This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

On Efficient Shortest Path Computation on
Terrain Surface: A Direction-Oriented Approach

Victor Junqiu Wei#, Raymond Chi-Wing Wong#, Cheng Long* David M. Mount’, Hanan Samet!
#The Hong Kong University of Science and Technology, Hong Kong
INanyang Technological University, Singapore
fUniversity of Maryland, USA
#victorwei@ust.hk, #raywong@cse.ust.hk, *c.long@ntu.edu.sg, {mount,hjs}@umd.edu

Abstract—With the advance of the geo-positioning technology, the terrain surface data has become increasingly popular and has
drawn much research attention from both academia and industry. Answering a shortest-path query for a given source and a given
destination on a terrain surface is a fundamental problem and has many applications including Geographical Information System and
3D virtual games. We observe that all existing exact algorithms are only aware of the position of the source point and is unaware of the
information of the destination point. Motivated by this, in this paper, we propose an efficient algorithm, namely direction-oriented
algorithm (DIO Algorithm), for answering shortest-path queries on a terrain surface. The algorithm properly guides the search along a
direction towards the destination instead of blindly searching all possible directions from the source point. To this end, we convert the
geodesic shortest path problem to a shortest obstacle-free Euclidean path problem in the 2D planar unfolding of the terrain surface.
Based on this conversion, we derive for each part of the terrain surface a lower bound on the length of the shortest path from the
source to the destination passing through the part with a novel method. The lower bounds provide useful information that can be used
to decide the visiting order of the parts on the terrain surface and guides the search of finding the destination quickly. Our experiments

verified that our algorithm runs faster than the state-of-the-art by more than one order of magnitude.

Index Terms—shortest path queries, terrain surfaces, spatial database, location-based services

1 INTRODUCTION

Due to the advance of the geo-positioning and computer
technologies, terrain surfaces have emerged as an important
data object and has attracted much attention from both
academia and industry [1]-[8]. It has been used in many
applications such as Microsoft’s Bing Maps and Google
Earth in industry. Terrain surface data is usually represented
by a set of faces, each of which corresponds to a triangle.
Each face (or triangle) has three line segments called edges,
which are connected with each other at three vertices. An
example of a piece of terrain surface data is shown in
Figure 1, where we have 22 faces, 35 edges and 14 vertices.

The geodesic distance between two given locations (or
points) on the surface of the terrain is the length of the
shortest path/route from one point to the other traveling
along the surface. For example, in Figure 1, s and ¢ are two
points on the terrain surface and the shortest path from
point s to point ¢ is shown as a sequence of dashed line
segments and denoted by GP. In Figure 1, the Euclidean
distance between point s and point ¢, denoted by E P, is the
length of the straight line segment between these two points.
Note that the geodesic distance is usually quite different
from the Euclidean distance. According to [1], the ratio of
the geodesic shortest distance and the Euclidean distance is
up to 300% on the real terrain datasets in their study. Clearly,
GP is much larger than E'P in Figure 1.

Answering shortest-path queries on the terrain surface
is a common building block in many algorithms and has
a wide range of applications. Here, we list a few of them.

(1) In Geographic Information System (GIS), hikers would
like to find the shortest path on the terrain surface to design
a proper hiking trail [9]. In addition, many vehicles (e.g.,
Google Map camera cars and military vehicles) have their
route planning based on the shortest path query on the
terrain surface [10], [11]. (2) In some online 3D virtual games
such as INGRESS and PokemonGo, the shortest path on the
terrain surface provides a proper route for the players to
travel from one place to another in mountainous areas. (3) In
military tactical analysis, computing the shortest path on the
terrain surface is very important for guiding the movement
of the troops and equipment [12]. (4) With the rise of the
Metaverse, 3D modeling of buildings and infrastructures in
urban areas and mountains, hills and valleys in the rural
areas become more and more popular [13], [14]. The shortest
path on the terrain surface [13], [14] provides a route/path
for people to travel from one place to another in their own
virtual world.

While there are a large number of research studies for the
shortest path query on terrain surfaces [5], [7], [8], [15]-[22],
the methods proposed so far are still not efficient enough,
which we elaborate on below. There are two branches of
existing studies. The first branch targets exact algorithms.
There are totally four exact algorithms [15]-[17], [22]. All of
these algorithms operate on-the-fly without pre-computing
an index structure. Let N denote the total number of vertices
defining the terrain surface. The time complexities of these
four algorithms are O(N?log N), O(N?), O(N?log N) and
O(N?log N), which are prohibitively expensive when N is
large. For example, according to [8], the algorithm proposed

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

EP

Fig. 1: An Example of Terrain Surface

in [16], which has the lowest time complexity among these
four algorithms, took more than 300 seconds on a terrain
with 200K vertices only.

The second branch targets approximation algorithms.
Two representative on-the-fly approximation algorithms
are [7], [8]. [7] computes the shortest network path on the
terrain surface where the path returned passes through the
edges of the terrain only. Therefore, the length of the path
returned could be much larger than that of the shortest
geodesic path. [8] finds a path on the terrain surface with
an approximate ratio at most (1 + €). The algorithm takes
O((N + N')log(N + N’)) time, where N’ is the number of
additional auxiliary points introduced to the terrain surface.
But they are still not efficient enough to satisfy the real-
time requirements of many applications. According to the
experimental results in [8], the algorithm ran for more than
100 seconds on a terrain with 200K vertices even for a setting
with a very loose error parameter ¢ = 0.25. There are also
three existing index-based approximation algorithms [20],
[21], [23], which build a pre-computed indexing structure
to accelerate the query processing. However, these two
algorithms only provide approximate shortest paths and
have huge time overheads and bulky space cost (of the
indexing structures). Thus, they are infeasible to be applied
to the cases where (1) the exact answer is required, or (2)
the memory budget cannot afford to hold the bulky index.
This motivates us to design an index-free exact shortest path
algorithm in this paper.

We observe that all existing on-the-fly algorithms are
only aware of the position of the source point and is
unaware of the information of the destination point. As
such, they explore all directions blindly which incurs a large
execution time. Motivated by this, in this paper, we propose
a destination-aware algorithm, namely direction-oriented al-
gorithm (DIO Algorithm), for computing the exact shortest
geodesic path online. It does not incur additional space con-
sumption with an indexing structure or any preprocessing
overhead. Our algorithm first considers the terrain surface
in the planar unfolding [24] by which we mean that the
terrain surface is unfolded into a 2D plane. As such, this
allows us to reformulate the shortest path problem as a
obstacle-free shortest Euclidean path problem. We propose
a new data structure, called visibility tree, which allows us
to answer these queries. This is a rooted tree, whose root
node corresponds to the start point s. Each non-root node
in the tree corresponds to a vertex or an edge segment
on the terrain surface. Our algorithm visits the nodes in a
tree in a best-first fashion until the node o ‘containing’ ¢ is

2

visited. The geodesic path could be traced back by using
the path from the root to o in the tree. A key component of
our algorithm is to decide the priority of each node to be
visited. In our algorithm, the priority is given to the edge
segment or vertex o with a smaller estimated lower bound
of the length of the shortest s-¢ path passing through o. The
lower bound is derived based on the visibility information
and the 2D geometry. As such, our algorithm is destination-
oriented and the search is guided along a direction towards
the position of ¢ instead of searching all directions around
s blindly. Our experiments verified that our method of
estimating the lower bound is effective and our algorithm
for the shortest path query outperforms the state-of-the-art
by a notable margin.

Our contributions are threefold. First of all, we propose
using a data structure called visibility tree and each node in
the tree corresponds to a vertex or an edge segment on the
terrain surface. We also develop a lower bound estimation
method to calculate the lower bound of the length of the
shortest s-t path passing through a given edge segment
or a vertex. The lower bound serves as the priority of
visiting each node in the visibility tree (i.e., correspondingly
each edge segment or each vertex on the terrain surface).
Our lower bound estimation method is lightweight and
we theoretically prove the correctness of our lower bound
estimation method. Second, based on this lower bound
estimation method, we develop a novel exact shortest path
computation algorithm, in which the lower bound estima-
tion algorithm guides the search towards the destination
quickly. Third, we conducted a thorough empirical study
whose results demonstrate that our algorithm significantly
outperforms all existing exact shortest path computation
algorithms on the terrain surface by more than an order of
magnitude.

The remainder of the paper is organized as follows.
Section 2 reviews the related studies of our work. Section 3
formally presents our problem and introduces many nota-
tions to be used later. Section 4 presents our shortest path
computation algorithm. Section 5 presents our empirical
study. Finally, Section 6 concludes this paper. Besides, it is
worth mentioning that in this study, we also discuss the
extension of our algorithm to a variant of the terrain surface
studied in this paper, namely weighted terrain surfaces and
also conducted a case study of the geodesic path computa-
tion. For the sake of limited space, we refer the readers to
our technical report [25] for the extension and case study.

2 RELATED WORK

2.1 Exact Algorithms for Geodesic Shortest Path
Queries

To the best of our knowledge, all existing exact geodesic
shortest path algorithms are on-the-fly algorithms [15]-[17],
[22] where no pre-computed data structures are required.
The first algorithm in this category is the MMP al-
gorithm [15]. The MMP algorithm visits all faces in the
descending order of their distance to the source point and
its time complexity is O(N?log N), where N is the num-
ber of vertices on the terrain surface. Later on, the VS
algorithm [22] further improved the MMP algorithm by
introducing some pruning rules to filter out some irrelevant

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

faces. As such, the query processing could be accelerated.
The third algorithm, namely CH [16], cuts and unfolds the
terrain surface into a 2D plane and the unfolded surface in
the 2D plane is a star-shaped polygon which has the source
point as its center. As such, the geodesic distance between
any point on the terrain surface and the source point is equal
to their Euclidean distance on this 2D polygon. Besides, their
shortest path on this 2D polygon could be converted to their
shortest geodesic path on the original terrain surface. The
time complexity of the CH algorithm is O(NN?). However,
one drawback of CH is that it must process the whole
terrain, which is more than necessary when the source and
the destination are close to each other. Motivated by this,
ICH [4] further improved CH algorithm. It incrementally
establishes the 2D polygon in a BFS fashion and visits
each part of the polygon in the ascending order of their
distance to the source point. The empirical performance of
ICH is highly boosted despite that its time complexity is
O(N?log N).

Our algorithm also interprets the geodesic shortest path
algorithm as a shortest Euclidean path problem through
the 2D unfolding. But our key innovations consist of (1)
a tree structure for encoding the shortest path information
in the 2D unfolding (each node of which corresponds to a
vertex or an edge segment on the terrain surface) and (2)
the destination-aware priority estimation for each vertex or
edge segment in the unfolding (where the priority is the
length of the shortest path from s to ¢ passing through this
vertex or edge segment). It is worth mentioning that it is
non-trivial to estimate this priority for the geometric objects
(i.e., vertices and edge segments) with favorable theoretical
guarantee since the complicated geometric properties of
these objects together with the terrain surface imposes many
challenges. As such, significant research effort and more
advanced techniques are highly required for such a design
which will be demonstrated in our algorithm and theoretical
analysis.

2.2 Approximation Algorithms for Geodesic Shortest
Path Queries

All existing on-the-fly approximation algorithms [8], [26],
[27] follow the same framework. Specifically, they all intro-
duce some auxiliary points, namely Steiner points, on the ter-
rain surface and also some auxiliary edges, namely Steiner
edges, and obtain a so-called Steiner graph G based on the
points and edges introduced. In the query phase, it creates
an edge between the source point s (resp. the destination
point t) and each Steiner point on the face that s (resp. t) lies
on and inserts it into the graph G and performs Dijkstra’s
algorithm from s to t. The time complexity of each on-the-
fly approximation algorithm is O((N + N')log(N + N')),
where N’ is the number of Steiner points introduced. Their
differences lie on the method that they use for introducing
the Steiner points and Steiner edges.

Later on, index-based algorithms [19], [21], [23], [28] for
the geodesic shortest path computation were proposed to
further accelerate the query processing. The first attempt
in this category is a Single-Source All-Destination algo-
rithm [28], where the source point must be known apriori
and kept fixed in the query phase. SP-Oracle [19] builds an

3

indexing structure for the shortest path query processing on
the Steiner graph of Unfixed Scheme. Inspired by [29]-[31],
SE-Oracle and EAR-Oracle [21], [23] indexes the geodesic
distances and paths by using the techniques called Well-
Separated Pair Decomposition and Highway Network, respec-
tively. The index-based algorithms have the overhead of
preprocessing time and the additional storage consumption
for the bulky indexing structure. Furthermore, the approx-
imation algorithms could only find approximate results
which prevent their usage in the applications where the
exact distances are highly required. Our notion of distance is
related to the Chessboard distance which is the basis of other
approximations [32], [33] especially for image dilation [34],
[35] but is not discussed further here.

T,V,E, F Terrain, Vertices, Edges and Faces.
s, t Two arbitrary points on the terrain.
I, (s, t) The geodesic shortest path from s to ¢.
I, (s, tle) The geodesic shortest path from s to ¢ passing
through an edge segment e.
I, (s, t|v) The geodesic shortest path from s to ¢ passing
through a vertex v.
dg(s,t) The geodesic distance from s to t.
P(s, p) The shortest path from s to p on 2D unfolding.
0 A node on the Visibility Tree.
To The parent of o on the Visibility Tree.
d(o) The associated distance of o.
c(0) The corresponding vertex or edge segment of o.
So The light point of o and ¢(0).

TABLE 1: Notations

2.3 Other Related Studies

We review some other related studies [2]-[8], [36]-[42] on
the terrain surface in this section. Specifically, [2]-[4], [36]
study the KNN queries, reverse kNN queries and dynamic
kNN queries, respectively. [5] studies the problem of find-
ing the shortest geodesic path satisfying a slope constraint. It
is worth mentioning that although the algorithm in [5] could
be applied to the geodesic shortest path finding without
this constraint, there is no guarantee that it can return the
exact geodesic shortest path [5], [21], [23], [40]-[42] and its
performance is inferior to that proposed in [4]. Besides, a
plethora of research effort [37]-[39] has been put on the
problem of energy-efficient path planning for autonomous
unmanned vehicles (AUV). But in their problem setting,
the AUV can only pass through several pre-defined links
connecting two pre-selected nodes on the terrain surface,
and the pre-selected nodes and pre-defined links comprise
a terrain graph. Thus, their techniques do not apply to our
problem since it is very unlikely that the geodesic shortest
path only passes the pre-defined links. Given a polygon on a
2D plane, the Euclidean shortest path problem aims to find
the shortest path between a given source point and a given
destination point inside the polygon where the path is only
allowed to pass through the interior of the 2D polygon. A
lot of research effort [43]-[46] has been devoted into this
research problem. The shortest path finding problem on
terrain surfaces studied in this paper is a generic version
of the obstacle-free shortest path finding problem on the 2D
Euclidean space. In our problem, besides the shortest path
finding in the interior of a 2D polygon, we also need to
find the optimal unfolding of the 3D terrain surface where
the shortest distance from s to ¢ in this unfolding is equal

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

to their geodesic distance on the original terrain surface.
It is a challenging task to find the optimal unfolding since
there can be quite a number of distinct ways of unfolding
of the terrain surface. To this end, we develop a novel
data structure called wisibility tree which encodes both the
unfolding information that is dynamically maintained in the
procedure of our direction-aware search and the shortest
path information on the partially unfolded terrain surface.
Note that all algorithms in this section have a different
problem setting from our problem.

3 PROBLEM DEFINITION

Consider a terrain surface T'. Let V' be the set of all vertices

on T, and E be the set of all edges on T'. For example, in

Figure 1, each solid point is a vertex and each solid line

segment is an edge. The size of a terrain surface 7', denoted

by N, is defined to be the total number of vertices (That is

N = |V). Each vertex v € V has three coordinate values,

denoted by z,,, y, and z,.

Consider two points s and ¢ on the terrain surface 7. A
path, denoted by my(s,t), from s to t on the terrain surface
consists of a sequence S of line segments. Each line segment
lin S lies on a face of the terrain surface and each pair of
adjacent line segments share one end-point. The length of
a given line segment [is denoted by |I|. The length of the
path 7,(s,t) is the sum of the lengths of the line segments
in S (i.e, > ;cs |l]). Based on the concepts above, we have
the definition of geodesic shortest path.

Definition 1 (Geodesic Shortest Path). The geodesic shortest
path between s and ¢, denoted by II,(s,t), is defined to
be the path with the shortest length between the two
points on 7.

We denote the Euclidean distance be-
tween s and ¢ by d(s,t). (e, d(s,t) =
V(@s —24)2 + (ys — y1)% + (25 — 2)2). Then, we further
have a definition called geodesic distance.

Definition 2 (Geodesic Distance). The geodesic distance be-
tween s and ¢, denoted by dy(s,t), is defined to be the
length of I1, (s, t).

Besides, in this paper, by ‘point’, we refer to an arbitrary
point on the terrain surface, which may or may not be a
vertex of the terrain surface. For example, in Figure 1, s and
t are two points on the terrain surface but neither of them is
a vertex of the terrain surface.

Consider the example in Figure 1. The geodesic shortest
path between two points s and ¢ is denoted by GP. The
geodesic distance between s and ¢ is equal to the sum of the
lengths of all line segments on G P.

Now, we are ready to formally define the problem.

Problem 1. (Shortest Path on Terrain Surface) Given a terrain
surface 7" and two points s and ¢ on 7', find the shortest
path IT (s,) from s to ¢ on the terrain surface T

4 DIO ALGORITHM

In this section, we present our proposed algorithm, namely
direction-oriented algorithm (DIO Algorithm), for the shortest
geodesic path query. We present that our problem is equiv-
alent to a visibility problem in a 2D Euclidean space in

4

Section 4.1 and then demonstrate the proposed Visibility Tree
in Section 4.2. Next, we present two key components in the
Visibility Tree construction, namely lower bound estimation
and children propagation, in Section 4.3 and Section 4.4
respectively. Section 4.5 presents the overall pseudocode of
our algorithm. Then, Section 4.6 presents theoretical analysis
of the correctness and the time complexity of our algorithm.

4.1 Shortest Geodesic Path as A Visibility Problem

We demonstrate in the section that our geodesic shortest
path problem is equivalent to a visibility problem in 2D
Euclidean space. Consider the example shown in Figure 2.
Figure 2(a) shows a terrain surface, the shortest geodesic
path from s to ¢t and the shortest geodesic path from s to
t'. Figure 2(b) shows a planar unfolding [24] of the terrain
surface in which each face is unfolded into the same plane.
Note that in this figure, the original vertex vy, is split into
three vertices in the unfolding and we denote them by
v11(a), v11(b) and v11(c). Thus, as could be observed from
Figure 2(b), all faces unfolded form a polygon and the we
call this unfolded terrain surface the planar unfolding of T.
If we consider the space outside the polygon as obstacles,
we define the shortest Euclidean path from s to any point p,
denoted by P(s, p), as the shortest path from s to p without
any collision with the obstacles. In Figure 2(b), the shortest
Euclidean path P(s,t’) from s to ¢’ is the line segment st/
and the shortest Euclidean path P(s, t) from s to ¢ consists of
three line segments (507, U102 and vt) marked in a dashed
line. Then, we proceed to show a lemma which connects the
shortest geodesic path and the shortest Euclidean path in
the unfolding.

Lemma 1. The shortest geodesic path I (s,p) from s to
any point p on the terrain surface 7' coincides with the
shortest Euclidean path P(s, p) in the unfolding of T'.

Proof: For the sake of limited space, we refer the
readers to our technical report for the proof [25]. O
By this observation, the shortest geodesic path finding
problem could be converted to the shortest Euclidean path
finding problem in the planar unfolding. Given a point p in
a planar unfolding of a terrain surface, we call another point
p’ in the planar unfolding visible to p if the line segment pp’
is within the planar unfolding. In our algorithm, the planar
unfolding is decomposed into several disjoint regions and
each region R has an associated point p which is either
the point s or a vertex of the unfolded terrain. Given a
region I whose associated point is p, we call R is a traceable
region if (1) any point p’ in the region is visible to p, and
(2) the shortest Euclidean path from s to any point p’ in
the region passes through the point p. For the ease of the
presentation, we call this associated point p the light point
of the region R since for each traceable region (which our
algorithm considers only), each point inside is visible to
p. Similarly, each vertex v is also associated with a light
point p. We call v is a traceable vertex if (1) it is visible to the
light point p, and (2) the shortest Euclidean path from s to v
passes through the light point p.

Example 1 (Traceable Regions, Light Points and Traceable
Vertices). In Figure 2(c), there are five disjoint regions.
The first one is the white region and s is the light point

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

vll

Visible to s

Visible to v, but not visible to s
Visible to v, but not visible to V),
Visible to v, but not visible to v,
Visible to V, but not visible to V,

vi(©)

e

¥ <= EODEEO

11 (b) V3

bV,
O
[~

5]
O
! =]
vi(©) o
(¢]

Fig. 2: An Illustrati

(2)

VoV 0>

di=[svl+lvs| V5

dys, t)=d_;+d(s, 1)

e

a

n®" v

(b)
S

VigVi2 |0, vm ViV 94 vll V13 Vi2Vis

VIZ
[95] vy, (v, [25) V|1(C)V10V1 0,]v,v,,]0.3 vl vovu(a) [0 @ Vi(a)
_ vi(@vy
& m Vlvll(b) m Vll(b)VIS o Vll(b) € V2

€, (024 V9 e,
€ €y

Vs

O light point is s

@ light point is v,

@ light point is v,

O light point is v,

@ light point is v,
EWE O edge segment
[ON" Ne) vertex

e[l[

on of DIO Algorithm

Vertex U1 Vo V3 o

Us Vg U7 Ug k) V10 | V11 | V12 | V13

Corresponding Node || 013 | 022 | 027 | 035

039 | 043 | 038 | 029 | O25 03 020 % 06

TABLE 2:

of the region. Any point p,, in the white region is visible
to s and as such, the shortest Euclidean path from s to p,,
is the line segment sp,,,. The second one is the red region.
vy is the only vertex on the boundary of the white region
which is adjacent to the red region and it is the light point
of this region. Any point p, in the red region is visible
to v1 but not visible to s and the shortest Euclidean path
from s to p, is (s, v1,pr). The third region is the green
region. v is the only vertex on the boundary of the red
region which is adjacent to the green region and it is
the light point of the green region. Any point p, in the
green region is visible to v2 but not visible to v; and
the shortest Euclidean path from s to p, is (s, v1, v2, pg)-
The last two regions are the yellow and blue regions.
v4 (resp. vy) is the light point of the yellow (resp. blue)
region and any point p, (resp., pp) in the yellow (resp.,
blue) region is visible to v4 (resp., v7) but not visible to vs.
As such, the shortest Euclidean path from s to p, (resp.,
Dp) s (8, V1,02, V4, py) (resp., (s,v1,v2,v7,Dp)). Thus, we
obtain that each of the five regions is a traceable region
and v and vy are both traceable vertices. Besides, v; and
vy are also the light points of the red region and the green
region, respectively. 0

Consider an arbitrary destination point ¢ in a traceable

Vertex Table

region. The idea of our algorithm is to find the shortest
Euclidean path from s to ¢ in the unfolding of 7'. To this
end, we find the light point p of the region R that ¢ lies
on and then, we could repeatedly find the light point p’ of
p and so on so forth until we find s. Finally, the sequence
of the light points found together with ¢ forms the shortest
Euclidean path. Consider the point ¢ in Figure 2(b). It lies on
the green region whose light point is v,. The light point of
vz is v1 and the light point of v, is s. Finally, we obtain that
the shortest Euclidean path from s to t is (s, v1,v2,1).

It is worth mentioning that our algorithm does not
explicitly create the unfolding, light points and regions and
the information is established and maintained through a
tree-like structure called Visibility Tree to be shown in the
next section.

4.2 \Visibility Tree & Back-Tracing Algorithm

This section presents a tree-like structure, namely Visibility
Tree, which encodes the visibility information in the planar
unfolding. We also present a Back-Tracing Algorithm which
utilizes the visibility tree to find the shortest Euclidean path
in the unfolding and also the geodesic shortest path on the
original terrain surface.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

We first introduce a key concept called edge segment as
follows. We call an edge a heterogeneous edge if the edge has
overlap with more than one region and we call it homoge-
neous edge otherwise. As could be observed from Figure 2(c),
the edges V210, 20y and Ugly are all heterogeneous edges
and the edges 12713, Tg¥10 and Ugv7 are all homogeneous
edges. Each homogeneous edge is naturally considered as
an edge segment in our algorithm. Each heterogeneous
edge ¢ is decomposed into several disjoint edge segments,
each of which is the overlap between e and one region in
our algorithm. Consider the heterogeneous edge vgvy. It is
decomposed into three disjoint edge segments e, err and
errr, where ey is the overlap between Tgvy and the white
region, eyy is the overlap between gty and the red region
and ey is the overlap between Ugty and the green region.
In this figure, we use the hollow point to indicate each
endpoint of each edge segment.

Next, we are ready to present the Visibility Tree which
indexes all vertices and edge segments. The visibility in-
formation and the shortest Euclidean path information is
naturally encoded in this tree structure. In this tree structure,
the root corresponds to the source point s and any other
node corresponds to either a vertex or an edge segment in
the planar unfolding. Consider a node o in the Visibility
Tree, we denote the corresponding vertex or edge segment
of 0 in the unfolding by c(0). We highlight three components
of a node o in the tree as follows. (1) a light point 3, of o,
which is the light point of ¢(0) if ¢(0) is a vertex and is
the light point of the region containing c(o) otherwise, (2)
an associated distance d, (which is equal to the length of
the shortest Euclidean path from s to 5,), and (3) its parent
node, denoted by 7, of 0. Let A(0) denote the set containing
all ancestors of o in the tree. Each node o in the Visibility
Tree satisfies three properties: (1) visible property: Any point
p on ¢(0) is visible to 3,, (2) traceable property: each vertex or
edge segment which has intersection with the path from s
to any point on ¢(0) (no matter ¢(0) is a vertex or an edge
segment) must belong to the set {c(0’)|o’ € A(0)}, and (3)
co-located property: if o is not the root node, there must be a
face containing both ¢(0) and c(o,), where o, is the parent
of o.

Consider a node o which corresponds to a vertex in the
unfolding, we denote the corresponding vertex of o on the
original terrain by v(0). In addition to the tree structure, we
store a hash table called the vertex table. The table stores a
unique node called corresponding node for each vertex on the
original terrain. We call a node o the corresponding node of a
vertex v if v(0) is v and the value of D(0) = d, + d(3,, c(0))
is the smallest among all nodes whose corresponding vertex
on the original terrain is v (i.e., arg minp .y {0'[v(0’) = v}).
Example 2 (Visibility Tree). Consider the tree shown in

Figure 2(d) which is the tree structure of the vertices
and edge segments in Figure 2(c). In this figure, we
use a square to denote that the node corresponds to
an edge segment and use a circle to denote that the
node corresponds to a vertex. There are totally 45 nodes
in the tree, namely o1, 02, ... , and o45. We put the
corresponding vertex or edge segment of each node in
the unfolding next to the node. In Figure 2(d), the light
point of each white node is s. Similarly, the light points
of nodes in other colors are shown in the figure.

6

Consider the node 045 (Whose corresponding edge seg-
ment is e,). Its light point is vy and its associated distance
do,s is equal to |sU1| + [0103]. Its parent r,,. is 041. Let
p denote a point on e,. We proceed to show that o5
satisfies the three properties mentioned above. Since p is
visible to v, in Figure 2(c), o satisfies the visible prop-
erty. A(045) consists of 01,04, 013, 022, 028, 034, 036, 041
and their corresponding vertices or edge segments are
s, U1oV13, V1, V2, UslUs, U4Us, V4U7, €p, respectively. It
could be verified through Figure 2(b) that the shortest
Euclidean path from s to p intersects with each of them.
Thus, o045 satisfies the traceable property. 041 (Whose
corresponding edge segment is ej) is the parent of 045
in the tree, e; lies on the same face as e, and also
intersects with the path P(s,p). As such, we obtain that
045 satisfies the co-located property.

Table 2 shows the vertex table which contains the corre-
sponding node of each vertex. Consider the vertex v;;.
There are three nodes in the tree whose corresponding
vertex is v1; on the original terrain and they are node
010, node 016 and node o0y (i.e., v(0o19) = v(o16) =
v(020) = v11). Note that the light point of all three points
is s and the associated distance of the three nodes is 0.
The corresponding vertices of 019, node 016 and node
020 in the unfolding are v11(c), v11(a) and v11(b) (ie.,
C(Olo) = 1)11(6), 6(016) = vll(a) and 6(020) = Ull(b)),
in which vy (b) has the smallest Euclidean distance to s.
Thus, we obtain that the corresponding node of vy is
node 0y. Similarly, the corresponding node of any other
vertex is stored in this table. 0

Note that it is possible that an edge e is on the boundary
of two regions. In this case, any point on e is visible to the
light points of both regions and in our algorithm, e can be
assigned to any region of them and correspondingly, the
light point of the node corresponding to e will be that of the
region assigned. The region assigned to e is determined by
which region “reaches” e first in the tree construction and
this is relevant to the geometric factors of 7.

Consider an arbitrary destination point ¢ on the terrain
surface T'. There exists three cases of ¢: (i) ¢ lies on a vertex v
of T, (ii) ¢ lies on an edge of T" excluding its two end-points,
and (iii) ¢ lies on the interior of a face of T. We define the
corresponding node of ¢ in the Visibility Tree under the three
cases next.

e Case (i). Since t is a vertex on T, the corresponding node
of t is the corresponding node of the vertex ¢ (which is
stored in the vertex table).

e Case (ii). Consider a point ¢ lying on an edge ¢ of T'.
There are two cases of ¢ in the planar unfolding: (I)
there is exactly one edge in the planar unfolding with
the same end-points as ¢; and (II) € is split into two
edges in the unfolding. Consider two edges 77702 and
V11013 in Figure 2(a). U703 falls into Case (I) and 17013
belongs to Case (II). Note that it is not possible that
there are more than two edges in the planar unfolding
with the same end-points as € since ¢ is adjacent to
exactly two faces. As such, there are at most two edge
segments containing ¢ and we consider the edge seg-
ment e (Whose corresponding node is o in the tree) with
the minimum distance d, + d(5,,t). We call the node

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

which corresponds to e in the tree the corresponding node
of t.

Case (iii). Given an edge segment e and the node cor-
responding to e (which is denoted by o), we call the
face having both e and ¢(r,) on its boundary eigen
face of e. In the example shown in Figure 2(c), the face
vsveUy is the eigen face of e, since it has both e, and
its parent ej, on its boundary. Given a point ¢ in the
interior of a face of T, we call that an edge segment e
contains t if (1) t is visible to s, and (2) t lies on the
eigen face of e. Consider the point ¢ in Figure 2(b). ¢
lies on the eigen face of ¢, and it is also visible to the
light point vy of ¢(e,) (i-e., 045). Thus, we obtain that
eq contains t. We call the node which corresponds to
the edge segment containing ¢ the corresponding node of
t. In this example, the corresponding node of ¢ is 04s.
It is worth mentioning that there is exactly one node o
whose corresponding edge segment e contains ¢. The
reason is as follows. Consider the face f containing
t and the region R containing ¢. The edge segment e
containing ¢ is uniquely defined by the intersection of I?
and one edge of f. Note that all regions are disjoint. In
Figure 2(c), t lies on the face vsvgv7 and also the green
region. The edge segment e, containing ¢ is uniquely
defined by the intersection of the green region and the
edge V5Ug (i.e., an edge of the face).

Now, we are ready to present the Back-Tracing algorithm.

Given an arbitrary point ¢ on T, we could first find the

corresponding node o of ¢ in the Visibility Tree. Then, we

find the path P(=(04,0p, ,0r)) from the root node to

T, in the tree and we denote the sequence of the cor-

responding vertices or edge segments of the nodes in P

by P (ie, P = (c(0q4),c(0p),-..... ,c(or))). We extract all

vertices in P and denote them by wv,, v, ,v in the
order of their depth in the tree. We obtain that the path

P = (8,04,Vp, .. , Uk, t) is the shortest Euclidean path

from s to t. We proceed to find the intersection between

P’ and each vertex or edge segment in P and denote all

intersection points as pq, Py, -.... , Pk The shortest geodesic

path from s to ¢ is (S, Pa, Pbs -, Pk» L)

Example 3 (Back-Tracing Algorithm). In Figure 2, consider
the point ¢ and the edge segment e, containing ¢ (i.e.,
045 is the corresponding node of ¢ in the Visibility Tree).
The set P containing the corresponding vertices or edge
segments of all nodes from the root node to o045 in the
tree consists of U1gU13, V1, V2, U3Ug, UsUg, UsU7 and ey,.
v; and vq are the two only vertices in P. As could be
observed from Figure 2(b), the shortest Euclidean path
from s to ¢ is (s, v1, v2, t) and we indicate the intersection
between the shortest Euclidean path and each node in P
by a solid point. The sequence of the solid points forms
the shortest geodesic path from s to ?. 0

We proceed to demonstrate how we construct the Visibil-
ity Tree. We dynamically maintain a priority queue Q which
contains all created/visited nodes in the Visibility Tree. Q is
initialized to be the root node of the tree which corresponds
to s. Its light point is assigned to be s and its associated
distance is assigned to be 0. Then, we iteratively perform
the following operations. We extract the top element o in Q
and if o is the corresponding node of ¢, we safely terminate

’ r=ds, I)‘

P,
° le

Fig. 4: An Illustration of
Fig. 3: Comparison of Search pjane Rotation

Spaces
the algorithm and find the shortest geodesic path from s

to t by using the Back-Tracing algorithm. Otherwise, we
propagate all children of o in the Visibility Tree and insert
them into Q. Now, the only two issues left are (1) how to
calculate the priority of each node in the Visibility Tree, and
(2) how to propagate the children of each node o in the tree.
The two issues will be illustrated in the next two sections,
respectively.

In a high level intuition, our priority renders our algo-
rithm being aware of both the source and the destination but
each existing algorithm is only aware of the source and thus,
ours is supposed to have better performance. Specifically, as
shown in Figure 3, the final visited region of our algorithm is
a narrow ellipse I/ with s and ¢ on its two sides but the final
visited region of each existing algorithm is a disk D(s,r)
centered at s with ¢ on its boundary (where r is equal to the
geodesic distance between s and t) and thus, our proposed
priority will largely narrow down the search region visited
and thus accelerate the shortest path algorithm. As could be
noticed, A* search [47] in the literature of graph also used
the source- and destination-oriented lower bound but in the
context of the terrain surface, the lower bound estimation is
challenging and more technically involved as shown before
since the most fundamental element of the search on the
terrain surface involves the edge segment instead of vertex
on graph.

Despite that DIO and Polyanya [43] share the high-level
idea of A* search in spirit, DIO involves a lot of non-
trivial techniques specifically designed for the 3D terrain
surfaces. We summarize the differences and the correspond-
ing challenges as follows. (i) Different from the 2D Euclidean
shortest path finding where the problem is considered in the
2D plane and the 2D polygon is already given, the shortest
path finding on terrain surfaces must involve the unfolding
procedure of the terrain surface (i.e., the processing of
unfolding the 3D surface into a 2D polygon) which is incre-
mentally maintained in our visibility tree. Note that there
can be multiple ways of unfolding a terrain surface and
thus, it is non-trivial for the shortest path finding on terrain
surfaces with the correctness guarantee. In our algorithm,
the visibility tree contains both unfolding information and
the shortest path information and we also develop a non-
trivial direction-aware query processing algorithm which
returns the correct shortest path from s to ¢ (with both the
unfolding and the shortest path issues considered). (ii) Since
the shortest path finding involves both the unfolding and
the shortest path finding in the interior of the unfolded
2D polygon, the theoretical analysis is more technically
involved and more challenging than that of the Euclidean
shortest path finding.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

4.3 Priority Estimation: Geometry-Based Lower Bound
Estimation Algorithm

Consider a node o in the Visibility Tree. The priority of o
in @ is equal to our estimated lower bound of the shortest
geodesic path from s to ¢ passing through its corresponding
vertex or edge segment ¢(0). Consider the case where ¢(0) is
an edge segment e. Let I (s, t|e) denote the s-t shortest path
on the terrain surface passing through the edge segment e
(i.e., it is the one with the minimum length among all paths
from s to t passing through e on the terrain surface). Con-
sider the example in Figure 2(a). It shows a terrain surface
and there are two points s and ¢ and two edge segments
eq and e, on the surface shown in this example. The path
IT, (s, tleq) (resp. I (s,tley)) is the shortest geodesic path
from s to t passing through e, (resp. e;). In this example,
II,(s,tleq) is the shortest path II,(s,t) from s to t on the
terrain surface. Consider the case where c(0) is a vertex
v. Similarly, we denote the s-t shortest path on the terrain
surface passing through a vertex v by II, (s, t|v).

We first consider the case where ¢(0) is an edge segment,
denoted by e, and present our estimation method of the
lower bound of II,(s,t|e) for a given edge segment. Our
method is based on the two observations: (1) for any point
p on e, the geodesic distance d,4(s,p) from s to p is equal
to d, + d(S,,p) (based on the properties of traceable edge
segment) and (2) for any point p on e, the geodesic distance
dgy(p,t) from p to t is lower bounded by d(p, t). In a nutshell,
we could derive the lower bound d,(s, t|e) by the distances
in Euclidean space and we adopt the position information
of 5,, e and t in this lower bound estimation which is
detailed as follows. Given an edge segment e, our estimation
dy(s,tle) is equal to minpcc{dy(s,p) + d(p,t)}. We will
present that the estimation is a lower bound of the length of
I1,(s, tle) (i.e., the correctness) later in Lemma 4.

Now, we proceed to present how to estimate
minpec{dy(s,p) + d(p,t)}. The estimation consists of two
steps, namely Plane Rotation and Distance Computing.

Step 1: Plane Rotation. Let L denote the straight line where
the edge segment e lies on. As shown in Figure 4, the first
step finds (1) the plane P; containing 5, and e and (2) the
plane P, containing ¢ and e and then rotate P, along L to
make it coincide with P;. Let ¢ denote the position of ¢ after
the rotation. Note that if 5, and ¢ are on L, we simply skip
this first step (i.e. Plane Rotation) and go to the second step
(i.e., Distance Computing) directly.
Step 2: Distance Computation. Then, consider the second
step. In this step, we first find the proxy point ' of T such
that the length of the shortest Euclidean path from 3, to ¢ is
equal to that of the shortest Euclidean path from 3, to £ . We
compute T for the ease of the distance computation in some
cases shown below. There are two cases of t .
« Case 1: locates at the same position of ¢ if (1) 5, is on
L or 5, and (2) ¢ are on the different sides of t..
o Case 2: Otherwise, the position of t'is symmetric to that
of t wrt. L.

Let £ denote the straight line containing 5, and 7. There

are two cases of L:
o Case (a): L intersects with e.
« Case (b): L’ does not intersect with e.

8

Thus, there are totally four disjoint cases, namely, Case
1(a), Case 2(a), Case 1(b) and Case 2(b). We proceed to
present how to make the estimation in each case as we
need which will be illustrated with some examples later.
In Case 1(a) and Case 2(a), minye.{dy(s,p) + d(p,t)} =
dy 4+ minye.{d(5,,p) + d(p,t)} = d, + d(3,,%). In Case
1(b) and Case 2(b), minye.{dy(s,p) + d(p,t)} = do +
minpe{d(3,,p) + d(p,t)} = do + min,egp, 1,31d(50,p) +
d(p,t)}. We will elaborate this next with examples.
Example 4. (Four Cases in Step 2: Distance Computation)

Figure 5, Figure 6, Figure 7 and Figure 8 show the

examples of the four cases, respectively. We elaborate the

position of in each case. Besides, we also show the cor-

rectness of our estimation of miny,e.{dy(s,p) + d(p,t)}

in each example and will formally prove it later.

Consider the example as shown in Figure 5 (i.e., Case

1(a)). Since ¢ and 5, are on the different sides of %,

the light point 7 of 7 is located on . Since the line

L’ intersects with e (note that L is defined to be the

line passing through 5, and 7'), the shortest distance

from 5, to ¢ is d(S,,1). Besides, by the rotation proce-
dure, we obtain that for any point p on e, dy(s,p) =

d, + d(5,,p) and d(p,t) = d(p,f/). Thus, we obtain

that minye.{dy(s,p) + d(p,t)} = d, + d(3,,7) and our

estimation in this case is d, + d(S,,).

Consider the example as shown in Figure 6 (i.e., Case

2(a)). Since 3, is not on k. and 3, and ¢ are on the same

side of L, the light point 7 of 7 is the reflection of 7

w.r.t. L. The estimation of minpc.{d,(s,p) + d(p,t)} and

its correctness of the estimation are the same as those

of Case 1(a). Note that in this case, although 7 is not

located on ¢, it still holds that for any point p on e,

d(p,t) = d(p,T) since T and 7 are symmetrical w.rt. £

and L contains e and the rotation takes L as the axis,

where L contains e.

Consider the example as shown in Figure 7 (i.e., Case

1(b)). Since ¢ and 3, are on the different side of £, the light

point ' of 7 is located on . In this case, the estimation

is minpé{pl,pz}{do + d(?o,pl) + d(pla t/)> do+ d(307p2) +

d(pa,)}. In other words, arg min,e.{d, (s, p) + d(p,t)}

is one end-point of the edge segment e.

Consider the example as shown in Figure 8 (i.e., Case

2(b)). Since 5, is not on £ and 5, and ¢ are on the same

side of L, the light point 7 of T is the reflection of 7 w.r.t.

L. The estimation in this case is the same as that of Case

1(b). 0

Consider the case where ¢(0) is a vertex v. Our estima-
tion method of the lower bound of I, (s, t|v) is simply equal
to d, + d(v, t). We will present that the estimation is a lower
bound of the length of II,(s, t|v) (i.e., the correctness) later
in Lemma 3.

4.4 Children Propagation Method for A Node in Visibil-
ity Tree

Given a node o (o may correspond to a vertex or an edge
segment) in the Visibility Tree, in this section, we present
how to find all children of o in the tree (which corresponds
to several newly propagated vertices and edge segments).

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

L' 3 L.
Eu‘!"l Sow

Fig. 5: Distance Computa- Fig. 6: Distance Computa-Fig' 7: Distance Computa-
tion (Case 1(b))

tion (Case 1(a)) tion (Case 2(a))

Due to the limited space, the readers are referred to our
technical report [25] for the detailed description and in
this paper, we only present the major idea. In a nutshell,
the newly propagated edge segments and vertices are the
visible ones that the light point of the current node o could
see through its corresponding vertex or edge segment ¢(0)
in the planar unfolding of the terrain 7. If one newly
propagated edge segment e has overlap with one existing
edge segment ¢/, we divide the overlap part from each of
these two edges segments into two disjoint edge segment
parts. Consider a newly created node o'. In the end of the
propagation, our algorithm makes sure that for any point p
contained by c(0’), o' is the one in all existing nodes with
the minimum value of d + d(S./, p).

4.5 Putting Things All Together

Our algorithm expands the terrain surface by visiting all
nodes in the Visibility Tree starting from the root node until
the corresponding node of ¢ is visited. We maintain a prior-
ity queue (i.e., a min-heap) to store the visited nodes (which
is similar to the Dijkstra’s algorithm in graphs). The priority
of each node o is equal to our estimated lower bound, de-
noted by d,4(s,t|c(0)), of the length of IL, (s, t|c(o)) instead
of the distance from s to ¢(0). Our algorithm visits the nodes
in their estimated lower bound as illustrated in Section 4.3.
Algorithm 1 shows our proposed shortest geodesic path
finding algorithm. Lines 1-5 present the initialization of our
algorithm. Initially, we create a priority queue (i.e., a min-
heap) Q and assign it to be () (Line 1). Line 2-5 create the
first node and insert it into Q. In Line 2, we create the root
node of the Visibility Tree which is a copy of s. In Line
3, we assign its associated light point to be s and assign its
associated distance to be 0. In Line 4, we assign its priority to
be 0. After that, we push the node into Q (Line 7). Line 6-18
contain the steps of the path finding. In each iteration of the
while loop, we pop the top element in the queue (Line 7). If
it is the corresponding node of ¢, we simply utilize the Back-
Tracing method to find the shortest path from s to ¢ and
return it (Lines 9-10). If not, we propagate more nodes and
compute their associated distances and images by using the
children propagation method. Line 12 propagates several
children from z. Lines 14-16 estimate the priority of each
node propagated and put it into Q.

4.6 Theoretical Analysis

In this section, we formally prove the correctness and time
complexity of our algorithm. Given a node o in the Visibility
Tree, we call that o is a traceable node if o satisfies the

Fig. 8: Distance Computa-
tion (Case 2(b))

Algorithm 1: DIO Algorithm

Data: A Terrain Surface T(V, E, F) and a source point s and a
destination point ¢t on T’
Result: The geodesic shortest path from s to ¢t on T
Initialize an empty priority queue Q = ;
Create the root node of the Visibility Tree which corresponds
to s;
3 Assign its associated image to be s and assign its associated
distance to be 0;

(SIS

4 Assign its priority to be 0;
5 Push the node into Q;
6 while True do
7 Pop the top element z from Q;
8 if « is the corresponding node of t then
9 Find the shortest geodesic path I, (s, t) by using the
Back-Tracing algorithm;
10 return 1, (s, t)
1 end
12 Propagate a set S of new nodes from = and compute their
associated distances and images by using the children
propagation method;
13 for each element o in S do
1 Assign x to be the parent of o;
15 Estimate dy (s, t|c(0)) by using the method present in
Section 4.3 and assign them to be the priorities of o;
16 Push o into Q;
17 end
18 end

three properties: for any point p on ¢(0), (1) d4(s,p) =
d, + d(3,,p), where d, is the associated distance of o, (2)
the light point of o lies on one vertex of the corresponding
path of II; (s, p) in the unfolding space, and (3) ¢(r,) in the
Visibility Tree has intersection with II,(s, p|c(0)), where 7,
is the parent of o in the Visibility Tree.

Lemma 2. Each node created by our algorithm is a traceable
node and satisfies the visible property, the traceable
property and the co-located property.

Proof: For the sake of limited space, we refer the read-
ers to our technical report [25] for the proof. In a nutshell,
the lemma is a natural result of our children propagation
algorithm. O

Lemma 3. Given a vertex v considered in our algorithm
whose corresponding node is o, d, + d(v,t) is at most
the length of II, (s, t|v).

Proof: The path II, (s, t|v) consists of two parts. The
first one is the shortest geodesic path II;(s,v) from s to v
and the second one is the shortest geodesic path II,(v,t)
from v to t. By our algorithm d,, is equal to the length of
II,4(s,v) and since d(v, t) is equal to the Euclidean distance
between v and ¢, we obtain that d(v, t) is at most the length
of I, (v, t). Thus, we finally obtain that d, +d(v, t) is at most
the length of I, (s, t|v). O

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

Lemma 4. Consider a given edge segment e considered in
our algorithm. min,e.{d4(s,p) + d(p,t)} is at most the
length of II,(s, t]e).

Proof: Let p* denote any point on II (s, t|e) N e (note
that the intersection of Il,(s,t|e) and e may not be a point
and an extreme case is that I1, (s, t|e) contains e and here, p*
is any point on Il (s, t|e) Ne.). Thus, the length of II (s, t|e)
is equal to dg4(s,p*) + dg(p*, t).

Let p’ denote argmin,ec.{d,(s,p) + d(p,t)} (and thus,
dg(s,p') + dg(p',t) = minpe{dy(s,p) + d(p,t)}). By the
definition of p/, d,(s,p’) + d(p',t) < dg4(s,p*) + d(p*,t).
Since dg(p*,t) > d(p*,t), we obtain that dy(s,p")+d(p’,t) <
dg(s,p*) + dgy(p*,t) which is the desired result. O
Theorem 1. Our estimation of minye.{dy(s,p) + d(p,t)} is

correct, where e is an edge segment considered in our

shortest path algorithm.

Proof: By Lemma 2, for any point p on e, d4(s,p) =
d, + d(S,,p), where o is the corresponding node of e.
Thus, we obtain that minyc.(dg(s,p) + d(p,t) = de +
minye.(d(3,,p)+d(p, t). Since the Plane Rotation step rotate
P, on L which contains e, we obtain that for any point p on
e, d(p,t) = d(p, t). With the two equations above, we obtain
that miny,e.(dg(s, p)+d(p,t) = do+minye.(d(S,, p)+d(p,).
Then, it suffices to prove that min,c.(d(S,,p) + d(p,?) is
equal to d(3,,) (resp. MiNye 10,0, (d(50,p) + d(p, 1)) in
Case 1(a) and Case 2(a) (resp. Case 1(b) and Case 2(b)).
Consider Case 1(a) and Case 2(a). By Triangle inequality,
we obtain that for any point p, d(5,,p) + d(p,t) > d(3,,7).
By the definition of ¢ (i.e, f locates at either that of 7
or the position symmetric to that of ¢ w.r.t. £), we obtain
that for any point p on L, d(p,) = d(p,T). Thus, it must
be true that min,f (d(s,p) + d(p,t) = min g (d(s,p) +

d(p,t'). Since z is on the edge segment st and on the
line £, we obtain that d(5,,z) + d(2,f) = d(3,,1) and
d(30,7) + d(x,1) = d(5,,2) + d(,). Thus, we obtain
that H/linpeh(d(gmp) + d(p,t)) = dGo,z) + d(z,t) =
d(So,1) = min g (d(S,,p) + d(p,t)). Together with the
fact that = is on the edge segment e, we obtain that
minyee(d(S,,p) + d(p, 1) = d(Se,) + d(z,T) = d(5,,7).

Consider Case 1(b) and Case 2(b). Let £ denote the
ellipse whose focuses are 5, and ¢ such that the length of
its major axis is minye.{d(3,,p) + d(p,t)}. We first present
three useful lemmas to show some intermediate results as
follows. Note that £ N e and argmin,e.{d(S,, p) + d(p,?)}
are two sets containing some points.

Lemma 5. The ellipse £ intersects with e (i.e., £ Ne # () and
their intersection is arg min,e.{d(3,, p) + d(p,?)}.

Proof: We first prove that any point p’ in
arg min,c.{d(5,,p) + d(p,t)} must be in £ N e. Since the
focuses of £ are 5, and ¢ and the length of its major axis is
min,e.{d(3,,p) + d(p,t)}, p’ must be on £ and p’ must be
in e by the definition of arg minye.{d(5,, p) +d(p,t)}. Thus,
pisin&Ne.

Then, we prove that any point p” in £ N e must be in
arg miny,e.{d(5,,p) + d(p,t)}. Since p” is in £, we obtain
that d(S,, p”")+d(p”,t) = minye.{d(S,, p)+d(p,t)}. Besides,
since p” is in e, we obtain that p” is in arg min,c.{d(5,,p) +

d(p,1)}.

10

O

Lemma 6. £ Ne (i.e., arg min,e.{d(3,, p) + d(p,?)}) contains
exactly one point.

Proof: By Lemma 5, we obtain that £ N e contains at
least one point. Then, it suffices to prove that £ N e contains
at most one point.

We then prove this (ie., £ N e contains at most
one point) by contradiction. Suppose that £ N e (ie,
arg min,c.{d(S,,p) + d(p,t)}) contains at least two points.
Let p; and ps denote two points in £ N e. Since py,p2 € €&,
the edge segment Py, p2 excluding p; and ps is in the interior
of £. From the property of an ellipse, d(5,,p’) + d(p/,t) is
less than the length of its major axis (i.e., minye.{d(S,,p) +
d(p,t)}), where p’ is a point in P1,pz excluding p; and
D2. Besides, since p1,p2 € e, e contains the edge segment
P1,p2. This meas that p’ € e and d(5,,p') + d(p',t) <
minye.{d(3,,p) + d(p, t)}. Contradiction. O

Lemma 7. In Case (b), L is not a tangent line of £.

Proof: We first prove this by contradiction. Suppose

L is a tangent line of £. Consider the three lines 3,, 0, o, 7
and o, ¢. Since L is a tangent line of £ where the intersection
is o, by [48] (see the Section ‘The Normal bisects the angle
between the lines to the foci’), we obtain that L. bisects the
angle the lines 5,,0 and o, . Since 7 is a reflection point of
t w.r.t. £, we obtain that L bisects the angle /Tot . Thus, we
obtain that L. coincides with the line 5,, 0 (i.e., 0 is on the
line L.). Then, £’ must intersect with e. Contradiction. O

By Lemma 5 and Lemma 6, we obtain that £ Ne =
arg min,e.{d(5,,p) + d(p,t)} and |€ Ne| = 1. We prove
the correctness of our estimation in Case 1(b) and Case 2(b)
by contradiction. Suppose that (ie., arg minyec.{d(3,,p) +
d(p,t)}) is neither {01} nor {o2}. Let = denote the point
contained in £ Ne.

By Lemma 7, we obtain that L is not a tangent line of
E. Then, there must be a point 2’ on e such that z’ is in
the interior of £ (as shown in Figure 7 and Figure 8). By
the definition of ellipse, we obtain that d(s,, ') + d(z’,) <
d(5,,x) + d(',t) since the length of the major axis of £ is
d(S,,2) + d(o,t). But this contradicts with the assumption
that arg miny,e.{d(5,,p) + d(p,t)} = {=}.

O

Theorem 2. Our algorithm returns the shortest geodesic path
from s to t correctly.

Proof: Let o denote the corresponding node of ¢ and
by the termination condition of our algorithm, in the last it-
eration, we find the corresponding node o of ¢. By Lemma 3,
Lemma 4 and Theorem 1, the priority of o in Q is an lower
bound of the length of the path II,(s, t|c(0)).

If ¢t lies on a vertex or an edge segment (i.e., Case (i)
and Case (ii) of t), then our Back-Tracing algorithm must
find the shortest geodesic path from s to ¢ by Lemma 2.
Then, consider the last possible case (i.e., Case (iii)) of ¢,
where t lies on the interior of a face. In this case, ¢(0) is
an edge segment and c(o) contains ¢ (i.e., ¢ is visible to
5¢(0))- Consider the point p on c(0) such that 5.,)p passes
through ¢. Thus, we obtain that the geodesic shortest path
II,(s,p) from s to p passes through t. By Lemma 2, our
Back-Tracing algorithm finds the intersections between each

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

vertex or edge segment and the path I, (s, p) which consists
of $,p1,D2, weee- , Dk, D- Together with the face that II (s, p)
passes through ¢ and p and ¢ are located on the same face,
we obtain that the path (i.e., (s,p1,p2,...... , Pk, t)) that our
algorithm returns is the shortest geodesic path from s to ¢.
|
Let &, + denote the ellipse on the z-y plane whose focuses
are s and t such that the length of its major axis is dy(s, t).
Let N =#{p € V| the projection of p on z-y plane is inside
& s7t}o

Theorem 3. The running time and space consumption of DIO
algorithm are O(NZ, log Ny ¢) and O(NZ,), respectively.

Proof: We first show the number of visited vertices on
the terrain surface by our algorithm in the following lemma.

Lemma 8. The number of vertices visited by our algorithm

is .A/’s7t.

Proof: We first prove that the projection of each vertex
visited by our algorithm on the z-y plane are inside the el-
lipse &; +. Consider any vertex v that is visited by our short-
est path algorithm. Since the key of the root of the priority
queue Q maintained in our algorithm is at most d,(s, t), it
must be true that dy(s,v) + d(v,t) < d4(s,t). Since for any
two arbitrary points 0; and oy on the terrain surface, it must
be true that d,(01,02) > d(01,02) > dyy(01,02), we obtain
that for any visited vertex v, dgy (s, v) + day (v, t) < dy(s,t),
where d,,(-) denote the distance between the projections
of two points on the z-y plane. Thus, we obtain that the
projection of each vertex visited by our algorithm on the z-
y plane lies in the ellipse &; ; by the definition of the ellipse
gs,t~

Reversely, we proceed to prove that each vertex, de-
noted by v, whose projection on the z-y plane is outside
the ellipse &;; is not visited by our algorithm. Accord-
ing to the definition of the ellipse & we obtain that
dyy(s,0) + dsy(v,t) > dy(s,t). Note that the length of the
major axis of & is dy(s,t). Since for any two arbitrary
points 07 and o0 on the terrain surface, it must be true
that dy(01,02) > d(01,02) > dgy(01,02), we obtain that
for any visited vertex v, dy(s,v) + dg(v,t) > dg4(s,t). By
our algorithm, the key of each element considered in our
priority queue Q is smaller than or equal to d4(s,t). Thus,
we obtain that v is not visited by our algorithm. O

By [4], for a terrain surface with N vertices, each het-
erogeneous edge can only have at most IV edges segments.
Besides, each homogeneous edge has exactly one edge seg-
ment. Since the vertices and the edges of a terrain surface
form a planar graph, we obtain that the number of edges on
the terrain surface is O(N) by [49]. Thus, the total number
of nodes in the Visibility Tree is O(N?). By Lemma 8, the
number of vertices visited by our algorithm is N ; which
is equivalent to the fact that our algorithm only visited a
terrain with Ns’t vertices. We obtain that the number of
edge segments (i.e., the elements considered in our priority
queue Q) is O(N2,). Since each push or pop operation
takes O(log N/ (s,t)) time for a priority queue with at most
O(N?Z,) elements, we obtain that the running time of our
algorithm is O(NZ, log Ny).

0

11

5 EMPIRICAL STUDIES

Dataset | No. of Vertices | Resolution | Region Covered
BH (L) 146,547 30 meters 14km x 10km

EP (L) 164,238 30 meters | 10.7km x 14km
SF (L) 172,186 30 meters | 14km x 11.1km
BH (H) 1,318,844 10 meters 14km x 10km

EP (H) 1,392,236 10 meters | 10.7km x 14km
SF (H) 1,539,082 10 meters | 14km x 11.1km

TABLE 3: Dataset Statistics

5.1 Experimental Setup

We conducted our experiments on a Linux machine with
2.67 GHz CPU and 48GB memory. All algorithms were
implemented in C++.

Datasets. Following some existing studies on terrain
data [3], [5], [21], [36], we used three real terrain surfaces,
namely Bearhead (in short, BH), Eaglepeak (in short, EP)
and San Francisco South (in short, SF) and these datasets
can be downloaded from this link [50]. Table 3 shows the
dataset statistics. Each of the three terrain surfaces has two
different versions with different resolution and sizes. Thus,
there are totally six different datasets considered, namely
BH (L), EP (L), SF (L), BH (H), EP (H) and SF (H).
Algorithms. We tested our DIO algorithm and four existing
exact shortest path algorithms on the terrain surface, namely
MMP [15], VS [22], CH [16] and ICH [17]. Note that other
existing algorithms can only find approximate geodesic
shortest paths and thus, we do not test them in the experi-
ment since they have different problem settings from ours.
We obtained the source code of MMP from [51] and also the
source code of CH and ICH from the webpage of the author
of [17]. We implemented the VS algorithm [22] by ourselves.
The four baseline algorithms considered in the experiment
were written in C++. Since the CH algorithm [16] is proved
to be inferior to ICH and CH has a significantly larger
running time than MMP and ICH according to the result
of [4], we safely exclude CH for the better clarity.

Query Generation. Each shortest path query contains two
query points, one as the source and the other as the desti-
nation. To study the effect of the distance between the two
query points (i.e., the source and the destination), we gener-
ate 10 different groups of queries, namely ()1, Q2, , @10,
for each dataset as follows. We first obtain the maximum
(resp. minimum) pairwise geodesic distance between all
vertices and we denote the distance as dp,qq (resp. dpin).
Then, Vi € [1,10], we insert 100 pairs of vertices (s, t) into
@; and we make sure that the geodesic distance d(s,)
between s and ¢ is in the range [dy,in, + W, dmin+
(dm“_d’i’g”)*(iﬂ)]. As such, the geodesic distance between
each pair in Q; is larger than Q;_1, where i € [2, 10].
Factors & Measurements. Two factors, namely the query
distance (the geodesic distance between the source and the
destination) and N (the number of vertices on a terrain
surface), were studied. Three measurements, namely (1)
running time (which is the time for answering a shortest
path query), (2) space consumption (which is the memory
cost for running the algorithm) and (3) No. of visited vertices
(which is the number of vertices visited by the algorithm
and measures the size of the regions that each algorithm

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

MMP —+ ICH >X- VS & DIO & 12
107 . 10'° 10°
— .6 Q 9 2
@ 10 < 10 ke
£ 2 €
g 10° E— 108 2 10°
= 4o 2 7 3
> 10 2 10 =
£ 3 8 6 > 4
g 10 > 10 s 10
€ 102 8 105 g
Q Z
7]
10 10* 10°

BH(L) EP(L) SF(L) BH(H) EP(H) SF(H)
(a)

BH(L) EP(L) SF(L) BH(H) EP(H) SF(H)

BH(L) EP(L) SF(L) BH(H) EP(H) SF(H)
(b) (©)

Fig. 9: Running Time, Space Consumption and No. of Visited Vertices of Each Algorithm on All Datasets

explores on the terrain surface) were used for evaluating the
algorithms. For the query time, 100 queries were answered
and the average running time was returned.

5.2 Experimental Results

Figure 9 shows the running time, space consumption and
no. of visited vertices of each algorithm on all the six
datasets. We used all queries contained in @)1, Q2, ..., Q1o
and reported the average running time of the 1000 queries
contained in all ten groups for each algorithm. In Figure 9(a),
we could observe that (1) our algorithm has the smallest
running time which is smaller than the best existing algo-
rithm (i.e., VS) around 1 order of magnitude; (2) MMP and
ICH are the slowest two algorithms and they have very
similar performance and this result is consistent with that
of [4]; (3) The running time of VS is 3-5 times smaller than
that of MMP which is consistent with the result of [22].
In Figure 9(b), we find that (1) our algorithm is the most
space-efficient and its space consumption is several times
smaller than that of the best existing algorithm (i.e., VS);
(2) MMP and ICH have the largest space consumption and
this result is consistent with that of [22]; In Figure 9(c),
we observe that (1) our algorithm has the smallest no.
of visited vertices which is several times smaller than the
best existing algorithm (i.e., VS). This result verifies that
our destination-aware algorithm is very effective and only
visited a small region of the terrain surface compared with
existing algorithms; (2) The no. of visited vertices of VS is
smaller than that of MMP and ICH in most cases which is
consistent with the result of [22].

Effect of Query Distance. We studied the effect of query
distance by testing the 10 groups of the queries on each
high-resolution dataset. Note that the query distance is
monotonically increasing from Q1 to Q1o. The results on
the BH (high resolution) datasets is shown in Figure 10.
Figure 10(a) presents the running time of each algorithm
in the 10 query groups. As could be observed from the
figure, the running time of each algorithm grows up with
the increase of the query distance. The running time of our
algorithm is 1-3 orders smaller than the 3 baselines. Fig-
ure 10(b) presents the space consumption of each algorithm.
Our algorithm significantly outperforms all the 3 baselines
by a notable margin and is the most space-efficient one.
Figure 10(c) demonstrates the number of vertices visited by
each algorithm on the terrain surface. Our algorithm visited
several times fewer vertices than the best existing algorithm.
The result confirms that the destination-awareness of our
algorithm is effective and the lower bound estimation in
our algorithm provides a tight lower bound. As such, our

algorithm only visited a much smaller region on the terrain
surface than all existing algorithms and the query process-
ing is highly boosted. The results on EP (H) and SF (H) can
be found in our technical report [25] due to limited space.
Their results are similar to those of BH (H).

Scalability Test. We tested the scalability of each algo-
rithm considered on five synthetic datasets with sizes from
{0.5M,1M,1.5M,2M,2.5M}. Each synthetic dataset with
N vertices is a simplified terrain surface from an enlarged
BH (H) dataset (4.2M vertices). Note that each simplified
terrain surface covers the same region as the original BH
dataset with a different simplification ratio. The enlarged
BH dataset was generated from the BH (H) dataset as
follows. On each face of BH (H), we added a new vertex on
its geometric center and add a new edge between the new
vertex and each of the three vertices on the face. Then, we
adopted a terrain toolkit [5] to simplify the enlarged dataset.
Figure 11 shows the results of the scalability test. As the
figure shows, the running time, space consumption and no.
of visited vertices of each algorithm are all monotonically
increasing with the increase of the data size. Our method has
a running time smaller than that of all existing algorithms
by more than one order of magnitude.

5.3 Experimental Result Summary

Our geodesic shortest path processing algorithm signif-
icantly outperforms the state-of-the-art algorithms, i.e.,
MMP, ICH and VS, in terms of all measurements (i.e.,
running time, space consumption, and the number of visited
vertices) and enjoys excellent scalability. The speed-up of
our algorithms compared with the existing algorithms is
more than an order of magnitude. The space consumption
and the no. of visited vertices of our algorithm are several
times smaller than that of the state-of-the-art algorithm.

6 CONCLUSION

In this paper, we propose an efficient on-the-fly algorithm
for shortest geodesic path computation in which a core
component is the lower bound estimation of the length of
the shortest geodesic path passing through each part of
the terrain. The lower bound provides a priority of each
part and guides the search towards the destination. We
theoretically prove that our algorithm is correct and our
empirical study confirms that our algorithm significantly
outperforms the state-of-the-art in terms of the running time
and the number of vertices visited. Future work includes a
comparison of the spatial indexing methods used here with
more traditional data structures (e.g., [52], [53]).

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

MMP — ICH =< VS & DIO &

13

===

Space Consumption (B)

jZ:W

—_
[=)
o

No. of Visited Vertices
> o
IS)]

—_
o
w

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

(a)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

(b)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9Q10

(©

Fig. 10: Effect of Query Distance on BH (high resolution) dataset

MMP —+ ICH =% VS & DIO &

Acknowledgements: We are grateful to the anonymous
reviewers for their constructive comments on this paper. The
research of Hanan Samet was sponsored in part by the NSF
under Grants IIS-18-16889, 115-20-41415, and I1IS-21-14451.
The research of Victor Junqiu WEI was supported in part by
the HKUST-WeBank Joint Laboratory Project (WEB24EGO01-

A).

REFERENCES

(1]
(2]

(3]
(4]
(5]
(6]
(7]

(8]

(%1

(10]

(11]

(12]

K. Deng, H. T. Shen, K. Xu, and X. Lin, “Surface k-nn query
processing,” in ICDE, 2006.

K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin, “A multi-
resolution surface distance model for k-nn query processing,” in
VLDBJ, 2008.

C. Shahabi, L.-A. Tang, and S. Xing, “Indexing land surface for
efficient knn query,” in VLDB, 2008.

S. Xing, C. Shahabi, and B. Pan, “Continuous monitoring of nearest
neighbors on land surface,” in VLDB, 2009.

L. Liu and R. C.-W. Wong, “Finding shortest path on land surface,”
in SIGMOD, 2011.

D. Yan, Z. Zhao, and W. Ng, “Monochromatic and bichromatic
reverse nearest neighbor queries on land surfaces,” in CIKM, 2012.
M. Kaul, R. C-W. Wong, B. Yang, and C. S. Jensen, “Finding
shortest paths on terrains by killing two birds with one stone,”
in VLDB, 2013.

M. Kaul, R. C.-W. Wong, and C. S. Jensen, “New lower and upper
bounds for shortest distance queries on terrains,” in VLDB, 2015.
L. T Sarjakoski, P. Kettunen, H.-M. Flink, M. Laakso,
M. Ronneberg, and T. Sarjakoski, “Analysis of verbal route de-
scriptions and landmarks for hiking,” in Personal and Ubiquitous
Computing, 2012.

J.-F. Lalonde, N. Vandapel, D. E. Huber, and M. Hebert, “Nat-
ural terrain classification using three-dimensional ladar data for
ground robot mobility,” in Journal of field robotics, 2006.

N. Vandapel, R. R. Donamukkala, and M. Hebert, “Unmanned
ground vehicle navigation using aerial ladar data,” in The Interna-
tional Journal of Robotics Research, 2006.

B. Koyuncu and E. Bostanci, “3d battlefield modeling and simula-
tion of war games,” in Proceedings of the 3rd International Conference
on Communications and information technology, 2009.

()
Fig. 11: Scalability Test

(13]

(14]

[15]
[16]
(17]

(18]

[19]

[20]

[21]
[22]
(23]
[24]

[25]

[26]

[27]

[28]

g‘IOs 3] é106 s J
@ 407 | 2
g0 510° +]
= 8
2108 ¢ 12,
IS Z10% ¢ i
éms — 19
[e]
102} ¢ ‘ ‘ ‘ ‘ 10t L ‘ ‘ ‘ ‘ Z10° [¢ ‘ ‘ ‘ 1
0.5 1 15 2 2.5 0.5 1 15 2 2.5 0.5 1 15 2 25
N (Millions) N (Millions) N (Millions)
(a) (c)

L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar,
C. Bermejo, and P. Hui, “All one needs to know about metaverse:
A complete survey on technological singularity, virtual ecosystem,
and research agenda,” ArXiv, 2021.

L. Lee, Z. Lin, R. Hu, Z. Gong, A. Kumar, T. Li, S. Li,
and P. Hui, “When creators meet the metaverse: A survey
on computational arts,” ArXiv, 2021. [Online]. Available:
https:/ /arxiv.org/abs/2111.13486

J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou, “The discrete
geodesic problem,” in SIAM Journal on Computing, 1987.

J. Chen and Y. Han, “Shortest paths on a polyhedron,” in SoCG,
1990.

S5.-Q. Xin and G.-J. Wang, “Improving chen and han’s algorithm
on the discrete geodesic problem,” in TOG, 2009.

L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari, D. Nuss-
baum, and J.-R. Sack, “Algorithms for approximate shortest path
queries on weighted polyhedral surfaces,” in Discrete & Computa-
tional Geometry, 2010.

L. Aleksandrov, A. Maheshwari, and J.-R. Sack, “Determining
approximate shortest paths on weighted polyhedral surfaces,” in
Journal of ACM, 2005.

H. N. Djidjev and C. Sommer, “Approximate distance queries
for weighted polyhedral surfaces,” in The European Symposium on
Algorithms (ESA), 2011.

V. J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount, “Distance
oracle on terrain surface,” in SIGMOD, 2017.

V. Verma and J. Snoeyink, “Reducing the memory required to find
a geodesic shortest path on a large mesh,” in SIGSPATIAL, 2009.
V. J. Wei, R. C.-W. Wong, C. Long, D. M. Mount, and H. Samet,
“Proximity queries on terrain surface,” TODS, 2022.

P. A. Benton, “Unfolding polyhedra,” Ph.D. dissertation, Univer-
sity of Cambridge, 2008.

V. J. Wei, R. C.-W. Wong, C. Long, D. Mount, and H. Samet,
“On efficient shortest path computation on terrain surface: A
direction-oriented approach (technical report),” in https://github.
com/ItachilchihaVictor/DIO- Algorithm.

M. Lanthier, A. Maheshwari, and].-R. Sack, “Approximating
shortest paths on weighted polyhedral surfaces,” in Algorithmica,
2001.

L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack,
“An e—approximation algorithm for weighted shortest paths on
polyhedral surfaces,” in Algorithm Theory—SWAT’98.

T. Kanai and H. Suzuki, “Approximate shortest path on a poly-
hedral surface based on selective refinement of the discrete graph

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]
(48]
[49]
(50]

[51]
[52]

(53]

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2024.3363147

and its applications,” in Proceedings Geometric Modeling and Pro-
cessing 2000. Theory and Applications (GMPTA), 2000.

P. B. Callahan and S. R. Kosaraju, “A decomposition of multidi-
mensional point sets with applications to k-nearest-neighbors and
n-body potential fields,” in Journal of ACM, 1995.

J. Sankaranarayanan and H. Samet., “Distance oracles for spatial
networks.” In Proceedings of the 25th IEEE International Conference
on Data Engineering, 2009.

J. Sankaranarayanan and H. Samet, “Query processing using dis-
tance oracles for spatial networks,” IEEE Transactions on Knowledge
and Data Engineering, (Best Papers of ICDE 2009 Special Issue.).
H. Samet, “A quadtree medial axis transform,” Communications of
the ACM, 1983.

——, “Reconstruction of quadtrees from quadtree medial axis
transforms,” in Computer vision, graphics, and image processing, 1985.
A. Amir, A. Efrat, P. Indyk, and H. Samet, “Efficient regular data
structures and algorithms for location and proximity problems,”
in 40th Annual Symposium on Foundations of Computer Science (Cat.
No. 99CB37039), 1999.

C.-H. Ang, H. Samet, and C. A. Shaffer, “A new region expansion
for quadtrees,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1990.

K. Deng and X. Zhou, “Expansion-based algorithms for finding
single pair shortest path on surface,” in International Conference on
Web and Wireless Geographical Information Systems (WWGIS), 2004.
M. Saad, A. L. Salameh, and S. Abdallah, “Energy-efficient shortest
path planning on uneven terrains: A composite routing metric
approach,” in ISSPIT, 2019.

N. Ganganath, C.-T. Cheng, and K. T. Chi, “Finding energy-
efficient paths on uneven terrains,” in 2014 10th France-Japan/8th
Europe-Asia Congress on Mecatronics (MECATRONICS2014-Tokyo),
2014.

M. Saad, A. I. Salameh, S. Abdallah, A. El-Moursy, and C.-T.
Cheng, “A composite metric routing approach for energy-efficient
shortest path planning on natural terrains,” Applied Sciences, 2021.
J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for
spatial networks,” Proceedings of the VLDB Endowment, 2009.

J. Sankaranarayanan and H. Samet., “Roads belong in databases,”
IEEE Data Engineering Bulletin, 33(2):4-11, June 2010., Invited
paper.

S. Peng,]. Sankaranarayanan, and H. Samet, “Spdo: High-
throughput road distance computations on spark using distance
oracles,” in 2016 IEEE 32nd International Conference on Data Engi-
neering (ICDE), 2016.

M. Cui, D. D. Harabor, and A. Grastien, “Compromise-free
pathfinding on a navigation mesh.” in IJCAI, 2017.

R. Hechenberger, P.]J. Stuckey, D. Harabor, P. Le Bodic, and
M. A. Cheema, “Online computation of euclidean shortest paths
in two dimensions,” in Proceedings of the International Conference on
Automated Planning and Scheduling, 2020.

B. Shen, M. A. Cheema, D. D. Harabor, and P. J. Stuckey, “Eu-
clidean pathfinding with compressed path databases,” in IJCAI,
2021.

J. Du, B. Shen, and M. A. Cheema, “Ultrafast euclidean shortest
path computation using hub labeling,” in IJCAI, 2023.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” in IEEE
transactions on Systems Science and Cybernetics, 1968.

https:/ /en.wikipedia.org/wiki/Ellipse.

https:/ /en.wikipedia.org/wiki/Planar_graph.

https:/ /www.dropbox.com/s/o0fa9ddk138x91w3/dataset.tar.gz?
d1=0.

https://code.google.com/archive/p/geodesic/.

E. G. Hoel and H. Samet., “Efficient processing of spatial queries
in line segment databases,” in Advances in Spatial Databases—2nd
Symposium, SSD’91, O. Giinther and H.-J. Schek, eds., vol. 525 of
Springer-Verlag Lecture Notes in Computer Science, pages 237-
256, Zurich, Switzerland, August 1991.

H. Samet, “Hierarchical spatial data structures,” in Design and
Implementation of Large Spatial Databases—I1st Symposium, SSD’89,
vol. 409 of Springer-Verlag Lecture Notes in Computer Science,
pages 193-212, Santa Barbara, CA, July 1989.

14

Victor Junqiu Wei is currently working as a re-
search assistant professor in the Department of
Computer Science and Engineering (CSE), the
Hong Kong University of Science and Technol-
ogy (HKUST). He obtained his bachelor degree
from Nanjing University and PhD degree from
Department of Computer Science and Engineer-
ing, the Hong Kong University of Science and
Technology.

Raymond Chi-Wing Wong is a Professor in
Computer Science and Engineering (CSE) of
The Hong Kong University of Science and Tech-
nology (HKUST). He is currently the associate
head of Department of Computer Science and
Engineering (CSE). He was the director of the
Risk Management and Business Intelligence
(RMBI) program (from 2017 to 2019) and the
Computer Engineering (CPEG) program (from
2014 to 2016). He received the BSc, MPhil and
PhD degrees in Computer Science and Engi-
neering in the Chinese University of Hong Kong (CUHK) in 2002, 2004
and 2008, respectively.

Cheng Long is currently an Assistant Professor
at the School of Computer Science and Engi-
neering (SCSE), Nanyang Technological Univer-
sity (NTU). From 2016 to 2018, he worked as
a lecturer (Asst Professor) at Queen’s Univer-
sity Belfast, UK. He got the PhD degree from
the Department of Computer Science and En-
gineering, The Hong Kong University of Science
and Technology (HKUST) in 2015. His research
interests are broadly in data management, data
mining and big data analytics. He has served as
a Program Committee member/referee for several top data management
and data mining conferences/journals (TODS, VLDBJ, TKDE, ICDM,
CIKM, etc.). He is a senior member of IEEE.

David M. Mount is a professor at the University
of Maryland, College Park department of com-
} \1 puter science whose research is in computa-
tional geometry. Mount received a B.S. and his
,3 \ Ph.D. in Computer Science at Purdue University.
f i) Mount’s main area of research is computational

- -

e

geometry, which is the branch of algorithms de-
voted to solving problems of a geometric na-
ture. In particular, Mount has worked on the
k-means clustering problem, nearest neighbor
search, and point location. Mount was named to
the 2022 class of ACM Fellows, "for contributions to algorithms and data
structures for geometric data analysis and retrieval”.

Hanan Samet is a Distinguished University Pro-
fessor of computer science. He is a fellow of the
ACM, |IEEE, and the International Association of
Pattern Recognition (IAPR). From 1989 to 1991
he served as the Capital region representative
on the ACM Council. He is the recipient of the
2009 UCGIS Research Award and received best
paper awards in the 2008 SIGMOD Conference,
the 2008 SIGSPATIAL ACMGIS’08 Conference,
and the 2007 Computers & Graphics Journal.
Samet’s paper at the 2009 IEEE International
Conference on Data Engineering (ICDE) was selected as one of the best
papers for publication in the IEEE Transactions on Knowledge and Data
Engineering. In his pioneering research since the 1980s on quadtrees
and other data structures, as well as his well-received books, Samet
has profoundly influenced the theory and application of multidimensional
spatial data structures.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on July 08,2024 at 06:30:39 UTC from IEEE Xplore. Restrictions apply.
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

