¢. Besides, according to Lemma 1, since ¢
quasidominates ¢, the value of ¢.4; can be determined
before g.A; is to be set. According to Case 1, ¢'. 4, is set to
M + m. On the other hand, ¢q.A; must be set to M +m —
o so that the profit of ¢ is the greatest and ¢ is in the
skyline with respect to PUQ’ (no matter what @’ is).
This is because if q.A; is set to a value greater than
M+ m — o, says M + m (in Case 2a), then ¢ is dominated
by ¢'. Besides, ¢ is not dominated by any other tuples in
@' no matter what the A, values of the tuples in Q' other
than ¢ are set. In Case 2b, the profit of ¢ is equal to
(M+m—-o0)—m=M-oc=4.

According to the above strategy to set the A; value of
each tuple in @' and ¥ > m, we conclude that the profit
of each type II tuple in Q' is greater than the profit of
each type I tuple in @' (no matter what @' is). Since
k=d+ |U| and k is the total number of tuples in (', the
final selection set Q" must contain all |U| type II tuples
and exactly d type I tuples. The total profit of all the type
I tuples in @' is equal to d - m. Let f be the total number
of type II tuples in Q' each of which is quasidominated
by at least one type I tuple in Q'. The total profit of all |U]
type II tuples is equal to (|U| — f) - M + f -2 =|U|- M —
[4. Thus, the profit of Q', denoted by Profit,(Q’), is
d-m+|Ul-M—f-4.

It is easy to verify that there exists a set @’ of
k tuples from Q such that Profit,(Q') >d-m+|U|-
M—t- % (and thus f <) if and only if there exists a
set I C J such that |I| =d and |Uges C| < t. Since the
d-coverage problem is NP-complete, the DTPP problem
is NP-hard.]

Proof of Lemma 4. Since ppew € SKY(P,ew), we have

SKY (P,ew) = SKY(P). It is easy to verify @/, = Q. O
is the

is in

new new

answer of the problem, each tuple in Q)

new
SKY (Pyew U Q.. Since Q... = @', we deduce that each

tuple in Q' is in SKY (P, U Q). Note that phey € Prey-
We conclude that there does not exist ¢ € @' such that

Pnew dominates g.

Suppose that there does not exist ¢ € Q' such that py.,
dominates ¢. We want to show that @/, =Q by
dividing the proof into three parts.

First, we show that each tuple ¢ in Q' is in
SKY (Prew U Q). Before ppe, is inserted into P, we know
that each tuple ¢ in Q' is in SKY(PUQ'). Consider a
tuple g in Q'. We know that no tuples in P U Q' dominate
g. Since there does not exist ¢ € @’ such that p,.,
dominates ¢, we deduce that no tuples in PUQ'U
{Pnew} (= Prew U Q') dominate g. We conclude that ¢ is in
SKY (P UQ').

Second, we show that Q' is the set of & tuples from Q
such that Profit,(Q") = maxgregProfit,(Q") where Q is
the set of all possible subsets containing k tuples from Q.
Let Profit,(Q', P) be the optimal profit of Q' based on
data sets @ and P. Thus, Profit,(Q') = Profit,(Q', P)
before pp., is inserted into P while Profit,(Q') =
Profity(Q', PU{ppew}) after pye, is inserted into P.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 10, OCTOBER 2012

Before p,., is inserted into P, we know that for each
Q" € Q, we have

Profit,(Q', P) > Profit,(Q, P). (1)

Since there does not exist ¢ € Q' such that p,,.,, dominates
q, we deduce that

Profit,(Q', P U {ppew}) = Profit,(Q’, P). (2)
Besides, for each Q" € Q, we know that
Profity(Q", P) > Profity(Q", P U {pnew})- (3)

From (1), (2), and (3), we conclude that for each Q" € Q,
PTOfito(Q,7 Rleu;) > P?“Ofito(Q”, Pnew)-

Lastly, since each tuple ¢ in Q' is in SKY (P, U Q')
and @' is the set of k tuples from @ such that
Profit,(Q") = maxgreg Profit,(Q"), we conclude that
Qnew = Q- O

Proof of Theorem 5. Let SP,/..(q) be the stand-alone

profit of tuple ¢ € @ calculated before p,., is inserted
into P. Let SP,f..(q) be the stand-alone profit of tuple
q € @ calculated after p,,, is inserted into P. It is easy to
verify that for each ¢ € Q, SP..r(q) is smaller than or
equal to SPiforc(q). Consider three cases. Case 1: ppew &
SKY (Pyew).We know that for each ¢ € Q, SPcfore(q) =
SPajter(q). Thus, the k tuples in @ which have the
greatest stand-alone price after p,., is inserted are
exactly the same as the tuples in ’. Thus, since
Q.. = @', the selection set returned by Algorithm 4 is
the selection set returned by Greedy Algorithm (Ver-
sion 1). Case 2: There does not exist q € Q' such that pje,
dominates ¢.By using the techniques used in the proof of
Lemma 5, we also derive that the %k tuples in @ which
have the greatest stand-alone price after p,., is inserted
are exactly the same as the tuples in Q'(because for each
qe Q/ SRLfter(q) < SPbefm‘c(q) and for each qc Q,/
SPuftc’!‘(q) = SPbcfo’r'U(Q))' Case 3: ppew € SKY(Pncw) and
there exists q € Q' such that p.,, dominates g. All the tuples
in @ which stand-alone prices are changed are updated
in Lines 10-11. The output of Algorithm 4 (ie., the
k tuples in) which have the greatest (updated) stand-
alone price (Line 13)) are the selection set returned by
Greedyl. O

Proof of Theorem 6. Note that Problem 3 is a maximization

problem. We give a decision problem: given a non-
negative real number X, does there exist a set Q' of k
tuples from @ such that 1) IV(Q’) > X and 2) each tuple
in) is in the skyline with respect to P U @’

The NP-hardness proof can be achieved by transform-
ing an NP-complete problem, the maximum coverage
problem, to our decision problem.

Maximum coverage. Given a positive integer d,
another positive integer t, a set U of elements, and a
collection J of sets each of which is a subset of U, does
there exist a set I C J such that |I| < d and | Uy s| > ¢?

Given an instance of the maximum coverage problem.
We want to construct an instance of our decision problem
from the above instance. Recall that in the proof of
Theorem 2, we construct an instance of the DTPP
problem from a given instance of the d-coverage

PENG ET AL.: FINDING TOP-K PREFERABLE PRODUCTS

problem, by creating tuples of types I and II (for the
tuples in Q). Note that these tuples are created with their
attribute values for attribute A; where i =1,2,...,1—1
and their attribute value for attribute Cost C. In this
proof, we construct tuples for ¢ and customer prefer-
ences for C'P similarly. Let M be a very large positive real
number. For each set S'in J, we create a type I tuple v and
then create a customer preference cps in form of
{91,92,..., 91} by setting g; to be u.A; for i € [1,1—1]
and setting g; to M. All customer preferences generated
form set C'P. For each customer preference cp in CP, we
set w(cp) to 1. For each element e in U, we create a type II
tuple v and create a tuple ¢ which is exactly equal to u.
All tuples generated from U form set Q). We set P, k, and
X to 0, d, and t, respectively.

It is easy to see that this transformation can be
constructed in polynomial time. It is also easy to verify
that when the problem is solved in the transformed
decision problem, the original maximum coverage pro-
blem is also solved. Since the maximum coverage
problem is an NP-complete problem, our decision
problem is NP-hard.]

Proof of Lemma 6. We prove by contradiction. Suppose

there exists a tuple ¢ in Q' which is not in the skyline
with respect to PUQ'. This means that there exists a
tuple in P U Q" which dominates g. Consider two cases.
Case 1: the tuple dominating ¢ is a tuple from P. Since
PS(q) ={vjv > ¢.C and qe SKY(PU{q}) if we set
q.A; = v}, we know that ¢ € SKY (P U {q}). Thus, there
does not exist any tuple in P dominating ¢. This leads to
a contradiction. Case 2: the tuple in P U Q' dominating ¢
is a tuple in @’ other than ¢. Let this tuple be ¢'. Note that
¢ dominates q. We have ¢.A; < ¢.A4; for each i € [1,]].
Thus, 1S5(q) C IS(¢'). Let @Q; be the selection set @’
maintained by Algorithm 5 at the end of the ith iteration
fori=1,2,... k. We define Q, = (. Since IS(q) C IS5(¢),
we deduce that IV(Q; U {q}) <IV(Q;U{¢}) for each
i € [1,k]. We further consider two subcases. Case 2(a):
IV(Q:U{q}) <IV(Q;U{¢}). We deduce that ¢ is
selected and inserted into the selection set maintained
by Algorithm 5 before ¢ is selected and inserted.
Consider the iteration of selecting ¢/, says the jth
iteration. We have Q; = Q;—1 U {¢'}. We conclude that
for the lth iteration where [€ [j + 1,k], IV(Q; U {q}) = 0.
This leads to the contradiction that IV(Q; U {¢}) > 0 for
each [€[1,k] (This is because if k < kjq, we have
IV(QU{q}) > 0 for each [€ [1,k]). Case 2(b): IV (Q; U
{¢}) =1V (Q;U{¢}). Since ¢ dominates g, we deduce
that f(¢') < f(q). Thus, ¢ is selected and inserted into the
selection set maintained by Algorithm 5 before ¢ is
selected and inserted. We have a similar conclusion as
Case 2(a). O

Proof of Theorem 7. We can transform our problem to the

maximum coverage problem by mapping each custo-
mer preference and the influence set of each tuple in @
for our problem to an element and a set of elements in
the maximum coverage problem, respectively. Note
that the greedy algorithm for the maximum coverage
problem which chooses the set containing the largest
number of uncovered elements is 0.63-approximate [6].

1787

Since Algorithm 5 follows the same framework as the
above greedy algorithm, it is 0.63-approximate. 0

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for
their constructive comments on this paper. The research
was supported by HKRGC GRF 621309.

REFERENCES

[1] N. Archak, A. Ghose, and P.G. Ipeirotis, “Show Me the
Money!: Deriving the Pricing Power of Product Features by
Mining Consumer Reviews,” Proc. 13th ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining (KDD '07), pp. 56-
65, 2007.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker, “The Skyline
Operator,” Proc. Int’l Conf. Data Eng. (ICDE), 2001.

[3] J.L. Bently, H.T. Kung, M. Schkolnick, and C.D. Thompson, “On
the Average Number of Maxima in a Set of Vectors and
Applications,” J. ACM, vol. 25, no. 4, pp. 536-543, 1978.

[4] J.L. Bently, K.L. Clarkson, and D.B. Levine, “Fast Linear
Expected-Time Algorithms for Computing Maxima and Convex
Hulls,” Proc. First Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA), 1990.

[5] O. Barndorff-Nielson and M. Sobel, “On the Distribution of the
Number of Admissible Points in a Vector Random Sample,”
Theory of Probability and Its Application, vol. 11, no. 2, pp. 249-269,
1966.

[6] D.S. Hockhbaum, “Approximating Covering and Packing Pro-
blems: Set Cover, Vertex Cover, Independent Set, and Related
Problems” Approximation Algorithms for NP-Hard Problems, PWS
Publishing Company, 1997.

[71 B. Jiang, J. Pei, X. Lin, D.W.-L. Cheung, and]. Han, “Mining
Preferences from Superior and Inferior Examples,” Proc. ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, 2008.

[8] JM. Kang, M.F. Mokbel, S. Shekhar, T. Xia, and D. Zhang,
“Continuous Evaluation of Monochromatic and Bichromatic
Reverse Nearest Neighbors,” Proc. Int’l Conf. Data Eng. (ICDE),
2007.

[9] F. Korn and S. Muthukrishnan, “Influence Sets Based on Reverse
Nearest Neighbor Queries,” Proc. ACM SIGMOD Int'l Conf.
Management of Data, 2000.

[10] D. Kossmann, F. Ramsak, and S. Rost, “Shooting Stars in the Sky:
An Online Algorithm for Skyline Queries,” Proc. 28th Int’l Conf.
Very Large Data Bases (VLDB), 2002.

[11] B. Li, A. Ghose, and P.G. Ipeirotis, “Towards a Theory Model for
Product Search,” Proc. 20th Int’l Conf. World Wide Web (WWW '11),
pp. 327-336, 2011.

[12] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting Stars: The k
Most Representative Skyline Operator,” Proc. Int’l Conf. Data Eng.
(ICDE), 2007.

[13] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive Skyline
Computation in Database Systems,” ACM Trans. Database Systems,
vol. 30, no. 1, pp. 41-82, 2005.

[14] D. Sacharidis, S. Papadopoulos, and D. Papadias, “Topologically-
Sorted Skylines for Partially-Ordered Domains,” Proc. Int’l Conf.
Data Eng. (ICDE), 2009.

[15] L Stanoi, M. Riedewald, D. Agrawal, and A.E. Abbadi, “Discovery
of Influence Sets in Frequently Updated Databases,” Proc. Int’l
Conf. Very Large Data Bases (VLDB), 2001.

[16] K-L. Tan, P. Eng, and B. Ooi, “Efficient Progressive Skyline
Computation,” Proc. Int’l Conf. Very Large Data Bases (VLDB),
2001.

[17] Y. Tao, L. Ding, X. Lin, and J. Pei, “Distance-Based Representative
Skyline,” ICDE '09: Proc. IEEE Int’l Conf. Data Eng., pp. 892-903,
2009.

[18] Q. Wan, R.C.-W. Wong, LF. Ilyas, M.T. Ozsu, and Y. Peng,
“Creating Competitive Products,” Proc. VLDB Endowment, vol. 2,
pp- 898-909, 2009.

[19] Q. Wan, R.C.-W. Wong, and Y. Peng, “Creating Top-K Profitable
Products,” technical report, http://www.cse.ust.hk/~raywong/
paper/createTopKProfitableProduct-technical.pdf, 2010.

[20] Q. Wan, R.C.-W. Wong, and Y. Peng, “Finding Top-K Profitable
Products,” Proc. Int’l Conf. Data Eng. (ICDE), 2011.

1788

(21]

[22]

(23]

(24]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 10, OCTOBER 2012

R.C.-W. Wong, J. Pei, AW.-C. Fu, and K. Wang, “Mining
Favorable Facets,” Proc. 13th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining, 2007.

T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On Computing Top-&
Most Influential Spatial Sites,” Proc. 31st Int’l Conf. Very Large Data
Bases (VLDB), 2005.

C. Yang and K.-I. Lin, “An Index Structure for Improving Nearest
Closest pairs and Related Join Queries in Spatial Databases,” Proc.
Int’l Symp. Database Eng. and Applications (IDEAS), 2002.

Z. Zhang, L. Lakshmanan, and A.K. Tung, “On Domination Game
Analysis for Microeconomic Data Mining,” ACM Trans. Knowledge
Discovery from Data, vol. 2, article 18, 2009.

Yu Peng received the BSc degree from the
South China University of Technology (SCUT) in
2006 and the MPhil degree from the Sun Yat-
sen University (SYSU) in 2008, respectively.
She is currently working toward the PhD degree
from the Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology (HKUST). Her research inter-
ests are in the areas of data mining and
database.

finance modeling and

Raymond Chi-Wing Wong received the BSc,
MPhil, and PhD degrees in computer science
and engineering from the Chinese University of
Hong Kong (CUHK) in 2002, 2004, and 2008,
respectively. He joined the Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology as an
assistant professor in 2008. His research inter-
ests include database, data mining and security.

Qian Wan received the BSc degree in
computer science from Nankai University in
2008, and the MPhil degree from the Hong
Kong University of Science and Technology
(HKUST) in 2010, respectively. He is currently
working toward the PhD degree from the
Department of Computer Science, University
of Wisconsin-Madison. His research interests
are in the area of spatial queries, approxima-
tion algorithm, data mining, computational
map reduce.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

