
On Generalizing Collective Spatial
Keyword Queries

Harry Kai-Ho Chan , Cheng Long , and Raymond Chi-Wing Wong

Abstract—With the proliferation of spatial-textual data such as location-based services and geo-tagged websites, spatial keyword

queries are ubiquitous in real life. One example of spatial-keyword query is the so-called collective spatial keyword query (CoSKQ)

which is to find for a given query consisting a query location and several query keywords a set of objects which covers the query

keywords collectively and has the smallest cost wrt the query location. In the literature, many different functions were proposed for

defining the cost and correspondingly, many different approaches were developed for the CoSKQ problem. In this paper, we study the

CoSKQ problem systematically by proposing a unified cost function and a unified approach for the CoSKQ problem (with the unified

cost function). The unified cost function includes all existing cost functions as special cases and the unified approach solves the

CoSKQ problem with the unified cost function in a unified way. Experiments were conducted on both real and synthetic datasets which

verified our proposed approach.

Index Terms—Spatial keyword queries, unified framework

Ç

1 INTRODUCTION

NOWADAYS, geo-textual data which refers to data with
both spatial and textual information is ubiquitous.

Some examples of geo-textual data include the spatial
points of interest (POI) with textual description (e.g., restau-
rants, cinema, tourist attractions, and hotels), geo-tagged
web objects (e.g., webpages and photos at Flickr), and also
geo-social networking data (e.g., users of FourSquare have
their check-in histories which are spatial and also profiles
which are textual).

One application based on geo-textual data is to search a
set of (geo-textual) objects wrt a query consisting of a query
location (e.g., the location one is located at) and some
textual information (e.g., some keywords expressing the
targets one wants to search) such that the objects have their
textual information matching the query keywords and their
locations close to the query location. One scenario of this
application is that a tourist wants to find several POIs such
that s/he could do sight-seeing, shopping and dining and
the POIs are close to the hotel. In this case, the user can set
the query location to the hotel location and the query
keywords to be “attractions”, “shopping” and “restaurant”
to search for a set of POIs. Another scenario is that a man-
ager wants to set up a project consortium of partners close
to each other such that they together offer the capabilities

required for successful execution of the whole project. In
this case, the user can issue the query with his/her location
as the query location and the required skills for the partners
as the query keywords to find a group of people.

The above applications were captured by the so-called
Collective Spatial Keyword Query (CoSKQ) [2], [3], [17] in the
literature. LetO be a set of objects, where each object o 2 O is
associated with a spatial location, denoted by o:�, and a set
of keywords, denoted by o:c. Given a query qwith a location
q:� and a set of keywords q:c, the CoSKQ problem is to find a
set S of objects such that S covers q:c, i.e., q:c � [o2So:c, and
the cost of S, denoted by costðSÞ, is minimized.

In the literature, many different cost functions have been
proposed for costðSÞ in the CoSKQ problem, and these cost
functions are applicable in different scenarios in addition
to the above examples. For the CoSKQ problem with each
particular cost function, at least one approach has been
designed, which we briefly review as follows.

Different cost functions. Five different cost functions have
been proposed for the CoSKQ problem, namely, costSum [3],
costMaxMax [3] , costMaxMax2 [17] , costMinMax [2] and
costSumMax [2]. For example, costSumðSÞ defines the cost to the
summation of the distances from the query location to the
objects in S, and costMaxMaxðSÞ defines the cost to a linear
combination of the maximum distance between the query
location and an object in S and the maximum pairwise dis-
tance among the objects in S. The definitions of the rest of
cost functions would be introduced later. Each cost function
has its own semanticmeaning and depending on the applica-
tion scenario, an appropriate cost function is used.

Different approaches. For the CoSKQ problem with each
of these existing cost functions, which was proved to be
NP-hard, at least one solution (including an exact algorithm
and an approximate algorithm) was developed, and these
solutions usually differ from one another. For example, the
exact algorithm for the CoSKQ problem with costSum is
a dynamic programming algorithm [3], while that for the
one with costMaxMax is a branch-and-bound algorithm [3].

� H. K.-H. Chan and R. C.-W. Wong are with the Department of Computer
Science and Engineering, Hong Kong University of Science and Technol-
ogy, Clear Water Bay, Kowloon, Hong Kong.
E-mail: {khchanak, raywong}@cse.ust.hk.

� C. Long is with the School of Electronics, Electrical Engineering, and
Computer Science, Queen’s University Belfast, Northern Ireland BT7
1NN, United Kingdom. E-mail: cheng.long@qub.ac.uk.

Manuscript received 21 May 2017; revised 21 Jan. 2018; accepted 29 Jan.
2018. Date of publication 1 Feb. 2018; date of current version 3 Aug. 2018.
(Corresponding author: Harry Kai-Ho Chan.)
Recommended for acceptance by K. Chang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2018.2800746

1712 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5312-6083
https://orcid.org/0000-0002-5312-6083
https://orcid.org/0000-0002-5312-6083
https://orcid.org/0000-0002-5312-6083
https://orcid.org/0000-0002-5312-6083
https://orcid.org/0000-0001-6806-8405
https://orcid.org/0000-0001-6806-8405
https://orcid.org/0000-0001-6806-8405
https://orcid.org/0000-0001-6806-8405
https://orcid.org/0000-0001-6806-8405
https://orcid.org/0000-0001-7045-6503
https://orcid.org/0000-0001-7045-6503
https://orcid.org/0000-0001-7045-6503
https://orcid.org/0000-0001-7045-6503
https://orcid.org/0000-0001-7045-6503
mailto:
mailto:

Usually, an existing algorithm for the CoSKQ problem with
a particular cost function cannot be used to solve that with
another cost function.

In this paper, we study the CoSKQ problem systemati-
cally by proposing a unified cost function and a unified approach
for the CoSKQproblem (with the unified cost function).

Without the unified approach, we need to handle differ-
ent cost functions by different algorithms, which increases
the difficulty for CoSKQ to be used in practice. Also, when
researchers work on improving the performance of an algo-
rithm, only the corresponding cost function is benefited.
Although sometimes it is possible that one algorithm origi-
nally designed for one cost function can be adapted for
another cost function, the performance of the adapted algo-
rithm is not satisfactory. A better idea is to have a unified
cost function and a unified approach, where the unified cost
function captures all known cost functions and some other
cost functions which are not known before but useful.

Specifically, themain contribution is summarized as follows.
A unified cost function. We propose a unified cost function

costunified which expresses all existing cost functions and a
few new cost functions that have not been studied before.
The core idea of costunified is that first two distance compo-
nents, namely the query-object distance component and the
object-object distance component, are defined, where the former
is based on the distances between the query location and
those of the objects and the latter is based on the pairwise dis-
tances among the set of objects and then costunified is defined
based on the two distance components carefully such that all
existing cost functions are captured (Note that this is possible
since all ingredients of defining a cost function are distances
between the query location and and those distances among
objects which are captured by the two components.).

A unified approach. We design a unified approach, which
consists of one exact algorithm and one approximate algo-
rithm, for the CoSKQ problemwith the unified cost function.
For the CoSKQ problem with the cost function instantiated
to those existing cost functions, which have been proved to
be NP-hard, our exact algorithm is superior over the state-of-
the-arts in that it not only has a unified procedure, but also
runs faster under all settings for some cost functions (e.g.,
costMinMax and costMinMax2) and under themajority of settings
for the other cost functions, and our approximate algorithm
is always among those algorithms which give the best
approximation ratios and runs faster than those algorithms
which give similar approximation ratios. For the CoSKQ
problemwith the cost function instantiated to those new cost
functions that have not been studied before, our exact algo-
rithm runs reasonably fast and our approximate algorithm
provides certain approximation ratios.

Besides, we conducted extensive experiments based on
both real and synthetic datasets which verified our unified
approach.

The rest of this paper is organized as follows. Section 2
gives the related work. Section 3 introduces the unified cost
function and Section 4 presents the unified approach for
CoSKQ. Section 5 gives the empirical study and Section 6
concludes the paper.

2 RELATED WORK

Many existing studies on spatial keyword queries focus on
retrieving a single object that is close to the query location
and relevant to the query keywords.

A boolean kNN query [5], [12], [24], [27], [30] finds a list of
k objects each covering all specified query keywords. The
objects in the list are ranked based on their spatial proximity
to the query location.

A top-k kNN query [8], [9], [15], [18], [19], [20], [25] adopts
the ranking function considering both the spatial proximity
and the textual relevance of the objects and returns top-k
objects based on the ranking function. This type of queries has
been studied on Euclidean space [8], [15], [18], road network
databases [19], trajectory databases [9], [20] andmoving object
databases [25]. Usually, the methods for this kind of queries
adopt an index structure called the IR-tree [8], [23] capturing
both the spatial proximity and the textual information of the
objects to speed up the keyword-based nearest neighbor
(NN) queries and range queries. In this paper, we also adopt
the IR-tree for keyword-basedNNqueries and range queries.

Some other studies on spatial keyword queries focus on
finding an object set as a solution. Among them, some [2],
[3], [17] studied the collective spatial keyword queries (CoSKQ).
Cao et al. [2], [3] proposed four cost functions, namely
costSum, costMaxMax, costMinMax and costSumMax, and devel-
oped algorithms for the CoSKQ problem with the first three
cost functions, leaving that with the fourth cost function,
i.e., costSumMax, as future work. Besides, they studied two
variations of CoSKQ, namely top-k CoSKQ and weighted
CoSKQ, in [2]. Long et al. [17] proposed exact and approxi-
mate algorithms for the CoSKQ problem with costMaxMax

and also that with a new cost function costMaxMax2. The
details of these cost functions are described in Section 3. In
this paper, we also study the CoSKQ problem. Specifically,
we propose a unified cost function which include all existing
cost functions as special cases and based on the unified cost
function, we design a unified approach, consisting of an
exact algorithm and an approximate algorithm.

Another query that is similar to the CoSKQ problem is
the mCK query [14], [28], [29] which takes a set of m key-
words as input and findsm objects with the minimum diam-
eter that cover the m keywords specified in the query. In the
existing studies of mCK queries, it is usually assumed that
each object contains a single keyword. There are some var-
iants of the mCK query, including the SK-COVER [7] and
the BKC query [10]. These queries are similar to the CoSKQ
problem in that they also return an object set that covers the
query keywords, but they only take a set of keywords as
input. In contrast, the CoSKQ problem studied in this paper
takes both a set of keywords and a spatial location as inputs.

Skovsgaard et al. [21] proposed a query to find top-k
groups of objects with the ranking function considering
the spatial proximity and textual relevance of the groups.
Liu et al. proposed the clue-based spatio-textual query [16]
which takes a set of keywords and a clue as inputs, and
returns k objects with highest similarities against the clue.

There are also some studies [13], [22] on spatial keyword
queries which find an object set in the road network,
some [6] which find an object set with the scoring function
considering an inherent cost in each object, some [4], [11]
which find a region as a solution and some [1], [26] which
find a route as a solution.

3 A UNIFIED COST FUNCTION

LetO be a set of objects, where each object o 2 O is associated
with a spatial location, denoted by o:�, and a set of keywords,

CHAN ET AL.: ON GENERALIZING COLLECTIVE SPATIAL KEYWORD QUERIES 1713

denoted by o:c. Given two objects o1 and o2, we denote by
dðo1; o2Þ the Euclidean distance between o1:� and o2:�.

(1) Problem definition. A collective spatial keyword query
(CoSKQ) [3] is defined as follows.

Problem 1 (CoSKQ [3]). Given a query q with a location q:�
and a set of keywords q:c, the CoSKQ problem is to find a set S
of objects such that S covers q:c, i.e., q:c � [o2So:c, and the
cost of S, denoted by costðSÞ, is minimized.

(2) Existing cost functions. To the best of our knowledge,
five cost functions have been proposed for defining costð�Þ
in the CoSKQ problem, namely costSum [3], costSumMax [2],
costMaxMax [3], costMaxMax2 [17], and costMinMax [2]. Specifi-
cally, these cost functions are defined as follows.

1) costSum. costSumðSÞ defines the cost to be the summa-
tion of the distances from the query location to the
objects in S, i.e., costSumðSÞ ¼

P
o2S dðo; qÞ.

2) costSumMax. costSumMaxðSÞ defines the cost to be a lin-
ear combination of the summation of distances from
the query location to the objects in S and the maxi-
mum pairwise distance among the objects in S, i.e.,
costSumMaxðSÞ ¼ a �

P
o2S dðo; qÞ þ ð1� aÞ �maxo1;o22Sdðo1; o2Þ,

where a represents a real number in ð0; 1�.
3) costMaxMax. costMaxMaxðSÞ defines the cost to be a lin-

ear combination of the maximum distance between
the query location and an object in S and the maxi-
mum pairwise distance among the objects in S, i.e.,
costMaxMaxðSÞ ¼ a �maxo2Sdðo; qÞ þ ð1� aÞ �maxo1;o22Sdðo1;
o2Þ, where a represents a real number in ð0; 1�.

4) costMaxMax2. costMaxMax2ðSÞ defines the cost to be the
larger one of the maximum distance between the
query location and an object in S and the maximum
pairwise distance among the objects in S, i.e.,
costMaxMax2ðSÞ ¼ maxfmaxo2Sdðo; qÞ;maxo1;o22Sdðo1; o2Þg.

5) costMinMax. costMinMaxðSÞ defines the cost to be a lin-
ear combination of the minimum distance between
the query location and an object in S and the maxi-
mum pairwise distance among the objects in S, i.e.,
costMinMaxðSÞ ¼ a �mino2Sdðo; qÞ þ ð1� aÞ �maxo1;o22Sdðo1;
o2Þ, where a represents a real number in ð0; 1�.

(3) A unified cost function costunified. In this paper, we pro-
pose a unified cost function costunified which could be instan-
tiated to many different cost functions including all those
five existing ones. Before we give the exact definition of
costunified, we first introduce a distance component used for
defining costunified, namely the query-object distance compo-
nent. It is defined based on the distances between the query
location and the objects in S. Specifically, we denote it by
Dq;oðSjf1Þ and define it as follows.

Dq;oðSjf1Þ ¼
X

o2S
ðdðo; qÞÞf1

" # 1
f1

;

where f1 2 f1;1;�1g is a user parameter. Depending on
the setting of f1, Dq;oðSjf1Þ corresponds to the summation,
the maximum, or the minimum of the distances from the
query location to the objects in S. Specifically,

Dq;oðSjf1Þ ¼

P
o2S dðo; qÞ; if f1 ¼ 1

maxo2Sdðo; qÞ; if f1 ¼ 1
mino2Sdðo; qÞ; if f1 ¼ �1:

8
><

>:

With the distance component defined, we are ready to
introduce the unified cost function costunified. Specifically,
we define costunified as follows.

costunifiedðSja;f1;f2Þ

¼ ½a �Dq;oðSjf1Þ�f2 þ ð1� aÞ max
o1;o22S

dðo1; o2Þ
� �f2

() 1
f2

;
(1)

where a 2 ð0; 1�,1 f1 2 f1;1;�1g and f2 2 f1;1g are user
parameters. In the following, we write costunifiedðSja;f1;f2Þ
simply as costðSÞwhen there is no ambiguity.

Same as [2], [3], [17], for ease of exposition, we use
a ¼ 0:5 to illustrate the case of a 2 ð0; 1Þ. In this case, we can
safely assume that

costunifiedðSj0:5;f1;f2Þ

¼ ½Dq;oðSjf1Þ�f2 þ max
o1;o22S

dðo1; o2Þ
� �f2

() 1
f2

:
(2)

Under some settings of a, f1 and f2, costunified corre-
sponds to one of the aforementioned existing cost functions
(as shown in Table 1). For example, when a ¼ 1 and f1 ¼ 1
(regardless of the settings of f2), costunifiedðSÞ corresponds
to costSumðSÞ since

costunifiedðSÞ ¼ f½Dq;oðSj1Þ�f2g
1
f2 ¼ Dq;oðSj1Þ

¼
X

o2S
dðo; qÞ ¼ costSumðSÞ;

and similarly, when a 2 ð0; 1�, f1 ¼ 1 and f2 ¼ 1,
costunifiedðSÞ corresponds to costMaxMaxðSÞ.

Under some other settings of a, f1 and f2, costunified corre-
sponds to a newcost function that has not been studied before.
For example, when a ¼ 0:5, f1 ¼ 1, and f2 ¼1, we have

costunifiedðSÞ ¼ ½0:5 �Dq;oðSj1Þ�1 þ 0:5 � max
o1;o22S

dðo1; o2Þ
� �1� � 1

1

¼ 0:5 max
X

o2S
dðo; qÞ; max

o1;o22S
dðo1; o2Þ

()

;

where we denote maxf
P

o2S dðo; qÞ;maxo1;o22Sdðo1; o2Þg by
costSumMax2ðSÞ.

The instantiations of costunified depending on different
parameter settings are shown in Table 1. In the following,
we introduce those instantiations that are new.

1) (row b) costSumMax2. The functionality of this cost func-
tion is equivalent to that of the cost function costSum
(please see Appendix A, which can be found on the
Computer Society Digital Library at http://doi.ieee-
computersociety.org/10.1109/TKDE.2018.2800746 for
details), and thuswe focus on costSum in this paper.

2) (row f) costMinMax2. It essentially captures the maxi-
mum among two distances, namely the distance
between the query location q:� and its nearest object
in S and the distance between the two farthest
objects in S. A common practice for an individual to
explore the objects returned is to visit the object
which is the nearest from the query location and
explore the others, and thus this cost function is use-
ful when people want to get at their first stop

1. In the setting of a ¼ 0, the query location has no contribution to
the cost. Thus, we do not consider this setting.

1714 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

(i.e., the nearest object) fastly (this is captured by
the query-object distance component) and explore the
objects within a small region (this is captured by the
farthest pairwise distance of the objects). Compared
to the existing cost function costMinMax, costMinMax2

has an advantage that it requires no parameter of a.
3) (row h) costMax. It uses themaximumdistance between

the query location q:� and an object in S. This cost func-
tion can be used to find the feasible set with the closet
farthest object among all feasible sets. This cost function
is suitable for the scenarioswhere a user visits one object
a time, starting from the query location each time, and
wants theworst-case cost as small as possible.

4) (row i) costMin. It uses the distance between the query
location q:� and its nearest object in S only, which is
of no interest in practice since it put no penalty
on those objects that are far away from the query loca-
tion, e.g., the whole set of objects corresponds to a
trivial solution for the CoSKQ problem with costMin.
Therefore, we ignore this instantiation of costunified.

(4) Intractability results. It is known that the CoSKQ prob-
lem with an existing cost function adopted is NP-hard [2],
[3], [17]. That is, the CoSKQ problem is NP-hard under the
parameter settings such that costunified corresponds to an
existing cost function. In this paper, we study the intracta-
bility of the CoSKQ problem with all possible parameter set-
tings of a, f1 and f2 for costunified. Specifically, we have the
following result.

Theorem 1 (Intractability). The CoSKQ problem is NP-hard
with all possible parameter settings of a, f1 and f2 except for
the setting of a ¼ 1;f1 2 f1;�1g.

Proof. See Appendix B, available online. tu

(5) Existing Algorithms. For the CoSKQ problem with each
of the existing cost functions, solution (including an exact
algorithm and an approximate algorithm) was developed,
and these solutions usually differ from one another. Specifi-
cally, we review the algorithms of some existing cost func-
tions and solutions as follows.

1) costSum. The exact algorithm for CoSKQ problem
with costSum is a dynamic programming algorithm,
while the approximate algorithm is a greedy algo-
rithm transformed from that of the Weighted Set
Cover problem [2], [3].

2) costSumMax. No solution is available in the literature
for solving CoSKQ with costSumMax. This cost func-
tion is proposed in [2], but the corresponding solu-
tion is left for their future work.

3) costMaxMax. Several algorithms were proposed for
CoSKQ problem with costMaxMax. One of the exact
algorithms is a branch-and-bound algorithm [3],
while another one is based on a distance owner-
driven approach [17]. One of the approximate algo-
rithms picks the nearest neighbor set [2], [3], while
two other approximate algorithms search for feasible
sets in an iterative manner [2], [3], [17].

Usually, an existing algorithm for the CoSKQ problem
with a particular cost function cannot be used to solve that
with another cost function. In the following section, we
introduce out unified approach for the CoSKQ problem
with the unified cost function.

4 A UNIFIED APPROACH

In this section,we introduce our unified approachwhich con-
sists of one exact algorithm called Unified-E (Section 4.1) and
one approximate algorithm called Unified-A (Section 4.2).
While the unified cost function combines existing ones, our
unified approach is not one which simply combine existing
approaches. In fact, both the exact algorithm and approxi-
mate algorithm proposed in this paper are clean and elegant
while existing approaches have quite different structures.

Before presenting the algorithms, we first give some defi-
nitions as follows. Given a query q and an object o in O, we
say o is a relevant object if o:c \ q:c 6¼ ;. We denote Oq to be
the set of all relevant objects. Given a set S of objects, S is
said to be a feasible set if S covers q:c (i.e., q:c � [o2So:c).
Note that the CoSKQ problem is to find a feasible set with
the smallest cost.

Given a non-negative real number r, we denote the circle
centered at q:� with radius r by Cðq; rÞ. Similarly, the circle
centered at o:�with radius r is denoted by Cðo; rÞ.

Let q be a query and S be a feasible set. We say that an
object o 2 S is a query-object distance contributor wrt S
if dðo; qÞ contributes in Dq;oðSjf1Þ. Specifically, we have the
following three cases according to the value of f1.

� In the case of f1 ¼ 1 where Dq;oðSjf1Þ ¼
P

o2S dðo; qÞ,
each object in S is a query-object distance contributor
wrt S;

TABLE 1
costunified under Different Parameter Settings

Parameter
costunifiedðSja;f1;f2Þ Existing/New

a 2 ð0; 1� f1 2 f1;1;�1g f2 2 f1;1g
a 0.5* 1 1

P
o2S dðo; qÞ þmaxo1;o22Sdðo1; o2Þ costSumMax [2]

b 0.5* 1 1 maxf
P

o2S dðo; qÞ;maxo1;o22Sdðo1; o2Þg costSumMax2 (New)

c 0.5* 1 1 maxo2Sdðo; qÞ þmaxo1;o22Sdðo1; o2Þ costMaxMax [2], [3], [17]

d 0.5* 1 1 maxfmaxo2Sdðo; qÞ;maxo1 ;o22Sdðo1; o2Þg costMaxMax2 [17]

e 0.5* �1 1 mino2Sdðo; qÞ þmaxo1 ;o22Sdðo1; o2Þ costMinMax [2]

f 0.5* �1 1 maxfmino2Sdðo; qÞ;maxo1;o22Sdðo1; o2Þg costMinMax2 (New)

g 1 1 -
P

o2S dðo; qÞ costSum [2], [3]
h 1 1 - maxo2Sdðo; qÞ costMax (New)
i 1 �1 - mino2Sdðo; qÞ costMin (New)

*Following the existing studies, a ¼ 0:5 is used to illustrate the case of a 2 ð0; 1Þ for simplicity.

CHAN ET AL.: ON GENERALIZING COLLECTIVE SPATIAL KEYWORD QUERIES 1715

� In the case of f1 ¼ 1 where Dq;oðSjf1Þ ¼ maxo2Sdðo;
qÞ, only those objects in S which have the maximum
distance from q are the query-object distance contrib-
utors wrt S;

� In the case of f1 ¼ �1 where Dq;oðSjf1Þ ¼
mino2Sdðo; qÞ, only those objects in S which have the
minimum distance from q are the query-object dis-
tance contributors wrt S.

Then, we define the key query-object distance contributor
wrt S to the object with the greatest distance from q among
all query-object distance contributors wrt S. The concept of
“key query-object distance contributor” is inspired by the
concept of “query distance owner” proposed in [17], and
the concept of “key query-object distance contributor” is
more general in the sense that a query distance owner corre-
sponds to a key query distance contributor in the case of
f1 ¼ 1 but not in other cases.

Let S be a set of objects and oi and oj are two objects in S.
We say that oi and oj are object-object distance contributorswrt
S if dðoi; ojÞ contribute in maxo;o02Sdðo; o0Þ, i.e., ðoi; ojÞ ¼
argmaxo;o02Sdðo; o0Þ.

Given a query q and a keyword t, the t-keyword nearest
neighbor of q, denoted byNNðq; tÞ, it defined to be the nearest
neighbor of q containing keyword t. Similarly, NNðo; tÞ is
defined to be the NN of o containing keyword t. Besides, we
define the nearest neighbor set of q, denoted by NðqÞ to be the
set containing q’s t-keyword nearest neighbor for each t 2 q:c,
i.e.,NðqÞ ¼ [t2q:cNNðq; tÞ. Note thatNðqÞ is a feasible set.

4.1 An Exact Algorithm
The idea ofUnified-E is to iterate through the object-object dis-
tance contributors and search for the best feasible setS0 in each
iteration. This allows CoSKQ with different cost functions to
be executed efficiently. Note that each existing algorithm [2],
[3], [17] is designed for a specific cost function and they cannot
be used to answer CoSKQwith different cost functions.

Specifically,Unified-E adopts the following search strategy.

� Step 1 (Object-Object Distance Contributors Find-
ing): Select two objects to be the object-object dis-
tance contributors wrt the set S0 to be constructed;

� Step 2 (Key Query-Object Distance Contributor
Finding): Select an object to be the key query-object
distance contributor wrt the set S0 to be constructed;

� Step 3 (Best Feasible Set Construction): Construct the
set S0 (which has oi; oj as the object-object distance
contributors and om as the key query-object distance
contributor), and update the current best solution
curSet with S0 if costðS0Þ < curCost, where curCost
is the cost of curSet;

� Step 4 (Iterative Step): Repeat Step 1 to Step 3 until all
possible object-object distance contributors and key
query-object distance contributors are iterated.

The above search strategy makes quite effective pruning
possible at both Step 1 and Step 2.

Pruning at Step 1. The major idea is that not each relevant
objects pair is necessary to be considered as a object-object
distance contributor wrt S0 to be constructed. First, only the
relevant objects in RS ¼ Cðq; r1Þ need to be considered,
where r1 is the radius of the region that depends on the
parameter setting, as shown in Table 2. It can be proved that
if S0 contains an object o such that dðo; qÞ > r1, S

0 cannot be
the optimal solution. Second, we can maintain a lower
bound dLB and an upper bound dUB of the distance between
the object-object distance contributors for pruning. For
example, all those relevant objects pairs ðoi; ojÞ with
dðoi; ojÞ > curCost (this is because in this case, all those fea-
sible sets S0 with ðoi; ojÞ as the object-object distance contrib-
utor have the cost larger than that of the current best
solution, i.e., the best-known cost) could be pruned, i.e.,
curCost is used as an upper bound. Furthermore, it could be
verified easily that when f1 2 f1;1g, all those relevant
object pairs ðoi; ojÞ with dðoi; ojÞ < maxo2NðqÞdðo; qÞ �minfd
ðoi; qÞ; dðoj; qÞg could be pruned, i.e., maxo2NðqÞdðo; qÞ�
minfdðoi; qÞ; dðoj; qÞg is used as a lower bound. The details of
dLB and dUB for different parameter settings are presented in
Table 2. Specifically, we have the following lemma.

Lemma 1. Let oi and oj be the object-object distance contributors
of the set S to be constructed. For costunified with different
parameter settings, dðoi; ojÞ can be lower bounded by dLB and
upper bounded by dUB, as shown in Table 2.

Proof. Let om be the key query-object distance contributor
of S. The proof of dLB is shown as follows. When
f1 2 f1;1g, dðoi; ojÞ � dðoi; omÞ and dðoi; ojÞ � dðoj; omÞ.
Besides, we know that dðoi; omÞ þ dðoi; qÞ � dðom; qÞ by
triangle inequality. Similarly, we know that dðoj; omÞ þ
dðoj; qÞ � dðom; qÞ. Since S is feasible, dðom; qÞ � df . There-
fore, we have dðoi; ojÞ � dðom; qÞ �minfdðoi; qÞ; dðoj;
qÞg � df �minfdðoi; qÞ; dðoj; qÞg ¼ dLB. When f1 ¼ �1,
we have dðom; qÞ þ dðoi; ojÞ � df because S is feasible.
Also, dðoi; qÞ � dðom; qÞ and dðoj; qÞ � dðom; qÞ because om
is the object closet to q. Therefore, we have dðoi; ojÞ � df �
dðom; qÞ � df �minfdðoi; qÞ; dðoj; qÞg ¼ dLB.

The proof of dUB is shown as follows. When a ¼
0:5;f1 ¼ 1 and f2 ¼ 1 (costSumMax), costðSÞ � dðoi; qÞ þ
dðoj; qÞ þ dðoi; ojÞ and dðoi; qÞ þ dðoj; qÞ � dðoi; ojÞ by
triangle inequality. If dðoi; ojÞ � curCost=2, we have
costðSÞ � 2dðoi; ojÞ � curCost, which means S cannot
contribute to a better solution and can be pruned. When

TABLE 2
Lower and Upper Bounds Used in Step 1 of Unified-E

Cost function
Parameter

r1 dLB dUB costðfoi; ojgÞLB
a f1 f2

costSumMax 0.5 1 1 curCost

df �minfdðoi; qÞ; dðoj; qÞg

curCost=2 dðoi; ojÞ þ dðoi; qÞ þ dðoj; qÞ
costMaxMax 0.5 1 1 curCost curCost� df dðoi; ojÞ þmaxfdðoi; qÞ; dðoj; qÞ; dfg
costMaxMax2 0.5 1 1 curCost curCost maxfdðoi; ojÞ; dðoi; qÞ; dðoj; qÞ; dfg
costMinMax 0.5 �1 1 curCost curCost maxfdðoi; ojÞ; dðoi; qÞ; dðoj; qÞ; dfg
costMinMax2 0.5 �1 1 2 � curCost curCost maxfdðoi; ojÞ;maxfdðoi; qÞ; dðoj; qÞg � dðoi; ojÞg
costSum 1 1 - curCost curCost dðoi; qÞ þ dðoj; qÞ

df ¼ maxo2NðqÞdðo; qÞ

1716 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

a ¼ 0:5;f1 ¼ 1 and f2 ¼ 1 (costMaxMax), costðSÞ ¼ dðom;
qÞ þ dðoi; ojÞ and dðom; qÞ � df since S is a feasible set. If
dðoi; ojÞ � curCost� df , we have costðSÞ � curCost and
thus S can be pruned. For the other parameter settings, it
is easy to see that if S contain an object o with dðo; qÞ �
curCost, costðSÞ � curCost. tu
Third, given a set having oi and oj as the object-object dis-

tance contributors, we can compute the lower bound of cost
of the set, denoted by costðfoi; ojgÞLB, and thus we can
prune all those object pairs with costðfoi; ojgÞLB > curCost.
The details of costðfoi; ojgÞLB for different parameter
settings are presented in Table 2. Specifically, we have the
following lemma.

Lemma 2. Let oi and oj be the object-object distance contributors
of the set S to be constructed. For costunified with different
parameter settings, costðSÞ can be lower bounded by
costðfoi; ojgÞLB, as shown in Table 2.

Proof. Let om be the key query-object distance contributor
of S. When f1 ¼ 1, it is obvious that costðSÞ �
costðfoi; ojgÞLB.

When f1 ¼ 1, dðom; qÞ � maxfdðoi; qÞ; dðoj; qÞg. Since
S is a feasible set, dðom; qÞ � df . Thus, costðSÞ � dðoi;
ojÞ þmaxfdðoi; qÞ; dðoj; qÞ; dfg when f2 ¼ 1 (costMaxMax)
and costðSÞ � maxfdðoi; ojÞ; dðoi; qÞ; dðoj; qÞ; dfg when
f2 ¼ 1 (costMaxMax2).

When f1 ¼ �1 and f2 ¼ 1 (costMinMax), we know that
costðSÞ � dðoi; ojÞ. Also we have costðSÞ � dðom; qÞ þ
dðoi; omÞ � dðoi; qÞ by triangle inequality. Similarly, we
have costðSÞ � dðom; qÞ þ dðoj; omÞ � dðoj; qÞ. Therefore,
costðSÞ � maxfdðoi; ojÞ; dðoi; qÞ; dðoj; qÞg.

When f1 ¼ �1 and f2 ¼ 1 (costMinMax2), we know
that costðSÞ � dðoi; ojÞ. Also dðom; qÞ � dðoi; qÞ � dðoi; ojÞ
because om must be located in the region of
Cðoi; dðoi; ojÞÞ. Similarly, dðom; qÞ � dðoj; qÞ � dðoi; ojÞ.
Therefore, costðSÞ � maxfdðoi; ojÞ;maxfdðoi; qÞ; dðoj; qÞg�
dðoi; ojÞg. tu

Pruning at Step 2. Note that only the objects in Cðoi;
dðoi; ojÞÞ \ Cðoj; dðoi; ojÞÞ need to be considered as key
query-object distance contributors for constructing S0. The
major idea of the pruning is that not all possible objects in
the region are necessary to be considered. Specifically, we
can maintain a lower bound rLB and an upper bound rUB of
the distance between the key query-object distance contrib-
utors and query. For example, in the case that f1 ¼ 1, all
those relevant objects o with dðo; qÞ < maxfdðoi; qÞ; dðoj; qÞg
could be safely pruned (this is because such object o can not
be the key query-object distance contributor wrt S0), i.e.,
maxfdðoi; qÞ; dðoj; qÞg is used as lower bound. Fig. 1a shows
the region for the objects to be considered as the key query-
object distance contributor. In the case that f1 ¼ �1,

similarly, all those relevant objects o with
dðo; qÞ > minfdðoi; qÞ; dðoj; qÞg could be safely pruned i.e.,
minfdðoi; qÞ; dðoj; qÞg is used as upper bound. Also, all those
relevant objects o with dðo; qÞ < df � dðoi; ojÞ could be
safely pruned, where df ¼ maxo2NðqÞdðo; qÞ (this is because
all those feasible sets S0 with o as the key query-object dis-
tance contributor have maxo1;o22S0dðo1; o2Þ larger than
dðoi; ojÞ), i.e., df � dðoi; ojÞ is used as an lower bound. Fig. 1b
shows the region for the objects to be considered as the key
query-object distance contributor. The details of rLB and rUB
for different parameter settings are presented in Table 3.

Specifically, we have the following lemma.

Lemma 3. Let oi and oj be the object-object distance contributors
and om be the key query-object distance contributors of the set
S to be constructed. For costunified with different parameter set-
tings, dðom; qÞ can be lower bounded by rLB and upper bounded
by rUB, as shown in Table 3.

Proof. The proof of rLB is shown as follows. When f1 2
f1;1g, dðom; qÞ > df because otherwise S is not a feasible
set. For costSumMax; costMaxMax and costSum, we do not need
to consider an object o if dðo; qÞ < maxfdðoi; qÞ; dðoj; qÞg
because it can not be the key query-object distance
contributor of S by definition. Similarly, for costMaxMax2,
we do not need to consider object o if dðo; qÞ < dðoi; ojÞ
because it cannot be the key query-object distance contrib-
utor of S. When f1 ¼ �1, we set rLB ¼ df � dðoi; ojÞ
because otherwise S is not a feasible set.

The proof of rUB is shown as follows. For costSumMax

and costMaxMax, if S contains an object o with dðo; qÞ �
curCost� dðoi; ojÞ, it is obvious that costðSÞ � curCost.
Similarly, for costMaxMax2 (costSum), if S contains an object
o with dðo; qÞ � curCost (dðo; qÞ > curCost� dðoi; qÞ �
dðoj; qÞ), costðSÞ � curCost. For costMinMax and
costMinMax2, we do not need to consider an object o
if dðo; qÞ � minfdðoi; qÞ; dðoj; qÞ because it can not be
the key query-object distance contributor of S by defi-
nition. Also, in costMinMax, if dðo; qÞ � curCost� dðoi; ojÞ,
costðSÞ � curCost. tu

Algorithm 1. A Unified Approach (An Exact Algorithm)

Input: A query q, a set O of objects and a unified cost function
costunifiedðSja;f1;f2Þ

1: curSet NðqÞ
2: curCost costðcurSetÞ
3: RS Cðq; r1Þ
4: P a set of all relevant object pairs ðoi; ojÞwhere

oi; oj 2 RS and dLB � dðoi; ojÞ < dUB
5: for each ðoi; ojÞ 2 P in ascending order of costðfoi; ojgÞLB

do
6: if costðfoi; ojgÞLB > curCost then
7: break;
8: Rij Cðoi; dðoi; ojÞÞ \ Cðoj; dðoi; ojÞÞ
9: T a set of all relevant objects om 2 Rij where

rLB � dðom; qÞ � rUB
10: for each om 2 T in ascending order of dðom; qÞ do
11: S0 findBestFeasibleSet(oi; oj; om)
12: if S0 6¼ ; and costðS0Þ < curCost then
13: curSet S0

14: curCost costðS0Þ
15: return curSet

Fig. 1. Pruning at Step 2 of Unified-E.

CHAN ET AL.: ON GENERALIZING COLLECTIVE SPATIAL KEYWORD QUERIES 1717

With the above search strategy introduced, we present the
Unified-E algorithm in Algorithm 1. Specifically, wemaintain
an object set curSet for storing the best-known solution
found so far, which is initialized toNðqÞ (line 1), and curCost
to be the cost of curSet (line 2). Recall that NðqÞ is a feasible
set. Then, we initializeRS to be Cðq; r1Þ (line 3) and find a set
P of all object pairs ðoi; ojÞ where oi and oj are in RS to take
the roles of object-object distance contributors (line 4).

Second, we perform an iterative process as follows.
Consider one iteration. We check whether the lower bound
of the set containing oi and oj is larger than curCost (line 6).
If yes, we stop the iterations (line 7). Otherwise, we proceed
to initialize the region Rij to Cðoi; dðoi; ojÞÞ \ Cðoj; dðoi; ojÞÞ
(line 8) and find a set T of all objects om where om is in Rij to
take the role of key query-object distance contributor (line 9).

Third, we invoke a procedure called findBestFeasibleSet
(discussed later) for constructing a feasible set S0 which
takes oi and oj as the object-object distance contributors
and om as the key query-object distance contributor wrt S0

(line 11). Then, we update curSet to S0 if S0 exists and
costðS0Þ < curCost (lines 12 - 14).

Algorithm 2. findBestFeasibleSet(oi; oj; om)

Input: Three objects oi; oj; om
Output: The feasible set (if any) containing oi; oj; om with the

smallest cost
1: S0 ;
2: c q:c� ðoi:c [oj:c [om:cÞ
3: if c ¼ ; then
4: return foi; oj; omg
5: if f1 ¼ �1 then
6: R Cðoi; dðoi; ojÞÞ \ Cðoj; dðoi; ojÞÞ � Cðom; dðom; qÞÞ
7: else
8: R Cðoi; dðoi; ojÞÞ \ Cðoj; dðoi; ojÞÞ \ Cðom; dðom; qÞÞ
9: O0 a set of all relevant objects in R
10: if O0 does not cover c then
11: return ;
12: for each subset S00 of O0 with jS00j � jcj do
13: if S00 covers c then
14: S00 S00 [foi; oj; omg
15: if costðS00Þ < costðS0Þ then
16: S0 S00

17: return S0

Fourth, we iterate the process with the next relevant
object in Rij and with the next object pair from RS until all
relevant objects in RS have been processed.

Next, we introduce the “findBestFeasibleSet” procedure
(used in Algorithm 1), which takes three objects oi, oj and
om as input and finds the best feasible set S0 (if any) with the

smallest cost among all feasible sets which have oi and oj as
the object-object distance contributors have om as a key
query-object distance contributor. The procedure is pre-
sented in Algorithm 2, and it works as follows. First, it initi-
alizes S0 as an empty set (line 1). Then, it initializes a
variable c, denoting the set of keywords in q:c not covered
by S0 yet, as q:c� ðoi:c [oj:c [om:cÞ (line 2). If c ¼ ;, then
it returns foi; oj; omg immediately (lines 3-4). Otherwise, it
proceeds to retrieve the set O0 containing all relevant objects
in R, where R is defined based on the value of f1 (lines 5-9).
When f1 2 f1;1g, R ¼ Cðoi; dðoi; ojÞÞ \ Cðoj; dðoi; ojÞÞ \ Cðom;
dðom; qÞÞ (line 6), and the region is shown in Fig. 2a. When
f1 ¼ �1, R ¼ Cðoi; dðoi; ojÞÞ \ Cðoj; dðoi; ojÞÞ � Cðom; dðom;
qÞÞ (line 8), and the region is shown in Fig. 2b. The major
idea of the region R is that including any object outside the
region would violate one or both of the following con-
straints: (1) om is the key query-object distance contributor
of the set to be found and (2) oi and oj are the object-object
distance contributors of the set to be found. If O0 does not
cover c, it returns ; immediately which implies that no
such feasible set could be found (lines 10-11). Otherwise, it
finds the target by enumerating all possible subsets S00 of O0
with size at most jcj (by utilizing the inverted lists main-
tained for each keyword in c), and for each possible S00, if it
covers c and costðS00 [foi; oj; omgÞ < costðS0Þ, S0 is updated
correspondingly (lines 12-16).

We also develop some other pruning techniques based on
a concept of “dominance” for further improving the efficiency
of the algorithm. Themajor idea is that under some parameter
settings, the solution of the CoSKQ problem contains only
those objects that are not dominated by other objects. Details
could be found inAppendix C, available online.

Time complexity analysis. Let jP j be the number of object
pairs in P . Note that jP j is usually much smaller than jOqj2
since jP j corresponds to the number of relevant objects we
process in RS and the area occupied by RS is typically small.
Let jRijj be the number of relevant objects in Rij. The time
complexity of Algorithm 1 is OðjP j � jRijj � uÞ, where u is the

TABLE 3
Lower and Upper Bounds Used in Step 2 of Unified-E

Cost function
Parameter

rLB rUB
a f1 f2

costSumMax 0.5 1 1 maxfdðoi; qÞ; dðoj; qÞ; dfg curCost� dðoi; ojÞ
costMaxMax 0.5 1 1 maxfdðoi; qÞ; dðoj; qÞ; dfg curCost� dðoi; ojÞ
costMaxMax2 0.5 1 1 maxfdðoi; ojÞ; dfg curCost
costMinMax 0.5 �1 1 df � dðoi; ojÞ minfcurCost� dðoi; ojÞ;minfdðoi; qÞ; dðoj; qÞgg
costMinMax2 0.5 �1 1 df � dðoi; ojÞ minfdðoi; qÞ; dðoj; qÞg
costSum 1 1 - maxfdðoi; qÞ; dðoj; qÞ; dfg curCost� dðoi; qÞ � dðoj; qÞ

df ¼ maxo2NðqÞdðo; qÞ

Fig. 2. Search space R in Algorithm 2.

1718 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

time complexity of Algorithm 2. It could be verified that u
is dominated by the step of enumerating the object sets
(lines 12-16 in Algorithm 2), whose cost is OðjO0jjq:cj�3 � jcj2Þ
since it searches at most OðjO0jjq:cj�3Þ subsets S00 that cover c
and the checking cost for each subset is Oðjcj2Þ. As a result,
the time complexity ofUnified-E isOðjP j � jRijj � jO0jjq:cj�3 � jcj2Þ.

4.2 An Approximate Algorithm
In this part, we introduce the approximate algorithmUnified-
A. Compared with Unified-E, Unified-A drops the step of
object-object distance contributors finding and replaces the
step of best feasible set construction which is expensive with
a step of (arbitrary) feasible set construction which is effi-
cient, and thus it enjoys significantly better efficiency. Specif-
ically, theUnified-A adopts the following search strategy.

� Step 1 (Key Query-Object Distance Contributor Find-
ing): Select a relevant object o to be key query-object
distance contributor wrt a set S0 to be constructed;

� Step 2 (Feasible Set Construction): Construct the set S0

(which has o as a key query-object distance contributor);
� Step 3 (Optimal Set Updating): Update the current

best solution curSet if costðS0Þ < curCost, where
curCost is the cost of curSet;

� Step 4 (Iterative Step): Repeat Step 1 to Step 3 until all
possible key query-object distance contributors are
iterated.

The above search strategy makes quite effective pruning
possible at both Step 1 and Step 2.

Pruning at Step 1. The major idea is that not each relevant
object is necessary to be considered as a key query-object
distance contributor wrt S0 to be constructed. Specifically, in
the case of f1 2 f1;1g, all those relevant objects o with
dðo; qÞ > curCost (this is because all those feasible sets S0

with o as a key query-object distance contributor have the
cost larger than the best-known cost curCost, and thus they
could be pruned) or dðo; qÞ < maxo2NðqÞdðo; qÞ (this is
because there exist no feasible sets within the disk of Cðq;
maxo2NðqÞdðo; qÞ � �Þ where � is close to zero) could be
pruned. Therefore, we can maintain a region Rwhich corre-
sponds to the “ring region” enclosed by Cðq; curCostÞ and
Cðq;maxo2NðqÞdðo; qÞÞ for pruning the search space at Step 1.
In the case of f1 ¼ �1, the region R could also be defined
correspondingly. Details of the region R for different
parameter settings are presented in Table 4.

Pruning at Step 2. We define a regionRo by the key query-
object distance contributor found in Step 1 and only the
objects in the region need to be considered for constructing
S0. The major idea of the pruning is that not all possible
objects in Ro are necessary to be considered. Specifically, in
the case of f1 2 f1;1g, all those relevant objects outside

Cðq; dðo; qÞÞ could be safely pruned (this is because including
one such object would fail o to be a key query-object distance
contributor wrt S0). Thus, we canmaintain a regionRo which
corresponds to Cðq; dðo; qÞÞ for pruning the search space at
Step 2. In the case of f1 ¼ �1, the region Ro could also be
maintained appropriately. Details of the regionRo for differ-
ent parameter settings are presented in Table 4 aswell.

With the above search strategy and pruning techniques
introduced, the Unified-A algorithm is presented in Algo-
rithm 3. Specifically, we maintain an object set curSet for
storing the best-known solution found so far, which is initial-
ized to NðqÞ (line 1) and curCost to be the cost of curSet
(line 2). Then, we perform an iterative process for each rele-
vant object o 2 R in ascending order of dðo; qÞ (lines 3-4).
Consider one iteration. First, we initialize the region Ro

(line 5). Second, we invoke a procedure called findFeasibleSet
(discussed later) for constructing a feasible set S0 which takes
o as a key query-object distance contributor wrt S0 (line 6).
Third, we update curSet to S0 and curCost to costðS0Þ if S0
exists and costðS0Þ < curCost (lines 7-9). We iterate the pro-
cess with the next relevant object from Rwhich has not been
processed until all relevant objects inR have been processed.

Next, we introduce the “findFeasibleSet” procedure (used
in Algorithm 3), which takes an object o and a region Ro as
input and finds a feasible set S0 (if any) which contains objects
inRo (including o) andhas o as a key query-object distance con-
tributor. The procedure is presented in in Algorithm 4, and it is
similar to the “findBestFeasibleSet” procedure (inAlgorithm 2)
except that it replaces the enumeration process with an itera-
tive process (lines 8-14) for searching for a feasible set.

Algorithm 3. A Unified Approach (An Approximate
Algorithm)

Input: A query q, a set O of objects and a unified cost function
costunifiedðSja;f1;f2Þ

1: curSet NðqÞ
2: curCost costðcurSetÞ
3: Initialize the region R
4: for each relevant object o 2 R in ascending order of dðo; qÞ

do
5: Initialize the region Ro

6: S0 findFeasibleSet(o;Ro)
7: if S0 6¼ ; and costðS0Þ < curCost then
8: curSet S0

9: curCost costðS0Þ
10: return curSet

Depending on the value of f1, the algorithm uses differ-
ent criterion for picking an object at an iteration, which is
described as follows.

TABLE 4
R and Ro in Unified-A

Cost function
Parameter

R Ro
a f1 f2

costSumMax 0.5 1 1 Cðq; curCostÞ � Cðq; dfÞ Cðq; dðo; qÞÞ
costMaxMax 0.5 1 1 Cðq; curCostÞ � Cðq; dfÞ Cðq; dðo; qÞÞ
costMaxMax2 0.5 1 1 Cðq; curCostÞ � Cðq; dfÞ Cðq; dðo; qÞÞ
costMinMax 0.5 �1 1 Cðq; curCostÞ Cðq; curCostÞ \ Cðo; curCost� dðo; qÞÞ � Cðq; dðo; qÞÞ
costMinMax2 0.5 �1 1 Cðq; 2 � curCostÞ Cðq; 2 � curCostÞ \ Cðo; curCost� dðo; qÞÞ � Cðq; dðo; qÞÞ
costSum 1 1 - Cðq; curCostÞ � Cðq; dfÞ Cðq; dðo; qÞÞ

df ¼ maxo2NðqÞdðo; qÞ

CHAN ET AL.: ON GENERALIZING COLLECTIVE SPATIAL KEYWORD QUERIES 1719

Case 1. f1 ¼ 1. It picks the object which has the smallest
ratio of its distance to q to the number of remaining key-
words covered. Using this criterion, the algorithm tries to
pick objects in a way that minimizes the sum of the distan-
ces between the query location and the objects.

Case 2. f1 2 f1;�1g. It picks the object which is the
nearest to o and covers some of the uncovered keywords.
Using this criterion, the algorithm tries to pick objects
in a way that minimizes the maximum pairwise distance
between the objects.

Algorithm 4. findFeasibleSet(o;Ro)

Input: An object o, a region Ro

Output: A feasible set (if any) containing objects in Ro

(including o)
1: S0 fog
2: c q:c� o:c
3: if c ¼ ; then
4: return S0

5: O0 a set of all relevant objects in Ro

6: if O0 does not cover c then
7: return ;
8: while c 6¼ ; do
9: if f1 ¼ 1 then
10: o0 argmino02O0

dðo0 ;qÞ
jc\o0:cj

11: else
12: o0 argmino02O0dðo0; oÞ and c \ o0:c 6¼ ;
13: S0 S0 [fo0g
14: c c� o0:c
15: return S0

We also develop two techniques based on the concept of
information re-use for implementing the Unified-Awith better
efficiency. The details could be found in Appendix D, avail-
able online.

Time complexity analysis. Let jRj be the number of relevant
objects in R. It could be verified that the complexity of
the “findFeasibleSet” (Algorithm 4) isOðjcj � jO0jlog jO0jÞ (note
that a heap structurewith jO0j elements could be used and there
are at most OðjcjÞ operations based on the heap). Therefore,
the time complexity ofUnified-A isOðjRj � jcj� jO0jlog jO0jÞ.

Approximation ratio analysis. In general, the Unified-A algo-
rithm gives different approximation ratios for different
parameter settings, which are given in the following theorem.

Theorem 2. The Unified-A algorithm gives approximation ratios
as shown in Table 5 for the CoSKQ problem under different
parameter settings.

Proof. Let o be the key query-object distance contributor wrt
the optimal solution So. Let S be the solution returned by
Unified-A. In the following, we analyze the approximation
ratio of costðSÞ=costðSoÞwith different parameter settings.

The algorithm iterates each object in the region R, and
from the way we initialize R, there must exists an itera-
tion in Unified-A such that it processes o and thus it finds
the corresponding feasible set S0. Note that o is the key
query-object distance contributor of S0 because the other
objects in S0 are located in the region Ro. We have
costðSÞ � costðS0Þ because Unified-A returns the feasible
set with the smallest cost. The following proof shows
that costðS0Þ � gcostðSoÞ which further implies costðSÞ �
gcostðSoÞ, where g is the approximation ratio. We con-
sider three cases based on the values of f1 as follows.

Case 1. f1 ¼ 1. In this case, the approach of the algo-
rithm to pick object to form S0 is modified from the
approximation algorithm of the Weighted Set Cover
(WSC) problem, where the keywords in c correspond to
elements, the objects correspond to sets, and the distan-
ces between the objects and query correspond to the
set costs. The proof is based on the approximation prop-
erties of the WSC problem. Let w0 ¼

P
o02S0nfog dðo0; qÞ and

wo ¼
P

o02Sonfog dðo
0; qÞ. We have w0 � Hjcjwo where c ¼

q:c� o:c, jcj < jq:cj and Hk is the k
th harmonic number.

There are three parameter settings (cost functions) adopt

this picking object criterion, the proof are shown as follows.
Case 1(a). a ¼ 1;f1 ¼ 1 (costSum).

costðS0j1; 1; �Þ
costðSoj1; 1; �Þ

¼
P

o02S0 dðo0; qÞP
o02So dðo0; qÞ

� dðo; qÞ þ w0

dðo; qÞ þ wo

�
dðo; qÞ þHjcjwo

dðo; qÞ þ wo
� Hjcj:

Thus, the approximation ratio is not larger than Hjcj,
where jcj < jq:cj, when costSum is used.

Case 1(b). a ¼ 0:5;f1 ¼ 1;f2 ¼ 1 (costSumMax).

costðS0j0:5; 1; 1Þ
costðSoj0:5; 1; 1Þ

¼
P

o2S0 dðo; qÞ þmaxo;o02S0dðo; o0ÞP
o2So dðo; qÞ þmaxo;o02Sodðo; o0Þ

� dðo; qÞ þ w0 þ dðo1; qÞ þ dðo2; qÞ
dðo; qÞ þ wo

� 2ðdðo; qÞ þ w0Þ
dðo; qÞ þ wo

�
2ðdðo; qÞ þHjcjwoÞ

dðo; qÞ þ wo
� 2Hjcj;

where ðo1; o2Þ ¼ argmaxo;o02S0dðo; o0Þ and dðo1; o2Þ � dðo1;
qÞ þ dðo2; qÞ by triangle inequality.

Thus, the approximation ratio is not larger than 2Hjcj,
where jcj < jq:cj, when costSumMax is used.

Case 1(c). a ¼ 0:5;f1 ¼ 1;f2 ¼ 1 (costSumMax2).
As proven in Lemma 4, costSumMax2 is equivalent

to costSum. Thus, the approximation bound in this case is
same as that of costSum, which isHjcj.

Case 2. f1 ¼ 1. There are three parameter settings in this
case.Unified-A can obtain optimal solutionwhen a ¼ 1 (i.e.,
costMax). Next, we discuss the casewhen a ¼ 0:5.

The proof is modified from that of [17]. Let of be the
object in S0 that is farthest from o, r1 ¼ dðof ; oÞ and
r2 ¼ dðo; qÞ. It could be verified that all objects in S0 fall in
Cðo; r1Þ \ Cðq; r2Þ. Besides, it could be verified that

TABLE 5
Approx. Ratios of Unified-A and Existing Solutions

Cost function
Parameter Unified-A Best known

a f1 f2 Appro. ratio Appro. ratio

costMinMax 0.5 �1 1 2 3 [2]
costMinMax2 0.5 �1 1 2 N.A.
costSum 1 1 - Hjcj Hjq:cj [2]

costSumMax 0.5 1 1 2Hjq:cj N.A.
costSumMax2 0.5 1 1 Hjcj Hjq:cj [2]

costMaxMax 0.5 1 1 1.375 1.375 [17]
costMaxMax2 0.5 1 1

ffiffiffi
3
p ffiffiffi

3
p

[17]
costMax 1 1 - 1 N.A.
costMin 1 �1 - 1 N.A.

1720 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

maxo2Sodðo; qÞ ¼ r2 and maxo;o02Sodðo; o0Þ � r1, where So is
the optimal solution. Therefore, we know that costðSoj
0:5;1;f2Þ � ðr

f2
1 þ r

f2
2 Þ

1
f2 .

In the following, we consider two cases based on the
relationship between r1 and r2. It could be verified that
r1 >

ffiffiffi
2
p

r2 if the diameter of Cðq; r2Þ falls in Cðo; r1Þ \
Cðq; r2Þ. Otherwise we have r1 �

ffiffiffi
2
p

r2.
Case (i): r1 �

ffiffiffi
2
p

r2. We denote the intersection points
between the boundaries of Cðo; r1Þ and Cðq; r2Þ by a and b,

as shown in Fig. 3a. It is observed that maxo;o02S0dðo; o0Þ �
dða; bÞ because all objects in S0 are located in Cðo; r1Þ \
Cðq; r2Þ. It could be verified that dða; bÞ ¼ 2

ffi
r21 � r41=4r

2
2

p
.

Then, costðS0Þ � ½rf22 þ ð2
ffi
r21 � r41=4r

2
2

p
Þf2 �

1
f2 . Therefore,

costðS0j0:5;1;f2Þ
costðSoj0:5;1;f2Þ

� r
f2
2 þ ð2

ffi
r21 � r41=4r

2
2

p
Þf2

r
f2
1 þ r

f2
2

" # 1
f2

�
r2
r1

f2 þ ð2
ffi
1� r21=4r

2
2

p
Þf2

1þ r2
r1

f2

" # 1
f2

:

Let z ¼ r1
r2
,

costðS0j0:5;1;f2Þ
costðSoj0:5;1;f2Þ

�
1
zf2
þ ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2=4

p
Þf2

1þ 1
zf3

" # 1
f2

� 1þ ðz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� z2
p

Þf2
1þ zf2

" # 1
f2

:

When f2 ¼ 1, we define fðzÞ ¼ 1þz
ffiffiffiffiffiffiffiffi
4�z2
p
1þz on fzjz 2 ð0;

ffiffiffi
2
p
�g

because r1 �
ffiffiffi
2
p

r2. It could be verified that fðzÞ is mono-

tonically increasing on ð0; 0:875Þ and is monotonically

decreasing on ð0:875;
ffiffiffi
2
p
�. Thus, fðzÞ � fð0:875Þ < 1:375.

When f2 ¼ 1, we define gðzÞ ¼ maxf1;z
ffiffiffiffiffiffiffiffi
4�z2
p

g
maxf1;zg on fzjz 2

ð0;
ffiffiffi
2
p
�g. It could be verified that gðzÞ is monotonically

increasing on ð0; 1Þ and is monotonically decreasing on
ð1;

ffiffiffi
2
p
�. Thus, gðzÞ � gð1Þ <

ffiffiffi
3
p

.

Case (ii): r1 >
ffiffiffi
2
p

r2. Let diam ¼ 2r2 be the diameter
of Cðq; r2Þ and falls in Cðo; r1Þ \ Cðq; r2Þ, as shown in
Fig. 3b. Similar to case 1, it could be verified that
maxo;o02S0dðo; o0Þ � diam ¼ 2r2. Therefore,

costðS0j0:5;1;f2Þ
costðSoj0:5;1;f2Þ

� r
f2
2 þ ð2r2Þ

f2

r
f2
1 þ r

f2
2

" # 1
f2

� 1f2 þ 2f2
ffiffiffi
2
p f2 þ 1f2

" # 1
f2

:

It could be verified that 1þ2ffiffi
2
p
þ1 � 1:25 when f2 ¼ 1. When

f2 ¼ 1, we have maxf1;2g
maxf

ffiffi
2
p

;1g �
ffiffiffi
2
p

.

Based on the above analysis, we can obtain the
approximation bounds of the two sub-cases as follows.

Case 2(a). a ¼ 0:5;f1 ¼ 1;f2 ¼ 1 (costMaxMax). The
approximation ratio of the algorithm is not larger than
maxf1:375; 1:25g ¼ 1:375.

Case 2(b). a ¼ 0:5;f1 ¼ 1;f2 ¼ 1 (costMaxMax2). The
approximation ratio of the algorithm is not larger than
maxf

ffiffiffi
3
p

;
ffiffiffi
2
p
g ¼

ffiffiffi
3
p

.
Case 3. f1 ¼ �1. There are three parameter settings in

this case. Unified-A can obtain optimal solution when
a ¼ 1 (i.e., costMin). In the following, we discuss the case
when a ¼ 0:5. Let of be the object in S0 that is farthest
from o, r1 ¼ dðof ; oÞ and r2 ¼ dðo; qÞ, as shown in Fig. 3c.
Besides, it could be verified that maxo;o02Sodðo; o0Þ � r1,
where So is the optimal solution. Thus, we have

costðS0j0:5;�1;f2Þ
costðSoj0:5;�1;f2Þ

� r
f2
2 þ ð2r1Þ

f2

r
f2
2 þ r

f2
1

" # 1
f2

:

The approximation bounds of the two sub-cases are
shown as follows.

Case 3(a). a ¼ 0:5;f1 ¼ �1;f2 ¼ 1 (costMinMax).

costðS0j0:5;�1; 1Þ
costðSoj0:5;�1; 1Þ � 2� r2

r2 þ r1
� 2:

The approximation ratio is not larger than 2 in this case.
Case 3(b). a ¼ 0:5;f1 ¼ �1;f2 ¼ 1 (costMinMax2).
We consider the following 3 sub-cases.

Case (i): r2 > 2r1
costðS0j0:5;�1;1Þ
costðSoj0:5;�1;1Þ �

r2
r2
� 1:

Case (ii): 2r1 � r2 > r1

costðS0j0:5;�1;1Þ
costðSoj0:5;�1;1Þ �

2r1
r2
� 2:

Case (iii): r1 � r2

costðS0j0:5;�1;1Þ
costðSoj0:5;�1;1Þ �

2r1
r1
� 2:

Thus, the approximation ratio is not larger than 2. tu
According to the results in Table 5, we know that in

despite of the fact that our unified approach is designed
for a unified cost function which could be instantiated to
many different cost functions, the approximate algorithm
based on the unified approach provides better (same)
approximation ratios than (as) the state-of-the arts for three
(two) existing cost functions.

5 EMPIRICAL STUDIES

5.1 Experimental Set-Up
Datasets. Following the existing studies [2], [3], [17], we
used three real datasets in our experiments, namely
Hotel, GN and Web. Dataset Hotel contains a set of
hotels in the U.S. (www.allstays.com), each of which has
a spatial location and a set of words that describe the
hotel (e.g., restaurant, pool). Dataset GN was collected
from the U.S. Board on Geographic Names (geonames.
usgs.gov), where each object has a location and also a
set of descriptive keywords (e.g., a geographic name
such as valley). Dataset Web was generated by merging

Fig. 3. Illustration of proof of Theorem 2.

CHAN ET AL.: ON GENERALIZING COLLECTIVE SPATIAL KEYWORD QUERIES 1721

www.allstays.com

two real datasets. One is a spatial dataset called Tiger-
CensusBlock,2 which contains a set of census blocks in
Iowa, Kansas, Missouri and Nebraska. The other is WEB-
SPAM-UK2007,3 which consists of a set of web docu-
ments. Table 6 shows the statistics of the three datasets.

Query Generation. Let O be a dataset of objects. Given an
integer k, we generate a query q with k query keywords simi-
larly as [3], [17] did. Specifically, to generate q:�, we randomly
pick a location from theMBR of the objects inO, and to gener-
ate q:c, we first rank all the keywords that are associated with
objects inO in descending order of their frequencies and then
randomly pick k keywords in the percentile range of [10, 40].

Cost functions. We study all instantiations of our unified
cost function except for costMin and costSumMax2 since as we
mentioned in Section 3, the former is of no interest and the
latter is equivalent to costSum. That is, we study 7 cost func-
tions in total, namely costMinMax, costMinMax2, costSum and
costSumMax2, costMaxMax, costMaxMax2 and costMax.

Algorithms. Both the Unified-E algorithm and the Unified-
A algorithm are studied. For comparison, for the CoSKQ
problem with an existing cost function, the state-of-the-art
algorithms are used and for the CoSKQ problem with a new
cost function, some adaptions of existing algorithms are
used. The state-of-the-art algorithms are presented in
Table 7, where Cao-E1, Cao-E2, Cao-A1, Cao-A2 and Cao-A3
refer to the algorithms MAXMAX-Exact, SUM-Exact, MAX-
MAX-Appro1, MAXMAX-Appro2 and SUM-Appro [2], res-
pectively, and Long-E and Long-A refer to the algorithms
MaxSum-Exact and MaxSum-Appro [17], respectively. Note
that though the cost function costSumMax was proposed
in [2], it was left as future work to develop solutions and
thus we adapt some existing algorithms for the CoSKQ
problem with this cost function.

All experiments were conducted on a Linux platform
with a 2.66 GHz machine and 32 GB RAM. The IR-tree index
structure is memory resident.

5.2 Experimental Results
Following the existing studies [2], [3], [17], we used the run-
ning time and the approximation ratio (for approximate
algorithms only) as measurements. Note that different sets
of objects with the same costs are treated equally, and thus
precision or recall are not used as measures in our experi-
ments. For each experimental setting, we generated 500
queries and ran the algorithms with each of these queries.
The average, minimum, and maximum approximation
ratios were recorded and shown with bar charts.

5.2.1 Effect of jq:cj
Following the existing studies [3], [17], we vary the number of
query keywords (i.e., jq:cj) from f3; 6; 9; 12; 15g. The results
on the dataset Hotel are presented and those on the datasets

GN and Web are similar and could be found in Appendix E,
available online.

(1) costMinMax. The results for costMinMax on the dataset
Hotel are shown in Fig. 4. According to Fig. 4a, the
running time of each algorithm increases when jq:cj
increases. Our exact algorithm Unified-E runs consis-
tently faster than the state-of-the-art algorithm Cao-
E1 and the gap becomes larger when jq:cj increases.
This could be explained by the fact Cao-E1 performs
the expensive exhaustive search on the pivot objects
whose number increases fast with jq:cjwhileUnified-
E only need to search on the regions that are possible
to contain the object sets. Besides, our approximate
algorithm Unified-A runs quite fast, e.g., less than 0.1
seconds, though it is slower than Cao-A1. According
to Fig. 4b, Unified-A has its approximation ratios
consistently better than Cao-A1, e.g., the largest
approximation ratios of Unified-A is at most 1.569
while the largest approximation ratios of Cao-A1 is at
least 1.845 (and up to 2.317). Note that there could
be an significant difference between a solution with
1.569 approximation ratio and that with 2.317 app-
roximation ratio, though it does not seem to look so,
e.g., in the case an optimal solution has its cost of 10
km, a 1.569-approximate solution has a cost about 16
km and a 2.317-approximate solution about 23 km,
then the difference is about 7 km (23 km - 16 km)
which ismore than half of the optimal cost. The reason
could be that Unified-A performs an iterative process
on the key query-object distance contributor which
helps improve the approximation ratio while Cao-A1
does not. Besides,wenote that the approximation ratio
of Unified-A is exactly 1 for more than 90 percent
queries, while that ofCao-A1 is less than 70 percent.

(2) costMinMax2. The results for costMinMax2 on the dataset
Hotel are shown in Fig. 5, which are similar to those

TABLE 6
Datasets Used in the Experiments

Hotel GN Web

Number of objects 20,790 1,868,821 579,727
Number of unique words 602 222,409 2,899,175
Number of words 80,645 18,374,228 249,132,883

TABLE 7
Algorithms for Comparison

(Those with the Asterisk Symbol Are Adaptations)

Cost function Exact Algorithm Appro. Algorithm

costMinMax Cao-E1 [2] Cao-A1 [2]

costMinMax2 Cao-E1 [2]* Cao-A1 [2]*

costSum Cao-E2 [2] Cao-A3 [2]

costSumMax Cao-E1 [2]* Cao-A3 [2]*

costMaxMax
Cao-E1 [2],
Long-E [17]

Cao-A1 [2],
Cao-A2 [2],
Long-A [17]

costMaxMax2
Cao-E1 [2]*,
Long-E [17]

Cao-A1 [2]*,
Cao-A2 [2]*,
Long-A [17]

Fig. 4. Effect of jq:cj on costMinMax (Hotel).

2. http://www.rtreeportal.org
3. http://barcelona.research.yahoo.net/webspam/datasets/uk2007

1722 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

http://www.rtreeportal.org
http://barcelona.research.yahoo.net/webspam/datasets/uk2007

for costMinMax, i.e., Unified-E runs consistently faster
than Cao-E1 and Unified-A gives better approxima-
tion ratios than Cao-A1with reasonable efficiency.

(3) costSum. The results for costSum on the dataset Hotel
are shown in Fig. 6. According to Fig. 6a, Unified-E
runs similarly fast as Cao-E2when jq:cj � 9 and runs
faster than Cao-E2 when jq:cj > 9. Unified-E has a
very restrict search space, e.g., only those dominant
objects, and Cao-E2 is a dynamic programming algo-
rithm which might be more sensitive to jq:cj.
Besides, Unified-A has a very similar running time as
Cao-A3. According to Fig. 6b, Unified-A and Cao-A3
give very similar approximation ratios.

(4) costSumMax. The results for costSumMax on the dataset
Hotel are shown in Fig. 7, which are similar to those
for costSum except that the competitor is Cao-E1, i.e.,
Unified-E runs faster than Cao-E1 when jq:cj grows
and Unified-A has similar running time and also
approximation ratios as Cao-A3.

(5) costMaxMax. The results for costMaxMax on the dataset
Hotel are shown in Fig. 8. According to Fig. 8a, each
algorithm has its running time grows when jq:cj
increases (in particular, Cao-E1 has its running time
grows the fastest). Besides, Unified-E runs consis-
tently faster than Long-E and runs faster than Cao-E1
as well when jq:cj gets larger. According to Fig. 8b,
all approximate algorithms including Unified-A run
fast, e.g., less then 0.1 seconds, and according to
Fig. 8c, Unified-A is one of two algorithms that give
the best approximation ratio (the other is Long-A).
Note that Unified-A runs consistently faster than
Long-A, and the reason could be that Unified-A has
computation strategies based on information re-use

while Long-A does not. The largest approximation
ratios of Unified-A is only 1.031, while that of Cao-A1
and Cao-A2 could be up to 1.904 and 1.377, respec-
tively. Besides, Unified-A gives approximation ratio
of exactly 1 for 98 percent queries, while that of Cao-
A1 and Cao-A2 are 51 and 83 percent, respectively.

(6) costMaxMax2. The results for costMaxMax2 on the dataset
Hotel are shown in Fig. 9, which are similar as those
for costMaxMax, i.e., Unified-E has the best efficiency in
general and Unified-A is among one of the two algo-
rithms which give the best approximation ratios
and also run reasonably fast. Note that the largest
approximation ratios of Unified-A is only 1.080, while
that of Cao-A1 and Cao-A2 could be up to 1.778 and
1.347, respectively.

(7) costMax. The results for costMax are shown in Fig. 16a.
According to the results, both Unified-E and Unified-
A run very fast, e.g., they ran less than 0.01 ms for all
settings of jq:cj. This is mainly because that both
algorithms essentially find NðqÞ as the solution.

5.2.2 Effect of Average jo:cj
We further generated 5 datasets based on the Hotel dataset,
where the average number of keywords an object contains
(i.e., average jo:cj) is close to 8, 16, 24, 32, and 40, respec-
tively. In the Hotel dataset, the average number of

Fig. 5. Effect of jq:cj on costMinMax2 (Hotel).

Fig. 6. Effect of jq:cj on costSum (Hotel).

Fig. 7. Effect of jq:cj on costSumMax (Hotel).

Fig. 8. Effect of jq:cj on costMaxMax (Hotel).

Fig. 9. Effect of jq:cj on costMaxMax2 (Hotel).

CHAN ET AL.: ON GENERALIZING COLLECTIVE SPATIAL KEYWORD QUERIES 1723

keywords an object contains is close to 4. To generate a data-
set with its average jo:cj equal to 8, we do the following.
For each object o in the Hotel dataset, we augment o:c
by including all those keywords in o0:c to o:c (i.e., o:c
o:c [o0:c) where o0 is a randomly picked object. To generate
the datasets with the average jo:cj equal to 16, 24, 32 and 40,
we repeat the above process appropriate times. We vary
average jo:cj from f4; 8; 16; 24; 32; 40g and following [2], we
use the default setting of jq:cj ¼ 10.

(1) costMinMax. The results for costMinMax are shown in
Fig. 10, where the results of running time of Cao-E1
for jo:cj � 24 are not shown simply because it ran
for more than 10 hours (this applies for all the fol-
lowing results). According to Fig. 10a, all algorithms
except for Cao-E1 are quite scalable when jo:cj
grows. The poor scalability of Cao-E1 could be due
to the fact that Cao-E1 is based on the search space
of relevant objects around the candidate objects,
which grows rapidly when jo:cj increases. Besides,
our exact algorithm Unified-E runs consistently bet-
ter than Cao-E1 and Unified-A runs fast, though not
as fast as Cao-A1, and gives obviously better
approximation ratios than Cao-A1 (Fig. 10b). Spe-
cifically, the largest approximation ratios of Uni-
fied-A is only 1.454, which is small, while that of
Cao-A1 is up to 2.536, which is not suitable for
practical use.

(2) costMinMax2. The results for costMinMax2 are shown in
Fig. 11, which are similar to those for costMinMax, i.e.,
all algorithms except for Cao-E1 are scalable when
jo:cj grows, Unified-E runs consistently faster than
Cao-E1, and Unified-A runs fast and gives the best
approximation ratios.

(3) costSum. The results for costSum are shown in Fig. 12.
According to the Fig. 12a, Unified-E runs slower than
Cao-E2, and the reason is perhaps that the pruning
technique of Unified-Ebased on dominant objects
becomes less effective when jo:cj increases. Besides,
Unified-A runs slightly slower than Cao-A3 but gives
a better approximation than Cao-A3 (Fig. 12b). This

is because Unified-A construct a feasible set for each
key query-object distance contributor and pick the
best one as the solution.

(4) costSumMax. Under the default setting of jq:cj ¼ 10,
the running times of all exact algorithms including
Unified-E and Cao-E1 grow very rapidly when jo:cj
increases, e.g., the algorithms ran for more than 1
day when jo:cj � 8. Thus, for better comparison
among the algorithms, we particularly use the set-
ting of jq:cj ¼ 8 for costSumMax. According to
Fig. 13a, Unified-E runs consistently faster than Cao-
E1and Unified-A runs fast, though not as fast as Cao-
A3, and gives a better approximation ratio (Fig. 13b).
Specifically, the largest approximation ratios of Uni-
fied-A and Cao-A3 are 1.160 and 1.251, respectively.

(5) costMaxMax. The results for costMaxMax are shown in
Fig. 14. According to Fig. 14a, Unified-E is one of the
two algorithms that run the fastest and the other isCao-
E1. According to Figs. 14b and 14c, all approximate
algorithms includingUnified-A run reasonably fast and
Unified-A is one of the two algorithms which give the
best approximation ratios (the other is Long-A). Specifi-
cally, the largest approximation ratios of Unified-A is
only 1.135, while that of Cao-A1 and Cao-A2 are 2.506
and 1.534, respectively, which aremuch larger.

(6) costMaxMax2. The results for costMaxMax2 are shown in
Fig. 15, which are similar to those for costMaxMax, i.e.,
Unified-E is one of the two fastest exact algorithm and
Unified-A runs reasonably fast and is one of the two
algorithmswhich give the best approximation ratios.

(7) costMax. The results for costMax are shown in Fig. 16b.
According to the results, both Unified-E and Unified-
A run very fast, e.g., they ran less than 0.02 ms on all
settings of jo:cj.

5.2.3 Scalability Test

Following the existing studies [2], [3], [17], we generated 5
synthetic datasets for the experiments of scalability test, in
which the numbers of objects used are 2M, 4M, 6M, 8M and
10M. Specifically, we generated a synthetic dataset by

Fig. 10. Effect of average jo:cj on costMinMax.

Fig. 11. Effect of average jo:cj on costMinMax2.

Fig. 12. Effect of average jo:cj on costSum.

Fig. 13. Effect of average jo:cj on costSumMax.

1724 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

augmenting the GN datasets with additional objects as fol-
lows. Each time, we create a new object owith o:� set to be a
random location from the original GN dataset by following
the distribution and o:c set to be a random document from
GN and then add it into the GN dataset. We vary the num-
ber of objects from f2M; 4M; 6M; 8M; 10Mg, following [2],
we use the default setting of jq:cj ¼ 10.

(1) costMinMax. The results for costMinMax are shown in
Fig. 17. According to Fig. 17a, our exact algorithmUni-
fied-E runs consistently faster thanCao-E1 and it is scal-
able wrt the number of objects, e.g., it ran within 30
seconds on a dataset with 10M objects. Besides, our
approximate algorithm Unified-A is also scalable, e.g.,
it ran within 1 second on a dataset with 10M objects,
and gives near-to-optimal approximation ratios
(Fig. 17b). The largest approximation ratios of Unified-
A is only 1.622, which is very small, while that of Cao-
A1 is 2.692, which is not practical. This also conform
with our theoretical analysis thatUnified-A has a better
approximation ratio thanCao-A1 in costMinMax.

The results for the remaining cost functions are put in
Appendix F, available online due to the page limit. Accord-
ing to the results, we know that both Unified-E and Unified-
A are scalable to large datasets.

5.3 Summary of Experimental Results
Our exact algorithm Unified-E is clearly the best exact algo-
rithm for CoSKQ queries not only because it is a unified
approach but also it is always among those with the best
running times (e.g., it beats the state-of-the arts consistently
for costMinMax and costMinMax2, when jq:cj becomes large for
costSum and costSumMax, and under the majority of settings for
costMaxMax and costMaxMax2).

Our approximate algorithm Unified-A runs reasonably
fast (e.g., for the majority settings of jq:cj, it ran within
0.1 seconds), while sometimes it is not as fast as the compet-
itors because Unified-A has some more checking so that it
can take care all cost functions. Meanwhile, Unified-A is
always among the those which give the best approximation
ratios close to 1 and runs always faster than those algo-
rithms which give similar approximation ratios asUnified-A.

6 CONCLUSION

In this paper, we proposed a unified cost function for
CoSKQ. This cost function expresses all existing cost func-
tions in the literature and a few cost functions that have not
been studied before. We designed a unified approach,
which consists of one exact algorithm and one approximate
algorithm. The exact algorithm runs comparably fast as the
existing exact algorithms, while the approximate algorithm
provides a comparable approximation ratio as the existing
approximate algorithms. Extensive experiments were con-
ducted which verified our theoretical findings.

There are several interesting future research directions. One
direction is to design a cost function such that it penalizes those
objects with too much keywords for fairness. Another direc-
tion is to extend CoSKQwith the unified cost function to other
distance metrics such as road networks. It is also interesting to
extend the unified approach to handle the route-oriented spa-
tial keyword queries. Besides, it is left as a remaining issue to
study the CoSKQproblemwith amoving query point.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for
their constructive comments on this paper. The research of

Fig. 14. Effect of average jo:cj on costMaxMax.

Fig. 15. Effect of average jo:cj on costMaxMax2.

Fig. 16. Experiments on costMax.

Fig. 17. Scalability test on costMinMax.

CHAN ET AL.: ON GENERALIZING COLLECTIVE SPATIAL KEYWORD QUERIES 1725

Harry Kai-Ho Chan and Raymond Chi-Wing Wong is sup-
ported by HKRGC GRF 16219816.

REFERENCES

[1] X. Cao, L. Chen, G. Cong, and X. Xiao, “Keyword-aware optimal
route search,” Proc. VLDB Endowment, vol. 5, no. 11, pp. 1136–
1147, 2012.

[2] X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi, “Efficient
processing of spatial group keyword queries,” ACM Trans. Data-
base Syst., vol. 40, no. 2, 2015, Art. no. 13.

[3] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial
keyword querying,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2011, pp. 373–384.

[4] X. Cao, G. Cong, C. S. Jensen, and M. L. Yiu, “Retrieving regions
of intersect for user exploration,” Proc. VLDB Endowment, vol. 7,
no. 9, pp. 733–744, 2014.

[5] A. Cary, O. Wolfson, and N. Rishe, “Efficient and scalable method
for processing top-k spatial boolean queries,” in Proc. Int. Conf.
Sci. Statist. Database Manage., 2010, pp. 87–95.

[6] H. K.-H. Chan, C. Long, and R. C.-W. Wong, “Inherent-cost aware
collective spatial keyword queries,” in Proc Int. Symp. Spatial
Temporal Databases, 2017, pp. 357–375.

[7] D.-W. Choi, J. Pei, and X. Lin, “Finding the minimum spatial
keyword cover,” in Proc. IEEE 25th Int. Conf. Data Eng., 2016,
pp. 685–696.

[8] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k
most relevant spatial web objects,” Proc. VLDB Endowment, vol. 2,
no. 1, pp. 337–348, 2009.

[9] G. Cong,H. Lu, B. C.Ooi, D. Zhang, andM. Zhang, “Efficient spatial
keyword search in trajectory databases,” CoRR, arXiv:1205.2880,
2012.

[10] K. Deng, X. Li, J. Lu, and X. Zhou, “Best keyword cover search,”
IEEE Trans. Knowl. Data Eng., vol. 27, no. 1, pp. 61–73, Jan. 2015.

[11] J. Fan, G. Li, L. Z. S. Chen, and J. Hu, “SEAL: Spatio-textual similar-
ity search,” Proc. VLDBEndowment, vol. 5, no. 9, pp. 824–835, 2012.

[12] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in Proc. IEEE 25th Int. Conf. Data Eng., 2008, pp. 656–665.

[13] Y. Gao, J. Zhao, B. Zheng, and G. Chen, “Efficient collective spatial
keyword query processing on road networks,” Trans. Intell.
Transp. Syst., vol. 17, no. 2, pp. 469–480, 2016.

[14] T. Guo, X. Cao, and G. Cong, “Efficient algorithms for answering
the m-closest keywords query,” in Proc. ACM SIGMOD Int. Conf.
Manag. Data., 2015, pp. 405–418.

[15] Z. Li, K. Lee, B. Zheng, W. Lee, D. Lee, and X. Wang, “Ir-tree: An
efficient index for geographic document search,” IEEE Trans.
Knowl. Data Eng., vol. 23, no. 4, pp. 585–599, Apr. 2011.

[16] J. Liu, K. Deng, H. Sun, Y. Ge, X. Zhou, and C. Jensen, “Clue-based
spatio-textual query,” Proc. VLDB Endowment, vol. 10, no. 5,
pp. 529–540, 2017.

[17] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu, “Collective
spatial keyword queries:a distance owner-driven approach,” in
Proc. ACM SIGMOD Int. Conf. Manag. Data, 2013, pp. 689–700.

[18] J. Rocha, O. Gkorgkas, S. Jonassen, and K. Nørva
	
g, “Efficient proc-

essing of top-k spatial keyword queries,” in Proc Int. Symp. Spatial
Temporal Databases, 2011, pp. 205–222.

[19] J. B. Rocha-Junior and K. Nørva
	
g, “Top-k spatial keyword queries

on road networks,” Proc. 15th Int. Conf. Extending Database Tech-
nol., 2012, pp. 168–179.

[20] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis, “User
oriented trajectory search for trip recommendation,” in Proc. 15th
Int. Conf. Extending Database Technol., 2012, pp. 156–167.

[21] A. Skovsgaard and C. S. Jensen, “Finding top-k relevant groups of
spatial web objects,” Int. J. Very Large Data Bases, vol. 24, no. 4,
pp. 537–555, 2015.

[22] S. Su, S. Zhao, X. Cheng, R. Bi, X. Cao, and J. Wang, “Group-based
collective keyword querying in road networks,” Inform. Process.
Lett., vol. 118, pp. 83–90, 2017.

[23] D. Wu, G. Cong, and C. Jensen, “A framework for efficient spatial
web object retrieval,” Int. J. Very Large Data Bases, vol. 21, no. 6,
pp. 797–822, 2012.

[24] D. Wu, M. Yiu, G. Cong, and C. Jensen, “Joint top-k spatial key-
word query processing,” IEEE Trans. Knowl. Data Eng., vol. 24,
no. 10, pp. 1889–1903, Oct. 2012.

[25] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient continu-
ously moving top-k spatial keyword query processing,” in Proc.
IEEE 25th Int. Conf. Data Eng., 2011, pp. 541–552.

[26] Y. Zeng, X. Chen, X. Cao, S. Qin, M. Cavazza, and Y. Xiang,
“Optimal route search with the coverage of users’ preferences,” in
Proc. 7th Int. Joint Conf. Artif. Intell., 2015, pp. 2118–2124.

[27] C. Zhang, Y. Zhang, W. Zhang, and X. Lin, “Inverted linear quad-
tree: Efficient top k spatial keyword search,” in Proc. IEEE Int.
Conf. Data Eng., 2013, pp. 901–912.

[28] D. Zhang, Y. M. Chee, A. Mondal, A. Tung, and M. Kitsuregawa,
“Keyword search in spatial databases: Towards searching by doc-
ument,” in Proc. IEEE Int. Conf. Data Eng., 2009, pp. 688–699.

[29] D. Zhang, B. C. Ooi, and A. K. H. Tung, “Locating mapped resour-
ces inweb 2.0,” in Proc. IEEE Int. Conf. Data Eng., 2010, pp. 521–532.

[30] D. Zhang, K.-L. Tan, and A. K. H. Tung, “Scalable top-k spatial
keyword search,” Proc. Int. Conf. Extending Database Technol., 2013,
pp. 359–370.

Harry Kai-Ho Chan received the BEng and
MPhil degrees in computer science and engineer-
ing from the Hong Kong University of Science
and Technology (HKUST), in 2013 and 2015,
respectively. He is currently working toward the
PhD degree in the Department of Computer Sci-
ence and Engineering, Hong Kong University of
Science and Technology. His research interests
include database and data mining.

Cheng Long received the PhD degree from the
Hong Kong University of Science and Technol-
ogy (HKUST), in 2015. He is an academic lec-
turer with Queen’s University Belfast, United
Kingdom. His research interest include database
and data mining.

Raymond Chi-Wing Wong received the BSc,
MPhil, and PhD degrees in computer science
and engineering from the Chinese University of
Hong Kong (CUHK), in 2002, 2004, and 2008,
respectively. He is an associate professsor in the
Department of Computer Science and Engineer-
ing, the Hong Kong University of Science
and Technology. His research interests include
database and data mining.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1726 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 9, SEPTEMBER 2018

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

