
1582 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

Fraction-Score: A Generalized Support Measure for
Weighted and Maximal Co-Location Pattern Mining
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Raymond Chi-Wing Wong , and Hua Lu , Senior Member, IEEE

Abstract—Co-location patterns, which capture the phenomenon
that objects with certain labels are often located in close geographic
proximity, are defined based on a support measure which quantifies
the prevalence of a pattern candidate in the form of a label set.
Existing support measures share the idea of counting the number
of instances of a given label set C as its support, where an instance
of C is an object set whose objects collectively carry all labels in
C and are located close to one another. However, they suffer from
various weaknesses, e.g., fail to capture all possible instances, or
overlook the cases when multiple instances overlap. In this paper,
we propose a new measure called Fraction-Score which counts
instances fractionally if they overlap. Fraction-Score captures all
possible instances, and handles the cases where instances overlap
appropriately (so that the supports defined are more meaningful
and anti-monotonic). We develop efficient algorithms to solve the
co-location pattern mining problem defined with Fraction-Score.
Furthermore, to obtain representative patterns, we develop an
efficient algorithm for mining the maximal co-location patterns,
which are those patterns without proper superset patterns. We
conduct extensive experiments using real and synthetic datasets,
which verified the superiority of our proposals.

Index Terms—Co-location pattern, spatial data mining.

I. INTRODUCTION

W ITH the advancement of technologies such as GPS,
databases that record objects with both categorical labels

and spatial information are prevalent. For instance, in ecology,
animals and plants not only possess labels such as their species,

Manuscript received 7 September 2022; revised 9 June 2023; accepted 29
July 2023. Date of publication 11 August 2023; date of current version 8 March
2024. The work of Raymond Chi-Wing Wong was supported by GZSTI16EG24.
The work of Da Yan was supported by Alabama Research and Development
Enhancement Fund under Grant 1ARDEF21 03 and NSF under Grant OAC-
2106461. This research is supported by the Ministry of Education, Singapore,
under its Academic Research Fund (Tier 2 Award MOE-T2EP20221-0013 and
Tier 2 Award MOE-T2EP20220-0011). Recommended for acceptance by P.
Bogdanov. (Corresponding authors: Harry Kai-Ho Chan; Cheng Long.)

Harry Kai-Ho Chan is with the Information School, University of Sheffield,
S10 2TN Sheffield, U.K. (e-mail: h.k.chan@sheffield.ac.uk).

Cheng Long is with the School of Computer Science and Engineer-
ing, Nanyang Technological University, Singapore 639798 (e-mail: c.long@
ntu.edu.sg).

Da Yan is with the Department of Computer Science, The University of Al-
abama at Birmingham, Birmingham, AL 35294 USA (e-mail: yanda@uab.edu).

Raymond Chi-Wing Wong is with the Department of Computer Science and
Engineering, The Hong Kong University of Science and Technology, Hong Kong
(e-mail: raywong@cse.ust.hk).

Hua Lu is with the Department of People and Technology, Roskilde Univer-
sity, 4000 Roskilde, Denmark (e-mail: luhua@ruc.dk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TKDE.2023.3304365, provided by the authors.

Digital Object Identifier 10.1109/TKDE.2023.3304365

but also location information about their habitats; in urban areas,
point-of-interests (POIs) such as restaurants and shops are also
associated with some labels such as their business types and
brands as well as their locations (e.g., in Google Maps); also
in epidemiology, patients are usually recorded with not only
demographic information like their jobs, ages and races, but
also location information like their home addresses. We call an
object as an instance of a label if the object carries the label. One
interesting pattern on these objects is the co-location pattern
[18], [19], [26], [28]. A co-location pattern corresponds to a
set of labels whose instances are frequently located in a close
geographic proximity (i.e., the instances are within a distance d
from each other). As an example, Snack Bar shops and Beauty
Salon shops are often found located near each other [26], forming
a co-location pattern.

Similar to frequent itemsets in the context of transaction data
[1], co-location patterns are defined based on a support measure,
which quantifies how frequently those instances of the labels in
a given label set are located closely. In the context of transaction
data, the support of an itemset is defined as the number of
transactions that contain all objects in the itemset. Unfortunately,
this definition cannot be straightforwardly adapted to our context
since there exist no explicit transactions in spatial data.

We say that a set of objects is an instance of a label set
if the objects carry all labels in the label set and are located
within distance d from each other. The challenge of defining
the support properly is mainly due to the fact that different
instances of a label set usually overlap with each other, and
this leads to a dilemma that enumerating all instances would
over-count the support while using heuristics would miss some
instances completely. Fig. 1 shows an example. Both sets
{R7, C1} and {R8, C1} are instances of the label set {restaurant,
church}. However, the two sets are overlapped by the object
C1. In the literature, several support measures for co-location
patterns have been proposed, namely partitioning-based [28],
construction-based [26], enumeration-based [18], [19], [28],
and participation-based [18], [19], [28], [44], [45], [46]. The
major idea shared by these approaches is to count for a given
label set the number of its instances for measuring the support.
However, as will be discussed in Section II, they all suffer from
various weaknesses such as missing or over-count instances, or
is not anti-monotonic.

An instance is said to be a row instance if it does not have
a proper subset which is also an instance of the same label
set. For example, the set {R7, C1} is a row instance of the
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Fig. 1. A small portion of a real dataset of POIs in United Kingdom, including 8
restaurants (blue), 3 banks (green) and 3 churches (red), where the icons indicate
the labels of the spatial objects and the disks have their centers at C1 - C3 and
radii all equal to d.

label set {restaurant, church} in Fig. 1, while {R7, R8, C1} is
not. In our prior work [8], we propose a new support measure
called Fraction-Score which puts all possible row instances
into different groups then counts the groups. Specifically, it
selects a label and then puts all row instances sharing the same
object with the selected label in the same group. Compared
to the participation-based approach that also groups the row
instances (to be detailed in Section II), Fraction-Score avoids the
over-counting problem. The major idea is to count each group
as a fractional unit of prevalence instead of an entire one, where
the fraction value is calculated by amortizing the contribution of
an object among all the row instances that the object is involved
in.

Here, we briefly illustrate how the fraction values are calcu-
lated (the detailed definitions will be introduced in Section III).
Consider Fig. 1 and the label set {restaurant, church}. Suppose
that label “restaurant” is the label used for grouping the row
instances. In this case, there would be eight groups, formed by
R1 - R8, respectively. Consider the group formed by R1. It
involves only one row instance, namely {R1, C1}. The fraction
associated with the group by R1 would be set to 1/8, and the
intuition is that it involves an objectC1 and there are 8 groups (or
objects involving the label “restaurant”, namely R1 - R8) that
share C1 and thus, each of the groups (including the one by R1)
would be associated with a fraction 1/8 (of C1). Similarly, the
fraction associated with each group by R2 - R6 would be set to
1/8. The fraction associated with the group by R7 would be set
to 1, which is explained as follows. First, the row instances in this
group, namely {R7, C1}, {R7, C2}, and {R7, C3}, involve three
churches, namely C1, C2, and C3. Second, the fractions w.r.t.
these objects are 1/8, 1/2, and 1/2, respectively (the fraction
1/8 of C1 could be explained as above, the fraction 1/2 of C2

(C3) could be explained by the fact that C2 (C3) is shared by
two groups, namely those by R7 and R8). Third, the fractions
are first aggregated (using a sum function) and then bounded by
1 (using a min function) simply because each group cannot be
counted as more than one unit. Similarly, the fraction associated
with the group by R8 is 1.

The sum of fractions, 1/8 · 6 + 1 + 1 = 2.75, corresponds
to the support of {restaurant, church} by Fraction-Score. This

is more meaningful than 8 that is the support defined by the
participation-based approach, which we will see shortly in Sec-
tion II, since indeed there are roughly three units of prevalence
of the label set (one in left region, one in the top-right region,
and one in the middle region which overlaps with the other two).

The example above illustrates the cases in an unweighted
dataset. However, in some cases, each object contains a weight
attribute which quantifies its importance. For example, the Neu-
roSynth dataset [39] (details will be given in Section VI-A)
contains a mapping between labels (e.g., “depression” and “anx-
iety”) and the activated locations in the brain (i.e., location). Each
object weight is a relevance score between the label and the
location. As a generalization of the definition in [8] that defined
Fraction-Score based on unweighted objects, our Fraction-Score
proposed in this journal extension also works well on these
weighted datasets, since it seamlessly captures object weights
in its support definition. The unweighted case proposed in [8] is
a special case with all weights equal to 1.

Moreover, as will be shown later, the support defined by
Fraction-Score satisfies the desirable anti-monotonicity prop-
erty. Based on Fraction-Score, we define co-location patterns
using a pre-set parameter minimum support.

Since Fraction-Score satisfies the anti-monotonicity property,
we adopt an Apriori-like algorithm for mining the co-location
patterns. One key component of the algorithm is to compute the
support of a given label set C, which is not as straightforward
in our case as in the transaction data scenario. To compute C’s
support, we design an algorithm, where a basic operation is to
decide whether there exists a row instance of C, which involves
a particular object. We show that the decision problem of this
operation is NP-hard (w.r.t. |C|). In fact, this operation is also
necessary when the supports defined by the participation-based
approach [18], [19], [28], [44], [45], [46] are computed, and it is
solved by materializing all row instances of C there. Neverthe-
less, we observe that the complete materialization is an overkill
since the operation could be finished by just finding one row
instance involving the object if there exists one. Besides, we
notice that though the decision problem in general is NP-hard, it
can be easily solved in certain cases. Motivated by these obser-
vations, we design a filtering-and-verification approach for the
decision problem, which performs a few efficient pre-checking
procedures (i.e., filtering) for cases where the decision problem
could be answered easily, and performs a verification procedure
for those remaining cases. Note that the algorithm improved
over the one in [8] in both memory usage and efficiency by
additionally including a memory-saving strategy and filtering
and pruning steps.

In addition, we found that the number of patterns returned
is large in some cases, which might cause difficulty for users
to interpret the results. Thus, we study the maximal co-location
patterns [43] mining problem based on Fraction-Score, where
a pattern is maximal if it has no proper superset pattern. It is
particularly useful when we want to obtain a smaller set of
patterns that can concisely represent all the co-location pat-
terns. We propose an efficient algorithm for mining all maximal
co-location patterns. The major idea is to generate candidate
maximal patterns from the size-2 patterns, and verify them in a
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TABLE I
EXISTING SUPPORT MEASURES

top-down manner. Thus, it avoids the unnecessary computations
in the above Apriori-like algorithm which is designed for mining
all patterns. Compared to the existing maximal pattern mining
algorithm [38] that generates the candidate patterns from size-2
instance table, we do not need to materialize the instances. In
the verification, the filtering-and-verification approach is also
adopted, with an additional filter for better efficiency.

The contributions of this paper are summarized as follows.
� We show the weaknesses of existing support measures

and propose a new and better one called Fraction-Score,
which avoids the weaknesses and satisfies the desirable
anti-monotonicity property.

� For a fundamental operation involved in mining the co-
location patterns, we provide hardness results and design
an efficient algorithm.

� We propose an efficient algorithm for answering the maxi-
mal co-location pattern mining problem based on Fraction-
Score.

� We conducted extensive experiments on both real and syn-
thetic datasets, which showed the superiority of Fraction-
Score as well as the efficiency of the proposed algorithms.

This journal extension adds substantial new technical contri-
butions over [8] by (1) generalizing the definition of Fraction-
Score to be applicable on weighted objects (Section III-C);

(2) improving the algorithms to be more memory-saving and
efficient (Section IV); (3) proposing an efficient algorithm to find
the maximal patterns (Section V); (4) including an additional
real dataset NeuroSynth [39] to evaluate our algorithms (Section
VI); and (5) releasing the source code of our algorithms.1

The rest of the paper is organized as follows. Section II reviews
some related work. Section III gives the formal definition of
Fraction-Score and defines our problems. Section IV adopts an
Apriori-like algorithm for mining the co-location patterns and
introduces an algorithm for computing the support defined by
Fraction-Score. Section V discusses the maximal co-location
pattern mining based on Fraction-Score. Section VI presents
the experimental results. Section VII concludes the paper and
provides some future directions.

II. RELATED WORK

A. Support Measures for Co-Location Pattern Mining

The co-location pattern mining problem has been studied
extensively using different support measures. We illustrate the
weaknesses of different approaches as follows. Table I summa-
rizes them and compares with Fraction-Score.

1https://github.com/harryckh/TKDE-colocation

Partitioning-based approach [28] uses a grid to partition the
space into many cells, constructs for each cell a transaction
involving all objects within the cell, and then defines supports
based on the generated transactions as if they are on conventional
transaction data [1]. With this approach, only those instances
within individual cells are considered, while those across cells
are missed since two objects within distance d but across cell
boundaries are ignored.

Construction-based approach [26] constructs instances of
a given label set heuristically and counts the number of con-
structed instances as the support. This approach is not robust
simply because some instances of a label set might be missed
due to the heuristic nature.

Enumeration-based approach [18], [19], [28] counts for
a given label set all its row instances. With this approach,
no instances can be missed, but the support definition is not
anti-monotonic and counter-intuitive. That is, the support of
a label set is larger than that of its subset, which breaks the
anti-monotonicity property that is important both to make sense
semantically, and to enable the design of efficient algorithms
for frequent pattern mining. The insight into the problem is that
this approach may reuse one object in many row instances, and
since the object contributes wholly to every row instance that it is
involved in, the support is over-measured. Due to this problem,
the supports defined by this approach are not used on their own,
but as components for defining the confidence of a rule candidate
[18], [19], [28].

Participation-based approach [18], [19], [28], [44], [45],
[46] considers all possible row instances, but instead of counting
each individual row instance, it puts the row instances into dif-
ferent groups and then counts the groups. Specifically, it selects a
label and then puts all row instances sharing the same object with
the selected label in the same group. The rationale is that all row
instances within a group are counted as one unit of prevalence
since they are all based on the same object with a particular
label. Nevertheless, in cases where some row instances across
different groups share an object, this approach would count them
as multiple units of prevalence (one for each group), i.e., the ob-
ject’s contribution is over-counted. To illustrate, consider Fig. 1.
Consider the label set {restaurant, bank, church}. Suppose that
the label “restaurant” is the label used for grouping the row
instances. There would be eight groups, each based on a restau-
rant R1 - R8. Within each group, all row instances contain the
same restaurant. Thus, the support defined by the participation-
based approach would be equal to 8. Nevertheless, among these
eight groups, many share objects with labels of “bank” and/or
“church” (e.g., {R3, B1, C1} and {R6, B1, C1} are two row
instances from two different groups since they contain different
restaurants but they share their restaurant and church, i.e., B1

and C1). In this case, the prevalence is over-measured.
Note that the partitioning-based, construction-based and

participation-based approaches can be adapted to handle
weighted objects. The details can be found in Appendix A,
available online.

In [49], Zhang et al. proposed to improve the efficiency of co-
location pattern mining by adopting a multi-way join approach.
In [20], Huang et al. developed a FP-tree based algorithm for
the co-location pattern mining problem. Motivated by the fact
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that it is expensive to generate row instances of a size-(k + 1)
label set via joining the row instances of two size-k label
sets, in [44], [45], [46], the authors proposed some partial join
and joinless techniques which materialize some transactions of
spatial objects such that those row instances within transactions
could be generated without the join process [28], but for those
row instances across different transactions, they still use the
join operation. In [4], Boinski and Zakrzewicz developed a
new method to efficiently process co-location pattern queries
using materialized, improved candidate pattern instance tree
(iCPI-tree).

B. Condensed Co-Location Pattern Mining

In [43], Yoo and Bow studied the closed top-k co-location
pattern mining problem. The authors also studied the maximal
co-location pattern mining problem [42]. In [38], Yao et al. pro-
posed to construct a graph based on size-2 co-location patterns,
and then find maximal cliques as the maximal co-location pattern
candidates for better efficiency. In [23], Liu et al. studied the
problem of summarizing co-location patterns. In [31], Wang et
al. proposed a redundancy reduction for co-location patterns. All
these studies aimed at finding a representative set of patterns that
is of a smaller size. However, their definitions and methods are
designed based on the participation-based measures, and thus
cannot be used in our Fraction-Score.

C. Variants of Co-Location Pattern Mining

Some works defined the spatial co-location pattern based
on regions and polygons. In [35], Xiong et al. presented a
framework for mining co-location patterns for extended spatial
objects, e.g., polygons and line strings. In [10], Ding et al. studied
the problem mining regional (or local) co-location patterns. In
[11], Eick et al. studied the problem of finding regions that each
represented as a set of spatial objects by using a clustering-like
algorithm where the interestingness score of a region is based
on how much the objects representing the region have their
continuous values co-related with each other. In [12], [13],
the authors studied of finding co-location patterns where a set
C of spatial labels corresponds to a pattern if the clusterings
each based on the objects with a spatial label in C have at
least a certain degree of overlap which is captured by the area
intersected by the polygons formed based on the clusters. In [6],
Celik et al. proposed to find zonal or local co-location patterns
which represent subsets of label types that are frequently located
in a subset of space (i.e., zone). In [33], Wang et al. studied the
problem of finding regions that each represented by a set of
cells linking with each other where two labels co-occur more
frequently than globally. In [25], Long et al. proposed to find
the co-location patterns from regional objects, and defined the
proximity relationship between instances by their overlapping
area.

Some other studies related to the co-location pattern mining
problem are reviewed as follows. In [22], Koperski and Han
aimed to find strong association rules where a rule indicates
certain association relationship among a set of spatial and possi-
bly non-spatial predicates. In [3], Barua and Sander studied the

Fig. 2. A toy example where × and ◦ are two labels, and A1-A9 and B1-B9

are 18 objects each with exactly one label indicated by the shape representing
the object, and its weight is indicated by the values in blue.

problem of finding statistically significant co-location patterns
based on hypothesis testing, where some models are assumed
which limits its application scope. In [21], Huang and Zhang
proposed to cluster on the set of spatial labels where the similar-
ity between two labels is measured with some spatial statistical
functions [9]. In [37], Yang et al. studied the co-location pattern
mining problem with the consideration of distance decay effects
and also the direction information.

In [36], Yang et al. studied the problem of finding the co-
location patterns with or without rare features. In [29], [41]
(resp. [2], [27], [40]), MapReduce based methods (resp. parallel
algorithms on GPU) were developed for the co-location pattern
mining problem.

III. FRACTION-SCORE AND PROBLEM DEFINITION

Section III-A introduces some notations. Section III-B gives
an overview of Fraction-Score, and Section III-C presents its
formal definition. Section III-D defines our problems.

A. Notations

Let O be a set of n objects. Each object o ∈ O has a location
o.λ, a weight o.w in range [0,1] that represents the importance of
the object, and also a set of (categorical) labels (e.g., a shop brand
name such as Starbucks). For ease of presentation, we assume
that each object o has only one single label, denoted by o.t, but
the concepts and algorithms introduced in this paper can easily
be applied to the general case by making some duplications
of each object with multiple labels, each with one label. For
example, object A1 in Fig. 2 has the label ◦ and a weight 0.8.

Let T be the set of all possible labels of the objects, i.e.,
T = {o.t|o ∈ O}. Let Ot be the set of objects with label t, i.e.,
Ot = {o|o.t = t}. Given a label t, we use Wt to denote the
sum of weights of the objects in Ot, i.e., Wt =

∑
o∈Ot

o.w, and
Wmax to denote the largest Wt among all t ∈ T .

Given two objects o and o′, we denote the distance between
them by d(o, o′). Depending on the applications, different met-
rics such as euclidean distance and Haversine distance could
be used for defining the distance. For ease of illustration, we
use euclidean distance in this paper. Given a set S of objects,
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TABLE II
NOTATION TABLE

we say that S is a neighbor set if the maximum pairwise
distance within S is bounded by a distance threshold d, i.e.,
maxo,o′∈Sd(o, o′) ≤ d. Given an object o and a real number r,
we denote by Disk(o, r) the disk with its center at o.λ and its
radius equal to r. Given a label set C, a set S of objects is said
to be an instance of C if S is a neighbor set and covers all labels
in C (i.e., C ⊆ {o.t|o ∈ S}). An instance of C is said to be a
row instance of C if none of its proper subsets is an instance of
C. The main notations that are used throughout the paper are
summarized in Table II.

B. Overview of Fraction-Score

Same as the participation-based approach, Fraction-Score
groups the row instances of C by the objects with a given
label t in C, i.e., all row instances involving the same object
with label t are put in the same group. Note that this is always
possible since each row instance involves exactly one object
with the label t since otherwise, a subset of it will also be a row
instance, a contradiction. To solve the over-counting problem
when instances across different groups share an object, says o′,
with a label t′ other than t, Fraction-Score assigns a fraction of
o′ to each group among all groups whose row instances share
o′. This fraction is equal to o′.w divided by the total number of
such groups. That is, Fraction-Score splits object weight o′.w
into some equal fractions and distributes these fractions to all
groups of row instances that share o′. Note that for each label
other than t in C, the object o (and essentially the corresponding
group of row instances) may receive multiple fractions since
there are multiple objects other than o in the group that might
be shared by other groups. We use an appropriate aggregation
function on these fractions which gives an aggregated one for the
object o (or equivalently the corresponding group) and then sum
the (aggregated) fractions of all groups to be the support. We
note that for each label t in C, we would have a grouping of the
row instances of C and correspondingly a support. To capture
the worst-case prevalence, we choose to use the minimum one
among all supports as the final support which would then be
normalized into [0,1] by being divided by a constant.

C. Formal Definition of Fraction-Score

We start by defining some concepts related to fraction. Let t
be the label used for grouping the row instances ofC. We denote
by Obj(t, C) the set of objects o which has the label t and there
are some row instances of C involving o. Conceptually, each
object o in Obj(t, C) corresponds to a group of row instances
of C (by label t). To illustrate, consider Fig. 2. Suppose C is
{×, ◦} and × is used for grouping the row instances of C (we
will use this setting as our running example in this section unless
otherwise specified). Then, Obj(×, C) is {B1, B2, . . ., B5} and
each object in Obj(×, C) corresponds to a group of C’s row
instances.

Consider an object o in Obj(t, C) and another object o′ with
its label different from t (i.e., o′.t �= t). If some row instances
in the group formed by o involve o′, i.e., o′ is shared by
this group, we know that o must be located in Disk(o′, d)
since otherwise o and o′ cannot be involved in the same row
instance of C. Thus, the potential number of groups that o′

could be shared by is bounded by the number of objects
which are located in Disk(o′, d) and have the label t. Let us
denote by Θ(o′, t, d) the set of objects which are located in
Disk(o′, d) and carry the label t (note that o ∈ Θ(o′, t, d)).
Motivated by the previous observation, Fraction-Score splits o′

into |Θ(o′, t, d)| equal fractions each equal to o′.w/|Θ(o′, t, d)|
and then distributes each fraction to an object in Θ(o′, t, d),
To illustrate, consider Fig. 2. We have Θ(A1,×, d) = {B1}
andΘ(A9,×, d) = {B2, B3, B4, B5}. Thus, a fraction 0.8 from
A1’s weight is distributed to B1 and a fraction 0.1 from A9’s
weight is distributed to each of B2 - B5. The intuition here is
that A1’s weight could be shared by 1 group (one with a fraction
of 0.8) and A9 by 4 groups (each with an equal fraction 0.1, i.e.,
1/4 of 0.4).

Now, we take the perspective of how object o receives frac-
tions of objects located nearby. Specifically, it would receive a
fraction of each of those objects o′ with o ∈ Θ(o′, t, d). Besides,
the amount of fraction of an object o′ that o receives, denoted
by Δobj(o, o

′), is equal to o′.w/|Θ(o′, t, d)|, i.e.,

Δobj(o, o
′) =

o′.w
|Θ(o′, t, d)| (1)

Consider the example in Fig. 2. We have Δobj(B1, A1) =
A1.w

|Θ(A1,×,d)| = 0.8, which means B1 receives a fraction 0.8 from

A1. Similarly,Δobj(B2, A9) =
A9.w

|Θ(A9,×,d)| = 0.1, which means
B2 receives a fraction 0.1 from A9. Note that this is a general-
ization of the definition of unweighted case in [8].

Object o may receive fractions from multiple objects, which
need to be aggregated. This is achieved in two steps. First,
we aggregate the fractions from those objects with the same
label using a sum function since the fraction of one object
could contribute to forming a row instance and that of another
object could also contribute to forming another row instance
within the same group (i.e., these fractions are complementary
to one another for forming row instances). Second, we bound
the aggregated fraction for a label by one unit since each group
cannot be counted as more than one unit (recall that the row
instances within each group share one single object with the
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Fig. 3. The distribution of the fractions from the perspective of objects with
label ◦, represented by the arrows with solid lines and the values in black.

label used for grouping the row instances). In summary, the
aggregated fraction of objects sharing a label t′ ∈ C − {t} that
o receives (these objects form the set Θ(o, t′, d)), denoted by
Δlabel(o, t

′), is defined as

Δlabel(o, t
′) = min

⎧⎨
⎩

∑
o′∈Θ(o,t′,d)

Δobj(o, o
′), 1

⎫⎬
⎭ (2)

Consider the example in Fig. 3 where C = {×, ◦}. We have
Δlabel(B1, ◦) = min{3, 1} = 1 since B1 receives 0.8 + 0.8 +
0.8 + 0.6 = 3 from A1 − A4. Similarly, Δlabel(B2, ◦) =
min{0.1, 1} = 0.1.

Now, we are ready to introduce the formal definition of
Fraction-Score. Instead of materializing all row instances of C
and then grouping the row instances by the objects with the
label t explicitly as existing studies did [18], [19], [28], we
only maintain the grouping conceptually. Recall that Obj(t, C)
denotes the set of objects o which have the label t and are
involved in some row instances of C. For each object o in
Obj(t, C), we aggregate the fractions it receives w.r.t. all labels
t′ in C − {t} using a min function, since it corresponds to
the worst-case scenario that one object is shared by multiple
groups. We denote the aggregated fraction o receives w.r.t. C by
ΔlabelSet(o, C), i.e.,

ΔlabelSet(o, C) = min
t′∈C−{t}

Δlabel(o, t
′) (3)

The above definition is for cases where |C| ≥ 2, and in
the case when |C| = 1, we simply define ΔlabelSet(o, C) =
o.w. Consider the example in Fig. 2 where C = {×, ◦}.
We have ΔlabelSet(B1, C) = Δlabel(B1, ◦) = 1 and ΔlabelSet

(B2, C) = Δlabel(B2, ◦) = 0.1.
We then define the support given the label t for grouping row

instances, denoted by sup(C|t), as the sum of the aggregated
fractions that the objects in Obj(t, C) receive w.r.t. C, i.e.,

sup(C|t) =
∑

o∈Obj(t,C)

ΔlabelSet(o, C) (4)

Consider the example in Fig. 3 where C = {×, ◦}. In this case,
we have Obj(×, C) = {B1, B2, . . ., B5}. Then, sup(C|×) =∑5

i=1 ΔlabelSet(Bi, C) = 1 + 4 · 0.1 = 1.4.

Note that depending on different choices of label t, we may
have different sup(C|t). To capture the worst-case prevalence,
we choose the label given which the value is the smallest.
Besides, we normalize the value to [0,1] by dividing it by
the maximum total weight Wmax among the labels in T . In
summary, the support of a given label setC, denoted by sup(C),
is defined as follows.

sup(C) =
mint∈C sup(C|t)

Wmax
(5)

Consider the example in Fig. 2 again where C = {×, ◦}. We

have sup(C) = min
{

sup(C|×)
7 , sup(C|◦)

7

}
= 1.4

7 = 0.2.

It is worth mentioning that all row instances are captured
and counted appropriately by Fraction-Score. All instances that
are involved in any row instance (and thus possibly contribut-
ing to the support of the label set) are considered, and thus
no instance is missed. Moreover, Fraction-Score satisfies the
anti-monotonicity property.

Lemma 1 (Anti-monotonicity property): Given two label sets
C ′ and C, where C ′ is a subset of C, we have sup(C ′) ≥
sup(C).

Proof: The correctness relies on the fact sup(C ′|t) ≥
sup(C|t) for any t in C ′ which could be verified by checking
the following facts against (4): (1) Obj(t, C) ⊆ Obj(t, C ′) for
any t and (2) ΔlabelSet(o, C) ≤ ΔlabelSet(o, C

′) for any o ∈
Obj(t, C) (which is based on the (3) and the fact that C ′ ⊆ C).

D. Problem Definition

We formally define the co-location pattern mining problem.
Problem (Co-location Pattern Mining.) Given a set O of

objects, each with a location, a weight and a label, a distance
threshold d for defining neighbor sets, and a user parameter
min-sup, the co-location pattern mining problem is to find all
co-location patterns, where a label set C is a co-location pattern
if sup(C) ≥ min-sup.

A closely related problem called co-location rule mining prob-
lem [8] can be answered easily once we found the co-location
patterns. Due to page limit, please refer to our previous work [8]
for the details.

Besides, we define the maximal pattern mining problem as
follows. Formally, a pattern C is a maximal pattern if there
is no superset C ′ ⊃ C that is a pattern. For example, if both
label sets C = {×} and C ′ = {×, ◦} are co-location patterns,
C must not be a maximal pattern since C ′ ⊃ C. It is noteworthy
that the closed co-location pattern mining is not suitable in our
setting, where a patternC is closed if there is no supersetC ′ ⊃ C
that is closed and sup(C) = sup(C ′), since our Fraction-Score
definition usually leads to different support values for a pattern
and its subsets.

Problem (Maximal Co-location Pattern Mining) Given a setO
of objects, each with a location, a weight and a label, a distance
threshold d for defining neighbor sets, and a user parameter
min-sup, the maximal co-location pattern mining problem is to
find all maximal co-location patterns, where a label set C is a
maximal co-location pattern if sup(C) ≥ min-sup and there is
no superset C ′ ⊃ C that is a pattern.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:18:58 UTC from IEEE Xplore.  Restrictions apply. 



1588 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 4, APRIL 2024

IV. CO-LOCATION PATTERN MINING ALGORITHMS

Section IV-A presents an algorithm for mining the co-location
patterns based on Fraction-Score. Section IV-B details the sup-
port computation algorithms. Section IV-C discusses the prob-
lem of deciding whether an object is involved in any row instance
of a given label set, and Section IV-D presents a filtering-and-
verification approach for it.

A. An Apriori-Like Algorithm

Since the fraction-based prevalence measure satisfies the
anti-monotonicity property (Lemma 1), we design an Apriori-
like algorithm for computing all co-location patterns from O.
The major idea is to iteratively construct co-location pattern
candidates and then verify them in an ascending order of
their sizes. Specifically, we use Ck (k ≥ 1) to denote the set
of co-location pattern candidates with the size of k and Lk

(k ≥ 1) the set of confirmed co-location patterns with the size
of k. The algorithm proceeds iteratively. At the first iteration,
it computes C1 as {{t}|t ∈ T} and L1 as {{t}|sup({t}) ≥
min-sup, t ∈ T}. At the kth iteration (k ≥ 2), it generates
Ck as {L ∪ L′|L ∈ Lk−1, L′ ∈ Lk−1, |L ∪ L′| = k} and Lk as
{C|C ∈ Ck, sup(C) ≥ min-sup}. Here, Ck is generated by
combining any two patterns in Lk−1 only, and the rationale is
that by the anti-monotonicity property, it cannot happen that an
object set is in Lk while one of its subsets is not in Lk−1.

As could be noticed, a key procedure involved in the above
Apriori-like algorithm is to compute for a given label set C its
support, i.e., sup(C). Different from the case on transaction
databases [1], where the procedure could be finished by scan-
ning the transactions once and counting how many transactions
involve the label set, this procedure is non-trivial in our scenario.
Besides, none of the algorithms proposed for this procedure in
existing studies on mining co-location patterns [18], [19], [26],
[28] could be used for the procedure based on Fraction-Score.
First, the procedure based on the partitioning-based approach is
the same as that on transaction databases and thus not applicable,
Second, that based on the construction-based approach [26] is far
from being applicable here since it is based on some heuristics
only and involves no concepts of fraction. Third, those based on
the enumeration-based and participation-based approaches [18],
[19], [28] all materialize and count all row instances of a given
label set, while the support by Fraction-Score does not rely on
counting row instances of a given label set.

We note here that our main technical focus in this paper is
on computing the supports defined by Fraction-Score, which
is orthogonal to existing studies aiming for faster and more
scalable frequent pattern mining techniques [30], [32]. In fact,
these techniques could be easily adapted to our problem since the
supports defined by Fraction-Score satisfy the anti-monotonicity
property.

B. An Algorithm for Computing the Support

Our algorithm consists of two procedures, namely Fraction-
Computation which collects the information of Δlabel(o, t) for
all objects o’s and all labels t’s and SupportComputation which

Algorithm 1: FractionComputation(O, T , d, min-sup).
Require: an object set O, a label set T , a distance
threshold d and a support threshold min-sup
Ensure: the aggregated fraction each object o ∈ O
receives w.r.t. each t ∈ T , i.e., Δlabel(o, t)
1: for object o in O do
2: for label t in T do
3: |Neigh(o, t, d)| ← 0
4: Δlabel(o, t)← 0
5: for object o in O do
6: for object o′ in Disk(o, d) do
7: |Neigh(o, o′.t, d)| += 1
8: for object o′ in Disk(o, d) do
9: Δobj(o

′, o)← o.w/|Neigh(o, o′.t, d)|
10: Δlabel(o

′, o.t) += Δobj(o
′, o)

11: if Δlabel(o
′, o.t) > 1 then

12: Δlabel(o
′, o.t)← 1

computes the support of a given label set C based on these
information.

FractionComputation: Algorithm 1 presents the Frac-
tionComputation. First, it initializes |Neigh(o, t, d)| and
Δlabel(o, t) for each objecto ∈ O and each label t ∈ T as 0 (lines
1-4). Second, for each object o ∈ O, it proceeds as follows. It
counts the number of objects in Disk(o, d) which have a label t
(lines 6-7). Then, it distributes a fraction o.w/|Neigh(o, o′.t, d)|
of o to each object o′ in Disk(o, d) (line 9), which is general-
ized from the unweighted case in [8] that distributes a fraction
1/|Neigh(o, o′.t, d)|. It then updates the fraction o′ receives
w.r.t. o.t (line 10). Finally, it bounds the fraction an object
receives w.r.t. a label by 1 (lines 11-12). A straightforward
implementation of this algorithm would occupy O(|O| · |T |)
memory for storing the information Δlabel(o, t). For better
storage efficiency, we have the following two strategies. First,
we do not need to store the fractions of those objects o ∈ Ot

that t have a total weight Wt ≤ min-sup/Wmax, since these
labels t cannot be involved in any co-location pattern. This is
a new strategy that cannot be found in [8]. Second, we adopt a
maintenance-on-demand strategy, i.e., only those Δlabel(o, t)’s
with t ∈ ⋃

o′∈Disk(o,d){o′.t} are computed, given the fact that
the objects within the neighborhood of an object usually involve
not that many labels. Based on these strategies, the memory
usage for storing the fractions would be much smaller than
O(|O| · |T |).

SupportComputation: Algorithm 2 presents the SupportCom-
putation procedure. First, it initializes sup(C) to be infinity (line
1). Then, it tries to use different labels in C for grouping the row
instances of C conceptually (line 2). For a specific label t, it
first initializes sup(C|t) as 0 (line 3), and then for each object
o ∈ Ot which is involved in some row instances of C, it adds
up the fraction it receives w.r.t. C, which is computed by the
“FractionAggregation” procedure (whose details are presented
in Algorithm 3), as sup(C|t). To speed up the additions, if
sup(C|t) > sup(C), it terminates the search on t and proceeds
with the next label, as sup(C|t) cannot contribute to a smaller
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Algorithm 2: SupportComputation(C, O).
Require: a label set C and an object set O
Ensure: the support of C, i.e., sup(C)

1: sup(C)←∞
2: for label t in C do
3: sup(C|t)← 0
4: for object o ∈ Ot do
5: if there is a row instance of C which involves o then
6: sup(C|t) += FractionAggregation(O, C, o)
7: if sup(C|t) > sup(C) then break;
8: if sup(C|t) ≤ sup(C) then sup(C)← sup(C|t)
9: Return sup(C)

Algorithm 3: FractionAggregation(O, C, o).
Require: an object set O, a label set C, and an object o in
O
Ensure: the aggregated fraction object o receives w.r.t. C,

i.e., ΔlabelSet(o, C)
1: ΔlabelSet(o, C)←∞
2: for label t in C − {o.t} do
3: if Δlabel(o, t) < ΔlabelSet(o, C) then
4: ΔlabelSet(o, C)← Δlabel(o, t)
5: Return ΔlabelSet(o, C)

sup(C) (lines 4-7). Finally, it returns the smallest sup(C|t) for
a label t ∈ C as sup(C) (lines 8-9).

In practice, we can speed up the procedure if we only need
to compute the support of label sets that have at least min-sup
as follows. Specifically, we keep track of an upper bound of
sup(C|t), denoted by sup(C|t)UB , by assuming that there is a
row instance of C which involves the remaining objects o ∈ Ot.
If sup(C|t)UB < min-sup, we know thatC cannot be a pattern.

The “FractionAggregation” procedure, which for an object o
in O, computes the fraction it receives w.r.t. a label set C, i.e.,
ΔlabelSet(o, C), is presented in Algorithm 3. First, it initializes
the fraction o receives w.r.t. C as ∞ (line 1). Second, for
each label t in C − {o.t} (line 2), it updates ΔlabelSet(o, C)
if Δlabel(o, t) < ΔlabelSet(o, C) (lines 3-4). Finally, it returns
ΔlabelSet(o, C) (line 5).

C. OIRI: Is Object o Involved in a Row Instance of C

There is one issue in Algorithm 2 that remains unsolved,
namely, the step to decide whether an object o is involved in
any row instance of a given label set C (line 5 in Algorithm
2). We denote this problem by OIRI. Unfortunately, the OIRI
problem is NP-hard, which we present in the following theorem.

Theorem 1: The OIRI problem, which is to decide for given
label set C and an object o whether there exists a row instance
of C involving o is NP-hard.

Proof: The proof can be found in Appendix B, available
online.

D. A Filtering-and-Verification Approach for OIRI

A naive method for OIRI is to enumerate all row instances
of C and check whether there exists one involving object o.
However, as has been known in existing studies [44], [45], [46],
the procedure of materializing all row instances of a given label
set is very expensive. In this paper, we develop a filtering-and-
verification approach for OIRI, which involves two phases,
namely a filtering phase and a verification phase. The filtering
phase is to solve OIRI for easy cases and the verification phase
for all remaining cases. The details are introduced as follows.

1) Filtering Phase: The filtering phase is motivated by the
fact that the remaining issue OIRI could be easy to solve with
some information re-used in certain cases:
� Filter 1: (For |C| = 2 only.) Let t′ denote the label in C \
{o.t}. We check ifΔlabel(o, t

′) > 0. If so, we return “yes”.
Otherwise, we return “no” (since Δlabel(o, t

′) > 0 if and
only if o is involved in a row instance of C). Note that
compared to [8], this filter is newly included.

� Filter 2: We check if there exists a row instance S of
C, which was found previously when answering another
OIRI instance for a different object o′ and label setC, such
that o is involved in S. If so, we return “yes”. To support
this checking, we could keep track of all those objects that
are involved in row instances that have been found.

� Filter 3: We check if all objects in Disk(o, d) together
carry all labels inC. If no, we return “no” (since all possible
sets of objects inDisk(o, d) correspond to subsets of the set
containing all objects in Disk(o, d) and thus, they cannot
carry all labels in C either).

� Filter 4: We check if all objects in Disk(o, d/2) together
carry all labels in C − {o.t}. If so, we return “yes” (since
there exists a set S of objects in Disk(o, d/2) including o
that has maxo,o′∈S d(o, o′) ≤ d and corresponds to a row
instance of C).

2) Verification Phase: We propose three methods for verifi-
cation phase as follows.

Dia-CoSKQ-Adapt: This method is based on the close rela-
tionship between OIRI and Dia-CoSKQ. In the proof of the
NP-hardness of OIRI, we show that any decision problem in-
stance of Dia-CoSKQ could be transformed to a OIRI problem
instance. Here, we further show that an arbitrary instance OIRI
could be answered by solving a corresponding optimization
problem instance of Dia-CoSKQ. Specifically, given an instance
of OIRI which involves a set O of spatial objects, a set C of
labels, a real number d, and one object o in O, we consider a
Dia-CoSKQ problem which is to find a set S of POIs from a
given set D of POIs which covers all query keywords of a given
query q and has the diameter of S ∪ {q} the smallest, where the
set D of POIs includes one POI for each object o in Disk(o, d)
with its location as o.λ and its set of keywords as {o.t} and the
query q has its location at o.λ and its set of query keywords as
C − {o.t}. It could be verified that if the diameter ofS ∪ {q} is at
most d, the answer of the OIRI is “yes”; otherwise, the answer
is “no”. Based upon this, we can utilize the exact algorithm
proposed in [24] for OIRI. Note that we could do slightly better
by adopting an early-stopping strategy that whenever a set S
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with the diameter of S ∪ {q} at most d is found, it returns “yes”
immediately.

Combinatorial-Search: We notice that enumerating all row
instances ofC is more than necessary for answering the question
of OIRI. In fact, it would be sufficient to find one row instance
ofC which involves o if it exists to answer the question. Besides,
there are two constraints that could be utilized for refining the
search space. First, it is safe to focus the search on those objects
which are near o, specifically, those in Disk(o, d), since those
objects outside this disk have their distances from o larger than
d and cannot be involved in the same row instance together
with o. Second, it is enough to consider those object sets that
only contain objects corresponding to different labels inC, since
other object sets either do not carry the labels inC or have proper
subsets which carry all the labels in C. Based upon the above
two constraints, we design an algorithm for searching a possible
row instance of C involving o if there exists one as follows.
� Step 1: it finds all objects in Disk(o, d) by performing a

range query with its center at o and its radius of d.
� Step 2: it prunes the objects that already returned “no” as

the answer in the previous iterations for the same label set
C. Note that this step is new as compared to [8].

� Step 3: it indexes the remaining objects using an inverted
index which stores the objects using different lists each
corresponding to a label and contains all objects with this
label.

� Step 4: it tries all combinations of objects from those lists
corresponding to the labels inC − {o.t} and for each com-
bination S which contains |C − {o.t}| objects it checks
whether the maximum pairwise distance of S is at most d.
If such a combination is found, it stops by returning “yes”;
otherwise, it returns “no”.

Optimization-Search: In Combinatorial-Search, there is a step
which is to enumerate all combinations of some objects in
Disk(o, d) indexed by their labels in C ′ = C − {o.t} and see
whether there exists a combination with the diameter at most
the value d. An alternative for this step is to compute the set
of objects in Disk(o, d) which covers all labels in C ′ and has
the smallest diameter and then compare this diameter against
d to answer the question, i.e., if this diameter is at most d, it
returns “yes”, and otherwise, it answers “no”. In the literature,
the problem of finding a set objects which covers a given set
of labels/keywords and has the smallest diameter has been
studied [15], [47], [48] and is called the m-closest keywords
(mCK) problem. Based upon this, we can utilize the exact
algorithm proposed in [15] for mCK to do this step, and the
resulting method corresponds to Optimization-Search. Similar
to the Dia-CoSKQ-Adapt method, an early-stopping strategy
could be adopted here.

3) Time Complexity Analysis: Since the verification phase
dominates the time cost of the approach, we focus on the
verification phase only. The complexity of Dia-CoSKQ-Adapt is
O(n1 · (Crange + k

|C|−2
3 · |C|2)) [24], where n1 (n1 << |O|)

is the number of objects that carry a label t ∈ C − {o.t},
k3 (k3 << |O|) is the number of objects shared by results
of range queries. The complexity of Combinatorial-Search is

O(Crange + k1 + k
|C|
2 ), where Crange is the cost of performing

the range query in Step 1, k1 (k1 << |O|) is the number of ob-
jects returned by the range query in Step 1, and k2 (k2 << |O|)
is maximum number of objects in an inverted list constructed in
Step 3. While the worst-case time complexity is exponential, the
algorithm is feasible in practice with the help of index structures
such as inverted lists and also because of the problem nature (e.g.,
the exponent |C| is small in most cases), and this will be verified
by the experiments. The complexity of Optimization-Search is
O(Crange + k1 + n1 · k|C|−21 ) [15].

V. MAXIMAL CO-LOCATION PATTERN MINING

Section V-A presents an algorithm for mining the maximal co-
location patterns based on Fraction-Score. Section V-B details
the supports computation algorithm. Section V-C analyzes the
time complexity.

A. An Algorithm for Finding the Maximal Patterns

A straightforward solution to find all maximal patterns is to
first find all co-location patterns using the algorithms proposed
in Section IV, and then check the maximality of each pattern one
by one. This method, however, incurs unnecessary computations
as most of the patterns are not maximal and will not be in the
result.

To this end, we propose an algorithm that generates the
candidate maximal patterns and checks the maximality of each
candidate, so it avoids those unnecessary computations as much
as possible. It consists of the following steps.
� Step 1. (Finding size-2 patterns): We find the size-2 pat-

terns using the algorithms discussed in Section IV, denoted
by L2.

� Step 2. (Generating Candidate Maximal Patterns): In-
spired by [38], we construct a graphG fromL2, and find the
maximal clique to generate the candidate maximal patterns.
In particular, each label t correspond to a vertex v in G. If
the labels form a size-2 pattern (i.e., can be found in L2),
each pair of vertices is connected by an edge in G. We then
find the set CMP of all maximal cliques in G by utilizing
the Bron-Kerbosch algorithm [5].
Different from [38] that generate the candidate patterns
from size-2 instance table, we do not need to materialize
the instances.

� Step 3. (Finding Maximal Patterns): We find the maximal
patterns MP from the candidate set CMP . The major
idea is to iteratively verify the candidate patterns in a
descending order of their sizes. If a candidate pattern C
is not maximal (i.e., sup(C) < min-sup), all its subsets
C ′ with |C ′| = |C| − 1 are constructed as the candidate
patterns to be checked. The iterations stop when |C ′| = m.

Algorithm 4 shows the maximal pattern mining algorithm.
It takes a set O of objects, a label set C as inputs, and finds
all maximal patterns and stores in MP . Specifically, it first
finds all size-2 patterns, denoted by L2. Second, it constructs
a graph by L2, and find the set of maximal cliques in G to be
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Algorithm 4: MaximalPatternMining(O, T ).
Require: an object set O, a label set T
Ensure: the set of maximal patterns MP

1: MP ← ∅
2: L2 ← Patterns with size-2 � Step 1
3: if L2 = ∅ then return ∅
4: G← Construct a graph by L2 � Step 2
5: CMP ← Find the set of maximal cliques in G
6: j ← |T |
7: while j ≥ 2 do � Step 3
8: for each candidate C ∈ CMP with |C| = j do
9: if C is a subset of R ∈MP then continue;

10: sup(C)← SupportComputationMaximal(C,O)
11: if sup(C) > min-sup then
12: MP ←MP ∪ {C}
13: else
14: for each label set C ′ ⊂ C with |C ′| = j − 1 do
15: if C ′ �∈ CMP then CMP ← CMP ∪ {C ′}
16: j ← j − 1
return MP

the set of candidate maximal patterns CMP (lines 4-5). Third,
it iteratively checks each label set C in CMP in descending
order of their sizes j, where 2 ≤ j ≤ maxC∈CMP |C| (lines
7-16). Consider an iteration it processes size j and label set
C. If C is a subset of any pattern in the result, we can safely
skip C. Otherwise, it invokes the procedure “SupportCompu-
tationMaximal” (to be discussed below), which takes a label
set C and an object set O as inputs, and computes the support
sup(C). If sup(C) > min-sup, C is added to MP . Otherwise,
it constructs the subsets of C, denoted by C ′, with |C ′| = j − 1,
and inserts C ′ into CMP if C ′ does not exist in CMP . The
iterations end when all candidates in CMP have been iterated.
Finally, it returns MP as the result.

Theorem 2: The MaximalPatternMining algorithm correctly
finds all maximal co-location patterns.

Proof: The completeness can be proven as follows. It is easy
to see that all maximal patterns with size-2 can be found in Step
1. For maximal patterns with size larger than 2, we show that they
must exists in CMP . Specifically, we prove it by contradiction.
Suppose there exists a maximal pattern C not in CMP . Then,
either (1) there exists a superset of C is in CMP , or (2) there
exists a subset C ′ ⊂ C with |C ′| = 2 that is not a pattern. In the
former, C is not a maximal pattern by definition. In the latter,
C can not be a pattern by the anti-monotonicty property. Both
cases lead to contradictions. Thus, all maximal patterns C are in
CMP . The correctness is guaranteed as the algorithm calculates
the support of each candidate patterns.

B. Algorithm SupportComputationMaximal

In fact, since the definition of sup(C) does not change, we
can reuse “SupportComputation” procedure (i.e., Algorithm 2)
to calculate the support value of a label set C.

Nevertheless, to further improve the performance, we include
an additional filter in the filtering phase of “SupportComputa-
tion”. The resulting procedure is called “SupportComputation-
Maximal”. In particular, the additional filter takes advantage of

TABLE III
DATASETS USED IN THE EXPERIMENTS

the top-down approach in our maximal pattern mining algorithm
to reuse information from previous checking. It is inserted after
Filter 2, and is as follows.

Filter 2’: We check if there exists a row instance of C ′′ ⊃ C
involving o for the label set C ′′ that satisfies |C ′′| = |C|+ 1.
If so, we return “yes” (since o must also be involved in a row
instance ofC). To support this checking, we maintain the objects
involved in the row instances of each label set with size (k + 1)
when we process the label set with size k.

C. Time Complexity Analysis

It is easy to see that the time complexity of SupportCompu-
tationMaximal is same as that of SupportComputation, denoted
by θ. We analyze the time complexity of Algorithm 4 as follows.
The complexity of MaximalPatternMining is dominated by Step
3. The complexity is O((|L2|+ |CMP |) · θ), since it need to
compute the supports of at most (|L2|+ |CMP |) label sets.

VI. EMPIRICAL STUDIES

Section VI-A details the experimental set-up. Section VI-B
reports the results on co-location pattern mining, and Section
VI-C presents the results on maximal pattern mining.

A. Experimental Set-up

Datasets: We use both real and synthetic datasets, as shown
in Table III. The first real dataset U.K. is the set of POIs of
the United Kingdom.2 Each POI has a textual description (e.g.,
supermarket, bank, cinema) and a GPS location. It consists of
182,334 objects with 36 types (i.e., labels). The second real
dataset NeuroSynth [39] was developed as an automated brain
mapping framework that uses text mining to generate a large
database of mappings between neural and cognitive states. The
database contains a mapping between terms (e.g., “depression”
and “anxiety”) and the activated locations in the brain (3D
coordinates in the MNI stereotaxic space, which we mapped to
3D euclidean space). It contains 507,891 locations (i.e., objects)
with 3,229 terms (i.e., labels). The object weights, obtained from
text-mining, are relevance scores between the labels and the
locations.

The synthetic datasets are generated by following existing
studies [18], [28] as follows. Step 1 (Label Set Generation): We
generate Nco_loc subsets of labels one by one, and for each one,
we construct it by sampling a certain number of labels randomly
where the number follows a Poisson distribution with mean λ1.
We then construct moverlap maximal co-location patterns (i.e.,
label sets) from each set of labels constructed by augmenting it

2http://www.pocketgpsworld.com
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TABLE IV
PARAMETERS AND SETTINGS

with one more random label. Step 2 (Instance Construction): For
each maximal co-location pattern, we construct a certain number
of instances where the number follows a Poisson distribution
with mean λ2, each by creating mclump objects for each label
in this instance and putting them inside a random grid cell
with size d× d from the spatial frame of size D ×D. Step 3
(Noise Injection): We generate (rnoisy_label × n1) noisy labels,
where n1 is equal to the number of non-noisy labels (i.e., those
generated in Step 1). We then construct (rnoisy_num × n2) noisy
instances based on the noisy labels similarly as we did based on
non-noisy labels (i.e., via Step 2), and put each noisy instance at
a random grid cell, where n2 is equal to the number of non-noisy
instances (i.e., those generated in Step 2). We set Nco_loc, λ1,
D, d, rnoisy_label, and rnoisy_num as 20, 5, 106, 10, 0.5, and
0.5, respectively. By following existing studies [18], [28], we
set the other parameters as shown in Table IV (with the default
ones in bold). Note that the numbers of objects and labels in
the synthetic datasets depend on the parameter settings. Under
the default settings, the dataset contains 94,028 objects and 462
labels. In addition to the unweighted datasets, we further assign
weights to generate weighted datasets. Specifically, we assign
each object a weight picked uniformly at random in the range
[0,1] to form the weighted datasets.

Algorithms: For the co-location pattern mining problem, we
test our Filtering-and-Verification approach. For comparison, we
adapt the Join-less algorithm from [44] for two reasons. First, it
is the state-of-the-art algorithm for co-location pattern mining.
Second, though originally designed for participation-based mea-
sure, it involves procedures of computing the row instances of
given label set, which is shared by our Fraction-Score measure.
Specifically, the adapted algorithm works as follows. First, it
generates all star neighborhoods. Second, for each label set
C, it finds all the row instances from the corresponding star
neighborhoods. Third, to check whether an object o is involved
in C, it checks whether o exists in one of the row instances of
C.

For the maximal pattern mining problem, we test our Max-
imalPatternMining algorithm. For comparison, we adapt the
SGCT algorithm from [38], which is the state-of-the-art algo-
rithm for maximal co-location pattern mining. Similar to the
above, though it is originally designed for participation-based
measure, we adapt it for our Fraction-Score measure. Specifi-
cally, the adapted algorithm works as follows. First, it finds the
size-2 patterns and candidate maximal patterns. Second, for each
candidate C, it generates all row instances and stores them in a
condensed instance tree. Third, to check whether an object o is
involved in C, it checks whether o exists in the tree.

Fig. 4. Support value comparison (unweighted synthetic).

All algorithms were implemented in C/C++ and are memory-
based. All experiments were conducted on a Linux platform with
a 2.66 GHz machine and 32 GB RAM.

B. Experiment Results on Co-Location Pattern Mining

1) Effectiveness Results on Synthetic Datasets: We compare
Fraction-Score with the other approaches in terms of how close
the supports measured are from the ground truths. Note that we
did not include the enumeration-based approach here since it is
used for defining the confidence of a rule candidate only as men-
tioned in Section II. Besides, we use the unweighted synthetic
datasets only for the study here since it allows the flexibility to
generate the datasets where the ground-truth supports could be
estimated accurately. For this particular experiment, we set the
parameter mclump, i.e., the number objects to be generated for a
label, to be a random number from a uniform distribution of [1,5]
instead of a fixed number as we do for other experiments, and
the purpose here is to test the robustness of support measures.
Specifically, we estimate the ground-truth support of a pattern
as the maximum number of disjoint row instances of the pattern.
Based on the way we generate the synthetic datasets, this is close
to the number of instances of a label (which follows Pois(λ2))
with the smallest mclump values among the labels in the pattern.
For normalization, we then divide it by the maximum number
of objects that have a specific label in T .

Fig. 4 shows the results of patterns with top-10 supports,
where the x-axis corresponds to the patterns (in a descending
order of their supports) and the y-axis shows the actual supports.
According to these results, the supports by Fraction-Score are
closest to the ground-truths among all approaches. This could be
explained by the fact that the row instances that overlap with each
other are not counted multiple times when collecting ground-
truths, which is reasonable, while the participation-based ap-
proach would count those row instances which share some
objects with their labels different from the one used for grouping
the row instances as if they share nothing. The partitioning-based
approach under-measures the supports since it misses some of
the row instances, and the construction-based approach misses
some of the row instances due to its heuristic nature.

We also studied how the fractions in Fraction-Score are dis-
tributed. The results showed that only around one-fifth of the
patterns have their fractions equal to 1. Due to page limit, please
refer to our previous work [8].
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TABLE V
PATTERNS IN U.K. DATASET

TABLE VI
PATTERNS IN NEUROSYNTH DATASET

2) Effectiveness Results on the U.K. Dataset: We study the
effectiveness of different support measures on the U.K. dataset.
Specifically, we ran our algorithm and found the co-location
patterns with top-5 supports (with the setting of d = 1000 m).
Table V presents the patterns, each with its supports computed
by other approaches also shown. According to the results, we
know that the supports by the participation-based approach are
very close to 1 (which is mainly because this measure has a
normalization step of dividing by the number of occurrences of
the label but not the maximum among all labels as Fraction-
Score does) and the supports by the partitioning-based and
construction-based approaches are slightly smaller than those by
Fraction-Score (which is mainly because the former ones miss
some row instances while Fraction-Score captures all instances
appropriately).

We also visualized the objects involving the labels in two
different patterns. The distributions shown in the visualizations
are consistent with our computation results. Due to page limit,
please refer to [8].

3) Effectiveness Results on the NeuroSynth Dataset: We fur-
ther study the effectiveness of our Fraction-Score on the Neu-
roSynth dataset. Specifically, in the 3D space with x, y, z ∈
[−100, 100] mapped from the MNI space, we found the co-
location patterns by setting d = 20. We selected four interesting
patterns, and computed their supports with different approaches.
Note that the baseline approaches originally do not support
weighted dataset, and we adapted them to handle the case with
weights. For the adaption details, please refer to Appendix A,
available online.

The results are shown in Table VI. According to the results, we
found that autism spectrum disorder (ASD) is often correlated to
pain, speech and working memory (WM), which conforms with
the findings in existing studies [16], [34]. We found that ASD
and Parkinson’s disease (PD) have similar activated locations
in the brain, which is also an ongoing research direction in
the medical field [14], [17]. In addition, we have observations
on the supports by other approaches similar to above. The
supports by the participation-based approach are very close to
1, which decreased the ability to distinguish patterns from label

Fig. 5. Effectiveness of the filtering phase (unweighted synthetic) .

sets. The supports by partitioning-based and construction-based
approaches are smaller than those by Fraction-Score.

4) Results on the Filtering-and-Verification Approach: Fil-
tering phase: In this part, we show the results reflecting the
effectiveness of the filtering phase. Consider Fig. 5(a), where
we vary min-sup and measure the percentage of OIRI instances
that are found by each of the four filters in the filtering phase
and also that by the verification phase. These results show that
more than 80% of OIRI instances could be found in the filtering
phase, and thus less than 20% OIRI instances would be left in
the verification phase. Besides, we notice that when min-sup
increases, the filtering powers of Filters 1 and 2 increase while
that of Filter 3 decreases. The former is because the number
of large co-location patterns decreases when min-sup increases
and as a consequence, it is more likely that size-2 patterns have
a larger portion, which benefits Filter 1, and it is easier to find a
row instance of a label set, which benefits Filter 2. The latter is
because when min-sup increases, it becomes rare for Disk(o, d)
to not cover all labels of a label set (which is of a small size) and
thus the filtering power of Filter 3 decreases. The results on the
other datasets provide similar clues and thus they are omitted.

Verification Phase: We conducted experiments on both real
and synthetic datasets for studying the performance of the three
methods proposed for the verification phase. The results can
be found in Appendix C, available online due to page limit.
According to the results, Combinatorial-Search runs the fastest
consistently under all settings. This could probably explained
by the fact that the exact algorithms employed in Dia-CoSKQ-
Adapt and Optimization-Search were originally designed for
some optimization problem (i.e., Dia-CoSKQ and mCK prob-
lems) whileOIRI is a decision problem. These exact algorithms
involve extra steps for finding an optimal solution and thus they
take more time. Therefore, we focus on Combinatorial-Search
in the verification phase for the remaining experiments. With
Combinatorial-Search used in the verification phase, the break-
down of the running time is shown in Fig. 5(b).

We also compared the overall improvement of the Filtering-
and-Verification approach to the one proposed in [8]. The results
can be found in Appendix D, available online. According to
the results, the updated Filtering-and-Verification algorithm runs
faster and uses fewer memory in most cases, which demonstrates
the effectiveness of the additional filtering and pruning steps and
the strategy to reduce memory usage.

5) Filtering-and-Verification vs State-of-the-Art: In this part,
we compare the performance between Filtering-and-Verification
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Fig. 6. Effect of min-sup (U.K.).

Fig. 7. Effect of min-sup (NeuroSynth).

and Join-less [44], in terms of running time and memory con-
sumption.

Effect of min-sup: Fig. 6 shows the results on the real dataset
where we vary min-sup. According to Fig. 6(a), the running
times of both algorithms decrease when min-sup increases. This
is because fewer co-location patterns would be found when
min-sup increases. Besides, our Filtering-and-Verification ap-
proach runs much faster than the Join-less method, which could
be explained by the fact that the former only needs to check
whether some objects are involved in any of the row instances
while the latter needs to find all row instances of each co-location
pattern. According to Fig. 6(b), our Filtering-and-Verification
approach consumes significantly less memory than the Join-less
method, which is because the former only maintains the fractions
received by each object for each label while the latter needs to
store all row instances of each co-location pattern.

Fig. 7 shows the results on the NeuroSynth dataset where we
vary min-sup, where the results for Join-less with min-sup ≤
0.4 are not shown because it takes more than 1 d to run.
According to Fig. 7(a), the running times of both algorithms de-
crease when min-sup increases. Our Filtering-and-Verification
approach runs faster than the Join-less method, which is because
we only check if the objects are involved in any row instances,
while Join-less finds all row instance for each pattern. According
to Fig. 7(b), our Filtering-and-Verification approach consumes
less memory than the Join-less method, since the Join-less
method needs to store all row instances of the patterns. The
results on the synthetic datasets, where we vary other parameter
settings, can be found in Appendix E, available online.

6) Scalability Test: We further generated 5 synthetic datasets
with sizes {180 k, 360 k, 540 k, 720 k, 900 k} from the real
dataset for scalability test. According to the results, our Filtering-
and-Verification method could scale up on large datasets of size
1 M, while the Join-less method cannot scale to large datasets,

Fig. 8. Effect of min-sup on maximal pattern mining (weighted synthetic).

Fig. 9. Effect of min-sup on maximal pattern mining (NeuroSynth).

e.g., it ran for more than 2 days on dataset of size about 180 k.
The results can be found in Appendix F, available online.

C. Experiment Results on Maximal Pattern Mining

In this part, we compare the performance between our Max-
imalPatternMining algorithm and SGCT [38], in both running
time and memory consumption.

Fig. 8 shows the results on the weighted synthetic dataset
where we vary min-sup. According to Fig. 8(a), the runnning
times of both algorithms decrease when min-sup increases. This
is because fewer co-location pattern exists and thus the sizes
of the maximal patterns would decrease. Besides, our Max-
imalPatternMining runs much faster than the SGCT method,
which is because (1) our two-phases approaches prune more
non-promising candidates, and (2) we do not need to generate
and store all row instances, while SGCT materializes all of them.
According to Fig. 8(b), the two algorithms have similar memory
usage.

Fig. 9 shows the results on the NeuroSynth dataset, where
the results for SGCT with min-sup < 0.4 are not shown be-
cause it takes more than 1 d to run. According to Fig. 9(a),
our MaximalPatternMining runs consistently faster than SGCT,
which is because of MaximalPatternMining has more effective
prunings to reduce the number of candidate patterns. The results
for the unweighted synthetic and U.K. datasets can be found in
Appendix G, available online.

Summary of Results: Our Fraction-Score metric measures the
prevalence of co-location pattern candidates more properly than
existing ones. Three filters in the filtering phase are effective
(e.g., they filter more than 80% OIRI instances), and among
three methods in the verification phase, Combinatorial-Search
works the best. Besides, our Filtering-and-Verification approach
works consistently better than the state-of-the-art in terms of
both running time and memory consumption. Moreover, our
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MaximalPatternMining algorithm runs faster than the state-of-
the-art.

VII. CONCLUSION

In this paper, we studied the co-location pattern mining
problem. We showed the weaknesses of the existing support
measures, and proposed Fraction-Score which quantifies the
prevalence properly. We proposed an Apriori-like algorithm for
mining co-location patterns based on Fraction-Score. We devel-
oped a filtering-and-verification algorithm for an operation of
deciding whether an object is involved in a row instance of a label
set, which is proved to be NP-hard. We also studied the maximal
co-location pattern mining problem based on Fraction-Score,
and develop an efficient method for the mining task. We con-
ducted experiments on both real and synthetic datasets, which
verified that Fraction-Score measures the prevalence better than
existing approaches and our algorithms run significantly faster
than the adaption of state-of-the-arts.

In the future, we plan to study the co-location pattern mining
problem on spatio-temporal data, where a time dimension is
taken into consideration. This problem is interesting since some
patterns occur only at certain time stamps. It is also interesting
to develop parallel algorithms on GPU for mining co-location
patterns based on Fraction-Score.
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