
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024 2995

Efficient Algorithms for Group Hitting Probability
Queries on Large Graphs

Qintian Guo , Dandan Lin , Sibo Wang , Raymond Chi-Wing Wong , and Wenqing Lin

Abstract—Given a source node s and a target node t, the hitting
probability tells us how likely an α-terminating random walk
(which stops with probability α at each step) starting from s can
hit t before it stops. This concept originates from the hitting time,
a classic concept in random walks. In this paper, we focus on the
group hitting probability (GHP) where the target is a set of nodes,
measuring the node-to-group structural proximity. For this group
version of the hitting probability, we present efficient algorithms
for two types of GHP queries: the pairwise query which returns the
GHP value of a target set T with respect to (w.r.t.) a source node
s, and the top-k query which returns the top-k target sets with
the largest GHP value w.r.t. a source node s. We first develop an
efficient algorithm named SAMBA for the pairwise query, which
is built on a group local push algorithm tailored for GHP, with
rigorous analysis for correctness. Next, we show how to speed
up SAMBA by combining the group local push algorithm with
the Monte Carlo approach, where GHP brings new challenges
as it might need to consider every hop of the random walk. We
tackle this issue with a new formulation of the GHP and show how
to provide approximation guarantees with a detailed theoretical
analysis. With SAMBA as the backbone, we develop an iterative
algorithm for top-k queries, which adaptively refines the bounds
for the candidate target sets, and terminates as soon as it meets
the stopping condition, thus saving unnecessary computational
costs. We further present an optimization technique to accelerate
the top-k query, improving its practical performance. Extensive
experiments show that our solutions are orders of magnitude faster
than their competitors.

Index Terms—Data mining, graph algorithms, graphs and
networks.

I. INTRODUCTION

M EASURING node-to-node similarity or proximity in
graphs is a fundamental tool for various graph-based

mining applications [1], [2], [3], [4], [5], and has been recognized

Manuscript received 22 March 2023; revised 29 October 2023; accepted 23
December 2023. Date of publication 9 January 2024; date of current version 10
June 2024. This work was supported in part by NSFC under Grant U1936205,
in part by Hong Kong RGC ECS under Grant 24203419, in part by RGC
GRF under Grant 14217322, in part by Hong Kong RGC CRF under Grant
C4158-20G, and in part by Hong Kong ITC ITF under Grant MRP/071/20X.
Recommended for acceptance by G. Wang. (Qintian Guo and Dandan Lin are
co-first authors.) (Corresponding author: Dandan Lin.)

Qintian Guo and Sibo Wang are with The Chinese University of Hong Kong,
Hong Kong (e-mail: qtguo@se.cuhk.edu.hk; swang@se.cuhk.edu.hk).

Dandan Lin is with the Shenzhen Institute of Computing Sciences, Shenzhen,
Guangdong 518172, China (e-mail: lindandan@sics.ac.cn).

Raymond Chi-Wing Wong is with The Hong Kong University of Science and
Technology, Hong Kong (e-mail: raywong@cse.ust.hk).

Wenqing Lin is with Tencent Inc., Shenzhen, Guangdong 518054, China
(e-mail: edwlin@tencent.com).

Digital Object Identifier 10.1109/TKDE.2023.3349164

as an important research problem in the data mining community.
One common approach to capture “similarity” in the literature
is random-walk-based approaches due to its effectiveness and
efficiency, resulting in a lot of research studies [6], [7], [8],
[9], [10], [11] in the communities of database and data mining.
Among them, hitting time [12], a classic concept in random
walk, finds many real-world applications, such as link predic-
tion [3], product recommendation [13], query suggestions [14]
and collaborative filtering [15].

Given a graph G, hitting time tells us the expected number of
steps a random walk takes to hit a target node t from a source
node s for the first time. The fewer steps a random walk from s
takes to hit t, the more relevant (similar) node t to s is from the
perspective of s. In [16], [17], it has been proved that for an α-
terminating random walk, the hitting time h(s, t) from s to t can
be obtained by exploiting the probability that an α-terminating
random walk starting from node s hits t before terminating,
denoted as f(s, t). That is, if f(s, t) is higher, a random walk
from s takes fewer steps to hit t for the first time. Hence, solving
hitting probability queries is equivalent to solving the hitting
time problem.

In this paper, we consider a generalized case of the hitting
probability problem where the target is a node-set T , called the
Group Hitting probability (GHP). It is easy to realize that the
original hitting probability f(s, t) of a target node t is a special
case of our GHP problem, where the target set T contains only
one node t. The motivation for adopting a group target setting to
measure node-to-group proximity finds validation within the ex-
isting literature. In [18], Grady presents a group-based algorithm
to address the image segmentation problem. In Grady’s solution,
it treats images as graphs, with pixels as nodes and edges
connecting adjacent pixels. Each edge is assigned a real-valued
weight, indicating the likelihood of a random walker moving
across that edge. Given a small subset of pixels with pre-defined
labels, it computes the probability that a random walker, starting
from each unlabeled pixel, will reach one of the labeled pixel
groups. This information is then utilized to assign the pixel
to the group label that corresponds to the highest calculated
probability. This process facilitates the attainment of a superior
image segmentation outcome. In [13], given a graph G with
m nodes that share the same event Q, Guan et al. propose an
approach that employs the average proximity between a node
in these m nodes and the remaining m− 1 nodes, to assess
whether any structural correlation exists between the event Q
and the graph G. The essence of this approach lies in accurately
measuring the proximity between a node and a set or group of

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9581-9817
https://orcid.org/0000-0002-2490-101X
https://orcid.org/0000-0003-1892-6971
https://orcid.org/0000-0001-7045-6503
https://orcid.org/0000-0003-4741-801X
mailto:qtguo@se.cuhk.edu.hk
mailto:swang@se.cuhk.edu.hk
mailto:lindandan@sics.ac.cn
mailto:raywong@cse.ust.hk
mailto:edwlin@tencent.com

2996 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

nodes. Guan et al. demonstrate that group hitting time serves as a
suitable choice, effectively identifying events highly correlated
with the graph structure.

Other applications of the node-to-group proximity measure
include: (1) Group Suggestions: In practical scenarios, both
Facebook and LinkedIn offer services to provide personalized
recommendations, assisting users in discovering groups, as
stated on their websites [19], [20]. By recommending pertinent
groups to join, social network platforms can enhance user en-
gagement, encourage community interactions, and subsequently
increase the duration users spend on the platform. Using our
GHP measure, a platform can pinpoint groups that are in close
proximity to a user, based on the graph’s connectivity infor-
mation, and then make a recommendation. (2) Collaborative
Filtering: Recommendation systems can estimate a user’s struc-
tural proximity to groups of users with similar tastes. If a user is
proximate to a group that has expressed a liking for a certain item,
that item might be recommended to the user. (3) Web Network
Analysis: By gauging the proximity of a web page (node) to
groups of web pages with established categories, search engines
can refine categorization and heighten the relevance of search
results.

The first hitting constraint also makes the GHP more rea-
sonable when considering the proximity between a node and a
group, as it fundamentally views the group as a singular entity.
This contrasts with other metrics like personalized PageRank
(PPR) [6], [21], which only consider the probability that an α-
terminating random walk stops at a specific node. To obtain the
proximity of a group with respect to the source node, one might
aggregate the PPR scores of nodes within that group. However,
as the case study in Section V-C shows, the PPR-aggregation-
based metric is still inferior to the GHP in proximity-based
group recommendation. Thus, it motivates us to probe into the
GHP-based query.

In this paper, we first study the pairwise query. This query
takes as input a source node s, a target setT , and outputs the value
f(s, T). Such a pairwise query can be employed to measure the
similarity between a node and a specified community or group.
However, in certain scenarios, there may be a desire to pinpoint
a limited number of group sets that are of utmost relevance to a
particular node. Consider the application of group suggestions
in social networks: instead of suggesting an extensive list of
groups, social networking platforms might prefer to highlight
a limited number of groups that possess the highest appeal to
the user, thereby enhancing the recommendation success rate.
Motivated by this, we delve into the second type of GHP-based
query: the top-k query. This query takes a source node s as
input and retrieves the k target sets with the top GHP values
with respect to s.

Deriving an exact solution for these two types of queries
causes prohibitive computational costs. Specifically, the pair-
wise query requires O(n2.37) time since it needs to compute the
inverse of an n× n matrix. For top-k queries, it is even more
expensive, which requires computing the matrix inversion much
more times, depending on the number of groups. Thus, we aim
to present efficient approximate algorithms with performance
guarantees.

Contributions: Our contributions are presented as follows:
1) We first develop an efficient algorithm called SAMBA to

answer pairwise queries. Though SAMBA1 is inspired
by BiPPR [22], which is designed for the approximate
pairwise PPR problem, as we will see in Section III, it is
far from a facile adaption.

2) With SAMBA as the backbone, we further develop a
framework called PING for the top-k GHP queries. PING
runs in an iterative manner to gradually refine the lower
and upper bounds for the estimated GHP values. The
algorithm is designed to terminate as soon as the stopping
condition is met, thus avoiding unnecessary computational
costs. In addition, we present an optimization technique
further to accelerate the computation of PING.

3) We run extensive experiments on real datasets to demon-
strate the efficiency of our algorithms. Our experiments
show that our algorithms SAMBA and PING take much
less running time than their competitors on all datasets.

II. PRELIMINARY

A. Problem Definition

LetG = (V,E)be a directed graph withnnodes andm edges.
For an undirected input graph, we convert it to a directed graph by
treating each undirected edge as two directed edges in opposing
directions [6], [8]. Given a source node s ∈ V and a terminating
probability α, an α-terminating random walk starts from s, and
then, at each step, it chooses one of the following two options:
either (i) terminates at the current node withα probability; or (ii),
with 1− α probability, moves to an out-neighbor of the current
node uniformly at random. From the definition, it immediately
follows that the probability of such a random walk exceeding
L steps is bounded by (1− α)L. Consequently, the occurrence
of a random walk spanning a large number of steps becomes
exceedingly unlikely, making it negligible.

Definition 1 (Hitting probability): Given a graph G, let
(Xi)

�
i=0 be an α-terminating random walk on G. Then for any

two nodes s and t, we define the hitting probability as

f(s, t) = Pr [{t} ∩ {Xi}�i=0 �= ∅|X0 = s]

where {Xi}�i=0 is the node set visited by random walk (Xi)
�
i=0.

To explain, the hitting probability f(s, t) is the probability
that an α-terminating random walk starting from s could hit t
before it terminates. Obviously when s = t, f(s, t) = 1 since a
node s always hits itself at the very beginning. In the remainder
of this paper, we omit the term α-terminating if the context is
clear.

Example 1: Consider the toy graph in Fig. 1(a). We simulate
7 random walks starting from s, shown in Fig. 1(b). Note
that among them there are 4 (resp. 2) random walks that hit
target node v1 (resp. v5). Thus, from the definition, the hitting
probability f(s, v1)) and f(s, v5) is estimated as 4/7 and 2/7,
respectively.

Definition 2 (Group hitting probability): Given a graph G, let
(Xi)

�
i=0 be an α-terminating random walk on G. Then for node

1Random Sampling with Backward Local Push

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EFFICIENT ALGORITHMS FOR GROUP HITTING PROBABILITY QUERIES ON LARGE GRAPHS 2997

Fig. 1. (a) Toy graph G whose nodes are partitioned into three target sets T1,
T2, and T3. (b) 7 random walks starting from s.

s and set of nodes T �= ∅, the group hitting probability is

f(s, T) = Pr [T ∩ {Xi}�i=0 �= ∅|X0 = s] .

In this paper, we focus on the group hitting probability (GHP)
f(s, T). Formally, the GHP f(s, T) is the probability that a
random walk from the source node s hits any one of the nodes in
T during the traversal. It is easy to see that the hitting probability
f(s, t) of a single target node t is a special case of the GHP
f(s, T) with T = {t}.

Example 2: Consider the toy graph shown in Fig. 1(a) and the
random walks in Fig. 1(b), where the nodes are partitioned into 3
target sets, namely T1 = {s, v1, v2, v3, v4}, T2 = {v8, v9, v10}
and T3 = {v5, v6, v7}. First, we could know that f(s, T1) is
always 1 since all the walks hit the target set T1 at the very
beginning. Note that the target set T2 is hit by the walks with in-
dex 1, 2, and 7, thus yielding an estimated GHP f̂(s, T2) = 3/7.

To the best of our knowledge, we are the first to consider
the approximate query for the group hitting probability with
performance guarantee and aim to provide inspirational insights
for future research. In this paper, we study the approximate
pairwise GHP query and the approximate top-k GHP query,
which are defined as follows.

Definition 3 (Approximate Pairwise GHP Query): Given a
source node s, a target set T , a relative error ε, a threshold δ, and
a failure probability pf , the approximate pairwise GHP query
returns the estimated GHP f̂(s, T) such that

|f(s, T)− f̂(s, T)| ≤ ε · f(s, T), if f(s, T) ≥ δ, (1)

holds with at least 1− pf probability.
Definition 4 (Approximate Top-k GHP query): Given a graph

G(V,E), a set T of target sets such that T = {T1, T2, . . ., T|T |}
where |T | is the number of target sets, a source node s, a positive
integer k, a relative error ε, and a threshold δ, the approximate
top-k GHP query returns a set R = 〈T ′

1, . . ., T
′
k〉 such that for

any i ∈ {1, . . ., k} with f(s, T ∗
i) ≥ δ:

f̂(s, T ′
i) ≥ (1− ε) · f(s, T ′

i) (2)

f(s, T ′
i) ≥ (1− ε) · f(s, T ∗

i) (3)

hold with at least 1− pf probability, where T ∗
i is the set whose

exact GHP w.r.t. node s is the i-th largest.
Note that (2) guarantees the accuracy of the estimated GHP

values of returned top-k sets, while (3) ensures that the returned

i-th set T ′
i should have an exact GHP close to the exact i-th

largest GHP f(s, T ∗
i).

In this paper, we make utilization of the Chernoff bounds [23]
to provide concentration guarantee.

Lemma 1 (Chernoff Bounds [23]): Suppose that Xi are inde-
pendent random variables satisfying Xi ∈ [0, 1] for 1 ≤ i ≤ n.
Let X =

�n
i=1 Xi. Then, we have

Pr [X − E[X] ≤ −�] ≤ exp

�
− �2

2 · E[X]

�
,

Pr [X − E[X] ≥ �] ≤ exp

�
− �2

2 · E[X] + 2
3�

�
.

B. Existing Solutions

We first introduce the Monte Carlo (MC) approach for com-
puting the GHP, and next, we present the existing local-update
techniques (i.e., Forward Push and Backward Push) that are
widely used for other random walk based queries [6], [22], [24].

MC Method: To estimate the GHP value f(s, T), we may
simulate a sufficient number of random walks starting from
s, and then estimate f(s, T) as the fraction of random walks
that hit at least one node in T , denoted by f̂(s, T). In order
to obtain an estimation with a guarantee of at most ε relative
error and probability of at least 1− 1/n, the number of random
walks required, denoted asω, isO(logn

�·�2). This conclusion can be
derived by concentration bounds (e.g., Chernoff bounds). When
δ = O(1/n), the running time is O(n logn

�2). When it comes
to the top-k GHP queries, for each target set T ∈ T , the MC
method computes an approximate GHP f̂(s, T) and then returns
the top-k sets with the highest estimated GHP as the results. The
time complexity is still O(n logn

�2). However, on large graphs,
the MC method is not efficient enough. In particular, answering
the top-k GHP query on the Orkut dataset, which comprises 3
million nodes, takes several hours to complete.

Forward Push [25]: Forward Push is usually used for accel-
erating the single source PPR query (which approximates the
PPR values of each node t ∈ V w.r.t. a source s) and top-k PPR
query [6], [7], [26]. In particular, for each t ∈ V , it maintains a
reserve πf (s, t) (i.e., the amount of PPR values that have been
propagated to node t from s) and a residue rf (s, v) (i.e., the
amount of PPR values that are “temporarily” held by node v
and waiting for further propagation from node v to other nodes).
Initially, Forward Push assigns unit PPR value to the residue of
source node s, and then, continually updates the reserves and
residues by performing forward push operations on each node v
with non-zero residue (which distributes the residue of v evenly
to its out-neighbours) [27]. When the algorithm finishes, the final
reserve of each t ∈ V could be considered as the approximate
PPR value.

However, this technique does not work for the GHP. For ease
of explanation, we assume the target set T includes only one
node t. The Forward Push algorithm might perform forward
push operations on node t multiple times during the propagation
process, which puts computations of GHP in trouble. In partic-
ular, after performing a forward push operation on node t, the
residue of node t is distributed to out-neighbours of node t, and

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

2998 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

then a few push iterations later, it might happen that a portion of
the residue mass returns to t, resulting in double counting of the
returning probability mass. Therefore, to represent this feature,
we say the GHP is target-orient. We still take Fig. 1(a) as an
example. Consider node v1 is the target node. The residue of
v1 comes from source s and v4, and then, this residue will be
distributed to its out-neighbours v4 and v8. Since the residue of
v4 is non-zero, it will be pushed tov1 again and consequently, this
probability mass is counted more than once. One might consider
a simple solution to correct the above error: for a target node t,
Forward Push does not distribute any residue from node t. From
the definition of the GHP, it is easy to understand that such an
adaption is correct. Therefore, we will take it as a competitor
in our experimental evaluation and make a comparison with our
proposed solution.

Backward Push [8]: Unlike Forward Push, Backward Push
propagates the PPR value of a target node t via the reverse
direction of each edge in the graph. The underlying rationale
of Backward Push lies in a recursive definition where the PPR
π(s, t) equals a weighted sum of the PPR values π(s, v), where
v’s are the in-neighbors of node t. The invariant is presented as
follows: π(s, t) = α · Is(t) +

�
v∈N−

T (t)
(1−�)
d+(v) · π(s, v), where

Is(t) is an indicator function that is 1 if t = s and otherwise 0.
Backward push technique, however, cannot be directly applied to
the GHP problem, as there exists no such a recursion for GHP. To
explain, consider the simple case where the target set T contains
only one target node T = {t}. Intuitively, the hitting probability
f(s, t) of target node t is related to the number of arrivals at
t’s in-neighbors (say v) in the traversal of a random walk, since
for each arrival of in-neighbor node v, the walk could hit t in
the next step with a certain probability. However, by the GHP
definition, f(s, v) is the probability that a random walk could
hit node v before terminating, rather than how many times it hits
v.

In the case where target set T contains more than one node,
it is not correct to sum up f(s, vi) for all vi ∈ T to get the
GHP f(s, T). To explain, consider the second random walk in
Fig. 1(b). This random walk first hits node v8 ∈ T2 and then
node v10 ∈ T2 and finally node v9 ∈ T2. If we simply sum up
f(s, v8), f(s, v9) and f(s, v10) to compute the GHP f(s, T2),
the second random walk will be counted triple times, yielding
a wrong answer. This is in contrast to the group setting in the
PPR problem, which could be computed by summing up all the
PPRs π(s, vi) for each node vi ∈ T . It is because the PPR just
takes into account the terminating node of a random walk, and
thus when simulating a random walk, the events of stopping at
node v8 and stopping at node v9 are disjoint.

C. Related Work

In graph analysis, measuring structural proximity between
two graph objects based on graph topology is a fundamental
problem that has been studied for decades. A significant category
in this realm is the random-walk-based proximity measures.
Personalized PageRank and SimRank are two notable represen-
tatives of this category. However, both focus on node-to-node
proximity, which is distinct from the node-to-group case we
explored in this paper.

Personalized PageRank (PPR) is first introduced by [28] to
measure personalized views of importance between node pairs.
The PPR score π(s, t) between a source node s and a target node
t represents the probability that an α-terminating random walk,
starting from node s, concludes at node t. Given its efficacy
in various graph mining applications, numerous studies aim
to devise efficient algorithms for PPR computation. Andersen
et al. [8] introduce the Forward Push algorithm for single-source
PPR queries, though it lacks an accuracy guarantee. The Back-
ward Push algorithm is presented in [25] to cater to single-target
PPR queries. Lofgren et al. [22] combine the Backward Push ap-
proach with the Monte Carlo method, resulting in BiPPR, which
addresses pairwise PPR queries. In [6], Wang et al. formulate an
index-free algorithm named FORA, offering solutions for both
single-source and top-k PPR queries with assured accuracy. Wu
et al. [29] blend Power Iteration with Forward Push to create the
SpeedPPR algorithm, tailored for single-source PPR queries.
Nonetheless, all these methods do not apply to our GHP query.

The SimRank score s(u, v) for nodes u and v, as proposed by
Jeh et al. in [30], is recursively defined as:

s(u, v) =

�
1, if u = v

c
|I(u)|·|I(v)|

�

u′∈I(u)

�

v′∈I(v)
s(u′, v′), otherwise

where I(u) denotes the in-neighbors of node u, and c is a
constant between 0 and 1. Tian et al. [31] interpret the SimRank
concept s(u, v) as the probability that two (1−√

c)-terminating
random walks, starting from nodes u and v respectively, inter-
sect with each other. They introduce an index-based algorithm,
SLING, to address the single-source and top-k queries. In [32],
Zhe et al. harness the reverse PageRank distribution of the
input graph to formulate the index-based algorithm, PRSim, and
demonstrate that it attains sub-linear time complexity for power-
law graphs. ExactSim [33] offers high-precision single-source
and top-k SimRank results for large graphs. Analogous to PPR,
these methods cannot be applied to our GHP query.

Besides random-walk-based measures, other categories of
proximity measures in the literature include common neighbors,
shortest paths, and effective conductance. Let N(u) represent
the set of neighbors of node u. The Jaccard similarity, defined
as |N(u)∩N(v)|

|N(u)∪N(v)| , proves useful in graph structural clustering [34].
The Katz measure [35] postulates that the more paths exist from
node s to node t, and the shorter these paths, the greater the
similarity of t to s. Koren et al. [36] employ cycle-free effective
conductance to evaluate node proximity within a graph. These
measures are distinct from our GHP problem.

One potential application of our GHP proximity measure is
community or group recommendations. Most existing works
on group recommendations utilize the Collaborative Filtering
(CF) technique, which typically requires user history records
or profiles. In [37], Chen et al. introduce the CCF model, con-
sidering both community-user co-occurrences and community-
description co-occurrences, and derive the joint probability
distribution over community, user, and description. With ex-
tensive profile data, Sharma [38] adopts a content-based ap-
proach and proposes a probabilistic latent preference model
(Pairwise PLSI) for group recommendations on LinkedIn. Wang
et al. [39] leverage production and consumption engagement

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EFFICIENT ALGORITHMS FOR GROUP HITTING PROBABILITY QUERIES ON LARGE GRAPHS 2999

records to determine the user-group affinity and introduce a
time-dependent matrix factorization model for recommending
groups to users. These methods stand in contrast to our appli-
cation of group recommendation based on structural proximity.
In fact, as highlighted in our experimental evaluation, our GHP
solution exhibits high scalability. Resultantly, the research com-
munity can immediately reap benefits: utilizing our solution to
pre-prune groups with minimal structural relevance to the user.
This reduces the pool of candidate groups for other existing
algorithms, thereby enhancing their scalability.

III. PAIRWISE GHP QUERY

In this section, we present SAMBA, an efficient algorithm for
pairwise GHP queries, which will also serve as the backbone
of our top-k algorithm in Section IV. As mentioned earlier, the
target-oriented nature of GHP makes it challenging to formulate
a correct local push algorithm. To tackle these issues, we first
bring in a new concept T -absorbed reachability and then make a
connection between GHP and the T -absorbed reachability. With
the new tool, we derive a recursive definition for T -absorbed
reachability from scratch and propose a group local push al-
gorithm for T -absorbed reachability in Section III-B, which
ensures the correctness for computing f(s, T). Finally, we show
how to combine MC with group local push to answer pairwise
queries in Section III-C.

A. The T-Absorbed Reachability

Let Pr[s � v|L] be the probability that a random walk from
s reaches v at the L-th hop. Given a target set T , we define the L
hop T -absorbed visiting probability Pr[s � v|L, T] of node v
w.r.t. node s as the probability that a random walk from s reaches
v at the L-th hop (not necessary to stop at the L-th hop) but with
a constraint that no node in T is visited unless a node in T is
visited at theL-th hop (in this case v ∈ T). Now, the T -absorbed
reachability rT (s, v) of node v w.r.t. s is defined as the sum of
the T -absorbed visiting probability of node v from node s at all
possible number of hops, namely L ∈ [0,+∞), such that

rT (s, v) =
�+∞

L=0
Pr[s � v|L, T].

For each node v /∈ T , we can know that the value rT (s, v) is
the expected number of times that a random walk visits v before
reaching any node in the target set T . A special case is v ∈
T . In this case, v is the first node in T that is reached by this
random walk (and then it terminates). Thus, if v ∈ T , rT (s, v) ≤
1, which can be interpreted as the probability that node v is the
first one among nodes in T visited by the random walk. Recall
that the hitting time h(s, t) is the expected number of steps for a
random walk from source node s to hit node t for the first time,
while the hitting probability f(s, t) is the probability that the
random walk from s can hit node t before it terminates.

Subsequently, we define a T -absorbed reachability rT (s, T)
of a target set T w.r.t. s as the sum of rT (s, v) for each v ∈ T ,
i.e., rT (s, T) =

�
v∈T rT (s, v). From the definition of GHP,

Theorem 1: For a target set T , f(s, T) = rT (s, T).

The theorem allows us to build a bridge between GHP and
T -absorbed reachability. We can estimate f(s, T) by computing
rT (s, T). To estimate the T -absorbed reachability, we define
the T -Absorbed Random Walk (T-ARW) that runs as follows: it
starts from node s, and at each step: (i) it terminates if the current
node is a node t in T ; (ii) or terminates with α probability;
(iii) otherwise, it moves to an out-neighbour of the current node
with 1− α probability. Then we can compute the T -absorbed
reachability of a node v by exploiting the Monto Carlo approach.

B. Group Local Push Algorithm

Next, we demonstrate how to carefully devise the group local
push algorithm for T -absorbed reachability. First, we show
that there exists a recursive relationship between rT (s, u) and
rT (s, v) for v ∈ N−

T (u) where N−
T (u) is the set of in-neighbors

of u except the node in T . Specifically, for a T-ARW that reaches
u at the L-th hop, it must first reach one in-neighbour v of u at
the (L− 1)-th step; otherwise, it cannot reach u at the following
step. Therefore, for the L-hop T -absorbed visiting probability
Pr[s � u|L, T], we can derive the following equation:

Pr[s � u|L, T] =
�

v∈N−
T (u)

Pr[s � v|L− 1, T] · 1− α

d+(v)
,

whered+(v) is the out-degree of nodev. To explain, for a random
walk that visits v at the (L− 1)-th hop, with the remaining 1− α
probability, it randomly jumps to an out-neighbour of node v.
Thus, it moves to node u from node v with (1−�)

d+(v) probability.
Adding all such in-neighbours v of node u together, the above
equation is obtained. Now, by summing up over all possible hops
L where L ∈ [1,+∞) since the value of L starts from 1 since
this case must visit an in-neighbour of node u, we have that:

+∞�

L=1

Pr[s � u|L, T]=
�

v∈N−
T (u)

�
+∞�

L=0

Pr[s � v|L, T]
�

· 1− α

d+(v)
,

which is equal to
�

v∈N−
T (u) rT (s, v) · 1−�

d+(v) from the definition

of rT (s, v). Since rT (s, u) =
�+∞

L=0 Pr[s � u|L, T], we can
derive that:

rT (s, u)=Pr[s � u|L = 0, T]+
�

v∈N−
T (u)

rT (s, v) ·
1− α

d+(v)
.

Obviously, the value of Pr[s � u|L = 0, T] is 1 if s = u since
node s always visits itself at the first step, and otherwise is 0.
Thus, the final recursive equation is obtained as follows:

rT (s, u) = Is(u) +
�

v∈N−
T (u)

rT (s, v) ·
(1− α)

d+(v)
, (4)

where Is(u) is an indicator function that is 1 if u = s and
otherwise 0. This recursive definition plays an important role
in our local push algorithm. It is because it indicates that the
T -absorbed reachability rT (s, u) could be obtained by summing
up the T -absorbed reachability rT (s, v) of all in-neighbours v
of u.

Rationale of Group Local Push: Now, we present the ratio-
nale behind our group local push algorithm to compute the T -
absorbed reachability rT (s, T), by exploiting (4). In the R.H.S

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

3000 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Algorithm 1: GroupLocalPush(G, s, T, α,Rmax).

of the above equation, the first term is a constant whose value
is 1 or 0 depending on whether t = s. We call this constant a
reserve of node t w.r.t. the source node s, denoted as z(s, t),
which is the amount of reachability value rT (s, t) that has been
distributed to node s from t via the incoming edges in the graph.
Besides, The second term reveals a probability that a T-ARW
reaches node t from an in-neighbour v of node t, namely (1−�)

d+(v) .
We call this probability a residue of node v w.r.t. node t, denoted
as R(v, t), which is waiting for further backward propagation
via v’s in-neighbours. We thus rewrite the reachability rT (s, t)
as follows:

rT (s, t) = z(s, t) +
�

v∈N−
T (t)

rT (s, v) ·R(v, t).

Similarly, for each in-neighbour v ∈ N−
T (t), the reacha-

bility rT (s, v) could be represented as: rT (s, v) = z(s, v) +�
w∈N−

T (v) rT (s, w) ·R(w, v). As a result, we could find a
relationship between the reachability of t and the reachability of
t’s 2-hop in-neighbours, 3-hop in-neighbors, and so on. Thus,
the reachability rT (s, t) could be represented by the reachability
value rT (s, v) for each node v ∈ V :

rT (s, t) = z(s, t) +
�

v∈V \T
rT (s, v) ·R(v, t). (5)

As analyzed in Section III-A, the reachability value rT (s, T) is
the sum of rT (s, t) of each node t ∈ T , and we can derive the
following invariant:

rT (s, T) = z(s, T) +
�

v∈V \T
rT (s, v) ·R(v, T). (6)

Hence, we could use z(s, T) to approximate rT (s, T) by per-
forming push operations at each v with non-zero R(v, T). A
detailed derivation of (6) is deferred to our technical report [40].

We develop our group local push algorithm, as shown in
Algorithm 1, where Rmax is the user-specific threshold. We
defer the illustration of Algorithm 1 to our technical report for
the interest of space. To better understand our GroupLocalPush
algorithm, we give a simple example where the target set T has
only one node t.

Example 3: Consider the example in Fig. 2. Assume α = 0.2
and the target set T = {t}. We set Rmax = 0.4. Initially, the

Fig. 2. Running example of the GroupLocalPush algorithm with target set
T = {t}, where the residue value R(v, T) for each v is shown inside grey box
and the newly-updated ones are highlighted in red.

residue value of the target node t is set to R(t, T) = 1, while
other nodes have zero residue values, as depicted in Fig. 2(a).
Next, a backward push operation is performed at node t as shown
in Fig. 2(b). This operation proceeds as follows: (i) for each
in-neighbour v of node t, the residue of node v increases by
1−�
d+(v) ·R(t, T) (see Algorithm 1 Line 12). Therefore, for the

sole in-neighbour v1 of t, R(v1, T) becomes 1−0.2
1 = 0.8; and

(ii) it sets R(t, T) = 0 (see Algorithm 1 Line 13). Subsequently,
since R(v1, T) = 0.8 > Rmax, a backward push operation is
performed at node v1, as depicted in Fig. 2(c). Here: (i) for
the in-neighbour s of v1, R(s, T) increases by 1−�

d+(s) ·R(v1, T),
becoming 0.32; and (ii) it sets R(v1, T) to 0. Currently, as no
node has a residue value exceeding Rmax, the algorithm ter-
minates. By (6), we have rT (s, T) = 0 +R(s, T)× rT (s, s) =
0.32× rT (s, s), given that z(s, T) = 0.

Theorem 2: Given a target set T , the amortized cost for

Algorithm 1 is bounded by O
	

|T |·m
n·�·Rmax

.

All the omitted proofs are deferred to our technical report [40].

C. Combining Group Local Push With MC

The main idea of our SAMBA can be understood as a combi-
nation of the MC method and group local push: it first performs
group local push with an elaborately designed threshold Rmax,
and then simulates a collection of T-ARWs. Since SAMBA
exploits information obtained from the group local push, it can
significantly cut down the number of required T-ARWs, saving
computational overhead while still satisfying the desired quality
guarantee.

Challenge: According to Section III-B, after performing the
phase of group local push, the invariant (i.e., (6)) still holds.
Thus, in order to compute rT (s, T), what we need is to esti-
mate the GHP rT (s, v) for each v. Intuitively, we can sample
a sufficiently large number of T-ARWs and get an unbiased
estimation r̂T (s, T), and then apply a concentration bound like
Chernoff bound to bound the error of r̂T (s, T). Unfortunately,
all existing concentration bounds require that the range of the
random variable (or its variance) is bounded. In our case, both
the range and the variance of rT (s, v) are unbounded since the
length of a T-ARW from s might be infinity. This makes it
infeasible to guarantee the accuracy of the estimated r̂T (s, T).

Hop-Wise Method: Recall that rT (s, v) =
�+∞

L=0 Pr[s �
v|L, T], where Pr[s � v|L, T] is bounded for each L. Thus we
may approximate an rT (s, v) by separately estimating Pr[s �
v|L, T] (L = 1, 2, . . .), and then combining them together. From

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EFFICIENT ALGORITHMS FOR GROUP HITTING PROBABILITY QUERIES ON LARGE GRAPHS 3001

Algorithm 2: SAMBA(G, s, T, α, ε, pf , δ, Rmax).

this idea, we develop our hop-wise method with approximation
guarantee for

�
v∈V \T rT (s, v) ·R(v, T).

For ease of clarification, we use HL(s, v) to denote the L
hop T-absorbed visiting probability Pr[s � v|L, T]. In order to
estimate

�
v∈V \T rT (s, v) ·R(v, T) by HL(s, v), we need to

answer these two questions: (i) how to handle the infinite series
of HL(s, v) (L = 0, 1, . . . ,∞); (ii) how many L-hop random
walks are required to estimate HL(s, v) respectively such that
the subsequent aggregation of allHL(s, v) (v ∈ V \T) has accu-
racy guarantee to approximate

�
v∈V \T rT (s, v) ·R(v, T). We

answer the first question with the truncation technique. Recall
that an α-terminating random walk stops at each step with α
probability. It can be directly derived that the probability that a
random walk has L hops (or more) is (1− α)L. Therefore, for
any HL(s, v), it is bounded by (1− α)L. That is, when L is
sufficiently large, HL(s, v) is insignificant, and we can omit it.
We give the following lemma about the truncation.

Lemma 2: Let Lmax = log1−�
� �
1−� · ��

2

�
. If rT (s, v) > δ,

then the relative error of
�Lmax

L=0 HL(s, v) and rT (s, v) is at
most �

2 .
Before answering the second question about the random walk

number issues, we first present the pseudo-code of SAMBA, as
shown in Algorithm 2. Specifically, for the first case (where
s ∈ T), SAMBA sets f̂(s, T) as 1 (Lines 1–2). Otherwise, it
starts the estimation by integrating the group local push with
our random walk sampling (Lines 3–14): it first invokes our
group local push algorithm with Rmax which returns the reserve
z(s, T) and residue R(v, T) for each node v ∈ V \T (Line 4).
Next, it generates sufficient random walks (Lines 7–16), where
the procedure RandomWalk(s, L) returns a random walk with
L hops starting from s. Given a specific L, the number of L-hop
random walks is ωL = �ω · (1− α)L�. Let Wi[L] denote the
node visited by the i-th random walk Wi at its L-th hop (Line
12). Let Xi be the random variable that takes value R(v, T) · aL
if Wi[L] = v and Wi ∩ T = ∅ (i.e., Wi does not visit any node

in T), otherwise take value 0. Then the expectation of Xi is:

E[Xi] =
�

v∈V \T

HL(s, v)

(1− α)L
·R(v, T) · aL.

Then the expectation of YL is as follows:

E[YL] = ωL · E[Xi] = ω ·
�

v∈V \T
HL(s, v) ·R(v, T).

Therefore, we have:

E[Y/ω] = E

1

ω
·
Lmax�

L=1

YL

�

=
1

ω
·
Lmax�

L=1

E[YL]

=
�

v∈V \T

Lmax�

L=1

HL(s, v) ·R(v, T). (7)

As H0(s, s) = 1 and H0(s, v) = 0 for v �= s, we have:

R(s, T) + E[Y/ω] =
�

v∈V \T

Lmax�

L=0

HL(s, v) ·R(v, T).

We claim that by setting ω =
3·Rmax·log(2/pf)
(1−Rmax/2)·�·�2 , SAMBA re-

turns a estimated GHP f̂(s, T) which is close to f(s, T). Be-
sides, to minimize the total time complexity, we can choose an
Rmax such that the cost of group local push and the MC are
balanced.

Theorem 3: SAMBA (Algorithm 2) guarantees that (1)
holds with at least 1− pf probability. By setting Rmax =

ε ·
�

�·|T |·m·�
3n·log(2/pf)

, the time complexity of SAMBA is

O

�
1
�·�

�
|T |·m log(1/pf)

n·�·�

�
.

IV. TOP-K GHP QUERY

In this section, we study the approximate top-k GHP problem
(see Definition 4) and present an efficient algorithm PING2 to
answer the top-k queries with desirable approximation guar-
antee. Before that, we first derive upper and lower bounds,
namely fu(s, T) and f l(s, T) for the GHP f(s, T) if we invoke
SAMBA. Note that these two bounds hold for any fixed δ and
Rmax. The derivation is based on Chernoff bounds.

Lemma 3: Given a source node s, a target set T and a failure
probability pf , by running SAMBA, we have that with (1− pf)
probability, f(s, T) is bounded:

f(s, T) ≤ fu(s, T)
�
= z(s, T) +R(s, T) + Δu,

f(s, T) ≥ f l(s, T)
�
= z(s, T) +R(s, T) + Δl.

Let β = log(2/pf). The notations Δu and Δl are defined as:

Δu =

��
Y

Rmax
+

β

2
+

�
β

2

�2

· Rmax

ω
+

ε

n

2Top-k GHP with Refining Bounds

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

3002 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Algorithm 3: PING(G, T , s, k, ε).

Δl =

�

�
��

Y

Rmax
+

2

9
β −

�
β

2

�2

− β

18

�

� · Rmax

ω
− ε

n
.

A. PING Algorithm

In order to answer a top-k GHP query, one may consider in-
voking SAMBA for each target setT ∈ T , and return thek target
sets with top-k largest estimated GHPs. However, if we want
to satisfy the accuracy requirement described in Definition–4,
we have to set up the parameters according to the exact k-th
largest GHP f(s, T ∗

k), which is unknown in advance. To tackle
this problem, a naive solution is to conservatively set δ = 1

n .
It yields huge unnecessary computational costs, as the value of
f(s, T ∗

k) is usually much larger than 1
n .

Motivated by the aforementioned deficiency, we propose an
iterative algorithm, whose main idea is that we adaptively dimin-
ish the value of δ, obtain tighter and tighter bounds for each GHP
in the candidate set, and then examine whether the terminating
condition is met. If it is met, it indicates that the approximate
top-k GHPs satisfying Definition 4 have been found, and we
stop the algorithm immediately without wasting computational
resources. If not, we halve δ to refine the lower and upper bounds
and repeat the process until the approximate top-k results are
found. Furthermore, in each iteration, we prune those target sets
that are impossible to be the top-k results, such that in subsequent
iterations we do not need to compute their GHP, further saving
computational overhead.

Algorithm 3 shows the pseudo-code of PING. Initially, we
initialize the candidate set C to include all the target sets. Then
the algorithm goes into the iteration loops. In each iteration, it
calculates the parameters Rmax and ω according to the current
value of δ. Then it invokes SAMBA to estimate the GHP for each
T ∈ C, and meanwhile derive its bounds f l(s, T) and fu(s, T)
according to Lemma 3. Next, it constructs a set R of target sets
whose upper bound fu(s, T) are top k largest among C (Line 8).

If each target set T in R satisfies that the ratio f l(s,T)
fu(s,T) is greater

than 1− ε, the algorithm terminates. If this stopping condition
is not met, we have to halve the value of δ such that in the next
iteration it can provide tighter bounds for each target set in C.
Before beginning with the next iteration, we further prune those
target sets with upper bound fu(s, T) being smaller than the line
f l
k, which must not be the top-k answers, as there exist at least
k target sets with larger GHP.

Next, we analyze the correctness of Algorithm 3, that is, it
can provide approximate top-k results satisfying Definition 4.

Theorem 4: Algorithm 3 returns the top-k result R which
satisfies Definition 4 with at least 1− 1/n probability.

Theorem 5: The expected time complexity of PING (Algo-

rithm 3) is O

�
1
�·�

�
m·log(1/pf)

�·�∗

�
, where δ∗ is the value of δ

when the algorithm terminates.
Lemma 4: When δ = O(f(s, T ∗

k)), Algorithm 4 meets the
stopping condition with high probability, where f(s, T ∗

k) is the
exact k-th largest GHP.

B. Optimization

Recall that in the algorithm PING, it has to compute f̂(s, T)
for each candidate set T ∈ C by invoking SAMBA, where |C| is
the size of the candidate sets. For the sake of saving computa-
tional cost, we can generate only

�Lmax
L=1 ωL random walks (Line

12), and reuse them to estimate the GHP values for each T ∈ C.
However, due to the target-orient property, we have to estimate
the term

�
v∈V \T rT (s, v)R(v, T) (Lines 13-15) for eachT ∈ C

one by one. As a result, we need to scan these random walks |C|
times in total. Such a solution is expensive and significantly
hampers its practical performance.

Optimization: Our optimization is based on an observation
that most candidate target sets are not frequently hit by random
walks. Thus we can first assume that all random walks do not
visit any node in any target setT ∈ C. Then, we can scan random
walks only once and estimate rT (s, v) for all v ∈ V \T . Surely,
the estimated f̂(s, T) under such an assumption is incorrect.
Subsequently, a rectifying step is needed to correct the outcome.

Motivated by this idea, we propose our optimization technique
whose pseudocode is given in Algorithm 4. Algorithm 4 consists
of two phases: the sampling phase (Lines 6–16) and the correc-
tion phase (Lines 17–23). In particular, in the sampling phase,
we sample

�Lmax
L=1 ωL random walks. For each random walk Wi

whose last node is v (Line 11), we directly increase the counter
c(v) by aL since we have assumed Wi does not visit any target
set. Then if any node of a target set T has been visited by Wi, we
record the walk id in H(T) (Lines 14–16). Finding out all the
target sets visited by Wi can be solved efficiently, if we maintain
a data structure for all v indicating which target sets include v.
In the second phase, for each T ∈ C it first estimates f̂(s, T)
(Lines 18–20) by summing up c(v) ·R(v, T) for each node v
whose R(v, T) �= 0. However, as the counter c(v) has counted
in those random walks that visit certain nodes in T , f̂(s, T) is
over-estimated. Thus we go through the records in H(T), and
remove the over-estimating amount from f̂(s, T) (Lines 21–23).

Example 4: Consider the graph presented in Fig. 1. We
set Lmax = 3 and the candidate set C to consist solely of
T2. For simplicity, we omit the random walks of lengths

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EFFICIENT ALGORITHMS FOR GROUP HITTING PROBABILITY QUERIES ON LARGE GRAPHS 3003

Algorithm 4: Optimization (G, s, α, ω,Rmax, C).

L = 1 and L = 2. Suppose we sample ω3 = 4 random
walks starting from the source node s. These walks are
as follows: {W1: s→v1→v8→v6, W2: s→v4→v2→v3, W3:
s→v2→v3→v5, W4: s→v4→v2→v3}. The terminal nodes of
W1, W2, W3, and W4 are v6, v3, v5, and v3, respectively. This
results in the counts c(v6) = a3, c(v3) = 2 · a3, and c(v5) = a3
(as described in Algorithm 4, Line 9 and Line 13). As ran-
dom walk W1 visits node v8 from T2, we deduce H(T2) =
1, where the value 1 represents W1’s id. Next, we describe
the calculation of f̂(s, T2) using the sampled random walks,
W1 through W4. Let z(s, T2) +R(s, T2) = z0. We initially
estimate f(s, T2) as f̂(s, T2) = z0 + (a3 ·R(v6, T2) + 2 · a3 ·
R(v3, T2) + a3 ·R(v5, T2))/ω (Line 20). However, this esti-
mate is flawed as it incorrectly takes into account W1, which
has traversed the target set T2 before terminating. To correct
this, we adjust for the impact of W1 (Line 23), resulting in
f̂(s, T2) = z0 + (2 · a3 ·R(v3, T2) + a3 ·R(v5, T2))/ω.

V. EXPERIMENT

In this section, we experimentally evaluate our solutions
SAMBA and PING against alternatives on real datasets. All
experiments are conducted on a Linux server clocked at 2.3 GHz,
and all codes are implemented in C++ and compiled with -O3.

Dataset: We use eight real datasets that can be obtained from
public sources SNAP [41] and Konect [42]. These datasets are
frequently used in previous work of graph-based algorithms [6],
[24]. Their statistics are reported in Table I. Among them, the

TABLE I
DATASETS (K = 103,M = 106, B = 109)

largest dataset Friendster has 1.8 billion edges and is used to
examine the scalability of our algorithms.

Algorithms: For the pairwise GHP query, we compare our
solution SAMBA with the MC method and Ad-FORA [6]. For
the MC method, we simulate O(logn

�·�2) random walks such that
it could provide ε-approximation guarantee. Ad-FORA is an
adapted version of the state-of-the-art PPR method FORA with
Forward Push. It is also designed to provide ε-approximation
guarantee.

For the top-k GHP query, we evaluate our solution PING
against the MC method, which generates sufficient random
walks to provide an approximation guarantee presented in Def-
inition 4. We also conduct an adapted version of PING which
runs MC only without group local push (namely,Rmax is always
set as 1), denoted as MC-PING. In this way, we examine the
effectiveness of the termination condition. We omit Ad-FORA
in the top-k query as from the experimental results of pairwise
queries, it is significantly worse than SAMBA.

We set the relative error parameter ε as 0.1 for both the
pairwise query and for the top-k query. The values of both δ
and pf are set as 1

n , following existing work [6], [7], [24]. The
value of k ranges from 20 to 100.

Target sets: For the pairwise query, we vary the size of a target
setT with {1, 10, 20, 50, 100}. We regard a target set as a certain
community where nodes are usually intimate with each other.
Under this assumption, we use a neighbour-based method to
sample a target set. Specifically, we randomly sample a node as
the seed of a target set and then add its neighbours to the target
set. For the top-k GHP query, we set the size of a target set T as
|T | = 20. The total number of all target sets is |T | = 10000.

Accuracy Metrics: For the pairwise GHP query, obtaining
the exact GHP value f(s, T) requires prohibitive computational
cost. By setting ε = 0.005, we employ the SAMBA algorithm
to obtain an estimated result denoted as f̃(s, T). Our SAMBA
guarantees that if f(s, T) ≥ δ, then

(1− 0.005) · f(s, T) ≤ f̃(s, T) ≤ (1 + 0.005) · f(s, T).

Given this guarantee, we treat f̃(s, T) as the exact GHP value
of node s with respect to target set T . Suppose there’s another
estimated result f̂(s, T) for the GHP f(s, T). We define the
relative error of f̂(s, T) as

Relative error =
|f̂(s, T)− f̃(s, T)|
max

	
f̃(s, T), δ

 .

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

3004 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 7, JULY 2024

Fig. 3. Varying |T |: Running time of each method for the pairwise GHP query.

For the top-k GHP query, we consider the results obtained
by MC as the exact top-k results. To gauge the accuracy per-
formance of each method, we use the precision metrics, defined
as

Precision =
|R ∩ R′|

k
,

where R and R′ are the exact top-k result and the approximate
top-k result returned by other algorithms, respectively.

A. Pairwise GHP Query

In the first set of experiments, we evaluate the performance
of our SAMBA as the target set size |T | varies. As the target set
size |T | ranges from 1 to 100, we generate 50 random pairwise
queries. We then employ SAMBA, along with baseline methods
Ad-FORA and MC, to answer these queries. Subsequently, we
report the average running time and the practical maximum
relative error for each algorithm, to measure efficiency and
accuracy performance.

Fig. 3 reports the average query time of each method for
the pairwise query with varying target set size |T |. The results
demonstrate that our algorithm SAMBA always runs the fastest,
followed by Ad-FORA, with the MC method being the slowest.
We omit the curves of Ad-FORA and MC on the largest dataset
Friendster, since they take more than 4 hours and 72 hours,
respectively, to complete a single pairwise query. Specifically,
compared to the second fastest method Ad-FORA, our SAMBA
is two orders of magnitude faster when |T | = 1 and one order
of magnitude faster when |T | = 100, on all eight datasets. For
example, on dataset Orkut, SAMBA is 170x (resp. 14x) faster
than Ad-FORA when T = 1 (resp. T = 100). Furthermore, in
comparison to MC, our SAMBA consistently takes advantage
by at least two orders of magnitude across all eight datasets,
even when T = 100. To illustrate, SAMBA is 400x (resp. 560x)
faster than MC on dataset Orkut (resp. Pokec) with T = 100.
The high efficiency of our SAMBA can be explained in that it
integrates group local push algorithm to significantly reduce the

number of random walks required to guarantee accuracy. We also
observe from Fig. 3 that the relationship between the running
time of SAMBA (with fixed parameters δ, ε, and α) and

�
|T |

is roughly linear. That is, for all eight datasets, SAMBA takes a
tenfold increase in running time when |T | varies from 1 to 100.
These experimental results conform with our analysis about the

time complexity of SAMBA O

�√
|T |

�·� ·
�

m log(1/pf)
n·�·�

�
, which

is presented in Theorem 3.
Then, as shown in Fig. 4, we report the practical maximum

relative errors of SAMBA, Ad-FORA, and MC to present their
accuracy performance. From these figures, it’s observed that the
maximum relative errors of all algorithms across all datasets
are less than ε = 0.1. This confirms the algorithms’ correctness,
given their design to offer ε-approximation guarantees. Notably,
our SAMBA algorithm exhibits smaller maximum relative errors
than both Ad-FORA and MC on every dataset tested. This indi-
cates that SAMBA outperforms Ad-FORA and MC in accuracy.
This improved performance can be attributed to our utilization
of the group local push technique, which significantly cuts down
the number of required random walks. This reduction also aids
in minimizing randomness during the estimation of the GHP
value. We also note that in most cases MC suffers from higher
maximum relative errors than Ad-FORA.

In the second set of experiments, we evaluate the impact of the
relative error parameter ε on SAMBA’s efficiency and accuracy,
setting |T | = 20. We execute SAMBA to answer 50 random
pairwise queries and subsequently report the average running
time and the maximum relative error. The value of ε is set to
{0.5, 0.1, 0.05, 0.01}. As depicted in Fig. 5, the results indicate
that as ε diminishes, the maximum relative error correspondingly
decreases, but this improvement comes with a longer running
time. A smaller maximum relative error signifies better accuracy
performance. Notably, the maximum relative error consistently
remains below the specified ε value across all eight datasets. For
instance, in the LiveJournal dataset with ε values of 0.5, 0.1,
0.05, and 0.01, the maximum relative errors are 6.33× 10−2,

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: EFFICIENT ALGORITHMS FOR GROUP HITTING PROBABILITY QUERIES ON LARGE GRAPHS 3005

Fig. 4. Varying |T |: Maximum relative error of each method for the pairwise GHP query.

Fig. 5. Performance of SAMBA with varying parameter �.

1.55× 10−2, 6.51× 10−3, and 1.45× 10−3, respectively. This
observation aligns with SAMBA’s design, which guarantees ap-
proximation performance. Moreover, the average running time
appears to increase roughly in proportion to 1

� . For example,
SAMBA’s running time on the LiveJournal dataset with ε values
of 0.5, 0.1, 0.05, and 0.01 is 0.52, 2.63, 5.08, and 25.34 seconds,
respectively. This is consistent with the derived time complexity

of SAMBA, given as O

�
1
�·�

�
|T |·m log(1/pf)

n·�·�

�
.

B. Top-K GHP Query

In the third set of experiments, we evaluate the effectiveness
and accuracy of our PING/MC-PING in comparison to MC for
answering top-k GHP queries. We set |T | = 20. By sampling
20 random sources, we execute PING, MC-PING, and MC to

identify the target sets with the largest k GHP scores from the
entire target set collectionT . Each algorithm answers each query
five times. We then report the average running time and P@k
value, assessing both efficiency and accuracy. We opt not to
incorporate the terminating condition with the algorithm Ad-
FORA, as the experimental results in Fig. 3 already demonstrate
its inferior performance compared to our SAMBA.

Fig. 6 presents the average query time of MC, MC-PING,
and PING for each dataset. The figures show that our PING
and MC-PING algorithms consistently outpace the MC method
significantly. Without prior knowledge of the exact top-k GHP
scores, the MC method must conservatively provide approxima-
tion guarantees for all target sets with GHP scores greater than
1
n . In contrast, our algorithms, PING and MC-PING, operate
iteratively with a diminishing threshold δ, allowing them to
terminate once they identify the top-k results that meet the
user-specified approximation requirement. Consequently, our
algorithms demonstrate greater efficiency than the MC method.
Additionally, PING consistently outperforms MC-PING regard-
ing query time across all tested datasets. For instance, with
k = 100, PING processes a top-k query on the Orkut dataset
in an average of 30 seconds, while MC-PING requires 250
seconds. This efficiency arises because PING integrates with
our SAMBA and employs an optimization technique, enabling
efficient estimation of the GHP value for each target set in
C. We omit the curve of running time of the MC method on
the Friendster dataset, as it incurs prohibitive computational
overhead.

Fig. 7 presents the precision results of PING and MC-PING.
Notably, MC-PING utilizes the same terminating condition as
described in Lines 9-10 of Algorithm 3. The precision scores for
the MC method consistently equal 1 since we regard its output
as the ground truth. It’s noteworthy that the precision scores
of PING and MC-PING closely align, and in most instances,
they exceed 99%. This underscores the effectiveness of our
terminating condition. Additionally, our PING achieves an opti-
mal balance between efficiency and accuracy. In comparison to
the MC method, we realize a significantly reduced running time
(by up to three orders of magnitude) while maintaining nearly

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 11:53:59 UTC from IEEE Xplore. Restrictions apply.

