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Due to the advance of the geo-spatial positioning and the computer graphics technology, digital
terrain data has become increasingly popular nowadays. Query processing on terrain data has attracted
considerable attention from both the academic and the industry communities.

Proximity queries such as the shortest path/distance query, 𝑘 nearest/farthest neighbor query and
top-𝑘 closest/farthest pairs query are fundamental and important queries in the context of the terrain
surfaces and they have a lot of applications in Geographical Information System, 3D object feature
vector construction and 3D object data mining. In this paper, we first study the most fundamental
type of query, namely shortest distance and path query, which is to find the shortest distance and path
between two points of interest on the surface of the terrain. As observed by existing studies, computing
the exact shortest distance/path is very expensive. Some existing studies proposed 𝜖-approximate
distance and path oracles, where 𝜖 is a non-negative real-valued error parameter. However, the best-
known algorithm has a large oracle construction time, a large oracle size and a large query time.
Motivated by this, we propose a novel 𝜖-approximate distance and path oracle called the Space Efficient
distance and path oracle (SE) which has a small oracle construction time, a small oracle size and a
small distance and path query time thanks to its compactness of storing concise information about
pairwise distances between any two points-of-interest. Then, we propose several algorithms for the 𝑘
nearest/farthest neighbor and top-𝑘 closest/farthest pairs queries with the assistance of our distance
and path oracle SE.

Our experimental results show that the oracle construction time, the oracle size and the distance
and path query time of SE are up to two, three and five orders of magnitude faster than the best-known
algorithm, respectively. Besides, our algorithms for other proximity queries including𝑘 nearest/farthest
neighbor queries and top-𝑘 closest/farthest pairs queries significantly outperform the state-of-the-art
algorithms by up to 2 orders of magnitude.
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Fig. 1. An Example of Digital Terrain Surface and Geodesic Shortest Path
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1 INTRODUCTION
With the advance of geo-spatial positioning and computer graphics technologies, digital
terrain data has become increasingly popular nowadays, and it has been used in many
applications such as Microsoft’s Bing Maps and Google Earth in the industry community.
The terrain data has also attracted considerable attention from the academic community [11,
13, 24, 25, 30, 39, 46, 47].

Terrain data is a planar graph, consisting of vertices, edges, and faces, where all the faces
are triangles. Each face (or triangle) has three line segments called edges connected with
each other at three vertices. An example of a piece of terrain data is shown in Figure 1, where
we have 24 faces, 40 edges and 17 vertices. In this example, there are two points-of-interests
(POIs), namely 𝑠 and 𝑡 , on the terrain surface. As could be observed from this figure, a POI
may lie on a vertex of the terrain or not.
The geodesic path between two given locations (or points) on the surface of the terrain

is the shortest path/route from one point to the other on the surface. The geodesic distance
between two given locations (or points) on the surface of the terrain is the length of the
geodesic path between them. For example, in Figure 1, 𝑠 and 𝑡 are two points-of-interest on
the terrain surface and the shortest path from point 𝑠 to point 𝑡 is shown and is denoted by
𝐺𝑃 , which corresponds to a sequence of line segments on the faces of the terrain. Thus, 𝐺𝑃
is the geodesic path between 𝑠 and 𝑡 and the length of𝐺𝑃 is the geodesic distance between 𝑠
and 𝑡 . Note that the geodesic distance is usually quite different from the Euclidean distance,
and according to [11], in typical terrains, the geodesic distance can exceed the Euclidean
distance by up to 300%. In Figure 1, the Euclidean distance between 𝑠 and 𝑡 is the length of
the line segment 𝐸𝑃 . Proximity queries on the terrain surface are all based on the geodesic
distances instead of the traditional Euclidean distance.
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1.1 Application
In many applications, a set of points-of-interest (POIs) on the surface of the terrain is given,
and the proximity queries (e.g., shortest distance/path query, 𝑘 nearest/farthest neighbors
query and top-𝑘 closest/farthest pairs query) have a lot of applications. Some examples are
detailed as follows.

(1) Geographic Information System (GIS). In GIS, it is important to compute the geodesic
shortest distance/path between two POIs. For example, hikers need the geodesic distance
(resp. path) to measure the travel time (resp. obtain a hiking route) between a source and
a destination which are landmarks (i.e., POIs) in practice [38]. Besides, the vehicles (e.g.,
Google Map camera car and military vehicles) estimate the geodesic distance (resp., path)
to measure the travel cost (resp., obtain the travel route) [28, 43]. In life sciences, scientists
conduct shortest distance and shortest path queries on residential locations (i.e., POIs) of
the animals in the wildness to study their migration patterns [14, 31].

(2) Computer Graphics and Vision. In computer graphics and vision [27, 40], measur-
ing similarities between two different 3D objects is very important. In order to measure
similarities between objects, a number of reference points (which are POIs) [27, 40] on
the surface of each object are selected. These reference points play an important role in
similarity measurement since they are invariant to transformations such as rotation and
translation. For each object, geodesic distances between all pairs of reference points are
computed and are stored as a feature vector for similarity measurement. In this application,
multiple geodesic distance computations are involved.

(3) Scientific Data 3D Modeling. There is a need to model scientific data in 3D models
in areas like biology, chemistry, anthropology and archeology [1, 20]. In neuroimaging,
similar to computer graphics and vision, a 3D model of an organ is associated with a set of
reference points [1, 20] (which are POIs) corresponding to functional units on the organ
and the scientists use the geodesic distances between reference points to analyze tumor
development with magnetic resonance imaging (MRI) images. In neuroscience, scientists
conducted spatial queries on a 3D brain model to study the neuron density and the number
of branches in a region of the brain [41]. Similarly, multiple geodesic distance computations
are involved in this application.

(4) Online 3D Virtual Game. In some online 3D virtual games like INGRESS and Pokémon
GO, a city (e.g., San Francisco in INGRESS) has a terrain surface which consists of a number
of portals or landmarks containing several monsters (which are POIs). For each portal or
landmark, it is important to calculate the geodesic distance from this portal to each of the
other portals so that the influence of this portal is estimated. Here, multiple computations
for geodesic distances are involved. For each user, the 𝑘NN queries are required to obtain
the portals or landmarks in their vicinity to visit and the geodesic shortest path is needed
for the navigation.

(5) Spatial Data Mining. There are many data mining techniques used in spatial databases.
For example, in the clustering technique, the inner-cluster distance (i.e., the monochromatic
farthest pairwise distance) and the inter-cluster distance (i.e., bichromatic closest pairwise
distance) are needed. In the co-location pattern mining, shortest distance and path queries,
bichromatic nearest neighbor queries and monochromatic/bichromatic closest/farthest
pairwise distance queries are also used frequently. In a city setting, examples of POIs include
buildings and parks. In a wilderness setting, examples of POIs include radio-telemetry
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receivers set up for collecting animal movement. In the context of spatial data mining, the
number of geodesic distance computations is very large.

1.2 Motivation
Consider a terrain 𝑇 with 𝑁 vertices. Let 𝑃 be a set of 𝑛 POIs on the surface of the terrain.

Due to a variety of applications in different domains as described in Section 1.1, computing
geodesic distances and paths [2, 4, 7, 15, 24, 25, 30, 32, 45] is very important and is very
fundamental to other proximity queries such as nearest neighbor queries [12, 13, 24, 25, 39,
46] and reverse nearest neighbor queries [25, 47].
Motivated by this, we aim to study three kinds of distance and shortest path queries,

namely vertex-to-vertex (V2V) distance and shortest path queries, POI-to-POI (P2P) distance and
shortest path queries and arbitrary point-to-arbitrary point (A2A) distance and shortest path queries.
For the better clarity, we simply refer to the above three types of queries as P2P query, V2V
query and A2A query, respectively. Consider the first two types of queries. Each V2V query
returns the geodesic distance and path between a starting point 𝑠 and a destination point
𝑡 , where both 𝑠 and 𝑡 are vertices (from 𝑉 ). Each P2P query returns the geodesic distance
and path between a starting point 𝑠 and a destination point 𝑡 , where both 𝑠 and 𝑡 are POIs
(from 𝑃). Since P2P queries, considering both the concept of vertices and the concept of
POIs, is more general than V2V queries, considering only the concept of vertices without the
concept of POIs, P2P queries could be regarded as a generalization of V2V distance (resp.
path) queries. Specifically, under the problem setting for P2P queries, if for each vertex in
the problem setting for V2V queries, we create a POI which has the same coordinate values
as this vertex, then the P2P queries will become the V2V queries. Thus, for clarity, in this
paper, we focus on P2P queries. Consider the third type of queries. Each A2A query returns
the geodesic distance and path between a starting point 𝑠 and a destination point 𝑡 , where
both 𝑠 and 𝑡 are two arbitrary points on the surface of the terrain. Since A2A queries allow
all possible points on the surface of the terrain, A2A queries generalize both P2P and V2V
queries. For the ease of illustration, in the main body of this paper, we first study P2P queries.
Later, in Appendix F, we study A2A queries.

Our natural goal of answering each P2P distance and shortest path query is to return the
corresponding distance and path in a short time. However, none of the existing studies [2, 4,
7, 15, 24, 25, 30, 32, 45] could achieve this goal satisfactorily.
Firstly, all existing algorithms [7, 32, 45] computing exact geodesic distances and paths

on-the-fly are still slow even for moderate-sized terrain data. The time complexities of the
algorithms for computing exact geodesic distances proposed by [7, 32, 45], are 𝑂 (𝑁 2 log𝑁 ),
𝑂 (𝑁 2),𝑂 (𝑁 log2 𝑁 ) and𝑂 (𝑁 2 log𝑁 ), respectively, which is still very large when 𝑁 is large. In
the literature [24, 25, 39, 46], the algorithm proposed in [7] is recognized as a state-of-the-art
algorithm in terms of efficiency. Many existing studies [24, 25, 39, 46] adopt this for finding
the geodesic distances and paths. According to [24], the algorithm proposed in [7] took
more than 300 seconds on a terrain with 200K vertices, which is far from being satisfactory.
Secondly, although some existing algorithms [24, 25, 30] were proposed to compute

approximate geodesic distances and paths on-the-fly for reducing the computation time, all
of these algorithms are still not efficient enough for proximity queries and applications
involving many distance and path queries. The algorithm in [30] computes the approximate
geodesic distance/path satisfying a slope condition, the algorithm in [25] computes the
lower and upper bounds of the geodesic distances between two points which provides
no guarantees on the qualities of the bounds found, and the algorithm in [24], which is
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an improved version of that in [25], runs in 𝑂 ((𝑁 + 𝑁 ′) log(𝑁 + 𝑁 ′)) time where 𝑁 ′ is the
number of additional vertices introduced to achieve a guarantee on the qualities of the lower
and upper bounds found.
For other types of proximity queries, [12, 13, 39] studied the monochromatic version of

𝑘NN queries. But, they all take𝑂 (𝑁 log2 𝑁 ) time to answer a 𝑘NN query, which is very costly
and prevents their usage in real-time applications. Besides, to the best of our knowledge,
there is no existing work on the bichromatic version of 𝑘-nearest neighbor queries in the
context of terrain datasets.
There are other proximity queries. One example is monochromatic and bichromatic

𝑘-farthest neighbor queries and the other example is monochromatic and bichromatic
closest/farthest pair queries. Again, to the best of our knowledge, there is no existing work
on these queries.

1.3 Our Distance and Path Oracle and Proximity Query Processing Algorithms
To efficiently process the geodesic distance and path queries, especially for those cases where
queries for many different pairs of points are issued, some existing studies [2, 4, 15] aim at
designing geodesic distance (e.g., [? ]) (and/or the corresponding shortest path) oracles.
To the best of our knowledge, all existing studies focused on building oracles for returning
approximate geodesic distances or approximate geodesic paths only but no existing studies
focused on building oracles for returning exact geodesic distances (which could be explained
by the high computation cost of computing the exact geodesic distances and exact geodesic
paths). All of these studies [2, 4, 15] are based on auxiliary point-based oracles. Specifically,
they first introduce a large number of auxiliary points (edges), namely Steiner points (edges),
on the surface of the terrain where each Steiner edge connects two Steiner points. Then,
they construct a graph 𝐺𝜖 whose vertices (edges) are either original vertices (edges) or
the Steiner points (edges). The exact distance between any two vertices/points on 𝐺𝜖 is
an 𝜖-approximate geodesic distance between these two vertices/points. The 𝜖-approximate
geodesic distance oracles proposed in [2, 4, 15] indexes the exact distances on 𝐺𝜖 . Among
these studies, the oracle in [15] is the best, where the space complexity of the oracle (called
the oracle size) is 𝑂 ( 𝑁

sin(𝜃 ) ·𝜖1.5 log
2 ( 𝑁

𝜖
) log2 1

𝜖
) where 𝜃 is the minimum inner angle of any

face of the terrain surface. It can answer 𝜖-approximate P2P distance and path queries in
𝑂 ( 1

sin(𝜃 ) ·𝜖 log
1
𝜖
+ log log𝑁 ) time.

Unfortunately, these auxiliary point-based oracles have two drawbacks. The first drawback
is that each of these oracles has a large oracle building time and a large oracle size. This is
because a large number of Steiner points (edges) are introduced during the oracle construc-
tion process and the number of Steiner points could be several orders of magnitude larger
than the number of vertices on the surface of the terrain. Thus, each of these oracles has a
poor empirical performance in terms of both the oracle building time and the oracle size.
The second drawback is that each of these oracles is constructed based on the structure of
the terrain without considering the information about POIs. In other words, it is constructed
based on the set of vertices regardless of the set of POIs. For example, consider the case
where there are only two POIs, a naive oracle storing the geodesic distance for one pair (of
POIs) occupies a 𝑂 (1) space only but the oracle in [15] could introduce millions of Steiner
points, resulting in a large oracle size and a large oracle building time.

Motivated by the drawbacks of the existing methods, we propose a distance oracle called
the Space-Efficient Distance Oracle (SE) such that for any point 𝑠 and any point 𝑡 in 𝑃 , the
oracle returns an 𝜖-approximation of the geodesic distance between 𝑠 and 𝑡 efficiently, where
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𝜖 is a non-negative real user parameter, called the error parameter. Our SE has three good
features: (1) small construction time, (2) small size and (3) small query time (compared
with the best-known oracle [15]). This is because SE is space-efficient in the sense that its
size is linear to 𝑛 (i.e., no of POIs). Due to this space-efficient property, it is much easier for
us to design an efficient algorithm for constructing the SE and an efficient algorithm for
answering distance and shortest path queries.
Based on this oracle which provides the geodesic distance information of POIs, we also

develope efficient query processing algorithms for other proximity queries such as k near-
est/farthest neighbors and top-k closest/farthest pairs queries.

1.4 Contribution & Organization
We summarize our major contributions as follows. Firstly, we propose a novel distance oracle
called SE, which can be computed efficiently, has small size and can answer 𝜖-approximate
geodesic distance and shortest path queries efficiently. Our SE answers not only P2P distance
and path queries but also V2V distance and path queries. Thirdly, for V2V distance and
path queries, our experimental results show that the building time, oracle size and query
time of SE are, respectively, 5-100 times, 10-100 times and more than 1000 times smaller than
those of the best-known distance and path oracle [15] on benchmark real datasets. For P2P
distance and path queries, the building time, oracle size and query time of SE are 10-100
times, 10-1000 times and 100-10000 times smaller than those of the best-known distance
and path oracle [15] on benchmark real datasets, respectively. Besides, for the other types
of proximity queries studied (i.e., the 𝑘 nearest neighbor and farthest neighbor queries,
top-𝑘 closest pair and farthest pair queries), our algorithm also significantly outperforms
the state-of-the-art.
This paper is an extension of the previous conference paper [44]. The conference ver-

sion [44] is concerned with the distance query processing only. It proposed an indexing
structure, namely distance oracle, for distance query on terrain surface. The oracle provides
approximate distances with accuracy guarantee and significantly outperforms the state-of-
the-art in terms oracle building time, oracle size and query time in the perspective of both
theory and empirical performance. Compared with [44] which could be applied to distance
query processing only, this paper extends the distance oracle studied to a Distance and Path
Oracle. Specifically, we incorporate a new component into the oracle which renders it being
able to support both distance and path queries. We also derive a non-trivial error bound
for our path query algorithm. Besides, based on this oracle, the paper further studies many
other proximity queries such as k nearest/farthest neighbors and top-𝑘 closest/farthest pairs
queries which are also fundamental queries in spatial data processing and widely applied in
many scenarios. For each query studied, we develop a new query processing algorithm with
a theoretical guarantee for the accuracy and the time complexity. The additional experiments
on the newly studied queries verify the efficiency and effectiveness of our newly developed
techniques which significantly outperforms the competitors by orders of magnitudes.

We would like to make three notes on the new contribution of this work compared with
its preliminary version [44]. (1) Despite that the distance query and the path query are
closely related, the SEmethod in [44], which is a distance oracle only, can not handle the
path query. This is because the SE oracle studed in [44] does not store any information
regarding the shortest path from a source to a destination. Recall that the SEmethod pre-
computes a set of distances and the query processing involves the look-up operations
of the pre-computed distances and finally finds the one which could approximate the
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distance from a source to a destination. As such, although several on-the-fly single-source
all-destination algorithms are performed in the preprocessing phase and they may involve
some path information, SE only stores the distance information in the query phase (which are
simply real-valued numbers) and discards redundant information (e.g., path information)
if any. (2) Extending the original SE, which is a distance oracle only, to the oracle with the
support of both distance and path query processing is challenging. Firstly, while the original
SE could find the corresponding distance pre-computed for a source 𝑠 and a destination
𝑡 in the query, the two end-points of the distance fetched from the original SE are not
necessarily 𝑠 and 𝑡 , and are normally other points. As such, it is still an open question how
to utilize the auxiliary information provided by the pre-computed distance information of
SE to support the path query given the mis-alignment problem between the points of the
distance pre-computed and the query points as mentioned before. Secondly, in the design
of the path query processing algorithm (which is supposed to fix the gap between the
pre-computed distance information and the query points), it is non-trivial to guarantee
the approximation error for an extension of the SE method. As could be noticed from the
proof of Theorem 3.13, it requires considerable research effort in deriving the theoretical
results of the approximation ratio. (3) Although our newly developed techniques in this
paper adopt [44] as an inherent component (which could be regarded as an extension of
[44]), the newly developed techniques are all up-to-date and could not be found in [44].
The proposed technique in this paper for each newly studied query (e.g., shortest geodesic
path query, 𝑘 nearest/farthest neighbor query and top-𝑘 closest/farthest pair query) is the
state-of-the-art of the corresponding query.
The remainder of the paper is organized as follows. Section 2 provides the problem

definition. Section 3 presents our distance and path oracle, namely SE. Section 4 gives the
other proximity queries studied and the proposed query processing algorithms. Section 5
reviews the related work and introduces some baseline methods of the distance and path
oracles and our query processing algorithms for other proximity queries. Section 6 presents
the experimental results and Section 7 concludes the paper.
2 PROBLEM DEFINITION
Consider a terrain 𝑇 . Let 𝑉 be the set of all vertices on the surface of the terrain 𝑇 , and 𝐸 be
the set of all edges on the surface of the terrain 𝑇 . Let 𝑁 be the size of 𝑇 (i.e., 𝑁 = |𝑉 |). Each
vertex 𝑣 ∈ 𝑉 has three coordinate values, denoted by 𝑥𝑣, 𝑦𝑣 and 𝑧𝑣 .

Let 𝑃 be a set of POIs on the surface of the terrain 𝑇 and 𝑛 be the size of 𝑃 (i.e., 𝑛 = |𝑃 |).
In the following discussion, we focus on the case when 𝑛 ≤ 𝑁 . This is because in real-life
applications, 𝑛 ≤ 𝑁 . For example, in the BearHead dataset, one benchmark dataset used in
the literature, 𝑛 = 4𝑘 and 𝑁 = 1.4𝑀 . In the EaglePeak dataset, the other benchmark dataset,
𝑛 = 4𝑘 and 𝑁 = 1.5𝑀 . The discussion about how we handle the case when 𝑛 > 𝑁 can be
found in Appendix H. Each POI 𝑝 ∈ 𝑃 also has three coordinate values, denoted by 𝑥𝑝 , 𝑦𝑝
and 𝑧𝑝 . In this paper, we assume that 𝑃 contains no duplicate points since any two co-located
POIs can be regarded as one POI in practice, and we can merge any two co-located POIs
into one POI by a simple preprocessing step. Besides, in this paper, similar to many existing
studies of the index-based algorithms, we leave the POI update operation (i.e., insertions
and deletions) as a future work and focus on the static setting of the POIs.
Given two points, 𝑠 and 𝑡 , on the surface of 𝑇 , the geodesic shortest path between 𝑠 and 𝑡 ,

denoted by Π𝑔 (𝑠, 𝑡), is defined to be the shortest path between the two points on the surface
of 𝑇 . Note that the geodesic shortest path corresponds to a sequence of line segments on the
surface of the terrain. Consider the example in Figure 1 where the geodesic shortest path
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between two points 𝑠 and 𝑡 is denoted by 𝐺𝑃 . Given two points, 𝑠 and 𝑡 , on the surface of 𝑇 ,
the geodesic distance between 𝑠 and 𝑡 , denoted by 𝑑𝑔 (𝑠, 𝑡), is defined to be the length of the
geodesic shortest path between the two points, i.e., Π𝑔 (𝑠, 𝑡), where the length of a path is
defined to be the sum of the lengths of all line segments of the path. The geodesic distance
𝑑𝑔 (·, ·) is a metric, and therefore it satisfies the triangle inequality.

Note that a full materialization of geodesic distances for all possible pairs of points in 𝑃 is
not feasible since the complexity of the oracle size and the complexity of the oracle building
time are 𝑂 (𝑛2) and 𝑂 (𝑛𝑁 log2 𝑁 ), respectively, which are prohibitively large. Besides, a full
materialization of all pairwise geodesic paths consumes even more space and requires more
oracle building time.
As we described in Section 1, we would like to have an indexing structure with a short

query time (for shortest distance queries, shortest path queries, monochromatic and bichro-
matic 𝑘 nearest neighbor and farthest neighbor queries, and also monochromatic and bichro-
matic top-𝑘 closest pair and farthest pair queries), a low space cost and a short preprocessing
step. Besides, it has accuracy guarantee for each query considered.
3 DISTANCE AND PATH ORACLE
We first present the overview of our distance and path oracle called SE in Section 3.1. Then,
we present the first component of SE, called the compressed partition tree, in Section 3.2,
the second component of SE, called the node pair set, in Section 3.3, the distance query
processing algorithm based on SE in Section 3.4, the path query processing based on SE in
Section 3.5, the construction algorithm of SE in Section 3.6, and some theoretical results of
SE in Section 3.7.

3.1 Overview
Before giving an overview, we first give the concept of a disk. Given a point 𝑝 ∈ 𝑃 and
a non-negative real number 𝑟 , a disk centered at 𝑝 with radius equal to 𝑟 on the terrain
surface, denoted by 𝐷 (𝑝, 𝑟 ), is defined to be a set of all possible points on the terrain sur-
face whose geodesic shortest distance to 𝑝 is at most 𝑟 . That is, 𝐷 (𝑝, 𝑟 ) = {𝑝 ′ |𝑑𝑔 (𝑝 ′, 𝑝) ≤
𝑟 and 𝑝 ′ is an arbitrary point on the terrain surface}.

With this concept, we are ready to describe our distance oracle SE which includes two
major components, namely the compressed partition tree and the node pair set.

The first component is the compressed partition tree in which each node corresponds to a
disk containing a set of POIs. In the leaf level of the tree, there are 𝑛 nodes each of which
corresponds to a disk containing only one POI. Each node in this level has the smallest
radius (since each node contains only one POI). In the level just above the leaf level of the
tree, there are fewer nodes each of which corresponds to a disk containing one or more POIs.
Each node in this level has a larger radius (since each node contains one or more POIs).
Similarly, each node in a higher level has a larger radius. At the root level of the tree, the
(root) node has the largest radius since it contains all 𝑛 POIs. Note that for different levels,
the tree has different number of nodes (with different radius).
The second component is the node pair set which is a set of the pairs of nodes from the

compressed partition tree. In this node pair set, each node pair in the form of ⟨𝑂,𝑂 ′⟩ is
associatedwith two sub-components: 1. the distance between the centers of the corresponding
disks of 𝑂 and 𝑂 ′, 2. a list of several intermediate points lying on the shortest path between
the centers of the corresponding disks of 𝑂 and 𝑂 ′, where 𝑂 and 𝑂 ′ are two nodes in the
compressed partition tree. Besides, the node pair set satisfies one interesting property called
the unique node pair match property which is the key to the query efficiency of our SE. The
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unique node pair match property states that for any two points, namely 𝑝 and 𝑞, in 𝑃 , there
exists exactly one node pair ⟨𝑂,𝑂 ′⟩ in the node pair set such that𝑂 contains 𝑝 and𝑂 ′ contains
𝑞.

Consider a distance query with a source point 𝑠 ∈ 𝑃 and a destination point 𝑡 ∈ 𝑃 . Let ℎ be
the height of the tree. In all of our experimental results on benchmark real terrain datasets,
ℎ is smaller than 30. We could answer this distance query in 𝑂 (ℎ) time using SE. The major
idea is to find a node pair ⟨𝑂,𝑂 ′⟩ in the node pair set efficiently such that𝑂 contains 𝑠 and𝑂 ′

contains 𝑡 , and return the distance associated with this node pair. Interestingly, even though
the distance returned is associated to this node pair, it will be shown later that the distance
returned is an 𝜖-approximation of the geodesic distance between 𝑠 and 𝑡 . Besides, each node
pair maintains a set of intermediate points to be described later in details, each of which lies
on the 𝜖-approximate shortest path between the centers of the corresponding disks of𝑂 and
𝑂 ′.

Consider a path query from 𝑠 to 𝑡 . Our path query processing concatenates the following
three sub-paths and returns the final concatenation: 1. the shortest path from 𝑠 to the center
of the corresponding disk of𝑂 ; 2. the 𝜖-approximate shortest path between the centers of the
corresponding disks of 𝑂 and 𝑂 ′; 3. the shortest path from the center of 𝑂 ′ to 𝑡 . For finding
the second subpath efficiently, we adopt an efficient method by taking the advantage of the
intermediate points which will be described in detail later.
The major challenge here is how to design SEwhich achieves the space-efficient property

(mentioned in Section 1). We will describe the details of how we address this challenge.

3.2 Oracle Component 1: Compressed Partition Tree
In this section, we first present a hierarchical structure called a partition tree to index all POIs
in 𝑃 , which is used for constructing the first component (i.e., the compressed partition tree)
of our distance oracle SE.

A partition tree is defined to be a tree with the following components.

• Each node 𝑂 in the tree has two attributes, namely its center, denoted by 𝑐𝑂 , and its
radius, denoted by 𝑟𝑂 , where 𝑐𝑂 is a point in 𝑃 and 𝑟𝑂 is a non-negative real number.

• For each leaf node𝑂 , 𝐷 (𝑐𝑂 , 𝑟𝑂 ) contains only one point in 𝑃 (which is 𝑐𝑂) (and thus
contains no objects in 𝑃 other than 𝑐𝑂). Note that there are 𝑛 leaf nodes.

• For each internal node 𝑂 , the center of each child of node 𝑂 is in 𝐷 (𝑐𝑂 , 𝑟𝑂 ) and the
radius of each child of node 𝑂 is equal to 0.5 · 𝑟𝑂 .

• Each node 𝑂 in the tree is associated with its representative set, denoted by 𝑅𝑆 (𝑂),
which is defined to be a set containing the centers of all the leaf nodes in the subtree
rooted at 𝑂 .

Given two nodes, namely 𝑂 and 𝑂 ′, the (geodesic) distance between 𝑂 and 𝑂 ′, denoted by
𝑑𝑔 (𝑂,𝑂 ′), is defined to be 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′).

Let ℎ be the height of the partition tree. The partition tree has ℎ + 1 layers, namely Layer
0, Layer 1, ..., Layer ℎ. Layer 0 is the layer containing the root node only. For each 𝑖 ∈ [1, ℎ],
Layer 𝑖 is the layer containing all child nodes of each node in Layer (𝑖 − 1). Finally, Layer ℎ is
the layer containing all leaf nodes. If a node is in Layer 𝑖 where 𝑖 ∈ [0, ℎ], we also say that
the depth of this node is 𝑖. Note that all nodes in the same layer have the same radii. The
radius of Layer 𝑖, denoted by 𝑟𝑖 , is defined to be the radius of one of the nodes in Layer 𝑖. For
any 𝑖, 𝑗 ∈ [0, ℎ], we say that Layer 𝑖 is higher than Layer 𝑗 (or Layer 𝑗 is lower than Layer 𝑖) if
and only if 𝑖 < 𝑗 .
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Fig. 2. An Example Fig. 3. Some Disks Used in Our Example

Fig. 4. All Disks Used in Our Example
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Fig. 5. An Example of Partition Tree

Next, we give the three properties of this partition tree to be satisfied. We will describe
how to construct a partition tree satisfying these three properties later.

• Separation Property: For each 𝑖 ∈ [0, ℎ], the radius of each node in Layer 𝑖 is 𝑟0
2𝑖 and

the geodesic distance between any two nodes in this layer is at least 𝑟02𝑖 .
• Covering Property: For each layer where 𝑋 denotes a set of all nodes in this layer,
the region represented by

⋃
𝑂 ∈𝑋 𝐷 (𝑐𝑂 , 𝑟𝑂 ) covers all points in 𝑃 .

• Distance Property: For each node𝑂 in the tree, if𝑂 ′ is one of the descendant nodes
of 𝑂 , then 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) is at most 2 · 𝑟𝑂 , i.e., 𝑐𝑂′ is in the disk 𝐷 (𝑐𝑂 , 2 · 𝑟𝑂 ).

Given a node𝑂 in the partition tree, the enlarged disk of node𝑂 is defined to be 𝐷 (𝑐𝑂 , 2 ·𝑟𝑂 ).
From the Distance Property, we deduce that for each node 𝑂 in the partition tree, all points
in 𝑅𝑆 (𝑂) (which are points in 𝑃) are in the enlarged disk of node 𝑂 .

Example 3.1 (Partition Tree). Consider the points on a terrain surface as shown in Figure 2. There
are 12 points 𝑝1, 𝑝2, 𝑝3, ......, 𝑝12 in 𝑃 .

Figure 3 shows three small disks, namely 𝐷 (𝑝1, 𝑟3), 𝐷 (𝑝2, 𝑟3) and 𝐷 (𝑝3, 𝑟3), one medium-small disk,
namely 𝐷 (𝑝2, 𝑟2), one medium-large disk, namely 𝐷 (𝑝2, 𝑟1), and one large disk, namely 𝐷 (𝑝7, 𝑟0),
where 𝑟0, 𝑟1, 𝑟2 and 𝑟3 are four non-negative real numbers. Note that 𝑟0 is the radius of the large disk,
𝑟1 is the radius of the medium-large disk, 𝑟2 is the radius of the medium-small disk and 𝑟3 is the radius
of one of the small disks. We also show all disks to be used in this example in Figure 4.
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Fig. 6. An Example of Compressed Partition
Tree
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ing

There are 21 disks in the figure, each of which centers at a point. For example, the disk 𝐷 (𝑝7, 𝑟0) is
a disk with its center equal to 𝑝7 and its radius equal to 𝑟0 = 𝑑𝑔 (𝑝7, 𝑝11).

Figure 5 shows a partition tree of height equal to 3 which is built based on the 12 points shown in
Figure 2. In this figure, each black dot corresponds to a node in the tree. By definition, any two nodes
in the same layer have the same radii. In Layer 0, there is only one node 𝑂21 (i.e., the root node) with
its radius 𝑟0 equal to 𝑑𝑔 (𝑝7, 𝑝11). In Layer 1, there are three nodes, namely𝑂18,𝑂19 and𝑂20, each with
its radius 𝑟1 equal to 0.5𝑟0. In Layer 2, there are 5 nodes, namely 𝑂13,𝑂14,𝑂15,𝑂16 and 𝑂17 each with
its radius 𝑟2 equal to 0.25𝑟0. In Layer 3, there are 12 nodes (i.e., leaf nodes), namely 𝑂1,𝑂2, ...,𝑂12,
each with its radius 𝑟3 equal to 0.125𝑟0. In the figure, we list the center of each node below the label of
the node. For example, there is a label 𝑝2 below the label 𝑂13, which means that the center of 𝑂13 is 𝑝2.

Consider the leaf node 𝑂1 with its center equal to 𝑝1 and its radius equal to 𝑟3. It is easy to see that
disk 𝐷 (𝑝1, 𝑟3) contains only one point in 𝑃 (i.e., 𝑝1) as shown in Figure 3. The representative set of
this node is a set containing only the center of this node (i.e., 𝑝1). This holds as well for each of the
other leaf nodes (e.g., node 𝑂2 and node 𝑂3).

Consider the internal node 𝑂13 with its center equal to 𝑝2 and its radius equal to 𝑟2. The center of
each child of node 𝑂13 (i.e., node 𝑂1, node 𝑂2 and node 𝑂3) is in disk 𝐷 (𝑝2, 𝑟2) as shown in Figure 3.
Besides, the radius of each child of node 𝑂13 is equal to 0.5 · 𝑟2 (since the radius of each child is equal
to 0.125𝑟0 and 𝑟2 = 0.25𝑟0). The representative set of this node is a set containing the centers of all
the leaf nodes in the subtree root at 𝑂13 (i.e., the center of node 𝑂1 (which is 𝑝1), the center of node
𝑂2 (which is 𝑝2) and the center of node 𝑂3 (which is 𝑝3)). This holds as well for each of the other
internal nodes.

It is easy to verify that the partition tree shown in this figure satisfies the three properties described
above.

Next, we present our top-down method for building the partition tree.
• Step 1 (Root Node Construction): We create the root node as follows.

– Step (a) (Initialization): We assign a variable 𝑖, denoting the layer number, with
0.

– Step (b) (Point Selection): We randomly select a point 𝑝 in 𝑃 .
– Step (c) (Radius Computation): We perform a single-source all-destination

(SSAD) exact shortest path algorithm [7, 32, 45] which takes 𝑝 as an input of
the source point and executes until the search region of the algorithm covers
all points in 𝑃 . When we terminate the algorithm, we obtain the maximum
distance 𝑑 between 𝑝 and a point in 𝑃 .
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– Step (d) (Node Construction): We create a root node 𝑂 where its center is set to
𝑝 and its radius is set to 𝑑 . Note that in this layer, 𝑟0 = 𝑑 .

• Step 2 (Non-Root Node Construction): We perform the following operations.
– Step (a) (Initialization): We increment variable 𝑖 by 1. We initialize a variable 𝑃 ′,

denoting a set of remaining points in 𝑃 to be “covered” by a node in Layer 𝑖, to
be 𝑃 and in each iteration of Step (b), we remove some POIs from 𝑃 ′ until 𝑃 ′ is
empty (i.e., each time we create a node, we remove some POIs “covered” by
the node from 𝑃 ′ until 𝑃 ′ is empty).

– Step (b) (Iterative Step): We perform the following iterative steps.
∗ Step(i) (Point Selection): Let C be a set containing the centers of all nodes

in Layer 𝑖 − 1. Let 𝑃C be the set of remaining points in 𝑃 ′ each of which
is one of the centers of all nodes in Layer 𝑖 − 1 (i.e., 𝑃C = 𝑃 ′ ∩ C). We
will give a higher priority to points in 𝑃C in the point selection. We
randomly select a point 𝑝 from 𝑃C if 𝑃C ≠ ∅, and select a point 𝑝 from 𝑃 ′

based on a point selection strategy (to be described later) otherwise.
∗ Step (ii) (Point Covering): We find a set 𝑆 of all points in 𝑃 ′ that are in

𝐷 (𝑝, 𝑟02𝑖 ) by performing a single-source all-destination (SSAD) exact
shortest path algorithm which takes 𝑝 as an input of the source point
and executes the algorithm until the distance between the boundary
of the search region and 𝑝 is greater than 𝑟0

2𝑖 . We remove all points in 𝑆
from 𝑃 ′.

∗ Step (iii) (Node Creation):We create a node 𝑂 where its center is set to 𝑝
and its radius is set to 𝑟0

2𝑖 . Then, we find the node 𝑂parent in Layer (𝑖 − 1)
whose distance to 𝑂 is the minimum. We set the parent of 𝑂 to 𝑂parent .

∗ Step (iv) (Additional Node Creation):We repeat the above steps (i.e., Steps
(i)-(iii)) until 𝑃 ′ is empty.

– Step (c) (Next Layer Processing):We repeat the above steps (i.e., Step (a) and
Step (b)) until the number of nodes in Layer 𝑖 is equal to 𝑛.

Lemma 3.2. The partition tree generated by the above procedure satisfies the Separation, Covering
and Distance Properties.

Proof. For the sake of space, all the proofs in the paper can be found in Appendix B. □

Some implementation details of this algorithm are given as follows.
Implementation Detail 1 (Point Selection Strategy in Step 2(b)(i)): We propose two
heuristic-based point selection strategies as follows. The first one is called the random selection
strategy. It randomly selects a point 𝑝 from 𝑃 ′. The second one is called the greedy selection
strategy which is to select a point from 𝑃 ′ in the “densest” region (or formally cell) on the
surface of the terrain. The major idea of this strategy is to select a point from 𝑃 ′ in the densest
region (because if this point is selected as the “center” of the disk, then this disk can cover
many points (which could come from the densest region)). Specifically, this strategy requires
some additional operations included in other steps, and we describe them as follows. (A)
Between Step 2(a) and Step 2(b), we construct a grid on the 𝑥-𝑦 plane with the cell width
equal to 𝑂 ( 𝑟02𝑖 ). Then, we insert all points from 𝑃 ′ in corresponding cells, and all point IDs
in each cell are indexed in a B+-tree. We also build a max-heap containing all non-empty
cells whose keys are the sizes of their B+-trees. (B) In Step 2(b)(i), in the case that 𝑃C = ∅,
we select a point 𝑝 in 𝑃 ′ by finding the cell with the greatest number of points in 𝑃 ′ and
randomly selecting a point 𝑝 from 𝑃 ′ in the cell. (C) In Step 2(b)(ii), for each point 𝑝 ′ in 𝑆 ,
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we remove 𝑝 ′ from the B+-tree of its corresponding cell and decrease the key of the cell in
the max-heap by 1.
Implementation Detail 2 (SSAD algorithm): Note that in Step 1(c) and Step 2(b)(ii), we
need to perform the SSAD algorithm [7, 32] which is a best-first search algorithm. There
are two versions of this algorithm here, but the major principle is the same for each but
with different stopping criteria. The major principle is described as follows. The algorithm
performs a search that starts from 𝑠 and expands its search with the vertex in 𝑉 which
has not been processed and has its minimum geodesic distance 𝑑𝑚𝑖𝑛 to 𝑠. For each vertex
expansion, all points in 𝑃 on each face expanded together with the vertex are computed with
their geodesic distances. Note that we know that for each vertex expansion, all vertices in 𝑉
with their geodesic distances smaller than 𝑑𝑚𝑖𝑛 have been processed. The first version of this
algorithm (in Step 1(c)) has an input of a source point 𝑠 only. For each vertex expansion,
the first version of the algorithm checks whether all points in 𝑃 have been visited. If yes,
this algorithm terminates. The second version of this algorithm (in Step 2(b)(ii)) takes
as its inputs a source point 𝑠 and a distance threshold 𝑑 ′ (denoting the boundary of the
search region starting from 𝑠). For each vertex expansion, the second version of the algorithm
checks whether 𝑑𝑚𝑖𝑛 is larger than 𝑑 ′. If yes, this algorithm terminates. It is worthmentioning
that the two versions of SSAD are common practices of the single-source all-destination
geodesic shortest distance computation [7, 32]. The time complexity of each of these two
versions is 𝑂 (N logN + 𝑘), where N is the number of vertices in 𝑉 processed and 𝑘 is the
number of points in 𝑃 processed.
Implementation Detail 3 (Parent Finding): Recall that in Step 2(b)(iii), we need to find a
node in Layer (𝑖 − 1) to become the parent node 𝑂parent of 𝑂 . Let 𝑌 be the set of the centers
of all nodes in Layer (𝑖 − 1). We find this parent node by performing the Single-Source
All-Destination (SSAD) algorithm which takes the center of 𝑂 as an input of the source
point and executes until one point in 𝑌 is reached. Since𝑂parent has the smallest distance to𝑂
among all nodes in Layer (𝑖 − 1) and Covering Property states that in Layer (𝑖 − 1) where 𝑋
denotes a set of all nodes in this layer, the region represented by ∪𝑂′∈𝑋𝐷 (𝑐𝑂′, 𝑟𝑂′) covers all
points in 𝑃 (including the center of node 𝑂 (i.e., 𝑐𝑂)), we deduce that there exists a node in
Layer (𝑖 − 1), which is 𝑂parent , such that 𝑐𝑂 is in 𝐷 (𝑐𝑂parent , 𝑟𝑂parent ). Thus, the distance between
𝑐𝑂 and the boundary of the search region of SSAD is at most 𝑟𝑂parent (= 2𝑟𝑂 ).
Implementation Detail 4 (Set Operation): Variable 𝑃 ′ (in Step 2) denoting a set of points
could be implemented with a B+-tree data structure. The ID’s of all points in 𝑃 ′ are main-
tained in the B+-tree for processing (e.g., point ID insertions and point ID deletions). Thus,
constructing 𝑃 ′ takes 𝑂 (𝑛 log𝑛) time and an update operation on 𝑃 ′ takes 𝑂 (log𝑛) time.
Finally, we analyze the depth ℎ of the partition tree. The following lemma presents the

depth of the partition tree.

Lemma 3.3. ℎ ≤ log(max𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝,𝑞)
min𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝,𝑞) ) + 1

By our assumption of Section 2 that there are noduplicate POIs, it follows thatmin𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝, 𝑞)
is strictly positive.Wewant to emphasize that the upper bound ofℎ (i.e., log(max𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝,𝑞)

min𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝,𝑞) )+1)
is a small value in practice. Firstly, in all of our experimental results, ℎ is at most 30. Secondly,
even in the extreme case where the minimum distance is one nanometer (= 10−9m) and the
maximum distance is the length of the Earth’s equator (≈ 4 × 107m), Lemma 3.3 yields an
upper bound of only 56.
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Consider the first component called the compressed partition tree which is a variation of the
partition tree.

We construct the compressed partition tree 𝑇compress based on the original partition tree
𝑇org as follows. Firstly, we generate 𝑇compress by duplicating 𝑇org . Secondly, whenever there is a
node 𝑂 in 𝑇compress containing only one child node 𝑂child , if there is a parent node 𝑂parent of 𝑂 ,
then we remove the parent-and-child relationship between 𝑂 and 𝑂child and then the parent
of 𝑂child is set to 𝑂parent . Then, we delete 𝑂 . We repeat this step iteratively until there is no
node in 𝑇compress containing only one child. Thirdly, for each leaf node in 𝑇compress, we set its
radius to 0.

Note that each leaf node (containing no child node) is still kept after the above operation
since each node removal operation involves a node containing only one child node. Note that
for each point 𝑝 in 𝑃 , there exists exactly one leaf node whose center is 𝑝. Given a point 𝑝 in
𝑃 , its corresponding leaf node, denoted by 𝑂𝑝 , is defined to be the leaf node in the compressed
partition tree whose center is 𝑝. Besides, given a node 𝑂 in the compressed partition tree,
the layer number of the layer containing 𝑂 in the compressed partition tree is defined to be
the layer number of the layer containing 𝑂 in the (original) partition tree.

Example 3.4 (Compressed Partition Tree). Consider the partition tree (Figure 5) in Example 3.1.
According to the above procedure, since node 𝑂17 has only one child node (i.e., node 𝑂12), we remove
the parent-and-child relationship between 𝑂17 and 𝑂12 and then we set the parent of 𝑂12 to node
𝑂20 (which is the parent of 𝑂17 in the original partition tree). Then, we remove node 𝑂17. After this
operation, we do a similar operation for node 𝑂18 containing only one child node 𝑂13. After that, no
node in the resulting tree contains only one child. Finally, for each leaf node in the resulting tree, we
set its radius (i.e., 𝑟3) to 0. The resulting tree is the compressed partition tree as shown in Figure 6.
Note that the layer number of the layer containing node 𝑂20 is 1 and the layer number of the layer
containing node 𝑂12 is 3 (although the node 𝑂17 in Layer 2 of the (original) partition tree (which
connects 𝑂12 and 𝑂20) is removed).

As shown in the following lemma, the space complexity of the compressed partition tree
is 𝑂 (𝑛) (which is linear to 𝑛).

Lemma 3.5. The compressed partition tree 𝑇compress has 𝑂 (𝑛) nodes.
Proof. Let𝑚,𝑘 denote the number of nodes and edges in 𝑇compress, respectively. By the

construction of 𝑇compress, 𝑇compress has 𝑛 leaf nodes and every inner node in 𝑇compress has at least
2 children. Thus,𝑇compress has𝑚 − 𝑛 inner nodes and at least 2 · (𝑚 − 𝑛) edges. Since𝑇compress is
a tree, we obtain that 𝑘 =𝑚 − 1. Thus, we obtain that 𝑘 =𝑚 − 1 ≥ 2(𝑚 − 𝑛). Finally, we obtain
that𝑚 ≤ 2𝑛 − 1. □

3.3 Oracle Component 2: Node Pair Set
Consider the second component of SE called the node pair set. Each node pair set ⟨𝑂,𝑂 ′⟩
is associated with the distance 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) and a list L𝑀 (𝑂,𝑂 ′) of 𝑀 points lying on the
shortest path from 𝑐𝑂 to 𝑐 ′

𝑂
(in the ascending order of their distances to 𝑐𝑂), where𝑀 is a

user parameter. Before we define this, we give some definitions based on the compressed
partition tree which will be used in the node pair set.

Given two nodes 𝑂 and 𝑂 ′ in the compressed partition tree, 𝑂 and 𝑂 ′ are well-separated
[6] if and only if 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≥ ( 2

𝜖
+ 2) ·max{𝑟, 𝑟 ′} where 𝑟 is the radius of the enlarged disk

of 𝑂 and 𝑟 ′ is the radius of the enlarged disk of 𝑂 ′. Given two nodes 𝑂 and 𝑂 ′ which are
well-separated in the compressed partition tree, we say that ⟨𝑂,𝑂 ′⟩ is a well-separated (node)
pair.
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Given a node pair ⟨𝑂,𝑂 ′⟩ and two nodes 𝑂 and 𝑂 ′ in a tree where (1) 𝑂 is either 𝑂 or a
descendant node of 𝑂 and (2) 𝑂 ′ is either 𝑂 ′ or a descendant node of 𝑂 ′, we say that ⟨𝑂,𝑂 ′⟩
contains ⟨𝑂,𝑂 ′⟩. Note that in our context, a node pair ⟨𝑂,𝑂 ′⟩ has an order. Specifically, even
if ⟨𝑂,𝑂 ′⟩ contains ⟨𝑂,𝑂 ′⟩, it is possible that ⟨𝑂 ′,𝑂⟩ does not contain ⟨𝑂,𝑂 ′⟩.

In practice, given two points 𝑝 and 𝑞 ∈ 𝑃 with their corresponding leaf nodes𝑂𝑝 and𝑂𝑞 in
the compressed partition tree, we say that ⟨𝑂,𝑂 ′⟩ contains ⟨𝑝, 𝑞⟩ if ⟨𝑂,𝑂 ′⟩ contains ⟨𝑂𝑝 ,𝑂𝑞⟩.
Next, we give a method of generating the node pair set given a compressed partition

tree. We maintain a variable 𝑆 storing a set of node pairs, initialized as {⟨𝑂root,𝑂root⟩} where
𝑂root is the root node of the compressed partition tree. At each iteration, we extract a pair
⟨𝑂𝑖 ,𝑂 𝑗 ⟩ from 𝑆 which is not well-separated. Then, we select the node in the pair ⟨𝑂𝑖 ,𝑂 𝑗 ⟩
whose radius is larger. Without loss of generality, we assume that 𝑂𝑖 is selected and let
𝐶1,𝐶2, ......,𝐶𝑚 denote its children. Next, we insert ⟨𝐶1,𝑂 𝑗 ⟩, ⟨𝐶2,𝑂 𝑗 ⟩, ..., and ⟨𝐶𝑚,𝑂 𝑗 ⟩ into 𝑆 .
For each 𝑥 ∈ [1,𝑚], ⟨𝐶𝑥 ,𝑂 𝑗 ⟩ is said to be a pair generated by ⟨𝑂𝑖 ,𝑂 𝑗 ⟩ and 𝑂𝑖 is said to be split
from ⟨𝑂𝑖 ,𝑂 𝑗 ⟩. Note that if 𝑂𝑖 and 𝑂 𝑗 have the same radius, then we select the node with a
smaller node ID in the pair ⟨𝑂𝑖 ,𝑂 𝑗 ⟩ for processing. We repeat the above procedure until each
pair in 𝑆 is well-separated. Finally, for each node pair ⟨𝑂,𝑂 ′⟩ in 𝑆 , we compute the shortest
geodesic path from 𝑐𝑂 to 𝑐𝑂′ and uniformly sample𝑀 points on the path and insert them
into the list associated with the node pair. Note that all points in the list are ordered in the
ascending order of their distances to 𝑐𝑂 .

Let 𝑆 be the set of node pairs returned by the above procedure. 𝑆 is called the node pair set
of SE.
In the above procedure, note that whenever we check whether a node pair ⟨𝑂𝑖 ,𝑂 𝑗 ⟩ is

well-separated, we have to compute the distance between 𝑂𝑖 and 𝑂 𝑗 . Besides, for each node
pair ⟨𝑂,𝑂 ′⟩ in 𝑆 , it is needed to find the shortest geodesic path P from 𝑐𝑂 to 𝑐𝑂′ . Then, we
simply uniformly sample 𝑀 vertices from the path P and insert them all into L𝑀 (𝑂,𝑂 ′).
Note that if P does not have 𝑀 vertices, we insert all vertices on the path into L𝑀 (𝑂,𝑂 ′).
Later in Section 3.6 as a part of the oracle construction, we will explain how we compute
this distance and the path efficiently.

The following theorem shows a key property of the node pair set generated, namely the
unique node pair match property.

Theorem 3.6. Let 𝑆 be the node pair set of SE. Each node pair in 𝑆 is a well-separated pair and for
any two points 𝑝 and 𝑞 in 𝑃 , there exists exactly one node pair ⟨𝑂,𝑂 ′⟩ in 𝑆 containing ⟨𝑝, 𝑞⟩ and the
distance associated with this node pair is an 𝜖-approximate distance of 𝑑𝑔 (𝑝, 𝑞).

Next, we present the following theorem showing that there are 𝑂 ( 𝑛ℎ
𝜖2𝛽

) node pairs consid-
ered in the procedure of generating the node pair set (which is linear to 𝑛) where 𝛽 is a real
number and is in the range from 1.5 and 2 in practice.

Theorem 3.7. There are only𝑂 ( 𝑛ℎ
𝜖2𝛽

) node pairs considered in the procedure of generating the node
pair set and thus there are 𝑂 ( 𝑛ℎ

𝜖2𝛽
) in the node pair set of SE.

Finally, we adopt a standard hashing technique, namely the perfect hashing scheme [8], to
index all node pairs in the node pair set of SE. The hashing technique takes a linear space
and requires a linear preprocessing time in expectation in terms of the number of the node
pairs in the node pair set of SE. Given two nodes 𝑂 and 𝑂 ′ in the compressed partition tree,
we could check whether there exists a node pair ⟨𝑂,𝑂 ′⟩ in the node pair set of SE in constant
time and if so, it could also return the associated geodesic distance 𝑑𝑔 (𝑂,𝑂 ′) in constant
time.
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3.4 Distance Query Processing
Next, we present how we use our distance oracle SE for a distance query with a source point
𝑠 ∈ 𝑃 and a destination point 𝑡 ∈ 𝑃 .

We first present one naive method, whose time complexity is𝑂 (ℎ2), for this distance query.
Next, we present an efficient algorithm whose time complexity is 𝑂 (ℎ).

Naive Method: Before we introduce the naive method, we give some notations first. Let
𝑂root be the root node of the compressed partition tree. By our notation convention, we know
that 𝑂𝑠 denotes the corresponding leaf node of point 𝑠 in the compressed partition tree and
𝑂𝑡 denotes the corresponding leaf node of point 𝑡 in the compressed partition tree. Let 𝐴𝑠
be the array of size ℎ + 1where 𝐴𝑠 [𝑖] is equal to the node in Layer 𝑖 along the path from 𝑂𝑠
to 𝑂root in the compressed partition tree if there exists a node in Layer 𝑖 and is equal to ∅
otherwise for each 𝑖 ∈ [0, ℎ]. We have another notation 𝐴𝑡 which has a definition similar to
𝐴𝑠 and involves the path starting from 𝑂𝑡 instead of 𝑂𝑠 . We denote the Cartesian product
between the set of all nodes in 𝐴𝑠 and the set of all nodes in 𝐴𝑡 by 𝐴𝑠 ×𝐴𝑡 . It is easy to have
the following observation from Theorem 3.6: there exists exactly one pair ⟨𝑂,𝑂 ′⟩ in 𝐴𝑠 ×𝐴𝑡
such that ⟨𝑂,𝑂 ′⟩ contains ⟨𝑠, 𝑡⟩ and ⟨𝑂,𝑂 ′⟩ is in the node pair set of our SE.

Based on this observation, we have the following naivemethod for a distance query. Firstly,
we find a leaf node 𝑂𝑠 and a leaf node 𝑂𝑡 . Then, we construct array 𝐴𝑠 (𝐴𝑡) by traversing
from 𝑂𝑠 (𝑂𝑡) to 𝑂root . Secondly, for each node 𝑂 ∈ 𝐴𝑠 and each node 𝑂 ′ ∈ 𝐴𝑡 , we check
whether node pair ⟨𝑂,𝑂 ′⟩ is in the node pair set of our SE. If so, we return the distance
associated with ⟨𝑂,𝑂 ′⟩. Otherwise, we continue to check the next node pair.
Note that by this observation, the above naive method must return one distance value

(associated with one node pair) at the end.
The correctness of the naive method (i.e., the 𝜖-approximation) comes naturally from

Theorem 3.6.
It is easy to verify that the time complexity of the naive method is 𝑂 (ℎ2) since the first

step takes𝑂 (ℎ) time and the second step takes𝑂 (ℎ2) time (because the second step involves
𝑂 (ℎ2) node pairs and each node pair requires to be checked with its existence in the node
pair set of our SE in 𝑂 (1) time using the perfect hashing scheme).

Efficient Method:Next, we will present our efficient algorithm for the distance query which
takes 𝑂 (ℎ) time. Before we present the algorithm, we give some concepts first.

Let 𝐿𝑎𝑦𝑒𝑟 (𝑂) be the layer number of the layer containing node 𝑂 .
We categorize node pairs ⟨𝑂,𝑂 ′⟩ into one of three types. A node pair ⟨𝑂,𝑂 ′⟩ is said to

be a same-layer node pair if 𝑂 has the same layer as 𝑂 ′ in the compressed partition tree (i.e.,
𝐿𝑎𝑦𝑒𝑟 (𝑂) = 𝐿𝑎𝑦𝑒𝑟 (𝑂 ′)). A node pair ⟨𝑂,𝑂 ′⟩ is said to be a first-higher-layer node pair if𝑂 has a
higher layer than 𝑂 ′ in the compressed partition tree (i.e., 𝐿𝑎𝑦𝑒𝑟 (𝑂) < 𝐿𝑎𝑦𝑒𝑟 (𝑂 ′)). A node
pair ⟨𝑂,𝑂 ′⟩ is said to be a first-lower-layer node pair if 𝑂 has a lower layer than 𝑂 ′ in the
compressed partition tree (i.e., 𝐿𝑎𝑦𝑒𝑟 (𝑂) > 𝐿𝑎𝑦𝑒𝑟 (𝑂 ′)).

Consider the compressed partition tree as shown in Figure 6. The node pair ⟨𝑂14,𝑂15⟩ is a
same-layer node pair. The node pair ⟨𝑂14,𝑂7⟩ is a first-higher-layer node pair and the node
pair ⟨𝑂6,𝑂15⟩ is a first-lower-layer node pair.

By definition, in a same-layer node pair ⟨𝑂,𝑂 ′⟩, both node 𝑂 and node 𝑂 ′ are in the same
layer. We know that in a first-higher-layer node pair ⟨𝑂,𝑂 ′⟩, since node 𝑂 has a higher layer
than node 𝑂 ′, we know that there exists a layer higher than the layer containing node 𝑂 ′,
and thus we deduce that 𝑂 ′ has a parent node in the compressed partition tree. With the
following lemma, interestingly, we know that the layer containing the parent of node 𝑂 ′ is
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equal to or higher than the layer containing node 𝑂 . We could have a similar conclusion for
a first-lower node pair.

Lemma 3.8. Consider a node pair ⟨𝑂,𝑂 ′⟩ in the node pair set of our SE. If ⟨𝑂,𝑂 ′⟩ is a first-higher-
layer node pair, then the layer containing the parent of node 𝑂 ′ is equal to or higher than the layer
containing node 𝑂 . If ⟨𝑂,𝑂 ′⟩ is a first-lower-layer node pair, then the layer containing the parent of
node 𝑂 is equal to or higher than the layer containing node 𝑂 ′.
Consider the compressed partition tree as shown in Figure 6. The error parameter 𝜖 is

set to 2. Note that for illustration purpose, this error parameter is set to 2 but in practice,
it should be set to a smaller value (e.g., 0.1) as what we did in our experimental studies.
The node pairs ⟨𝑂14,𝑂7⟩ and ⟨𝑂16,𝑂12⟩ are both first-higher-layer node pairs in the node pair
set of our SE. The parent of 𝑂7 (𝑂12) is 𝑂15 (𝑂20). The layer containing 𝑂15 is the same as
that containing 𝑂14 and the layer containing 𝑂20 is higher than that containing 𝑂16. Similar
illustrations could be made to the two first-lower-layer node pairs in the node pair set of our
SE, namely ⟨𝑂6,𝑂15⟩ and ⟨𝑂13,𝑂20⟩, in a symmetric way.

Let 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) be the parent of node 𝑂 in the compressed partition tree.
With Lemma 3.8, we have the following observation.
Observation 1. Consider a node pair ⟨𝑂,𝑂 ′⟩ in the node pair set of our SE. If ⟨𝑂,𝑂 ′⟩ is a

first-higher-layer node pair, then 𝐿𝑎𝑦𝑒𝑟 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′)) ≤ 𝐿𝑎𝑦𝑒𝑟 (𝑂) < 𝐿𝑎𝑦𝑒𝑟 (𝑂 ′). If ⟨𝑂,𝑂 ′⟩ is a
first-lower-layer node pair, then 𝐿𝑎𝑦𝑒𝑟 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂)) ≤ 𝐿𝑎𝑦𝑒𝑟 (𝑂 ′) < 𝐿𝑎𝑦𝑒𝑟 (𝑂).

Consider the compressed partition tree as shown in Figure 6. The node pairs ⟨𝑂14,𝑂7⟩ and
⟨𝑂16,𝑂12⟩ are both first-higher-layer node pairs in the node pair set of our SE. 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂7)
(𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂12)) is 𝑂15 (𝑂20). It is clear that 𝐿𝑎𝑦𝑒𝑟 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂7)) ≤ 𝐿𝑎𝑦𝑒𝑟 (𝑂14) < 𝐿𝑎𝑦𝑒𝑟 (𝑂7) and
𝐿𝑎𝑦𝑒𝑟 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂12)) ≤ 𝐿𝑎𝑦𝑒𝑟 (𝑂16) < 𝐿𝑎𝑦𝑒𝑟 (𝑂12). Similar illustrations could be made to the
two first-lower-layer node pairs in the node pair set of our SE, namely ⟨𝑂6,𝑂15⟩ and ⟨𝑂13,𝑂20⟩,
in a symmetric way.

Based on Observation 1, we give the major idea why we could have an efficient algorithm.
Note that the naive method requires that 𝑂 (ℎ2) node pairs should be enumerated. However,
our efficient method just needs to enumerate 𝑂 (ℎ) node pairs. Specifically, our efficient
method involves three steps. Roughly speaking, the first step handles same-layer node pairs
in 𝐴𝑠 ×𝐴𝑡 , the second step handles first-higher-layer node pairs in 𝐴𝑠 ×𝐴𝑡 , and the third step
handles first-lower-layer node pairs in 𝐴𝑠 ×𝐴𝑡 .
Specifically, the first step checks whether there exists a node 𝑂 in 𝐴𝑠 and a node 𝑂 ′ in

𝐴𝑡 such that ⟨𝑂,𝑂 ′⟩ is a same-layer node pair and ⟨𝑂,𝑂 ′⟩ is in the node pair set of SE. If
there exists such a node pair ⟨𝑂,𝑂 ′⟩, we return the distance associated with ⟨𝑂,𝑂 ′⟩. This
can be done in 𝑂 (ℎ) time by linearly scanning both arrays 𝐴𝑠 and 𝐴𝑡 from index 0 through ℎ
and checking whether ⟨𝐴𝑠 [𝑖], 𝐴𝑡 [𝑖]⟩ is in the node pair set of SEwhere 𝑖 ∈ [0, ℎ] (note that
⟨𝐴𝑠 [𝑖], 𝐴𝑡 [𝑖]⟩ is a same-layer node pair). The second step is to check whether there exists
a node 𝑁 in 𝐴𝑠 and a node 𝑁 ′ in 𝐴𝑡 such that ⟨𝑂,𝑂 ′⟩ is a first-higher-layer node pair and
⟨𝑂,𝑂 ′⟩ is in the node pair set of SE. If there exists such a node pair ⟨𝑂,𝑂 ′⟩, we return the
distance associated with ⟨𝑂,𝑂 ′⟩. This can be done in 𝑂 (ℎ) time by the following sub-steps.
For each 𝑖 ∈ [1, ℎ], if 𝐴𝑡 [𝑖] ≠ ∅, then we obtain the layer number 𝑗 of the layer containing
the parent of 𝐴𝑡 [𝑖] (in 𝑂 (1) time) and, for each 𝑘 ∈ [ 𝑗, 𝑖), check whether ⟨𝐴𝑠 [𝑘], 𝐴𝑡 [𝑖]⟩ is
in the node pair set of SE (in 𝑂 ( 𝑗 − 𝑖) time) (note that it is sufficient to scan to check
⟨𝐴𝑠 [ 𝑗], 𝐴𝑡 [𝑖]⟩, ⟨𝐴𝑠 [ 𝑗 + 1], 𝐴𝑡 [𝑖]⟩, ..., ⟨𝐴𝑠 [𝑖 − 1], 𝐴𝑡 [𝑖]⟩ for one particular node 𝐴𝑡 [𝑖] in 𝐴𝑡 based
on Observation 1). It is easy to verify that the second step takes 𝑂 (ℎ) time since we can scan
𝑂 (ℎ) elements in 𝐴𝑠 and𝑂 (ℎ) elements in 𝐴𝑡 . The third step is similar to the second step, but
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Fig. 8. An Example of Path Query Processing

this step focuses on the first-lower-layer node pairs instead of the first-higher-layer node
pairs. Details are skipped here since similar descriptions are applied. Thus, the overall time
complexity of the efficient method is 𝑂 (ℎ).

Example 3.9 (Distance Query Processing). The error parameter 𝜖 is set to 2. Consider the example
as shown at the left hand side in Figure 7, where 𝑂𝑠 is 𝑂1 and 𝑂𝑡 is 𝑂10. It shows all edges and all
nodes along the path from the leaf node 𝑂1 with its center 𝑝1 to the root node and the path from
the leaf node 𝑂10 with its center 𝑝10 to the root node. The pair ⟨𝑂13,𝑂16⟩ containing ⟨𝑂1,𝑂10⟩ is the
pair in the node pair set of SE. In this example, 𝐴𝑠 = [𝑂21, ∅,𝑂13,𝑂1] and 𝐴𝑡 = [𝑂21,𝑂20,𝑂16,𝑂10].
Consider the figure at the right hand side in Figure 7. All node pairs processed in the query processing
algorithm are shown in the form of node pairs connected by lines (which are solid lines, thin dashed
lines and thick dashed lines). Specifically, each node pair connected by a solid line is a same-layer
node pair processed. Each node pair connected by a thin dashed line is a first-higher-layer node pair
processed. Each node pair connected by a thick dashed line is a first-lower-layer node pair processed.
Our query algorithm checks all the three types of node pairs. When one of the node pairs processed is
in the node pair set of SE, we return the distance associated with this node pair.
It is worth mentioning that the total number of lines in this figure corresponds to the greatest

number of node pairs processed, which is equal to 𝑂 (ℎ) instead of 𝑂 (ℎ2) (denoting the total number
of lines in a complete bipartite graph between 𝐴𝑠 and 𝐴𝑡). Thus, the query step is very efficient.

It is easy to verify that the distance returned by the efficient method is 𝜖-approximate
based on Theorem 3.6.

3.5 Path Query Processing
To find the shortest geodesic path from a given source point 𝑠 to a given destination point
𝑡 , we first find the node pair ⟨𝑂,𝑂 ′⟩ in the second component of SE, the node pair set,
containing 𝑂𝑠 and 𝑂𝑡 , respectively, with the same method in the distance query processing
algorithm. Recall that the list L𝑀 (𝑂,𝑂 ′) is part of the second component, node pair set, in
our oracle which is defined in Section 3.3. Then, for each adjacent pair 𝑜𝑖 , 𝑜𝑖+1 in the list
L𝑀 (𝑂,𝑂 ′) = (𝑜1, 𝑜2, ......, 𝑜𝑀 ), we perform a SSAD algorithm to find the shortest geodesic path
Π𝑔 (𝑜𝑖 , 𝑜𝑖+1) from 𝑜𝑖 to 𝑜𝑖+1, where 𝑖 ∈ [1, 𝑀 − 1]. Then, we perform the SSAD algorithm to find
the following four geodesic shortest paths which are Π𝑔 (𝑠, 𝑐𝑂 ), Π𝑔 (𝑐𝑂 , 𝑜1), Π𝑔 (𝑜𝑀 , 𝑐𝑂′) and
Π𝑔 (𝑐𝑂′, 𝑡). Finally, we concatenate all the paths found in the corresponding order and return
the final result which isΠ𝑔 (𝑠, 𝑐𝑂 ) ·Π𝑔 (𝑐𝑂 , 𝑜1) ·Π𝑔 (𝑜1, 𝑜2) · ......·Π𝑔 (𝑜𝑀−1, 𝑜𝑀 ) ·Π𝑔 (𝑜𝑀 , 𝑐𝑂′) ·Π𝑔 (𝑐𝑂′, 𝑡),
where · denotes the path concatenation operation.
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Fig. 9. Visited Vertices of Path Query Processing

Example 3.10 (Path Query Processing). The error parameter 𝜖 is set to 2. Consider the example
as shown at the left hand side in Figure 8, where the source is 𝑝1 and the destination is 𝑝10 and
thus, 𝑂𝑠 is 𝑂1 and 𝑂𝑡 is 𝑂10. It shows all edges and all nodes along the path from the leaf node 𝑂1
with its center 𝑝1 to the root node and the path from the leaf node 𝑂10 with its center 𝑝10 to the root
node. Our algorithm first performs a distance query processing and found that the pair ⟨𝑂13,𝑂16⟩
containing ⟨𝑂1,𝑂10⟩ is the pair in the node pair set of SE. The list L𝑀 (𝑂13,𝑂16) = (𝑝2, 𝑜1, 𝑜2, 𝑝10)
which is constructed in the preprocessing phase contains the centers (i.e., 𝑝2 and 𝑝10) of 𝑂13 and
𝑂16 and two points (i.e., 𝑜1 and 𝑜2) uniformly sampled from the shortest path from 𝑝2 to 𝑝10. Then,
we simply perform SSAD algorithm to find the following shortest paths, i.e., Π𝑔 (𝑝1, 𝑝2), Π𝑔 (𝑝2, 𝑜1),
Π𝑔 (𝑜1, 𝑜2), Π𝑔 (𝑜2, 𝑝10) and Π𝑔 (𝑝10, 𝑝10). Since Π𝑔 (𝑝10, 𝑝10) is ∅, we simply concatenate Π𝑔 (𝑝1, 𝑝2),
Π𝑔 (𝑝2, 𝑜1), Π𝑔 (𝑜1, 𝑜2) and Π𝑔 (𝑜2, 𝑝10) and return the concatenated path. Consider the figure at the
right hand side in Figure 8. It shows Π𝑔 (𝑝1, 𝑝2), Π𝑔 (𝑝2, 𝑜1), Π𝑔 (𝑜1, 𝑜2) and Π𝑔 (𝑜2, 𝑝10) and the red
line is the their concatenated path which is the final result.

It is worth mentioning that the running time of the SSAD algorithm is quadratic to the
number of vertices visited and thus, the running time of all the SSAD algorithms in our
algorithm (who returns the sub-paths on Π𝑔 (𝑠, 𝑡)) is significantly smaller than that of the
SSAD algorithm with 𝑠 as the source and 𝑡 as the destination directly. Consider the example
as shown in Figure 9. The large disk in green contains all the vertices visited by the SSAD
algorithm with 𝑠 as the source and 𝑡 as the destination. The four small disks in blue contains
the visited vertices by the four SSAD algorithms invoked by our algorithm. As could be
observed from the figure, the number of visited vertices is apparently smaller than that of
the SSAD algorithm with 𝑠 as the source and 𝑡 as the destination. Together with the fact that
the running time of the SSAD algorithm is quadratic to the number of vertices visited, the
running time of our algorithm is significantly smaller.
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3.6 Oracle Construction
In this section, we first present a naive method of constructing SE and then present an
efficient method of constructing SE.

NaiveMethod:We first present a naive method of constructing SE. First, we build a partition
tree 𝑇org . Then, we build a compressed partition tree 𝑇compress based on 𝑇org and delete 𝑇org .
Next, we follow the procedure described in Section 3.3 to generate all node pairs for the
node pair set. Note that for each node pair considered (constructed in 𝑆 , resp.), we have
to compute the distance (the shortest path, resp.) between the centers of the two nodes in
the node pair. In the naive method, for each node pair considered, we perform the SSAD
algorithm, which takes the center of one node in the node pair as an input of the starting
point and performs the search until it reaches the center of the other node in the node pair.

We proceed to analyze the running time of the naive method. It takes 𝑂 (𝑛ℎ𝑁 log2 𝑁 )
to build 𝑇org since there are 𝑂 (𝑛ℎ) nodes in 𝑇org and each node has to perform the SSAD
algorithm which takes the center of this node as an input of the starting point and performs
the search until it reaches a certain radius in𝑂 (𝑁 log2 𝑁 ) time. It takes𝑂 (𝑛ℎ) time to construct
𝑇compress, since 𝑇compress could be constructed with a postorder traversal of 𝑇org and there are
𝑂 (𝑛ℎ) nodes in 𝑇org . For each node pair ⟨𝑂,𝑂 ′⟩ generated, we need to perform the SSAD
algorithm which takes the center of one node in the node pair as an input of the starting
point and performs the search until it reaches the center of the other node in the node pair
to compute 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) and also L𝑀 (𝑂,𝑂 ′). Thus, the total running time of generating the
node pair set is 𝑂 ( 𝑛ℎ

𝜖2𝛽
𝑁 log2 𝑁 ). In conclusion, the total running time of the naive method of

constructing SE is 𝑂 ( 𝑛ℎ𝑁 log2 𝑁
𝜖2𝛽

).

EfficientMethod: Since the naivemethod takes𝑂 ( 𝑛ℎ𝑁 log2 𝑁
𝜖2𝛽

) time to construct the SEdistance
oracle, which is very costly, we propose an efficient algorithm of constructing SE next. The
major reason why the naive method is slow is that in the naive method, for each node pair
considered in the procedure described in Section 3.3, the naive method has to perform
an expensive SSAD algorithm, and thus the number of times that the SSAD algorithm
is called is equal to the number of node pairs considered. However, we will present an
efficient algorithm which could reduce the number of times that the SSAD algorithm is
called from the total number of node pairs considered to the total number of nodes in
the (original) partition tree by using a new concept called an enhanced node pair (which
is a node pair involving two nodes in the same layer of the (original) partition tree and
satisfying a condition) (to be introduced later). Specifically, the efficient method has two
major differences from the naive method. The first difference is that the efficient method
includes an additional (pre-computation) step of computing the distance between the two
nodes involved in each possible enhanced node pair. Although there are 𝑂 (ℎ𝑛2) possible
enhanced node pairs and we have to compute the distances of these pairs, the total number
of times that the SSAD algorithm is called in this additional step is just equal to the total
number of nodes in the (original) partition tree (which is 𝑂 (ℎ𝑛)). The second difference
is that the efficient method finds the distance of each node pair ⟨𝑂,𝑂 ′⟩ considered in the
procedure described in Section 3.3 by searching one of the “pre-computed” distances of the
enhanced node pairs containing the node pair ⟨𝑂,𝑂 ′⟩ and assigning this distance (of the
enhanced node pair found) to the distance of the node pair ⟨𝑂,𝑂 ′⟩ (instead of performing
the expensive SSAD algorithm). Note that the time complexities of both the search operation
and the assignment operation are 𝑂 (ℎ) (to be shown later), which is much lower than the
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time complexity of the SSAD algorithm (i.e., 𝑂 (𝑁 log2 𝑁 )). Later, we will show that for each
node pair ⟨𝑂,𝑂 ′⟩ considered in the procedure described in Section 3.3, there exists one
enhanced node pair containing the node pair ⟨𝑂,𝑂 ′⟩, which is a key to the efficiency of the
efficient method.
Before we present the efficient method, we define the concept of the enhanced node pair.

Given two nodes 𝑂 and 𝑂 ′ in the (original) partition tree, ⟨𝑂,𝑂 ′⟩ is said to be an enhanced
node pair if𝑂 and𝑂 ′ are in the same layer of the (original) partition tree and 𝑑𝑔 (𝑂,𝑂 ′) < 𝑙 · 𝑟𝑂
where 𝑙 = 8

𝜖
+ 10. Note that 𝑙 is about 4 times the well-separated factor (i.e., 2

𝜖
+ 2). The ratio

of 4 (= 2 × 2) is split two parts. The first part (i.e., a ratio of 2) comes from the radius of the
enlarged disk of a node 𝑂 (defined in the definition of the well-separated pair) which is two
times the radius of node 𝑂 . The second part (i.e., another ratio of 2) comes from our design.

With the definition of the enhanced node pair, we give the following lemma which is used
in our efficient method.

Lemma 3.11. Consider a node pair ⟨𝑂,𝑂 ′⟩ considered in the procedure described in Section 3.3.
There exists an enhanced node pair ⟨𝑂,𝑂 ′⟩ such that (1) ⟨𝑂,𝑂 ′⟩ contains ⟨𝑂,𝑂 ′⟩, (2) 𝑐

𝑂
= 𝑐𝑂 and

(3) 𝑐
𝑂

′ = 𝑐𝑂′ .

Themajor idea whywe can design an efficient method compared with the naive method is
that the efficient method is designed based on Lemma 3.11 using the concept of the enhanced
node pair.

We present the efficient algorithm of constructing SE as follows.
• Step 1 (Tree Construction):We build the partition tree𝑇org and a compressed parti-

tion tree𝑇compress based on𝑇org .𝑇compress just constructed becomes the first component
of SE.

• Step 2 (Enhanced Edge Creation): We insert all possible enhanced edges into 𝑇org .
Specifically, for any two nodes 𝑂 and 𝑂 ′ in the same layer of the (original) partition
tree 𝑇org , if ⟨𝑂,𝑂 ′⟩ is an enhanced node pair, then we add an edge connecting them.
We call an edge added in this step an enhanced edge. We associate a distance to each
enhanced edge added. Specifically, for each enhanced edge connecting 𝑂 and 𝑂 ′,
we associate the distance between these two nodes (i.e., 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′)) and the list
L𝑀 (𝑂,𝑂 ′) with this edge. To construct all the enhanced edges together, for each node
𝑂 in the partition tree, we perform the SSAD algorithm which takes 𝑐𝑂 as an input
of the source point and performs the search until the disk 𝐷 (𝑐𝑂 , 𝑙 · 𝑟𝑂 ) is totally
expanded.

• Step 3 (Perfect Hash Construction): We insert all enhanced edges into the perfect
hash [8] (with an oracle building time and a space cost which are linear to the total
number of edges in expectation).

• Step 4 (Node Pair Set Generation): We generate the node pair set, the second
component of SE, using 𝑇org added with enhanced edges. Specifically, we follow
the procedure described in Section 3.3 to generate all node pairs for the node pair
set. However, we present a detailed implementation of how to compute 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′)
for each node pair ⟨𝑂,𝑂 ′⟩ generated in the procedure. For each node pair ⟨𝑂,𝑂 ′⟩
generated, we find an enhanced edge connecting a node𝑂 and a node𝑂 ′ in𝑇org such
that (1) ⟨𝑂,𝑂 ′⟩ is an enhanced node pair, (2) ⟨𝑂,𝑂 ′⟩ contains ⟨𝑂,𝑂 ′⟩, (3) 𝑐

𝑂
= 𝑐𝑂

and (4) 𝑐
𝑂

′ = 𝑐𝑂′ . (Note that by Lemma 3.11, there exists such an enhanced edge.)
This step of finding an enhanced edge can be done in 𝑂 (ℎ) time by

– (1) first obtaining 𝑐𝑂 from 𝑂 and 𝑐𝑂′ from 𝑂 ′ (in 𝑂 (1) time),
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– (2) then accessing the corresponding leaf node𝑂 of 𝑐𝑂 and the corresponding
leaf node 𝑂 ′ of 𝑐𝑂′ (in 𝑂 (1) time),

– (3) traversing both the path P from 𝑂 to the root node and the path P ′ from
𝑂 ′ to the root node together starting from Layer ℎ to Layer 0 to check whether
the node 𝑂 being traversed along P and the node 𝑂 ′ being traversed along P ′

(in the same layer) have their node pair ⟨𝑂,𝑂 ′⟩ found in the perfect hash (in
𝑂 (ℎ) time), and

– (4) returning the enhanced node edge connecting𝑂 and𝑂 ′ (if these two nodes
have their node pair ⟨𝑂,𝑂 ′⟩ found in the perfect hash) (in 𝑂 (1) time).

Then, the distance and the list L𝑀 (𝑂,𝑂 ′) associated with this enhanced edge ⟨𝑂,𝑂 ′⟩
correspond to the distance (i.e., 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′)) and the list L𝑀 (𝑂,𝑂 ′) that we want.

3.7 Theoretical Analysis
Before analyzing SE, we introduce a well-known concept called the largest capacity dimension
originally defined on a metric space [16, 26]. For the sake of space, the definition and the
discussion of the largest capacity dimension could be found in the appendix. In the appendix,
we show that in an extreme case where the terrain surface is a 2D plane, the largest capacity
dimension 𝛽 is at most 1.3. In a general case, 𝛽 is a little bit larger than 1.3 (since the terrain
surface could be regarded as a 2D surface with some fluctuations in terms of height).
Our experimental results show that the largest capacity dimension 𝛽 of the terrain surface

that we considered is between 1.3 and 1.5.
Then, we present the oracle building time, oracle size, query time and distance error

bound of our SE in the following theorem.

Theorem 3.12. The oracle building time, oracle size, distance query time and distance error bound
of SE are 𝑂 ( 𝑁 log2 𝑁

𝜖2𝛽
+ 𝑛ℎ log𝑛 + 𝑛ℎ

𝜖2𝛽
), 𝑂 ( 𝑛ℎ

𝜖2𝛽
·𝑀), 𝑂 (ℎ) and 𝜖, respectively.

We also present the approximate ratio of the path returned by SE in the following theorem.

Theorem 3.13. The length of the path between two POIs, namely 𝑠 and 𝑡 , returned by SE is at
most (1 + 2 · 𝜖) times the length of the shortest geodesic path from 𝑠 to 𝑡 .

4 PROCESSING OTHER PROXIMITY QUERIES
In this section, we present how to process other proximity queries with our distance oracles
and compare them with some existing studies. The other proximity queries studied in this
paper include (1) the 𝑘 nearest neighbor and farthest neighbor query and (2) the top-𝑘
closest pair and farthest pair query. They both have wide applications and here are some
examples.

Applications of the 𝑘 nearest neighbor and farthest neighbor query. (I) In the geographic infor-
mation system (GIS), it is important for hikers to find 𝑘 nearest or farthest POIs (i.e., the
candidates of the hiking destinations) from their own locations in a given region (e.g., Zion
National Park in U.S.) to plan a proper hiking route [38], where 𝑘 nearest POIs correspond
to easy hiking trials and 𝑘 farthest ones correspond to challenging trials. (II) In the online
3D virtual game such as PokemanGo, each user may be interested in the 𝑘 nearest or farthest
portals/landmarks in a specific area to visit, where the 𝑘 nearest neighbors corresponds
to the portals in their vicinity and 𝑘 farthest neighbors are the distant ones for the better
explorations. (III) In the computer graphics and vision, each 3D model contains a set of
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3D points and the 𝑘 nearest neighbor and farthest neighbor search serves as a fundamental
query in many computer graphics algorithms such as denoising and repairing [21, 22].

Applications of the top-𝑘 closest pair and farthest pair query. (I) In the geographic information
system (GIS), the top-𝑘 closest pair and farthest pair query is a fundamental building
block in the spatial join operation [9, 10] in the mountainous areas. (II) In the spatial
recommendation, the 𝑘 closest pair query is used to recommend resort and hotel pairs for
the tourists so that they could find a resort and a corresponding hotel for the tour [9] in
a mountainous regions such as Greece and Hong Kong. Besides, in an application where
several source points and destination points are given and a hiking trial is to be designed,
the 𝑘 farthest pair query is used to recommend the possible candidates for the hiking trial to
be developed since the distant pair could fully utilize the terrain surface. (III) In the spatial
data mining, the inner-cluster distance and intra-cluster distance computation are frequently
invoked for many clustering algorithms such as 𝑘-means, where the top-𝑘 closest pair and
farthest pair query is required as a building block for the distance computation.

For the completeness,we studied both themonochromatic version and bichromatic version
of the two queries mentioned above. The major idea of the query algorithm is to linearly
scan each pair in the node pair set of SE and select the corresponding pairs according to the
query. The following two subsections further detail the query algorithm and their accuracy
and time complexity. In the two subsections, we adopt a new parameter 𝜖 ′ and let 𝜖 ′ = 2𝜖

1−𝜖 ,
where 𝜖 is the error parameter of the distance oracle. Given an approximate algorithm, its
approximate error bound is 𝑐 if its approximate ratio is 1 + 𝑐, where 𝑐 is a non-negative real
number.

4.1 𝑘 Nearest-Neighbor and 𝑘 Farthest-Neighbor Query
We first present the bichromatic 𝑘NN query: given a point 𝑝 in 𝑃 and a set 𝑃 ′ of points where
𝑃 ′ ⊆ 𝑃 , return a set of 𝑘 points, says 𝑋 = {𝑞1, 𝑞2, ......, 𝑞𝑘 }, which are 𝑘 points in 𝑃 ′ nearest to 𝑝,
in other words, ∀𝑖 ∈ [1, 𝑘], 𝑞𝑘 ∈ 𝑃 ′ and max𝑖∈[1,𝑘 ] 𝑑𝑔 (𝑝, 𝑞𝑖 ) ≤ min𝑜∈𝑃 ′\𝑋 𝑑𝑔 (𝑝, 𝑜).
To process the above query, we perform a distance query between 𝑝 and any point in 𝑃 ′

with the assistance of our distance oracle. Let 𝑑𝑔 (𝑝, 𝑞) denote the distance between 𝑝 and 𝑞
returned by the distance query. Finally, we return the list 𝐾𝐿𝐼𝑆𝑇 ′ containing 𝑘 points in 𝑃 ′

such that max𝑞∈𝐾𝐿𝐼𝐿𝑆𝑇 ′ 𝑑𝑔 (𝑝, 𝑞) ≤ min𝑞∈𝑃 ′\𝐾𝐿𝐼𝑆𝑇 ′ 𝑑𝑔 (𝑝, 𝑞). Thus, it takes 𝑂 (𝑛𝑡) time to process
the query, where 𝑡 is the distance query time. Since the distance query time is 𝑂 (ℎ), the
running time of our query algorithm is 𝑂 (ℎ𝑛). The following lemma shows the correctness
of our algorithm.

Lemma 4.1. The approximate ratio of our 𝑘NN algorithm is 1 + 𝜖 ′, where 𝜖 ′ = 2
1−𝜖 is the appro.

error of our distance oracle algorithm and 𝜖 is the error parameter of the distance oracle.

Proof. For the sake of space, the proof could be found in Appendx B. □

The monochromatic 𝑘 NN query is a special case of the bichromatic 𝑘NN query when
𝑃 ′ = 𝑃 . The monochromatic 𝑘 nearest neighbor query on a terrain surface [11, 13, 39] was
studied. The experimental results of [39] showed that [39] is more efficient than [11, 13] in
practice. Thus, we do not consider [11, 13] as our baseline. [39] proposed an index called the
Surface Index (SI) and an algorithm for the monochromatic 𝑘NN query on a terrain surface.
Its worst-case query time is 𝑂 (𝑁 2) which is worse than ours.

Similar to the monochromatic and bichromatic 𝑘NN query, we can process the monochro-
matic and bichromatic approximate 𝑘 farthest neighbor (kFN) query in the same method
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except that we finally return the 𝑘 farthest points instead of the 𝑘 nearest ones. The following
lemma presents the accuracy of our algorithm.

Lemma 4.2. The approximate ratio of our 𝑘FN algorithm is 1 + 𝜖 ′, where 𝜖 ′ = 2
1−𝜖 is the appro.

error of our distance oracle algorithm and 𝜖 is the error parameter of the distance oracle.

Proof. For the sake of space, the proof could be found in Appendx B. □

4.2 Top-𝑘 Closest-Pair/Farthest-Pair Query Processing
We present the top-𝑘 closest-pair query (kCP) and top-𝑘 farthest-pair (kFP) query in this
section.
We first present the top-𝑘 bichromatic closest-pair (BCP) query which is formulated as

follows: Given two sets 𝑃1 and 𝑃2 where 𝑃1, 𝑃2 ⊂ 𝑃 and 𝑃1 ∩ 𝑃2 = ∅, return a list 𝑋 such that
𝑋 ⊆ 𝑃1×𝑃2 andmax<𝑝,𝑞>∈𝑋 𝑑𝑔 (𝑝, 𝑞) ≤ min<𝑝,𝑞>∈𝑃1×𝑃2\𝑋 𝑑𝑔 (𝑝, 𝑞), where × denotes the Cartesian
product between two sets.

We denote the node pair set in our oracle as O. Given a node𝑂 in our compressed partition
tree, we denote 𝑅𝑆 (𝑂) as the set containing the centers of all the leaf nodes in the subtree
rooted at 𝑂 . To process the top-𝑘 BCP query, we do a linear scan on O and find out a list L
containing pairs from O, each pair ⟨𝐴, 𝐵⟩ in which satisfies that 𝑅𝑆 (𝐴) ∩𝑃1 ≠ ∅, 𝑅𝑆 (𝐵) ∩𝑃2 ≠ ∅.
Then, we sort all the pairs in the list L in the ascending order of the distance stored within
them. Next, we initialize an integer variable 𝑥 to be 𝑘 and initialize an list 𝐾𝐶𝑃 ′ to be an
empty list. We proceed to process the sorted list L in several iterations. At each iteration,
we extract the head ⟨𝑂,𝑂 ′⟩ of the list. If |𝑅𝑆 (𝑂) ∩ 𝑃1 | · |𝑅𝑆 (𝑂 ′) ∩ 𝑃2 | ≤ 𝑥 , we insert all the
pairs in (𝑅𝑆 (𝑂) ∩ 𝑃1) × (𝑅𝑆 (𝑂 ′) ∩ 𝑃2) into 𝐾𝐶𝑃 ′ and decrease 𝑥 by |𝑅𝑆 (𝑂) ∩ 𝑃1 | · |𝑅𝑆 (𝑂 ′) ∩ 𝑃2 |.
Otherwise, we insert 𝑥 pairs randomly selected from (𝑅𝑆 (𝑂) ∩ 𝑃1) × (𝑅𝑆 (𝑂 ′) ∩ 𝑃2) into 𝐾𝐶𝑃 ′

and output the 𝐾𝐶𝑃 ′. In order to check the set intersection efficiently, we can first mark all
the nodes 𝑂 such that 𝑅𝑆 (𝑂) intersects with 𝑃1 and 𝑃2 separately by a postorder traversal of
the compressed partition tree. By Lemma 3.5, the size of the compressed partition tree is
𝑂 (𝑛). Thus, this traversal takes 𝑂 (𝑛) time. A linear scan of O takes 𝑂 ( |O|) time. Since 𝑘 is
very small compared with 𝑛, the following operations are dominated by the linear scan in
terms of the running time. We conclude that the overall query time is 𝑂 ( |O|) which is equal
to 𝑂 ( 𝑛

𝜖2𝛽
).

Lemma 4.3. The approximate ratio of our top-𝑘 BCP query algorithm is 1 + 𝜖 ′, where 𝜖 ′ = 2
1−𝜖 is

the appro. error of the distance oracle algorithm and 𝜖 is the error parameter of the distance oracle.

Proof. For the sake of space, the proof could be found in Appendix B. □

Let 𝑃𝑃 denote the set {⟨𝑎, 𝑏⟩|⟨𝑎, 𝑏⟩, ⟨𝑏, 𝑎⟩ ∈ 𝑃 × 𝑃, 𝑎 ≠ 𝑏}, where × denotes the Cartesian
product. We proceed to consider the top-𝑘 monochromatic Closest-Pair (MCP) query which
is formulated as follows: Given the set 𝑃 of all POIs, return a list 𝑋 of 𝑘 point pairs such that
𝑋 ⊆ 𝑃𝑃 and max⟨𝑝,𝑞⟩∈𝑋 𝑑𝑔 (𝑝, 𝑞) ≤ min⟨𝑝,𝑞⟩∈𝑃𝑃\𝑋 𝑑𝑔 (𝑝, 𝑞).

It could be checked that the processing algorithm and analysis of the top-𝑘 BCP query ap-
plies to the top-𝑘MCPquery ifwe replace 𝑃1, 𝑃2 by 𝑃 and replace 𝑃×𝑃 by {⟨𝑂,𝑂 ′⟩|⟨𝑂,𝑂 ′⟩, ⟨𝑂 ′,𝑂⟩ ∈
𝑃 × 𝑃}. It still guarantees the same approximate ratio. Its running time is 𝑂 (𝑛ℎ) and its ap-
proximate ratio (resp. appro. error) is 1 + 𝜖 ′ = 1+𝜖

1−𝜖 (resp. 𝜖 ′ = 2𝜖
1−𝜖 ).

Similar to the monochromatic and bichromatic top-𝑘 closest pair query, we could process
the monochromatic and bichromatic top-𝑘 farthest pair (FP) query by using the same
method except that we maintain the 𝑘 farthest pairs instead of 𝑘 closest ones. The following
lemma shows the accuracy of our FP query processing algorithm.
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Algo. Oracle Building Time Oracle Size Shortest Distance Query Time

SP-Oracle [15] 𝑂 ( 𝑁

sin(𝜃 ) ·𝜖2 log3 ( 𝑁𝜖 ) log2 1
𝜖 ) 𝑂 ( 𝑁

sin(𝜃 ) ·𝜖1.5 · log2 ( 𝑁𝜖 ) log2 1
𝜖 ) 𝑂 ( 1

sin(𝜃 ) ·𝜖 log 1
𝜖 + log log(𝑁 + 𝑛))

SE(Naive) 𝑂 ( 𝑛ℎ𝑁 log2 𝑁
𝜖2𝛽

) 𝑂 ( 𝑛ℎ
𝜖2𝛽

) 𝑂 (ℎ2)

K-Algo [24] – – 𝑂 ( 𝑙3𝑚𝑎𝑥𝑁
(𝑙𝑚𝑖𝑛 ·𝜖 ·

√
1−cos𝜃 )3

+ 𝑙𝑚𝑎𝑥 ·𝑁
𝜖 ·𝑙𝑚𝑖𝑛 ·

√
1−cos𝜃

log( 𝑙𝑚𝑎𝑥 ·𝑁
𝜖 ·𝑙𝑚𝑖𝑛 ·

√
1−cos𝜃

))

SE 𝑂 ( 𝑁 log2 𝑁
𝜖2𝛽

+ 𝑛ℎ log𝑛 + 𝑛ℎ

𝜖2𝛽
) 𝑂 ( 𝑛ℎ

𝜖2𝛽
) 𝑂 (ℎ)

Table 1. Comparison of Different Methods for Shortest Distance Query with Error Bound 𝜖

(where 𝛽 ∈ [1.3, 1.5] and ℎ < 30 in practice)

Dataset No. of Vertices Resolution Region Covered No. of POIs
BH 1.4M 10 meters 14𝑘𝑚 × 10𝑘𝑚 4k
EP 1.5M 10 meters 10.7𝑘𝑚 × 14𝑘𝑚 4k
SF 170k 30 meters 14𝑘𝑚 × 11.1𝑘𝑚 51k

Table 2. Dataset Statistics

Lemma 4.4. The approximate ratio of our top-𝑘 FP query algorithm is 1 + 𝜖 ′, where 𝜖 ′ = 2
1−𝜖 is the

appro. error of the distance oracle algorithm and 𝜖 is the error parameter of the distance oracle.

Proof. For the sake of space, the proof could be found in Appendix B. □

5 RELATED WORK AND BASELINES
In this section, we present the related work and baseline methods in Section 5.1 and Sec-
tion 5.2, respectively.

5.1 Related Work
The existing studies of finding the exact geodesic distance and path between two ver-
tices are [7, 32] and [45]. Their time complexities are 𝑂 (𝑁 2 log𝑁 ), 𝑂 (𝑁 2), 𝑂 (𝑁 log2 𝑁 ) and
𝑂 (𝑁 2 log𝑁 ), respectively, which are impractical even on moderate terrain data.

Motivated by the intrinsic expensive cost of computing exact geodesic distances, many
existing studies focus on computing approximate geodesic distances and paths [24, 25, 30].
In [30], the authors studied the problem of finding an approximate geodesic shortest path
which satisfies a slope constraint. In [25], the authors proposed an algorithm for finding a
geodesic path between twopoints satisfying a condition on the terrain surface and computing
the lower and upper bounds of the geodesic shortest distance based on the length of the
path found, but the gap between the bounds depends on the structure of the terrain surface,
and thus it could be very large implying that there exists no guarantee on the qualities of the
bounds. In [24], the authors proposed a Steiner point-based algorithm introducing additional
points called Steiner points on the surface of the terrace for finding an 𝜖-approximate geodesic
shortest path between two points, where 𝜖 is a user-specified parameter. The algorithm
computes tighter lower and upper bounds of the geodesic distance than those of [25],
which do not depend on the underlying terrain. According to the experimental results
in [24], the algorithm ran more than 300 seconds even for a setting with a very loose error
parameter 𝜖 = 0.25. All of these algorithms compute the approximate geodesic distances
on-the-fly, which is not efficient enough in (real-time) applications involving many distance
and shortest path queries.
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Algorithm Oracle Building Time Oracle Size Query Time Error Exact or Appro.? Index-Base or Index-Free?
MMP [32] - - Large - Exact Algo. Index-Free
CH [7] - - Large - Exact Algo. Index-Free
ICH [46] - - Large - Exact Algo. Index-Free

[25] - - Large Large Appro. Algo. Index-Free
K-Algo [24] - - Large Small Appro. Algo. Index-Free

SP-Oracle [15] Large Large Medium Small Appro. Algo. Index-Based
SE Small Small Small Small Appro. Algo. Index-Based
Table 3. Pros and Cons of Shortest Geodesic Distance and Path Query Algorithms

In order to answer the geodesic shortest path/distance and shortest path queries more
efficiently, some existing studies aim at designing oracles [2, 4, 15, 23]. [23] proposed a data
structure for the Single-Source All-Destination (SSAD) approximate geodesic shortest path
queries, where the source point of each shortest path query is already given before the data
structure is built. This data structure could answer any shortest path query from this fixed
source point to any destination. However, this data structure is limited to a fixed source point.
Even though different data structures from all possible source points could be built, the total
space occupied by all these data structures is prohibitively large, which is not feasible in
practice. [2, 4] designed an oracle for approximate geodesic shortest path queries and [15]
designed an oracle for approximate geodesic shortest distance and shortest path queries.
These two oracles share similar ideas, and the one in [15] is better in terms of oracle size
and query time mainly because geodesic distance and shortest path queries are intrinsically
easier than geodesic path queries. Specifically, the oracle in [15] has its space complexity
of 𝑂 ( 𝑁

sin(𝜃 ) ·𝜖1.5 · log
2 ( 𝑁

𝜖
) log2 1

𝜖
) and its query time complexity of 𝑂 ( 1

sin(𝜃 ) ·𝜖1 log
1
𝜖
+ log log𝑁 ),

where 𝜃 is the minimum inner angle of any face on the terrain surface.
As will be introduced later, we use this oracle as a baseline oracle for comparison, and

our experimental results show that this oracle has a scalability issue due to its large oracle
size, and its corresponding query time is significantly larger than that of our oracle.
We summarize the algorithms mentioned above and compare their pros and cons in

Table 3. As the table shows, the first three algorithms [7, 32, 46] are index-free (i.e., on-the-
fly) exact algorithm. They all provide exact geodesic distances and paths but they suffer
from their prohibitively large query time. The fourth algorithm [25] and fifth algorithm [24]
are index-free approximate algorithms whose query time is accelerated due to their tradeoff
of their reduced accuracy. But, their query time is still not good enough. Besides, [25] suffers
from its uncontrollable error bound which is data-dependent. The sixth one [15] is an
index-based approximate algorithm. It has guarantee on the error bound and provides
medium query time but still suffers from its prohibitively a large indexing cost (including
oracle building time and oracle size) which renders itself to scale up to sizable datasets. Our
oracle enjoys a small indexing cost and also a small query time and as such, it could scale
up and it also provides guarantee on the error bound.

Some other related studies include those proximity queries relying on the geodesic shortest
distance queries [12, 13, 39, 46, 47]. Specifically, [12, 13, 39] studied 𝑘NN queries, among
which, [12] and [13] adopted a multi-resolution terrain model and used the low-resolution
terrain information constructed in the model for pruning some unnecessary regions on the
terrain surface in order to answer 𝑘NN queries efficiently, and the time complexity is 𝑂 (𝑁 2).
In the worst case, it takes 𝑂 (𝑁 2) time to answer a 𝑘NN query, which is very costly. In [39],
the authors proposed a Voronoi diagram-based method for 𝑘NN queries, However, it takes
𝑂 (𝑁 log2 𝑁 ) to return an answer of a 𝑘NN query in the worst case. The major idea is to
construct an approximate Voronoi diagram on the terrain surface which contains 2 regions
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for each POI. One is called a tight region, where every point in the region will have the POI
as nearest neighbor for sure. The other is called loose region, where the POI of this region is
not necessarily but possibly the nearest neighbor for any point inside. But any point outside
the loose region won’t have the POI as its nearest neighbor. To process a 𝑘NN query, it visits
all the regions in the ascending order of their distance to the query point until 𝑘 POIs are
visited. [46] studied dynamic monitoring of the 𝑘NN queries which is a dynamic version of
SI [39] and [47] studied reverse nearest neighbor queries.

Besides, some studies [6, 17, 34–37] focused on studying well-separated pairs. [6] studied
it in the Euclidean space, [17] studied its dynamic case (e.g., insertion and deletion) and
[34–36] studied it on road networks. Another is to incorporate the idea in distance join
queries [33]. However, they are different from ours because we studied it in the terrain
context and different contexts give different challenges (e.g., in the terrain context, how to
build a distance oracle involving many expensive geodesic distance computations is very
challenging).
Among these existing studies, only [39] and [46] focused on finding exact 𝑘-nearest

neighbors but [12] and [13] returned approximate answers of 𝑘-nearest neighbors without
any error guarantee as claimed in [39, 46].
We summarize the existing 𝑘 nearest neighbor algorithms and compare them with our

algorithm in Table 4. It is worth mentioning that SP-Oracle is adapted to handling this
query since the 𝑘 nearest neighbors could be found through multiple distance queries on
SP-Oracle. As could be observed from the table, SP-Oracle (Adapted) suffers from its very
large indexing cost (including oracle building time and oracle size) although it provides a
controllable error bound. MR [12, 13] and SI [39] have better performance compared with
SP-Oracle (Adapt) but their indexing cost and query time are still not good enough. Besides,
MR [12, 13] suffers from its uncontrollable error which is data-dependent.

Algo. Oracle Building Time Oracle Size Query Time Appro. Error
SP-Oracle (Adapted) [15] Large Large Medium Small

MR[12, 13] Medium Medium Medium Large
SI [39] Large Medium Medium Small
SE Small Small Small Small

Table 4. Pros and Cons of 𝑘 Nearest Neighbor Algorithms

However, to the best of our knowledge, there is no existing work about the bichromatic
version of 𝑘-nearest neighbor queries in the context of terrain datasets.

There are other proximity queries related to our study.One example ismonochromatic/bichromatic
𝑘-farthest neighbor queries and the other example is monochromatic/bichromatic clos-
est/farthest pair queries. Similarly, to the best of our knowledge, there is no existing work
about these queries.

5.2 Baseline Methods
In this section, we first present the baselines for the distance and path queries (Section 5.2.1),
then give the baselines for other proximity queries studied in this paper (Section 5.2.2) and
finally compare each baseline with SE in theory (Section 5.2.3).

5.2.1 Baselines for Distance and Path Queries. In this part, we first introduce two
baseline oracles, namely the Steiner point-based oracle (in short, SP-Oracle) and the naive
implementation of SE (in short, SE(Naive)).
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Algo. Oracle Building Time Oracle Size Query Time
for 𝑘NN/𝑘FN
Query

Query Time for
top-𝑘 CP/FP
Query

(Appro.) Error

SP-Oracle [15] 𝑂 ( 𝑁
𝜖2

log3 ( 𝑁
𝜖
) log2 1

𝜖
) 𝑂 ( 𝑁

𝜖1.5
log2 ( 𝑁

𝜖
) log2 1

𝜖
) 𝑂 ( 𝑛

𝜖
log 1

𝜖
+

𝑛 log log𝑁 )
𝑂 ( 𝑛2

𝜖
log 1

𝜖
+

𝑛2 log log𝑁 )
𝜖′ = 2𝜖

1−𝜖

SI [39] 𝑂 (𝑁 2 log𝑁 ) 𝑂 (𝑁 ) 𝑂 (𝑁 log2 𝑁 ) Not Applicable 1

SE 𝑂 ( 𝑁 log2 𝑁
𝜖2𝛽

+ 𝑛ℎ log𝑛 + 𝑛ℎ

𝜖2𝛽
) 𝑂 ( 𝑛ℎ

𝜖2𝛽
) 𝑂 (𝑛ℎ) 𝑂 ( 𝑛

𝜖2𝛽
) 𝜖′ = 2𝜖

1−𝜖

Table 5. Comparison of Algorithms for 𝑘NN/FN and top-𝑘 BCP/FCP query with Error Parameter
𝜖 (where 𝛽 is a positive real number between 1.3 and 1.5, and ℎ is a positive integer smaller
than 30 in practice)

Steiner Point-Based Oracle: The first baseline oracle is called the Steiner point-based oracle
(in short, SP-Oracle) proposed in [15] which were originally proposed for vertex-to-vertex
distance queries and could also be adapted for both POI-to-POI (P2P) distance queries
and arbitrary point-to-arbitrary point (A2A) distance queries. Next, we describe how this
adapted distance oracle [15] could handle A2A distance queries only (since A2A distance
queries could be regarded as a general setting compared with P2P distance queries). Its
major idea is as follows. It first introduces 𝑂 ( 1

sin(𝜃 ) ·
√
𝜖
log 1

𝜖
) additional points called Steiner

points on each face of the terrain surface and𝑂 ( 𝑁
sin(𝜃 ) ·𝜖 log

1
𝜖
) Steiner edges connecting Steiner

points on the same face, where 𝜃 is the minimum inner angle of any face on the terrain
surface. It then constructs a graph, denoted by 𝐺𝜖 , where the set of vertices in the graph is
the set containing all the Steiner points and all existing vertices and the set of edges in the
graph is the set of all existing edges and all the additional edges added each with its weight
equal to its corresponding Euclidean distance. SP-Oracle indexes the exact distances between
any two Steiner points on 𝐺𝜖 . Consider an A2A distance query. Given two arbitrary points,
namely 𝑠 and 𝑡 , on the surface of the terrain, SP-Oracle finds (1) a set 𝑋𝑠 of Steiner points on
the face containing 𝑠 and its adjacent faces, and (2) another set 𝑋𝑡 of Steiner points on the
face containing 𝑡 and its adjacent faces. Then, for each point 𝑝𝑠 in 𝑋𝑠 and each point 𝑝𝑡 in
𝑋𝑡 , it computes a distance equal to the sum of the Euclidean distance between 𝑠 and 𝑝𝑠 , the
exact distance between 𝑝𝑠 and 𝑝𝑡 on𝐺𝜖 and the Euclidean distance between 𝑝𝑡 and 𝑡 . Finally,
it returns the smallest distance computed as the estimated geodesic distance between 𝑠 and
𝑡 . We present the oracle building time, oracle size, query time, and distance error bound of
SP-Oracle in Table 1.

SE(Naive): The second baseline is called the naive method of SE (in short, SE(Naive))
which is exactly our SE with the naive method for the both the oracle construction and the
query processing. We present the oracle building time, oracle size, query time, and distance
error bound of SE(Naive) in Table 1.
We proceed to present the on-the-fly version of the existing algorithms for the distance

and path queries.

On-the-fly Algorithm The Kaul’s algorithm (in short, K-Algo) recently proposed in [24] could
be used as the baseline algorithm which computes the approximate geodesic distance on-the-
fly (since it is the best-known algorithm in the literature). Although K-Algo is a non-distance
oracle algorithm, it is interesting to compare it with our SE. The time complexity of K-Algo
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is𝑂 ( 𝑙3𝑚𝑎𝑥𝑁

(𝑙𝑚𝑖𝑛 ·𝜖 ·
√
1−cos𝜃 )3

+ 𝑙𝑚𝑎𝑥 ·𝑁
𝜖 ·𝑙𝑚𝑖𝑛 ·

√
1−cos𝜃

log( 𝑙𝑚𝑎𝑥 ·𝑁
𝜖 ·𝑙𝑚𝑖𝑛 ·

√
1−cos𝜃

))1 where 𝑙𝑚𝑖𝑛 (resp., 𝑙𝑚𝑎𝑥) is the length of
the shortest (resp., longest) edge and 𝜃 is the minimum inner angle of any face.

5.2.2 Baselines for Other Proximity Queries. For the 𝑘 nearest neighbor query, we com-
pare our method with the state-of-the-art algorithm in terms of both theory and empirical
performance, namely Surface Index (SI) [39].

To the best of our knowledge, our method is the first algorithm for the top-𝑘 closest pair or
farthest pair query processing. The only baseline that we consider is the SP-Oracle. Although
it was designed for the distance and path query only, but it could be adapted as follows.
SP-Oracle could process the query by materializing all pairwise distances and return the
corresponding list of point pairs for each proximity query.

5.2.3 Comparison. We compare the oracle proposed in this paper, i.e., SE, and the three
baselines, i.e., SP-Oracle, SE(Naive) and K-Algo, in terms of error bound, oracle building time,
oracle size and query time, for the distance and path queries and the results are shown in
Table 1. We highlight some of the comparison results as follows. Consider the error bound.
Our SE and all baseline methods, namely SP-Oracle, SE(Naive) and K-Algo, have the same
error bound equal to 𝜖. Consider the oracle building time. As described before, we know
that SE has a lower oracle building (or oracle construction) time complexity than SE(Naive).
Besides, in our experimental results, the empirical oracle building time of SE is smaller
than that of SP-Oracle. Consider the oracle size. The oracle size of SE is the same as that of
SE(Naive). Besides, in our experimental results, the empirical oracle size of SE is smaller
than that of SP-Oracle. Consider the query time. Since ℎ is very small (at most 30 in our
experimental results), SE has the lowest query time complexity compared with SE(Naive)
and SP-Oracle. K-algo has the largest query time which is significantly larger than others.

For the 𝑘 nearest neighbor and farthest neighbor query, we consider SI and SP-Oracle as
our baselines and for the top-𝑘 closest pair and farthest pair query, we consider SP-Oracle as
our baseline. The theoretical comparison is listed in Table 5. We highlight some results of the
comparison as follows. Consider the approximate ratio. Our SE and SP-Oracle have the same
appro. error equal to 𝜖 ′ = 2𝜖

1−𝜖 . The error bound of SI is 0 since it is an exact algorithm. But 𝜖 ′
is small enough for many applications and as we will show in the experiment, the empirical
error bound is quite small (smaller than 0.4 which means the appro. ratio is 1.4 only) even
when 𝜖 is set to be as large as 0.25. Consider the oracle building time. As described before,
we know that SE has a lower oracle building (or oracle construction) time complexity than
SI since the building time of SI contains a 𝑁 2 term which is significantly large. Besides, in
our experimental results, the empirical oracle building time of SE is smaller than that of
SP-Oracle. Consider the oracle size. The oracle size of SE is the same as that of SI when 𝑛 is
much smaller than 𝑁 which is typical for terrain data. Besides, in our experimental results,
the empirical oracle size of SE is smaller than that of SP-Oracle. Consider the query time.
Since ℎ is very small (at most 30 in our experimental results), SE has the lowest query time
complexity compared with SI and SP-Oracle.

1By Section 4.2 of [24], its running time is𝑂 ( (𝑁 +𝑁 ′) (log(𝑁 +𝑁 ′) + ( 𝑙𝑚𝑎𝑥 ·𝐾
𝑙𝑚𝑖𝑛

√
1−cos𝜃

)2) where 𝑁 ′ = 𝑂 ( 𝑙𝑚𝑎𝑥 ·𝐾
𝑙𝑚𝑖𝑛

√
1−cos𝜃

𝑁 )
and 𝐾 is a parameter which is a positive number at least 1. By Theorem 1 of [24], we obtain that its error bound 𝜖
is equal to 1

𝐾−1 . Thus, we obtain this time complexity.
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6 EMPIRICAL STUDIES
6.1 Experimental Setup
We conducted our experiments on a Linux machine with 2.67 GHz CPU and 48GB memory.
All algorithms were implemented in C++.
Datasets. Following some existing studies on terrain data [12, 30, 39], we used three real
terrain datasets, namely BearHead (in short, BH), EaglePeak (in short, EP) and San Francisco
South (in short, SF) and these datasets can be downloaded from http://data.geocomm.com/.
For each of these terrain datasets, we extracted a set of POIs from the corresponding region
in OpenStreetMap. Table 2 shows the dataset statistics. Besides, a smaller version of SF
dataset which corresponds to a small sub-region of the SF dataset and contains 1k vertices
and 60 POIs was also used since one of the baselines, SE-Naive, is not feasible on any of the
full datasets due to its expensive cost of building an oracle.
Algorithms. We tested our distance and path oracle 𝑆𝐸 in the experiment. We set𝑀 to be 5
in the default setting. We also tested a degenerated version where𝑀 = 0 (i.e., in this case,
𝑆𝐸 is reduced to a distance oracle only), denoted by 𝑆𝐸𝑀=0. For distance and path queries,
we compared our oracle with the algorithms mentioned in Section 5.2. For other proximity
queries, we compared our oracle with the algorithms mentioned in Table 5.

The query time reported corresponds to the average running time of 100 queries. We
conducted experiments with the following queries: (1) the shortest distance query, (2) the
shortest path query, (3) the monochromatic and bichromatic 𝑘 nearest neighbor query, (4)
the monochromatic and bichromatic 𝑘 farthest neighbor query, (5) the top-𝑘 monochromatic
and bichromatic closet pair query, and (6) the top-𝑘 monochromatic and bichromatic farthest
pair query. For the shortest distance and path query, we evaluated our new oracle SE and
three baselines, SP-Oracle [15], K-Algo [24] and SE-Naive, are studied in the experiments.
For the monochromatic and bichromatic 𝑘 nearest neighbor and farthest neighbor queries,
we consider the baselines SP-Oracle [15] and the best-known algorithm for 𝑘NN queries,
SI (Surface Index) [39] as shown in Table 5. As studied in [39], SI is the the best-known
algorithm for 𝑘NN queries on terrain surfaces in terms of building time and query time.
For the bichromatic top-𝑘 closest pair and farthest pair queries, we consider the baseline
SP-Oracle [15] as shown in Table 5. Note that for the 𝑘 nearest neighbor and farthest neighbor
queries, the experimental results of [39] showed that [39] is more efficient than [11, 13] in
practice. Thus, we do not consider [11, 13] as our baseline. For SE, we study two variations:
one is SE(Greedy) which is based on the greedy point selection strategy and the other is
SE(Random) which is based on the random point selection strategy.
Query Generation. Each P2P (V2V) shortest distance or path query was generated by
randomly sampling two POIs (vertices) on the surface of a terrain, one as a source and
the other as a destination. Each A2A shortest distance and path query was generated by
randomly selecting two arbitrary points, one as a source and the other as a destination. To
randomly select an arbitrary point, we first generated a 2D coordinate (𝑥,𝑦) which is a point
randomly selected in the 2D rectangular region covered by the terrain and then computed
the point on the terrain surface whose projection on the 𝑥-𝑦 plane is (𝑥,𝑦).
For each 𝑘 nearest or farthest neighbor query, we randomly selected a POI as a query

point. For each bichromatic 𝑘 nearest or farthest neighbor query, besides the query point,
we also randomly selected a set of POIs containing 1k POIs for the 𝑘 nearest or farthest
neighbor candidates. For each top-𝑘 bichormatic closest or farthest pair query, we randomly
selected two disjoint sets of POIs each containing 1k POIs for the 𝑘 closest or farthest pair
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Dataset max min avg. std.
BH 16.57 0.82 7.8 3.33
EP 14.15 0.33 6.25 3.15
SF 16.92 0.48 7.09 3.6

Table 6. Statistics of Query Distances (km)

candidates. Note that the running time of each query reported in the paper is the average of
100 queries generated with the corresponding method mentioned above.

Table 6 shows the statistics of the query distances of all queries performed on each dataset
as shown in Table 2.
Factors & Measurements. Five factors, namely 𝜖 (the error parameter), 𝑛 (the number
of POIs), 𝑁 (the number of vertices in a terrain), 𝑀 (the number of intermediate points
associated with each node pair in SE), and 𝑘 (the size of the output to be returned) in each
Top-𝑘 query were studied. Four measurements, namely (1) oracle building time (which is the
time for constructing the distance oracle), (2) oracle size (which is the space consumption
of the distance oracle), (3) query time (which is the time for answering a distance or path
query based on the oracle), and (4) error (which is the error of the distance returned based
on the oracle) were used for evaluating the oracles. For the query time, 100 queries were
answered and the average running time was returned.

6.2 Experimental Results
In this section, we present the results of P2P distance and path queries in Section 6.2.1, other
experiments (e.g., V2V distance and path queries and A2A distance and path queries) in
Section 6.2.2, the experiments on the monochromatic and bichromatic 𝑘 nearest neighbor
and farthest neighbor queries in Section 6.2.3, the experiments on the monochromatic
and bichromatic closest-pair and farthest-pair queries in Section 6.2.4, a case study of our
proximity query processing algorithms in Section 6.2.5 and a summary of the results in
Section 6.2.6.

6.2.1 P2P Queries. In this section, we present the experimental results on P2P queries.
Effect of 𝜖.We tested 5 different values of 𝜖 from {0.05, 0.1, 0.15, 0.2, 0.25}. Figure 10(a)-(d)
show the results on the smaller version of the SF dataset. According to the results, (1) the
building times of SE(Greedy) and SE(Random) are almost the same and are both smaller
than those of SP-Oracle and SE-Naive, e.g., when 𝜖 = 0.05, SE(Greedy) and SE(Random) have
their building times 1 order (resp., at least 2 orders) smaller than that of SP-Oracle (resp.,
SE-Naive), (2) the sizes of SE(Greedy), SE(Random) and SE-Navie are 2-3 orders of magnitude
smaller than that of SP-Oracle, (3) the query time of SE(Greedy) is the smallest and about
half of that of SE(Random), and the query times of both SE(Greedy) and SE(Random) are
orders of magnitude smaller than those of others, and (4) the errors of all oracles are very
small and much smaller than the theoretical bound (which is 𝜖).

Based on the results shown above,we adopt the following for the simplicity of presentation:
(1) the results of error for the rest of experiments are omitted since the errors of all oracles
are similar and very small (smaller than 𝜖/10) compared with the error bound, (2) the
results of SE-Naive on any full datasets are not shown simply because it cannot be built
within a reasonable amount of time, e.g., within a month, and (3) the results of SE(Greedy)
are omitted for the rest of experiments since SE(Random) and SE(Greedy) have similar
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performance and we omit SE(Greedy) for the clarity and by SE, it means SE(Random) for
the remaining presentation.
The results on the other three datasets, namely BH, EP and SF, are shown in , Figure 11,

Figure 12 and Figure 13 respectively. Note that in Figure 11 and Figure 12, the results of
SP-Oracle for all settings of 𝜖 are not shown since the size of SP-Oracle exceeds our memory
budget (i.e., 48GB).
Effect of 𝑛. We tested 5 different values of 𝑛 from {60𝑘, 90𝑘, 120𝑘, 150𝑘, 180𝑘} and used the SF
dataset for this experiment. As mentioned in Section 6.1, we have 51𝑘 POIs in the SF South
dataset (170k vertices), and in order to obtain a set of the targeted number of POIs, we do
as follows. Let 𝑛 denote the targeted number of POIs we want to generate. Let 𝑃 be the set of
POIs that we have and 𝑛′ be the number of POIs in 𝑃 . We generate (𝑛 − 𝑛′) 2-dimensional
points (𝑥,𝑦) based on a Normal distribution 𝑁 (𝜇, 𝜎2), where 𝜇 = (𝑥 =

∑
𝑝′∈𝑃 𝑥𝑝′

𝑛′ , 𝑦 =

∑
𝑝′∈𝑃 𝑦𝑝′

𝑛′ )
and 𝜎2 = ( 1

𝑛

∑
𝑝′∈𝑃 (𝑥𝑝′ − 𝑥)2, 1𝑛

∑
𝑝′∈𝑃 (𝑦𝑝′ −𝑦)2). If a generated point (𝑥,𝑦) is outside the range

of the terrain, we simply discard it and re-do the process until a point within the range is
generated. At the end, we project each generated point (𝑥,𝑦) to the surface of the terrain
and take the projected point as a newly generated POI. The results are shown in Figure 14.
According to the these results, SE𝑀=0 outperforms SP-Oracle in terms of oracle building time,
oracle size and query time and significantly outperforms K-Algo in terms of query time. SE
outperforms SP-Oracle in terms of building time, size and distance query time by 1-2 orders
of time but is slower than SP-Oracle in terms of path query time by several times. But SE
still has a better overall performance than SP-Oracle.
Effect of 𝑁 .We tested 5 values of 𝑁 from {0.5𝑀, 1𝑀, 1.5𝑀, 2𝑀, 2.5𝑀} on synthetic datasets.
Each synthetic dataset with 𝑁 vertices is a terrain surface from an enlarged BH dataset
(4.2M vertices) simplified by a surface simplification algorithm [30]. Note that each sim-
plified terrain surface covers the same region as the original BH dataset with a different
simplification ratio and still has 4k POIs. The enlarged BH dataset was generated from the
BH dataset as follows. On each face of BH, we added a new vertex on its geometric center
and add a new edge between the new vertex and each of the three vertices on the face. The
results are shown in Figure 15, where the results of SP-Oracle are not shown since the size
of SP-Oracle exceeds our memory budget (i.e., 48GB).
Effect of𝑀 .We studied the effect of the number𝑀 of intermediate points associated with
each node pair in SE. We tested 5 values of 𝑀 from {0, 5, 10, 15, 20} on the BH dataset. The
results are shown in Figure 16, where the results of SP-Oracle are not shown since the size
of SP-Oracle exceeds our memory budget (i.e., 48GB). From this figure, we could have the
following observations: (1) the oracle building time of SE is almost intact in the setting of
different 𝑀 . This is because the running time of adding the intermediate points for each
node pair is neglectable compared with the time of finding the shortest distance between
the centers of the two node pairs. As such, adding the intermediate points just introduces
negligible overhead for the building time. (2) But, the oracle size of SE increases linearly with
the growth of𝑀 since each node pair in SE stores 𝑀 intermediate points and the additional
storage is required for larger𝑀 . (3) The distance query time is independent of𝑀 since the
distance query algorithm does not get the intermediate points involved. (4) The path query
time is monotonically decreasing with the growth of𝑀 but it decreases very little when𝑀
is larger than or equal to 5.
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Fig. 10. Effect of 𝜖 on SF dataset (Smaller Version) (P2P Distance and Path Queries)
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Fig. 11. Effect of 𝜖 on BH dataset (P2P Distance and Path Queries)

6.2.2 Other Experiments on Distance and Path Queries. In this section, we present the
other experiments on geodesic shortest distance and path queries including the results of
V2V queries, A2A queries and P2P queries in the case where 𝑛 > 𝑁 .
V2V Queries: In V2V queries, the original POIs are discarded, and we treat all vertices
as POIs. We varied 𝑛 and 𝜖 for the experiments. Consider the experiment studying the
effect of 𝑛. Note that 𝑁 = 𝑛 in this experiment. We tested 5 values of 𝑛 (i.e., 𝑁 ) from
{60𝑘, 90𝑘, 120𝑘, 150𝑘, 180𝑘} on synthetic datasets, and each synthetic dataset with 𝑁 vertices
corresponds to a sub-region of a SF dataset with a higher resolution (10m×10m resolution,
1M vertices). The results are shown in Figure 17, and according to the results,
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Fig. 12. Effect of 𝜖 on EaglePeak dataset (P2P Distance and Path Queries)
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Fig. 13. Effect of 𝜖 on San Francisco South (P2P Distance and Path Queries)
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Fig. 14. Effect of 𝑛 on SF dataset (P2P Distance and Path Queries)
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Fig. 15. Effect of 𝑁 on BH dataset (P2P Distance and Path Queries)
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Fig. 16. Effect of 𝑀 on BH dataset (P2P Distance and Path Queries)
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Fig. 17. Effect of 𝑛 on SF dataset (V2V Distance and Path Queries)

SE has its building time and size both at least 1 order of magnitude smaller than SP-Oracle
and its distance query time 2-3 (resp., 5-6) orders ofmagnitude smaller than that of SP-Oracle
(resp., K-Algo). The path query time of SE and SP-Oracle is smaller than that of K-Algo by 3-4
orders of magnitudes. Although the path query time of SE is larger than that SP-Oracle by
several times, SE outperforms SP-Oraclemuch more (i.e., more than 1 orders of magnitudes)
in terms of building time and distance query time and also outperforms SP-Oracle in terms
of oracle size. Thus, SE has the best overall performance.

We also conducted the experiment studying the effect of 𝜖with values in {0.05, 0.1, 0.15, 0.2, 0.25}
on the smaller version of the SF dataset. The results are also similar. In particular, the query
time of SE is 5-6 orders (resp., 6-8 orders) of magnitude smaller than that of SP-Oracle (resp.,
K-Algo).
Arbitrary Point to Arbitrary Point (A2A) Queries. We tested the A2A distance queries
where the query point is not a POI but an arbitrary point on the terrain surface. We used
the low resolution BH (resolution: 30 meter, 150k vertices) dataset by varying 𝜖 from
{0.05, 0.1, 0.15, 0.2, 0.25}. Figure 18(a), (b), (c) and (d) shows the building time, oracle size,
distance query time and path query time, respectively. According to the results, SE𝑀=0
outperforms SP-Oracle by several times in terms of building time and oracle size. SE has
similar building time with SE𝑀=0 and SP-Oracle and SE has several times larger size than
SP-Oracle. The distance query time of SE𝑀=0 and SE is 2-3 (resp., 5-6) orders of magnitude
smaller than that of SP-Oracle (resp., K-Algo). The path query time of SE and SP-Oracle is
very close which is 3-4 orders of magnitudes smaller than that of K-Algo and the path query
time of SE is slightly smaller than that of SP-Oracle. Thus, we observe that SE has better
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Fig. 18. A2A Queries
SE SEM=0 SP-Oracle K-Algo

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(a)

B
u

ild
in

g
 T

im
e

 (
s
)

ε

10
3

10
4

10
5

0.05 0.1 0.15 0.2 0.25

(b)

S
iz

e
 (

M
B

)

ε

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(c)

D
is

ta
n

c
e

 Q
u

e
ry

 T
im

e
 (

m
s
)

ε

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.05 0.1 0.15 0.2 0.25

(d)

P
a

th
 Q

u
e

ry
 T

im
e

 (
m

s
)

ε

Fig. 19. P2P Queries In The Case 𝑛 > 𝑁

overall performance than SP-Oracle since (1) the advantage of SE in the distance query time
(which is 2-3 orders of magnitudes) outweighs its disadvantage in oracle size (which is
several times only) compared with SP-Oracle, and (2) SE and SP-Oracle have very close
performances in terms of building time and path query time.
P2P Queries In The Case 𝑛 > 𝑁 . We tested P2P queries of the case 𝑛 > 𝑁 on the low resolu-
tion BH (resolution: 30meter, 150k vertices) dataset by varying 𝜖 from {0.05, 0.1, 0.15, 0.2, 0.25}.
We generated 1MPOIs by the samemethod asmentioned in Section 6.2.1. Figure 19(a)(b)(c)(d)
shows the building time, oracle size, distance query time and path query time, respectively.
The result is similar to that of A2A query. Note that the building time and space of P2P
Queries in the case 𝑛 > 𝑁 is the same as those of A2A queries since each tested oracle is the
same in the two queries.

6.2.3 Monochromatic and Bichromatic 𝑘 Nearest Neighbor and Farthest Neighbor Query.
In this section, we first report the experimental results of themonochromatic and bichromatic
𝑘 nearest neighbor queries.

Effect of 𝜖. We tested 5 different values of 𝜖 (i.e., 0.05, 0.1, 0.15, 0.2, 0.25). The results on the
two types of queries in the datasets BearHead, EaglePeak and San Francisco South is shown
in Figure 20 - Figure 25. As the figures show, the 𝑘NN query time of SE is smaller than that
of SP-Oracle and the best-known algorithm, SI by several orders of magnitude in BH and
EP. Although SE does not consistently outperforms the baselines in San Fransisco dataset,
SE is still the fastest one in most cases in Figure 22 and Figure 25. When 𝜖 is smaller than
0.2, the appro. errors of SE, the best-known algorithm, SI and SP-Oracle are very close and
are much smaller than the theoretical bound. When 𝜖 is at least 0.2, although the appro.
error of SE is higher than that of the best-known algorithm, SI and SP-Oracle by a notable

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: September 2022.



1:36 V.Wei, R.Wong et al.

SE
SP-Oracle

SI
Theor. Bound

 0.01

 0.1

 1

 10

 100

0.05 0.1 0.15 0.2 0.25

(a)

k
N

N
 Q

u
e
ry

 T
im

e
 (

s
)

ε

0.1

0.2

0.3

0.4

0.5

0.05 0.1 0.15 0.2 0.25

(b)

E
rr

o
r 

o
f 
k
N

N

ε

Fig. 20. Effect of 𝜖 on real dataset, BearHead,
for monochromatic 𝑘NN
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Fig. 21. Effect of 𝜖 on real dataset, EaglePeak,
for monochromatic 𝑘NN
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Fig. 22. Effect of 𝜖 on real dataset, San Fran-
cisco, for monochromatic 𝑘NN
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Fig. 23. Effect of 𝜖 on real dataset, BearHead,
for bichromatic 𝑘NN
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Fig. 24. Effect of 𝜖 on real dataset, EaglePeak,
for bichromatic 𝑘NN
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Fig. 25. Effect of 𝜖 on real dataset, San Fran-
cisco, for bichromatic 𝑘NN

margin, it is still obviously smaller than the theoretical bound (i.e., SE still satisfies accuracy
requirement).
Effect of 𝑘. We tested 4 different values of 𝑘, namely 5, 10, 15, 20. The results on the two

types of queries in the datasets, BearHead, EaglePeak and San Francisco South are shown
in Figure 26 - Figure 31. As the figures show, the 𝑘NN query time of SE is smaller than
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Fig. 26. Effect of 𝑘 on real dataset, BearHead,
for monochromatic 𝑘NN
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Fig. 27. Effect of 𝑘 on real dataset, EaglePeak,
for monochromatic 𝑘NN
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Fig. 28. Effect of 𝑘 on real dataset, San Fran-
cisco South, for monochromatic 𝑘NN
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Fig. 29. Effect of 𝑘 on real dataset, BearHead,
for bichromatic 𝑘NN
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Fig. 30. Effect of 𝑘 on real dataset, EaglePeak,
for bichromatic 𝑘NN
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Fig. 31. Effect of 𝑘 on real dataset, San Fran-
cisco South, for bichromatic 𝑘NN

that of SP-Oracle and the best-known algorithm, SI by several orders of magnitude in BH
and EP. Although the speedup of SE compared with the baselines is not that significant
in San Fransisco dataset, SE is still the fastest one. The appro. error of SE, the best-known
algorithm, SI and SP-Oracle are very small in practice and much smaller than the theoretical
bound.
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Fig. 32. Effect of 𝑛 on dataset, BearHead, for
bichromatic 𝑘NN
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Fig. 33. Effect of 𝑁 on dataset, BearHead, for
bichromatic 𝑘NN
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Fig. 34. Effect of 𝑛 on dataset, BearHead, for
monochromatic 𝑘NN
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Fig. 35. Effect of 𝑁 on dataset, BearHead, for
monochromatic 𝑘NN

Effect of 𝑛. We studied the effect of the number of POIs 𝑛 on a synthetic dataset. The
values of 𝑛 we tested are 50𝑘, 60𝑘, 70𝑘, 80𝑘, 90𝑘 . We generated the synthetic POIs in the same
way as stated in Section 6.2.1. The results are shown in Figure 32 and Figure 34. As figures
shows, the 𝑘NN query time of SE is smaller than that of SP-Oracle and the best-known
algorithm, SI by several times. The appro. error of SE, the best-known algorithm, SI and
SP-Oracle are very small in practice and much smaller than the theoretical bound.
Effect of 𝑁 .We studied the effect of the number of vertices 𝑁 on the terrain surface on

a synthetic dataset. The values of 𝑁 we tested are 100𝑘, 150𝑘, 200𝑘, 250𝑘. We generated the
terrain data in the same way as stated in Section 6.2.1. The results are shown in Figure 33
and Figure 35. As figures shows, the 𝑘NN query time of SE is smaller than that of SP-Oracle
and the best-known algorithm, SI by 0.5-3 orders of magnitude. The appro. error of SE is
larger than that of SP-Oracle.

For the sake of space and the fact that the technique for farthest neighbor query is similar
to that of the nearest neighbor query, we put the results of the farthest neighbor query into
the appendix.

6.2.4 Top-𝑘 Bichromatic and Monochromatic Closest-Pair and Farthest-Pair Query.
We first present the experimental results of the top-𝑘 bichromatic closest-pair (BCP) and
monochromatic closest-pair (MCP) queries.
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Effect of 𝜖. We tested 5 different values of 𝜖 (i.e., 0.05, 0.1, 0.15, 0.2, 0.25). The results of
top-𝑘 BCP query on BearHead, EaglePeak and San Fransisco are shown in Figure 37(a),
Figure 38(a) and Figure 39(a). The results of top-𝑘 MCP query on BearHead, EaglePeak
and San Fransisco are shown in Figure 41(a), Figure 42(a) and Figure 43(a). The query
time of SE for both types of queries is very small in practice. The top-𝑘 BCP query and the
top-𝑘 MCP query processing of SP-Oracle could not be finished within a reasonable time
and thus, it is not shown in the figures. Since there is no exact algorithm for both types of
queries, we are not able to calculate the appro. error.

Effect of 𝑘 . We tested 4 different values of 𝑘 , namely 5, 10, 15, 20. The results of top-𝑘 BCP
query on BearHead, EaglePeak and San Fransisco are shown in Figure 37(b), Figure 38(b)
and Figure 39(b). The results of top-𝑘MCP query on BearHead, EaglePeak and San Fransisco
are shown in Figure 41(b), Figure 42(b) and Figure 43(b). The query time of SE for both
types of queries is small in practice. The top-𝑘 BCP query and top-𝑘 MCP query processing
of SP-Oracle could not be finished within a reasonable time and thus, it is not shown in the
figure.
Effect of 𝑛. We studied the effect of the number of POIs 𝑛 on a synthetic dataset. The

values of 𝑛 we tested are 50𝑘, 60𝑘, 70𝑘, 80𝑘, 90𝑘. The data is generated in the same way as
stated in Section 6.2.1.
The results of top-𝑘 BCP query and top-𝑘 MCP query are shown in Figure 40(a) and

Figure 44(a), respectively. As Figure 40(a) shows, the query time of SE for the top-𝑘 BCP
query is small in practice. The top-𝑘 BCP query processing of SP-Oracle could not be finished
within a reasonable time and thus it is not shown in the figure. We observe similar results
for the top-𝑘 MCP query.
Effect of 𝑁 .We studied the effect of the number of vertices 𝑁 on the terrain surface on

a synthetic dataset. The values of 𝑁 we tested are 100𝑘, 150𝑘, 200𝑘, 250𝑘. We generated the
terrain data as stated in Section 6.2.1. The results of top-𝑘 BCP query and top-𝑘 MCP query
are shown in Figure 40(b) and Figure 44(b), respectively. As Figure 40(b) shows, the query
time of SE for the top-𝑘 BCP query is small in practice. The top-𝑘 BCP query processing of
SP-Oracle could not be finished within a reasonable time and thus, it is not shown in the
figure. We observe similar results for top-𝑘 MCP query.
For the sake of space and the fact that the technique for farthest-pair query is similar to

that of closest-pair query, we put the results of the farthest-pair query into the appendix.

6.2.5 Case Study of Proximity Queries. In this section, we conduct a case study in one
application scenario of Path Advisor [48] which is a widely used web-based and mobile app
in a university2. This app provides location-based services on the campus of this university
including the navigation and POI recommendation, etc. based on a 3D terrain surface in this
university containing 1,789 vertices. We studied two types of commonly invoked queries.
One is 𝑘 nearest neighbor query and the other is shortest path query as follows.
Case Study of 𝑘NN query. In this case study, we instantiate this 𝑘 nearest neighbor query as
the query of 3 nearest canteens of the atrium, which is a landmark of the university and also
the lobby of its main building. This query is a commonly invoked one for the newcomers
of this university. Figure 36 demonstrates the user interface of the Path Advisor and the
details of this query mentioned above. In this figure, there is a menu on the left side which
provides the search option and also legends. On the right side, it shows the 3D terrain model
of the campus. The query point (i.e., the location of the atrium) is marked with an icon

2Due to the double-blind policy, we do not write down the name of this university.
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Passion

China Garden

Can Teen II

Fig. 36. An Illustration of Path Advisor in A University

of a round push pin and the 3 nearest canteens are shown by using the icon of location
pinpoints. The three restaurants are Can Teen 2, China Garden and Passion, respectively. We
report the building time, the space consumption, the query response time and the error of
our algorithm and each baseline considered in our experiment as follows in Table 7. In our
results, we observe that (1) K-Algo has a significantly high query time which is more than
five seconds and intolerable for mobile app users and will worsen the user experience a
lot; (2) SP-Oracle incurs a very large space consumption which is heavy-weight for mobile
apps and its query time is still not good enough (i.e., more than one second) for the real-
time application although it is smaller than that of K-Algo; (3) Our algorithm SE has the
smallest building time, the smallest space consumption and the smallest query time. It
incurs neglectable storage overhead and neglectable query response time, and highly boosts
the quality of experience. Its building time, space consumption and query response time
are smaller than that of SP-Oracle by several orders of magnitudes.

Algorithm Building Time (s) Space Consumption (KB) Query Response Time (ms) Error
K-Algo. - - 5,920 0.0002
SP-Oracle 2,160 150,000 1,580 0.0003

SE 50 1,058 0.254 0.0008
Table 7. Performances of All Algorithms in Our Case Study of 𝑘NN Query

Case Study of Shortest Path Query. We consider the shortest path query from the location of
the atrium, which is a landmark of the university, and also the lobby of the main building to
the canteen ‘Passion’. Figure 36 demonstrates the user interface of the Path Advisor and the
details of this query mentioned above. In this figure, there is a menu on the left side which
provides the search option and also legends. On the right side, it shows the 3D terrain model
of the campus. The desired shortest path is shown in the green path in Figure 36. We report
the experimental results of our algorithm and all baselines considered in Table 8 below. In
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Fig. 37. Effect of 𝜖 and 𝑘 on real dataset, Bear-
Head, for Top-𝑘 BCP
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Fig. 38. Effect of 𝜖 and 𝑘 on real dataset, Eagle-
Peak, for Top-𝑘 BCP
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Fig. 39. Effect of 𝜖 and 𝑘 on real dataset, San
Fransisco, for Top-𝑘 BCP
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Fig. 40. Effect of 𝑛 and 𝑁 on dataset, San
Francisco South, for Top-𝑘 BCP query

our results, we observe that (1) K-Algo suffers from its very large query time (i.e., larger
than 5 seconds) which prevent from its usage in this Path Advisor system which requires
real-time response; (2) SP-Oracle consumes too much memory and incurs intolerable space
overhead for mobile apps. Besides, it is still not efficient enough for the query processing
although it is smaller than that of K-Algo; (3) Our algorithm SE has the smallest building
time, the smallest space consumption and the smallest query time which is smaller than
that of SP-Oracle by orders of magnitudes. It is quite light-weight and enjoys its neglectable
storage overhead and instant query response.

Algorithm Building Time (s) Space Consumption (KB) Query Response Time (ms) Error
K-Algo. - - 5,281 0.0035
SP-Oracle 2,160 150,000 687 0.0013

SE 50 1,058 0.087 0.0023
Table 8. Performances of All Algorithms in Our Case Study of Shortest Path Query

6.2.6 Experimental Result Summary. We conclude that our SE structure is efficient in
terms of oracle building time, oracle size as well as space and is accurate and efficient for the
distance query and path query. It is scalable to 𝑛, 𝑁 and 𝑘 . SP-Oracle is not efficient in terms
of space which is memory infeasible for the three real datasets when the error parameter is
sufficiently small. Besides, our oracle, SE, performs much faster than the state-of-the-art by
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Fig. 41. Effect of 𝜖 and 𝑘 on real dataset, Bear-
Head, for Top-𝑘 MCP
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Fig. 42. Effect of 𝜖 and 𝑘 on real dataset, Eagle-
Peak, for Top-𝑘 MCP
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Fig. 43. Effect of 𝜖 and 𝑘 on real dataset, San
Fransisco, for Top-𝑘 MCP
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Fig. 44. Effect of 𝑛 and 𝑁 on dataset, San
Francisco South, for Top-𝑘 MCP query

up to 2-6 orders of magnitude for distance query and path query. For themonochromatic and
bichromatic 𝑘 nearest neighbor and 𝑘 farthest neighbor queries, our method outperforms the
best-known algorithm, SI by up to 1-6 orders of magnitudes in terms of the query processing
time. Our proposed algorithm is also efficient and scalable for the monochromatic and
bichromatic top-𝑘 closest-pair and top-𝑘 farthest-pair queries.

7 CONCLUSION
In this paper, we studied several important spatial queries, including the shortest distance
and path query, monotonic and bichromatic 𝑘 nearest neighbor and farthest neighbor
queries and monotonic and bichromatic top-𝑘 closest-pair and farthest-pair queries, which
are fundamental to many other spatial queries and many data mining applications. We
proposed a distance and path oracle called SE which has three good features: (1) low
construction time, (2) small size and (3) low query time (compared with the state-of-
the-art). Our experimental studies show that SE consistently outperforms the best existing
algorithms in terms of all measurements for the queries studied. There are several interesting
research directions. One of them is to study how to efficiently update the distance oracle
when there is an update on some POIs.
Acknowledgements: We are grateful to the anonymous reviewers for their constructive
comments on this paper. The research of Victor Junqiu Wei is supported by PolyU inter-
nal fund (1-BD47) under the research project (P0039657) of the Hong Kong Polytechnic
University. The research of the HKUST side is supported by PRP/026/21FX. This research

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: September 2022.



Proximity Queries on Terrain Surface 1:43

of Cheng Long is supported in part by the Ministry of Education, Singapore, under its
Academic Research Fund (Tier 2 Awards MOE-T2EP20220-0011 and MOE-T2EP20221-0013).
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author(s) and do not reflect the views of the Ministry of Education, Singapore.
The research of Hanan Samet was sponsored in part by the NSF under Grants IIS-18-16889,
IIS-20-41415, and IIS-21-14451.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: September 2022.



1:44 V.Wei, R.Wong et al.

REFERENCES
[1] A. Al-Badarneh, H. Najadat, and A. Alraziqi. A classifier to detect tumor disease in mri brain images. In

ASONAM, 2012.
[2] L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari, D. Nussbaum, and J.-R. Sack. Algorithms for

approximate shortest path queries on weighted polyhedral surfaces. In Discrete & Computational Geometry,
2010.

[3] L. Aleksandrov, H. N. Djidjev, H. Guo, A. Maheshwari, D. Nussbaum, and J.-R. Sack. Algorithms for
approximate shortest path queries on weighted polyhedral surfaces. Discrete & Computational Geometry, 2010.

[4] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining approximate shortest paths on weighted
polyhedral surfaces. JACM, 2005.

[5] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In ICML, 2006.
[6] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with applications to

k-nearest-neighbors and n-body potential fields. JACM, 1995.
[7] J. Chen and Y. Han. Shortest paths on a polyhedron. In SOCG, 1990.
[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press andMcGraw-Hill,

3rd edition, 2009.
[9] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest pair queries in spatial databases.

ACM SIGMOD Record, 2000.
[10] A. Corral, Y. Manolopoulos, Y. Theodoridis, andM. Vassilakopoulos. Algorithms for processing k-closest-pair

queries in spatial databases. Data & Knowledge Engineering, 2004.
[11] K. Deng, H. T. Shen, K. Xu, and X. Lin. Surface k-nn query processing. In ICDE, 2006.
[12] K. Deng and X. Zhou. Expansion-based algorithms for finding single pair shortest path on surface. InWWGIS.

2005.
[13] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A multi-resolution surface distance model for k-nn

query processing. VLDBJ, 2008.
[14] B. G. Dickson and P. Beier. Quantifying the influence of topographic position on cougar (puma concolor)

movement in southern california, usa. Journal of Zoology, 2007.
[15] H. N. Djidjev and C. Sommer. Approximate distance queries for weighted polyhedral surfaces. In ESA. 2011.
[16] M. Fan, H. Qiao, and B. Zhang. Intrinsic dimension estimation of manifolds by incising balls. Pattern

Recognition, 2009.
[17] J. Fischer and S. Har-Peled. Dynamic well-separated pair decomposition made easy. In CCCG, 2005.
[18] F. Fodor. The densest packing of 12 congruent circles in a circle. Contributions to Algebra and Geometry, 2000.
[19] J. Golay and M. Kanevski. A new estimator of intrinsic dimension based on the multipoint morisita index.

Pattern Recognition, 2015.
[20] S. A. Huettel, A. W. Song, and G. McCarthy. Functional magnetic resonance imaging. In Sinauer Associates,

2004.
[21] J. Jia and C.-K. Tang. Image repairing: Robust image synthesis by adaptive nd tensor voting. In CVPR. IEEE,

2003.
[22] J. Jia and C.-K. Tang. Tensor voting for image correction by global and local intensity alignment. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2005.
[23] T. Kanai and H. Suzuki. Approximate shortest path on a polyhedral surface based on selective refinement of

the discrete graph and its applications. In GMPTA, 2000.
[24] M. Kaul, R. C.-W. Wong, and C. S. Jensen. New lower and upper bounds for shortest distance queries on

terrains. VLDB, 2015.
[25] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen. Finding shortest paths on terrains by killing two birds

with one stone. VLDB, 2013.
[26] B. Kégl. Intrinsic dimension estimation using packing numbers. In NIPS, 2002.
[27] M. Kortgen, G. J. Park, M. Novotni, and R. Klei. 3d shape matching with 3d shape contexts. In CESCG, 2003.
[28] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert. Natural terrain classification using three-dimensional

ladar data for ground robot mobility. Journal of field robotics, 2006.
[29] M. Lanthier, A. Maheshwari, and J.-R. Sack. Approximating shortest paths on weighted polyhedral surfaces.

pages 527–562, 2001.
[30] L. Liu and R. C.-W. Wong. Finding shortest path on land surface. In SIGMOD, 2011.
[31] A. Mårell, J. P. Ball, and A. Hofgaard. Foraging and movement paths of female reindeer: insights from fractal

analysis, correlated random walks, and lévy flights. Canadian Journal of Zoology, 2002.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: September 2022.



Proximity Queries on Terrain Surface 1:45

[32] J. S. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM Journal on
Computing, 1987.

[33] J. Sankaranarayanan, H. Alborzi, and H. Samet. Distance join queries on spatial networks. In Proceedings of
the 14th ACM International Symposium on Advances in Geographic Information Systems, pages 211–218,
Arlington, VA, November 2006.

[34] J. Sankaranarayanan and H. Samet. Distance oracles for spatial networks. In Proceedings of the 25th IEEE
International Conference on Data Engineering, pages 652–663, Shanghai, China, April 2009.

[35] J. Sankaranarayanan and H. Samet. Query processing using distance oracles for spatial networks. IEEE
Transactions on Knowledge and Data Engineering, 22(8):1158–1175, August 2010. (Best Papers of ICDE 2009
Special Issue.), pages 1158–1175.

[36] J. Sankaranarayanan and H. Samet. Roads belong in databases. IEEE Data Engineering Bulletin, 33(2):4–11,
June 2010., page Invited paper.

[37] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial networks. PVLDB, 2(1):1210–1221,
August 2009., page Also Proceedings of the 35th International Conference on Very Large Data Bases (VLDB).

[38] L. T. Sarjakoski, P. Kettunen, H.-M. Flink, M. Laakso, M. Rönneberg, and T. Sarjakoski. Analysis of verbal
route descriptions and landmarks for hiking. Personal and Ubiquitous Computing, 2012.

[39] C. Shahabi, L.-A. Tang, and S. Xing. Indexing land surface for efficient knn query. VLDB, 2008.
[40] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling

for multi-class object recognition and segmentation. In ECCV, 2006.
[41] F. Tauheed, L. Biveinis, T. Heinis, F. Schurmann, H. Markram, and A. Ailamaki. Accelerating range queries

for brain simulations. In ICDE, 2012.
[42] N. Tran, M. J. Dinneen, and S. Linz. Close weighted shortest paths on 3d terrain surfaces. In The ACM

SIGSPATIAL International Conference on Advances in Geographic Information Systems 2021 (SIGSPATIAL), pages
597–607, 2020.

[43] N. Vandapel, R. R. Donamukkala, and M. Hebert. Unmanned ground vehicle navigation using aerial ladar
data. The International Journal of Robotics Research, 2006.

[44] V. J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount. Distance oracle on terrain surface. In SIGMOD, 2017.
[45] S.-Q. Xin and G.-J. Wang. Improving chen and han’s algorithm on the discrete geodesic problem. ACM Trans.

Graph., 2009.
[46] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest neighbors on land surface. In VLDB, 2009.
[47] D. Yan, Z. Zhao, and W. Ng. Monochromatic and bichromatic reverse nearest neighbor queries on land

surfaces. In CIKM, 2012.
[48] Y. Yan and R. C.-W. Wong. Path advisor: a multi-functional campus map tool for shortest path. VLDB, 2021.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1. Publication date: September 2022.



Proximity Queries on Terrain Surface 1:1

A LARGEST CAPACITY DIMENSION
Consider a metric space 𝑋 with a distance metric 𝑑 (·, ·). Given a positive real number 𝑟 , a
set 𝑌 ⊆ 𝑋 is said to be 𝑟 -separated if for any two distinct points 𝑥,𝑦 ∈ 𝑌 , 𝑑 (𝑥,𝑦) ≥ 𝑟 . Given
a positive real number 𝑟 and a set 𝑆 ⊆ 𝑋 , the 𝑟 -packing number of 𝑆 , denoted by 𝑀 (𝑟, 𝑆),
is defined to be the maximum cardinality of an 𝑟 -separated subset of 𝑆 . Given a metric
space 𝑋 and a distance measure 𝑑, a set 𝑆 ⊆ 𝑋 and two positive real numbers 𝑟1 and 𝑟2,
the scale-dependent capacity dimension of 𝑆 w.r.t. 𝑟1 and 𝑟2, denoted by D(𝑆, 𝑟1, 𝑟2), is defined
to be − log𝑀 (𝑟1,𝑆)−log𝑀 (𝑟2,𝑆)

log 𝑟1−log 𝑟2 [26]. This dimension is used to measure the ‘intrinsic dimension’
of a metric space. Many high-dimensional data points are believed to be distributed in a
manifold with a low ‘intrinsic dimension’. Intuitively, the ‘intrinsic dimension’ is the number of
independent variables needed to represent thewhole dataset. A good estimate of the ‘intrinsic
dimension’ could be used to set the input parameters of the dimension reduction algorithms
(e.g., Principle Component Analysis). There are many different specific formulations of the
‘intrinsic dimension’ capturing certain properties [5, 16, 19, 26]. The scale-dependent capacity
dimension captures the geometric property of the data and provides a multi-resolution
dimensionality which depends on the radius 𝑟 . It measures the growth rate of𝑀 (𝑟, 𝑆) w.r.t.
𝑟 of a subset 𝑆 of 𝑋 . In our context, the data space 𝑋 is the set 𝑃 of all the 𝑛 POIs and the
distance metric 𝑑 (·, ·) is the geodesic distance 𝑑𝑔 (·, ·). Then, we give the definition of a ‘ball’
on a terrain surface. Given a point 𝑝 ∈ 𝑃 and a non-negative real number 𝑟 , a ball centered
at 𝑝 with radius equal to 𝑟 , denoted by 𝐵(𝑝, 𝑟 ), is defined to be a set of all POIs in the disk
𝐷 (𝑝, 𝑟 ). Then, we give the definition of the capacity dimension of a ball 𝐵(𝑝, 𝑟 ) on the terrain
surface which only measures the growth rate of𝑀 (𝑟, 𝐵(𝑝, 𝑟 )) when 𝑟 reduces from 2𝑟 to 𝑟

2 .

Definition A.1. Given a ball 𝐵(𝑝, 𝑟 ) on a terrain surface, where 𝑝 is a point in 𝑃 and 𝑟 is a
positive real number, the capacity dimension of 𝐵(𝑝, 𝑟 ) is defined to be D(𝐵(𝑝, 𝑟 ), 2𝑟, 𝑟2 ) =
− log𝑀 (2𝑟,𝐵 (𝑝,𝑟 ))−log𝑀 ( 𝑟2 ,𝐵 (𝑝,𝑟 ))

log 2𝑟−log 𝑟2
= 0.5 log 𝑀 ( 𝑟2 ,𝐵 (𝑝,𝑟 ))

𝑀 (2𝑟,𝐵 (𝑝,𝑟 )) .

Consider a set of points whose pairwise geodesic distances are at least 2𝑟 . Since the disk
𝐷 (𝑝, 𝑟 ) could overlap with at most 2 of them, we obtain that 𝑀 (2𝑟, 𝐵(𝑝, 𝑟 )) = 2. Thus, for a
given ball 𝐵(𝑝, 𝑟 ), the capacity dimension is equal to 0.5 log 𝑀 ( 𝑟2 ,𝐵 (𝑝,𝑟 )

2 ). Thus, we obtain that
given a disk 𝐷 (𝑝, 𝑟 ), 2 · 22D(𝐵 (𝑝,𝑟 ),2𝑟, 𝑟2 ) is the maximum number of POIs whose pairwise
geodesic distances are at least 𝑟2 such that the disk 𝐷 (𝑝, 𝑟 ) contains them.
Next, we define the largest capacity dimension of a set 𝑃 of POIs on a terrain surface to be

max𝑝∈𝑃,𝑟 ∈(0,∞) 𝐷 (𝐵(𝑝, 𝑟 ), 2𝑟, 𝑟2 ), denoted by 𝛽 . By the definition of the largest capacity dimension,
any disk 𝐷 (𝑝, 𝑟 ), where 𝑝 is a point in 𝑃 and 𝑟 is a positive real number, could contain at
most 2 · 22𝛽 (i.e. 𝑂 (22𝛽 )) POIs whose pairwise geodesic distance is at least 𝑟2 .

The definition of largest capacity dimension has an equivalent presentation as follows. Given
a set 𝑃 of POIs on a terrain surface, its largest capacity dimension 𝛽 is the largest positive real
number such that for any point 𝑝 in 𝑃 and any non-negative real number 𝑟 , the disk 𝐷 (𝑝, 𝑟 )
overlaps with at most 2 · 22𝛽 disjoint disks each with radius at least 𝑟4 . [18] proved that in the
2D Euclidean space, a disk with radius 𝑟 overlaps with at most 12 disjoint disks with radii
equal to 𝑟

4.029 . Thus, in the 2D Euclidean space, a disk with radius 𝑟 overlaps with at most 12
disjoint disks with radii equal to 𝑟

4 . Based on this, we obtain that in an extreme case where
the terrain surface is a 2D plane, the largest capacity dimension 𝛽 is at most 1.3. In general
cases, intuitively, 𝛽 is a little bit larger than 1.3, since the terrain surface could be regarded
as a 2D surface with some fluctuations in terms of height.
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B PROOF
Lemma B.1. Given disks 𝐷1 (𝑐1, 𝑟1) and 𝐷2 (𝑐2, 𝑟2) where (1) 𝑐1 and 𝑐2 are two points in 𝑃 and (2)

𝑟1 and 𝑟2 are two non-negative real numbers, for any point 𝑝1 in 𝐷1 and any point 𝑝2 in 𝐷2, 𝑑𝑔 (𝑐1, 𝑐2)
is an 𝜖-approximate distance of 𝑑𝑔 (𝑝1, 𝑝2) if 𝑑𝑔 (𝑐1, 𝑐2) ≥ ( 2

𝜖
+ 2) ·max{𝑟1, 𝑟2}.

Proof. By Triangle Inequality, we obtain that 𝑑𝑔 (𝑐1, 𝑐2) −𝑑𝑔 (𝑝1, 𝑐1) −𝑑𝑔 (𝑝2, 𝑐2) ≤ 𝑑𝑔 (𝑝1, 𝑝2) ≤
𝑑𝑔 (𝑐1, 𝑐2) +𝑑𝑔 (𝑝1, 𝑐1) +𝑑𝑔 (𝑝2, 𝑐2). Thus, we obtain that 𝑑𝑔 (𝑝1, 𝑝2)−𝑟1−𝑟2 ≤ 𝑑𝑔 (𝑐1, 𝑐2) ≤ 𝑑𝑔 (𝑝1, 𝑝2) +
𝑟1 + 𝑟2. We further obtain that 𝑑𝑔 (𝑝1, 𝑝2) ≥ ( 2

𝜖
+ 2) ·max{𝑟1, 𝑟2} − 𝑟1 − 𝑟2 ≥ ( 2

𝜖
+ 2) ·max{𝑟1, 𝑟2} −

2max{𝑟1, 𝑟2} = 2
𝜖
·max{𝑟1, 𝑟2}. By the two inequalities obtained above,we obtain that𝑑𝑔 (𝑝1, 𝑝2)−

𝜖 · 𝑑𝑔 (𝑝1, 𝑝2) ≤ 𝑑𝑔 (𝑐1, 𝑐2) ≤ 𝑑𝑔 (𝑝1, 𝑝2) + 𝜖 · 𝑑𝑔 (𝑝1, 𝑝2). □

Proof of Lemma 3.2. By Step (b) in the partition tree construction algorithm, the tree
built satisfies Separation Property and Covering Property. Then, we prove that it also
satisfies the distance property: Consider a node 𝑂 and any of its descendants 𝑂 ′. Let
(𝑂,𝑂1,𝑂2,𝑂3, ......,𝑂𝑡 ,𝑂

′) denote the path from 𝑂 to 𝑂 ′ in the partition tree. By Separation
Property, we obtain that 𝑟𝑂𝑖 =

𝑟𝑂
2𝑖 (1 ≤ 𝑖 ≤ 𝑡), 𝑟𝑂𝑡 = 2 · 𝑟𝑂′ . By our building method, we obtain

that𝑑𝑔 (𝑐𝑂𝑖 , 𝑐𝑂𝑖+1 ) ≤ 𝑟𝑂𝑖 (1 ≤ 𝑖 ≤ 𝑡−1), 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂1 ) ≤ 𝑟𝑂 , 𝑑𝑔 (𝑐𝑂𝑡 , 𝑐𝑂′) ≤ 𝑟𝑂𝑡 . By Triangle Inequality,
we obtain that 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≤ 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂1 ) +

∑𝑡−1
𝑖=1 𝑑𝑔 (𝑐𝑂𝑖 , 𝑐𝑂𝑖+1 ) + 𝑑𝑔 (𝑐𝑂𝑡 , 𝑐𝑂′). By integrating all the

inequalities above, we obtain that 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≤ ∑𝑡
𝑖=0

𝑟𝑂
2𝑖 ≤ 2 · 𝑟𝑂 . □

Proof of Lemma 3.3. Since ∀𝑖 ∈ [0, ℎ − 1], 𝑟𝑖 = 2 · 𝑟𝑖+1, we obtain that ℎ = log 𝑟0
𝑟ℎ
. We obtain

that 𝑟0 ≤ max𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝, 𝑞) since 𝑟0 is a geodesic distance between two POIs (the center of the
root and its farthest neighbor). It is obvious that 𝑟ℎ−1 ≥ min𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝, 𝑞), since otherwise,
∀𝑝 ∈ 𝑃 , the disk 𝐷 (𝑝, 𝑟ℎ−1) contains only 1 POI and the construction algorithm stops at layer
ℎ-1. Since 𝑟ℎ =

𝑟ℎ−1
2 , we obtain that 𝑟ℎ ≥ 0.5 ·min𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝, 𝑞) by contradiction.

Finally, we obtain that ℎ ≤ log max𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝,𝑞)
0.5·min𝑝,𝑞∈𝑃 𝑑𝑔 (𝑝,𝑞) . □

Proof of Theorem 3.6. By the algorithm for generating 𝑆 , we obtain that every pair in 𝑆 is
well-separated at the end. Then, we prove that for any two points 𝑝 and 𝑞 in 𝑃 , there is exactly
one pair ⟨𝑂,𝑂 ′⟩ containing ⟨𝑝, 𝑞⟩ in 𝑆 . Consider each iteration of the procedure presented in
Section 3.3. We proceed to prove the statement: there is exactly one node pair in 𝑆 containing
⟨𝑝, 𝑞⟩ at the end of the iteration if at the beginning of the iteration, there is exactly one node
pair, denoted by ⟨𝑂1,𝑂2⟩, in 𝑆 containing ⟨𝑝, 𝑞⟩. If ⟨𝑂1,𝑂2⟩ is not extracted in the iteration,
then ⟨𝑂1,𝑂2⟩ is still the only one containing ⟨𝑝, 𝑞⟩ at the end of the iteration. Otherwise,
⟨𝑂1,𝑂2⟩ is extracted and w.l.o.g., we assume that 𝑂2 is split. Since only one child of 𝑂2 is 𝑂𝑞
or an ancestor of 𝑂𝑞 , exactly one newly inserted node pair contains ⟨𝑝, 𝑞⟩. Besides, it must
be true that at the beginning of the first iteration, exactly one node pair (i.e. ⟨𝑂root,𝑂root⟩)
contains ⟨𝑂1,𝑂2⟩. By induction, we obtain that at the end of the final iteration, exactly one
node pair in 𝑆 contains ⟨𝑝, 𝑞⟩.
Consider the unique pair ⟨𝑂,𝑂 ′⟩ containing ⟨𝑝, 𝑞⟩ in the node pair set of our SE. Since

⟨𝑂,𝑂 ′⟩ iswell-separated, then𝑑𝑔 (𝑂,𝑂 ′) ≥ ( 2
𝜖
+2)·max{𝑟 ′

𝑂
, 𝑟 ′
𝑂′}, where 𝑟 ′

𝑂
(resp., 𝑟 ′

𝑂′) denote the
radius of the enlarged disk of 𝑂 (resp., 𝑂 ′). Since the enlarged disk of 𝑂 (resp., 𝑂 ′) contains
𝑝 and 𝑞 by Distance Property, we obtain that 𝑑𝑔 (𝑂,𝑂 ′) = 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) is an 𝜖-approximate
distance of 𝑑𝑔 (𝑝, 𝑞) by Lemma B.1. □

Lemma B.2. Consider a chain of node pairs ⟨𝑂1,𝑂
′
1⟩, ⟨𝑂2,𝑂

′
2⟩, ..., ⟨𝑂𝑖 ,𝑂 ′

𝑖 ⟩, ..., ⟨𝑂𝑚,𝑂 ′
𝑚⟩, where

⟨𝑂𝑖 ,𝑂 ′
𝑖 ⟩ is generated by ⟨𝑂𝑖−1,𝑂 ′

𝑖−1⟩ for each integer 𝑖 ∈ [2,𝑚]. Let 𝑟
𝑂𝑖

denote max{𝑟𝑂𝑖 , 𝑟𝑂′
𝑖
} for

each integer 𝑖 ∈ [1,𝑚]. ∀𝑘, 𝑗 ∈ [1,𝑚], 𝑟
𝑂𝑘

≥ 𝑟
𝑂 𝑗

if and only if 𝑘 < 𝑗 .
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Proof of Lemma B.2. It is easy to see that ∀𝑘, 𝑗 ∈ [1,𝑚] where 𝑘 < 𝑗 , 𝑂𝑘 (resp., 𝑂 ′
𝑘
) is 𝑂 𝑗

(resp., 𝑂 ′
𝑗) or an ancestor of 𝑂 𝑗 (resp., 𝑂 ′

𝑗) in 𝑇compress. Thus, we obtain that 𝑟𝑂𝑘 ≥ 𝑟𝑂 𝑗 and
𝑟𝑂′

𝑘
≥ 𝑟𝑂′

𝑗
. Since 𝑟

𝑂𝑘
= max{𝑟𝑂𝑘 , 𝑟𝑂′

𝑘
} and 𝑟

𝑂 𝑗
= max{𝑟𝑂 𝑗 , 𝑟𝑂′

𝑗
}, we obtain that 𝑟

𝑂𝑘
≥ 𝑟

𝑂 𝑗
. □

Proof of Lemma 3.8. Consider the chain of pairs ⟨𝑂1,𝑂
′
1⟩, ⟨𝑂2,𝑂

′
2⟩, ..., ⟨𝑂𝑖 ,𝑂 ′

𝑖 ⟩, ..., ⟨𝑂𝑚,𝑂 ′
𝑚⟩,

where 𝑂1 = 𝑂
′
1 = 𝑂root , 𝑂𝑚 = 𝑂 , 𝑂 ′

𝑚 = 𝑂 ′ and ⟨𝑂𝑖 ,𝑂 ′
𝑖 ⟩ is generated by ⟨𝑂𝑖−1,𝑂 ′

𝑖−1⟩ for all integer
𝑖 in [2,𝑚] in our method of constructing the node pair set of SE. Consider the case that
⟨𝑂,𝑂 ′⟩ is a first-higher-layer node pair. We denote the parent of 𝑂 ′ in 𝑇compress by 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′),
there must exist an integer 𝑘 such that 𝑘 ∈ [1,𝑚 − 1] and 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′) is split from ⟨𝑂𝑘 ,𝑂 ′

𝑘
⟩.

This is because otherwise, ⟨𝑂,𝑂 ′⟩ would not be generated. Consider the pair ⟨𝑂𝑘 ,𝑂 ′
𝑘
⟩ from

which 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′) is split and thus, 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) = max{𝑟𝑂𝑘 , 𝑟𝑂′
𝑘
}. By Lemma B.2, we obtain

𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) ≥ max{𝑟𝑂 , 𝑟𝑂′} and thus the layer containing 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′) is higher than or equal
to that containing 𝑂 . For the case that ⟨𝑂,𝑂 ′⟩ is a first-lower-layer node pair, the proof is
symmetric and we omit the details. □

Proof of Lemma 3.11. Consider a node pair ⟨𝑂,𝑂 ′⟩ considered in the procedure described
in Section 3.3, where ⟨𝑂,𝑂 ′⟩ ≠ ⟨𝑂root,𝑂root⟩. Let 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) (resp., 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′)) denote the
parent of𝑂 (resp.,𝑂 ′) in𝑇compress if𝑂 (resp.,𝑂 ′) is not the root node. It is obvious that ⟨𝑂,𝑂 ′⟩
is generated by ⟨𝑂, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′)⟩ or ⟨𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂 ′⟩.

W.l.o.g., we assume that ⟨𝑂,𝑂 ′⟩ is generated by ⟨𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂 ′⟩. By Lemma B.2, we obtain
that 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) ≤ 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) since 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′) is split before ⟨𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂 ′⟩ is generated. By
Lemma 3.8, we obtain that 𝑟𝑂′ ≤ 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) and 𝑟𝑂 ≤ 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) . Let 𝑂 denote the child of
𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) in the original partition tree 𝑇org which is on the path from 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) to 𝑂 . There
are two cases of 𝑂 and we present that in both cases, it is true that 𝑐

𝑂
= 𝑐𝑂 . If 𝑂 = 𝑂 , it is

obvious that 𝑐
𝑂
= 𝑐𝑂 . Then, consider the case where𝑂 ≠ 𝑂 . Since any node on the path from

𝑂 to𝑂 excluding𝑂must have only one child, we obtain that 𝑐
𝑂
= 𝑐𝑂 by Step (i) of the building

algorithm of𝑇org . Similarly, the child𝑂𝑐 of 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′) in the original partition tree𝑇org which
is on the path from 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′) to𝑂 ′ has the same center with𝑂 . Since 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) ≤ 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) ,
we obtain that 𝑟

𝑂
≤ 𝑟𝑂𝑐 . Then, consider the node𝑂

′ on the path from𝑂𝑐 to𝑂 ′ in𝑇org which is
on the same layer as𝑂 and has the same center as𝑂𝑐 (By Step (i), we could always find such
a node 𝑂). Since 𝑐

𝑂
′ = 𝑐𝑂′ , we obtain that 𝑑𝑔 (𝑂,𝑂

′) = 𝑑𝑔 (𝑂,𝑂 ′). Since ⟨𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂 ′⟩ is not a
well-separated pair, we obtain that 𝑑𝑔 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂 ′) ≤ 2( 2

𝜖
+ 2) ·max{𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) , 𝑟𝑂′} = 2( 2

𝜖
+

2)𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) . Thus, we obtain that 𝑑𝑔 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂
′) ≤ 2( 2

𝜖
+ 2)𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) . Since 𝑂 is a child of

𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) in the original partition tree𝑇org , we obtain that 𝑑𝑔 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂) ≤ 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) = 2𝑟
𝑂
.

By triangle inequality, we obtain that 𝑑𝑔 (𝑂,𝑂
′) ≤ 𝑑𝑔 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂

′) + 𝑑𝑔 (𝑂, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂)) ≤
2( 2
𝜖
+ 2)𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂) + 2𝑟

𝑂
= 4( 2

𝜖
+ 2)𝑟

𝑂
+ 2𝑟

𝑂
= ( 8

𝜖
+ 10)𝑟

𝑂
. Thus, ⟨𝑂,𝑂 ′⟩ must be an enhanced

node pair, where 𝑐
𝑂
= 𝑐𝑂 and 𝑐

𝑂
′ = 𝑐𝑂′ . □

Lemma B.3. The maximum number of child nodes of each node𝑂 in a partition tree or a compressed
partition tree is 𝑂 (22𝛽 ).

Proof. By the definition of the partition tree, the center of each children of 𝑂 must lie in
the disk 𝐷 (𝑐𝑂 , 𝑟𝑂 ). Besides, by the Separation Property, the minimum pairwise distance of
all its children must be at most 𝑟𝑂2 . Thus, by the definition of the largest capacity dimension
𝛽, we obtain that the maximum number of children of each node 𝑂 in a partition tree is
𝑂 (22𝛽 ). It is easy to see that the converting from a partition tree to a compressed partition
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tree does not change the number of children of any undeleted node. Thus, we obtain that the
maximum number of children of each node 𝑂 in a compressed partition tree is 𝑂 (22𝛽 ). □

Lemma B.4. Any disk 𝐷 (𝑐, 𝑟 ), where 𝑐 ∈ 𝑃 and 𝑟 is a non-negative real number, can hold at most
𝑂 ((22𝛽 )𝑖 ) points, the minimum pairwise geodesic distance of which is at least 𝑟

2𝑖 .

Proof. Consider a set 𝑃𝑆𝐸𝑇 of points in𝐷 (𝑐, 𝑟 ) such that their minimumpairwise geodesic
distance is at least 𝑟

2𝑖 . We first build a partition tree upon 𝑃𝑆𝐸𝑇 as follows: first, we create the
root to be 𝑂 (𝑐𝑂 = 𝑐, 𝑟𝑂 = 𝑟 ) instead of following Step(a) and the building procedure of other
nodes is the same as Step(b). Since the radius of each non-root node is half of its parent’s
radius, we obtain that there are totally 𝑖 layers in the tree. By Lemma B.3, we obtain that the
number of children of any node in the compressed partition tree is at most𝑂 (22𝛽 ). Thus, the
number of nodes in Layer 𝑖 is at most 𝑂 (22𝛽 ) times that in Layer 𝑖 − 1, where 0 < 𝑖 ≤ ℎ. Thus,
we obtain that there are at most 𝑂 ((22𝛽 )𝑖 ) nodes in the Layer 𝑖. In other words, 𝑃𝑆𝐸𝑇 has at
most 𝑂 ((22𝛽 )𝑖 ) points. □

Proof of Theorem 3.7. Proof Sketch. To give the intuition of the proof, we present an
intermediate node pair set 𝑆 ′ which is conceptual. Let 𝑇 ′ denote the tree which is the same
as the original partition tree except that the radius of each leaf node is 0. 𝑆 ′ denote a node
pair set built by the node pair generating algorithm presented in Section 3.3 which takes 𝑇 ′

as input instead of the compressed partition tree. It is clear from a high-level intuition that
the node pair set 𝑆 of SE is not larger than 𝑆 ′ and the number of the node pairs considered in
the process of generating 𝑆 is 𝑂 ( |𝑆 |) (see the full proof for the details). In the following, we
denote 𝑟𝑂𝑥 as the radius of a node 𝑂𝑥 in the original partition tree. Consider a node 𝑂 in 𝑇 ′

and a setS′(𝑂)which is {𝑂 ′ |⟨𝑂,𝑂 ′⟩ or ⟨𝑂 ′,𝑂⟩ is in 𝑆 ′ and 𝑟𝑂 ≥ 𝑟𝑂′}. Note that∪𝑂 ∈𝑇S′(𝑂) = 𝑆 ′.
By the node pair generating algorithm, we obtain that for each node 𝑂 ′ in S′(𝑂), 1. 𝑂 ′ is in
the same layer as 𝑂 or one layer lower than 𝑂 (see Lemma B.5) 2. there is a upper bound
on 𝑑𝑔 (𝑂,𝑂 ′), i.e., 𝑂 ′ lies in a disk 𝐷 centered at 𝑐𝑂′ with a 𝑟𝑂 - and 𝜖-related radius (see
Lemma B.6). Then, together with a property (see Lemma B.4) derived from 𝛽, we obtain
that |S′(𝑂) | = 𝑂 (( 1

𝜖
)2𝛽 ) and thus |𝑆 ′ | = 𝑂 (( 1

𝜖
)2𝛽𝑛ℎ).

Detailed Proof.Now, we delve into the detailed proof and adopt the same notations as
shown in the proof sketch.

Lemma B.5. ∀𝑂 ′ ∈ S′(𝑂), 𝑟𝑂′ ≤ 𝑟𝑂 ≤ 2 · 𝑟𝑂′

Proof. Since 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′) is split before the node pair ⟨𝑂,𝑂 ′⟩ is generated, by Lemma B.2,
we obtain 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) ≥ 𝑟𝑂 .

Since 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) = 2 · 𝑟𝑂′ , we obtain that 𝑟𝑂′ ≤ 𝑟𝑂 ≤ 2 · 𝑟𝑂′ . □

Lemma B.6. ∀𝑂 ′ ∈ S′(𝑂), 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≤ (4 2
𝜖
+ 10) · 𝑟𝑂 .

Proof. By our node pair set generating algorithm presented in Section 3.3, ⟨𝑂,𝑂 ′⟩ is
generated by ⟨𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂 ′⟩ or ⟨𝑂, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′)⟩ and the node pair which generated ⟨𝑂,𝑂 ′⟩
is not well separated. Consider the case where ⟨𝑂,𝑂 ′⟩ is generated by ⟨𝑂, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂 ′)⟩ (the
analysis of the case where ⟨𝑂,𝑂 ′⟩ is generated by ⟨𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂),𝑂 ′⟩ is symmetric, i.e., just
with 𝑂 and 𝑂 ′ swapped, and has the same result and thus, we do not present this case
for the sake of space). We obtain that 𝑑𝑔 (𝑐𝑂 , 𝑐𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) ) ≤ 2 · ( 2

𝜖
+ 2) · max{𝑟𝑂 , 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) },

where 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) = 2𝑟𝑂′ by the definition of the partition tree. By Lemma B.5, we obtain that
𝑑𝑔 (𝑐𝑂 , 𝑐𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) ) ≤ 2 · ( 2

𝜖
+ 2) · 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) . By Triangle Inequality, we obtain that 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≤

𝑑𝑔 (𝑐𝑂 , 𝑐𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) ) + 𝑑𝑔 (𝑐𝑂′, 𝑐𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) ). By the definition of the partition tree, we obtain that
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𝑑𝑔 (𝑐𝑂′, 𝑐𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) ) ≤ 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) . Thus, we obtain that 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≤ 2 · ( 2
𝜖
+ 2) · 𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) +

𝑟𝑝𝑎𝑟𝑒𝑛𝑡 (𝑂′) . By Lemma B.5, we obtain that 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≤ (4 2
𝜖
+ 10) · 𝑟𝑂 . □

Let S′′ be a point set containing the centers of all nodes in S′(𝑂). By Lemma B.5, we
obtain that 𝑂 ′ is either in the same layer as 𝑂 in the partition tree or one layer lower than 𝑂
in the partition tree. Let S′′

1 (resp., S′′
2 ) denote {𝑂 ′′ |𝑂 ′′ ∈ S′′,𝑂 ′′ is in the same layer as 𝑂}

(resp., {𝑂 ′′ |𝑂 ′′ ∈ S′′,𝑂 ′′ is one layer lower than 𝑂}).
By the Separation Property, we obtain that the minimum pairwise geodesic distance

of S′′
1 (resp., S′′

2 ) must be at least 𝑟𝑂 (resp., 𝑟𝑂2 ). By Lemma B.4, we obtain that the Disk
𝐷 (𝑟𝑂 , (4 2

𝜖
+ 10) · 𝑟𝑂 ) can hold 𝑂 ((22𝛽 )log(4 2

𝜖
+10) ) (resp., 𝑂 ((22𝛽 )log(2(4 2

𝜖
+10)) )) points whose

minimum pairwise geodesic distance is at least 𝑟𝑂 (resp., 𝑟𝑂2 ). Thus, we obtain that |S′(𝑂) | ≤
2 · (22𝛽 )log(2· (4 2

𝜖
+10)) = 𝑂 (( 1

𝜖
)2𝛽 ). There are at most 𝑛ℎ such node 𝑂 in 𝑇 . Thus, we obtain that

|𝑆 ′ | is 𝑂 ( 𝑛ℎ
𝜖2𝛽

) since ∪𝑂 ∈𝑇S′(𝑂) = 𝑆 ′.
Next, we prove that |𝑆 | is at most |𝑆 ′ | (i.e. O( 𝑛ℎ

𝜖2𝛽
)), where 𝑆 is the node pair set of SE.

Consider a node pair ⟨𝑂,𝑂 ′⟩ in 𝑆 . We denote the node in𝑇 ′ which comes from the same node
in the partition tree 𝑇org as 𝑂 (resp., 𝑂 ′) by 𝑂𝑥 (resp., 𝑂𝑦). Since ⟨𝑂,𝑂 ′⟩ are well-separated,
⟨𝑂𝑥 ,𝑂𝑦⟩ are well-separated and thus, we could find a node pair ⟨𝑂𝑥 ,𝑂𝑦⟩ in 𝑆 ′ containing
⟨𝑂𝑥 ,𝑂𝑦⟩. We call ⟨𝑂𝑥 ,𝑂𝑦⟩ the corresponding pair of ⟨𝑂,𝑂 ′⟩. Let 𝑂𝑝 (resp., 𝑂 ′

𝑝) denote the
node in 𝑇 ′ which comes from the same node in 𝑇org as the parent of 𝑂 (resp., 𝑂 ′) in 𝑇compress.
𝑂𝑝 and 𝑂 ′

𝑝 are not well separated, since otherwise, ⟨𝑂,𝑂 ′⟩ could not be generated. 𝑂𝑥 (resp.,
𝑂𝑦) must be on the path from 𝑂𝑝 (resp., 𝑂 ′

𝑝) to 𝑂𝑥 (resp., 𝑂𝑦) and any node on the path
excluding 𝑂𝑥 and 𝑂𝑝 (resp., 𝑂𝑦 and 𝑂 ′

𝑝) must have only one child. Thus, we obtain that any
two different node pairs in 𝑆 must have different corresponding pairs. Thus, we obtain that
|𝑆 | ≤ |𝑆 ′ | = 𝑂 ( 𝑛ℎ

𝜖2𝛽
). Since in each iteration of the procedure of generating 𝑆 , we extract one

pair and insert more than one pair to 𝑆 . The number of node pairs considered must be at
most 2 times the size of the final 𝑆 and thus it is 𝑂 ( 𝑛ℎ

𝜖2𝛽
). □

Lemma B.7. The oracle building time of SE is 𝑂 ( 𝑁 log2 𝑁
𝜖2𝛽

+ 𝑛ℎ log𝑛 + 𝑛ℎ

𝜖2𝛽
).

Proof. The oracle building time of SE consists of the time 𝑡org of building the original
partition tree𝑇org , the time 𝑡tran of transforming the partition tree to the compressed partition
tree𝑇compressed , the time 𝑡en of creating all the enhanced edges and the time 𝑡np of generating the
node pair set of SE. 𝑡org consists of the running time of B+-tree operations, the point selection
algorithm and all SSAD algorithms invoked. Note that we index a set of points/nodes with a
B+-tree andwe find the parent of𝑂 in Step (iii) with a SSAD algorithm and𝑑𝑔 (𝑂,𝑂parent) is at
most 2𝑟𝑂 due to the covering property. The running time of all the B+-tree operations in 𝑡org
is 𝑂 (𝑛ℎ log𝑛) since there are ℎ layers and each layer needs 𝑂 (𝑛) insertion/search operation
in B+-tree. For the point selection algorithm, the random selection algorithm takes 𝑂 (𝑛ℎ) time
since there are at most 𝑛ℎ nodes in 𝑇org and each takes at most 𝑂 (1) time. The greedy selection
algorithm takes 𝑂 (𝑛ℎ log𝑛) time since in each layer since it takes 𝑂 (𝑛 log𝑛) time to create the
grid and corresponding B+-tree in each cell and there are at most 𝑂 (𝑛) heap operations
and B+-tree operations. It is obvious that the overall running time of all SSAD algorithms
performed in 𝑡org is smaller than 𝑡en. 𝑡tran is 𝑂 (𝑛ℎ) time since the partition tree has 𝑂 (𝑛ℎ)
nodes. By Theorem 3.7, there are at most 𝑂 ( 𝑛ℎ

𝜖2𝛽
) node pairs considered in the procedure

described in Section 3.3 and thus, 𝑡np is 𝑂 ( 𝑛ℎ
𝜖2𝛽

). Next, we will analyze 𝑡en.
We introduce a new parameter of the terrain surface, denoted by 𝜃 . 𝜃 is defined to be

the largest positive real number such that the number of vertices on the terrain surface in
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a disk 𝐷 (𝑐, 𝑟 ) is at least 2𝜃 times the number of vertices on the terrain surface contained
in the disk 𝐷 (𝑐, 𝑟2 ), where 𝑐 is a POI on the terrain surface and 𝑟 is a positive real number
at most max𝑝∈𝑉 𝑑𝑔 (𝑐, 𝑝). Thus, the number of vertices contained in a disk centered at any
POI is at most 1

2𝜃 times that in a disk with double radius and the same center. For the root
node 𝑂root , we expand the disk 𝐷 (𝑐𝑂root , 𝑟0). For any node 𝑂 in other layers, we expand the
disk 𝐷 (𝑐𝑂 , 𝑙 · 𝑟𝑂 ), where 𝑙 = 8

𝜖
+ 10. Note that ∀𝑖 ∈ [⌈log 𝑙⌉, ℎ], 𝑙 · 𝑟𝑖 ≤ 𝑟0. Since 𝐷 (𝑐, 𝑟0) is a

sub-region on the terrain surface, where 𝑐 is any point on the surface, we obtain that the
vertices of terrain visited by SSAD algorithm invoked for each node in layer 𝑖 is at most 𝑁, if
𝑖 ∈ [0, ⌈log 𝑙⌉ − 1]; otherwise, it is 𝑁

2𝜃 (𝑖−⌈log 𝑙⌉) .
By Lemma B.3, there are at most (22𝛽 )𝑖 nodes in Layer 𝑖. Thus, we obtain that 𝑡en is at most

𝑂 (
⌈log 𝑙⌉−1∑︁
𝑖=0

(22𝛽 )𝑖𝑁 log2 𝑁 +
ℎ∑︁

𝑖=⌈log 𝑙⌉

(22𝛽 )𝑖𝑁 log2 𝑁
22𝜃 (𝑖−⌈log 𝑙⌉)

) = 𝑂 (𝑁 log2 𝑁
(22𝛽 ) ⌈log 𝑙⌉ − 1

22𝛽 − 1
+ (22𝛽 ) ⌈log 𝑙⌉

ℎ−⌈log 𝑙⌉∑︁
𝑖=0

(22𝛽 )𝑖𝑁 log2 𝑁
22𝜃𝑖

)

=𝑂 ( (22𝛽 ) ⌈log 𝑙⌉𝑁 log2 𝑁
ℎ∑︁
𝑖=0

( 2
2𝛽

22𝜃
)𝑖 )

Our empirical study verified that 𝜃 ≥ 𝛽. Thus, we obtain that 22𝛽
22𝜃 < 1 and thus 𝑡en is

𝑂 ((22𝛽 ) ⌈log 𝑙 ⌉−1𝑁 log2 𝑁 ) = 𝑂 ( 𝑁 log2 𝑁
𝜖2𝛽

). Thus,we obtain that the oracle building time is𝑂 ( 𝑁 log2 𝑁
𝜖2𝛽

+
𝑛ℎ log𝑛 + 𝑛ℎ

𝜖2𝛽
). □

Proof of Theorem 3.12. By Lemma B.7, Theorem 3.7, and the analysis in Section 3.4, we
obtain the result. □

Proof of Theorem 3.13. The path returned by our algorithm is Π𝑔 (𝑠, 𝑐𝑂 ) · Π𝑔 (𝑐𝑂 , 𝑜1) ·
Π𝑔 (𝑜1, 𝑜2) · ...... · Π𝑔 (𝑜𝑀−1, 𝑜𝑀 ) · Π𝑔 (𝑜𝑀 , 𝑐𝑂′) · Π𝑔 (𝑐𝑂′, 𝑡), where (𝑜1, 𝑜2, ......, 𝑜𝑀 ) = L𝑀 (𝑂,𝑂 ′)
and (𝑂,𝑂 ′) is the node pair in our node pair set containing 𝑠 and 𝑡 . By the definition of
L𝑀 (𝑂,𝑂 ′), all the vertices in L𝑀 (𝑂,𝑂 ′) lie in the shortest geodesic path from 𝑐𝑂 to 𝑐𝑂′ and
thus,Π𝑔 (𝑐𝑂 , 𝑜1)·Π𝑔 (𝑜1, 𝑜2)·......·Π𝑔 (𝑜𝑀−1, 𝑜𝑀 )·Π𝑔 (𝑜𝑀 , 𝑐𝑂′) is equal toΠ𝑔 (𝑐𝑂 , 𝑐𝑂′). Then,we obtain
that the length of the path returned by our algorithm is equal to𝑑𝑔 (𝑠, 𝑐𝑂 )+𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′)+𝑑𝑔 (𝑐𝑂′, 𝑡).
By triangle inequality, we obtain that

𝑑𝑔 (𝑠, 𝑡) ≥ −𝑑𝑔 (𝑠, 𝑐𝑂 ) + 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) − 𝑑𝑔 (𝑐𝑂′, 𝑡)

Since ⟨𝑂,𝑂 ′⟩ is well-separated, then 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≥ ( 2
𝜖
+2) ·max{𝑟 ′

𝑂
, 𝑟 ′
𝑂′}, where 𝑟 ′

𝑂
(resp., 𝑟 ′

𝑂′)
denote the radius of the enlarged disk of 𝑂 (resp., 𝑂 ′). Since the enlarged disk of 𝑂 (resp.,
𝑂 ′) contains 𝑠 and 𝑡 by Distance Property, we obtain that 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) ≥ ( 2

𝜖
+ 2) ·max{𝑟 ′

𝑂
, 𝑟 ′
𝑂′} ≥

( 2
𝜖
+ 2) ·max{𝑑𝑔 (𝑠, 𝑐𝑂 ), 𝑑𝑔 (𝑐𝑂′, 𝑡)}. Thus, we obtain that

𝑑𝑔 (𝑠, 𝑡) ≥ − 𝑑𝑔 (𝑠, 𝑐𝑂 ) + 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) − 𝑑𝑔 (𝑐𝑂′, 𝑡)
≥𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) − 2 ·max{𝑑𝑔 (𝑠, 𝑐𝑂 ), 𝑑𝑔 (𝑐𝑂′, 𝑡)}

≥(1 − 2
2
𝜖
+ 2

) · 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) (1)

𝑑𝑔 (𝑠, 𝑐𝑂 ) + 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) + 𝑑𝑔 (𝑐𝑂′, 𝑡)
≤𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) + 2 ·max{𝑑𝑔 (𝑠, 𝑐𝑂 ), 𝑑𝑔 (𝑐𝑂′, 𝑡)}

≤(1 + 2
2
𝜖
+ 2

) · 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) (2)

By Inequality 1 and Inequality 2, we obtain that
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𝑑𝑔 (𝑠, 𝑐𝑂 ) + 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′) + 𝑑𝑔 (𝑐𝑂′, 𝑡)
𝑑𝑔 (𝑠, 𝑡)

≤
(1 + 2

2
𝜖
+2 ) · 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′)

(1 − 2
2
𝜖
+2 ) · 𝑑𝑔 (𝑐𝑂 , 𝑐𝑂′)

= 1 + 2 · 𝜖 (3)

□

Proof of Lemma 4.1. Let 𝑑𝑔 (𝑝, 𝑞) denote the distance between 𝑝 and 𝑞 returned by the dis-
tance query. Let𝑞′

𝑘
(resp.,𝑜 ′

𝑘
) denote the point in𝐾𝐿𝐼𝑆𝑇 ′ such that𝑑𝑔 (𝑝, 𝑞′𝑘 ) = max𝑞∈𝐾𝐿𝐼𝑆𝑇 ′ 𝑑𝑔 (𝑝, 𝑞)

(resp., 𝑑𝑔 (𝑝, 𝑜 ′𝑘 ) = max𝑞∈𝐾𝐿𝐼𝑆𝑇 ′ 𝑑𝑔 (𝑝, 𝑞)). Let 𝐾𝐿𝐼𝑆𝑇 denote the list containing the exact 𝑘NN
of 𝑞 in 𝑃 . Let 𝑞𝑘 (resp., 𝑜𝑘) denote a point in 𝐾𝐿𝐼𝑆𝑇 such that 𝑑𝑔 (𝑝, 𝑞𝑘 ) = max𝑞∈𝐾𝐿𝐼𝑆𝑇 𝑑𝑔 (𝑝, 𝑞)
(resp., 𝑑𝑔 (𝑝, 𝑜𝑘 ) = max𝑞∈𝐾𝐿𝐼𝑆𝑇 𝑑𝑔 (𝑝, 𝑞)). Recall that the approximate ratio 𝛼 is 𝑑𝑔 (𝑝,𝑜′𝑘 )

𝑑𝑔 (𝑝,𝑜𝑘 ) . Since
the distance error bound is 𝜖, we obtain that 𝑑𝑔 (𝑝, 𝑜 ′𝑘 ) ≥ (1 − 𝜖)𝑑𝑔 (𝑝, 𝑜 ′𝑘 ). Thus, we ob-

tain that 𝛼 ≤ 𝑑𝑔 (𝑝,𝑜′𝑘 )
𝑑𝑔 (𝑝,𝑜𝑘 ) (1−𝜖) . By the definition of 𝑜𝑘 , we obtain that 𝑑𝑔 (𝑝, 𝑜𝑘 ) ≥ 𝑑𝑔 (𝑝, 𝑞𝑘 ).

Thus, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑝,𝑜′𝑘 )
𝑑𝑔 (𝑝,𝑞𝑘 ) (1−𝜖) . Since the distance error bound is 𝜖, we obtain that

𝑑𝑔 (𝑝, 𝑞𝑘 ) ≤ (1+𝜖)𝑑𝑔 (𝑝, 𝑞𝑘 ). Then, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑝,𝑞′𝑘 ) (1+𝜖)
𝑑𝑔 (𝑝,𝑞𝑘 ) (1−𝜖)

. By our algorithm, we obtain

that 𝑑𝑔 (𝑝, 𝑞′𝑘 ) ≤ 𝑑𝑔 (𝑝, 𝑞𝑘 ). Thus, we obtain that 𝛼 ≤ 1+𝜖
1−𝜖 = 1 + 2𝜖

1−𝜖 = 1 + 𝜖 ′. □

Proof of Lemma 4.2. Let 𝑑𝑔 (𝑝, 𝑞) denote the distance between 𝑝 and 𝑞 returned by the dis-
tance query. Let𝑞′

𝑘
(resp.,𝑜 ′

𝑘
) denote the point in𝐾𝐿𝐼𝑆𝑇 ′ such that𝑑𝑔 (𝑝, 𝑞′𝑘 ) = min𝑞∈𝐾𝐿𝐼𝑆𝑇 ′ 𝑑𝑔 (𝑝, 𝑞)

(resp., 𝑑𝑔 (𝑝, 𝑜 ′𝑘 ) = min𝑞∈𝐾𝐿𝐼𝑆𝑇 ′ 𝑑𝑔 (𝑝, 𝑞)). Let 𝐾𝐿𝐼𝑆𝑇 denote the list containing the exact 𝑘NN
of 𝑝 in 𝑃 . Let 𝑞𝑘 (resp., 𝑜𝑘) denote a point in 𝐾𝐿𝐼𝑆𝑇 such that 𝑑𝑔 (𝑝, 𝑞𝑘 ) = min𝑞∈𝐾𝐿𝐼𝑆𝑇 𝑑𝑔 (𝑝, 𝑞)
(resp., 𝑑𝑔 (𝑝, 𝑜𝑘 ) = min𝑞∈𝐾𝐿𝐼𝑆𝑇 𝑑𝑔 (𝑝, 𝑞)). Recall that the approximate ratio 𝛼 is 𝑑𝑔 (𝑝,𝑜𝑘 )

𝑑𝑔 (𝑝,𝑜′𝑘 )
. Since

the distance error bound is 𝜖, we obtain that 𝑑𝑔 (𝑝, 𝑜 ′𝑘 ) ≤ (1 + 𝜖)𝑑𝑔 (𝑝, 𝑜 ′𝑘 ). Thus, we ob-
tain that 𝛼 ≤ 𝑑𝑔 (𝑝,𝑜𝑘 ) (1+𝜖)

𝑑𝑔 (𝑝,𝑜𝑘 )
. By the definition of 𝑜𝑘 , we obtain that 𝑑𝑔 (𝑝, 𝑜𝑘 ) ≤ 𝑑𝑔 (𝑝, 𝑞𝑘 ).

Thus, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑝,𝑞𝑘 ) (1+𝜖)
𝑑𝑔 (𝑝,𝑜𝑘 )

. Since the distance error bound is 𝜖, we obtain that

𝑑𝑔 (𝑝, 𝑞𝑘 ) ≥ (1−𝜖)𝑑𝑔 (𝑝, 𝑞𝑘 ). Then, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑝,𝑞′𝑘 ) (1+𝜖)
𝑑𝑔 (𝑝,𝑞𝑘 ) (1−𝜖)

. By our algorithm, we obtain

that 𝑑𝑔 (𝑝, 𝑞′𝑘 ) ≤ 𝑑𝑔 (𝑝, 𝑞𝑘 ). Thus, we obtain that 𝛼 ≤ 1+𝜖
1−𝜖 = 1 + 2𝜖

1−𝜖 = 1 + 𝜖 ′. □

Proof of Lemma 4.3. Let 𝑑𝑔 (𝑝, 𝑞) denote the distance between 𝑝 and 𝑞 returned by the
distance query. Let 𝐾𝐶𝑃 denote a list containing the exact top-𝑘 closest pairs and let 𝐾𝐶𝑃 ′ de-
note a list containing the 𝑘 pairs returned by our algorithm. Let ⟨𝑝𝑘 , 𝑞𝑘⟩ (resp., ⟨𝑢𝑘 , 𝑣𝑘⟩)
denote the a pair in 𝐾𝐶𝑃 such that 𝑑𝑔 (𝑝𝑘 , 𝑞𝑘 ) = max⟨𝑝,𝑞⟩∈𝐾𝐶𝑃 𝑑𝑔 (𝑝, 𝑞) (resp., 𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ) =

max⟨𝑝,𝑞⟩∈𝐾𝐶𝑃 𝑑𝑔 (𝑝, 𝑞)). Let ⟨𝑝 ′𝑘 , 𝑞
′
𝑘
⟩ (resp., ⟨𝑢 ′

𝑘
, 𝑣 ′
𝑘
⟩) denote the pair in𝐾𝐶𝑃 ′ such that𝑑𝑔 (𝑝 ′𝑘 , 𝑞

′
𝑘
) =

max⟨𝑝,𝑞⟩∈𝐾𝐶𝑃 ′ 𝑑𝑔 (𝑝, 𝑞) (resp.,𝑑𝑔 (𝑢 ′𝑘 , 𝑣
′
𝑘
) = max⟨𝑝,𝑞⟩∈𝐾𝐶𝑃 𝑑𝑔 (𝑝, 𝑞)). Recall that the approximate ra-

tio𝛼 =
𝑑𝑔 (𝑝′𝑘 ,𝑞

′
𝑘
)

𝑑𝑔 (𝑝𝑘 ,𝑞𝑘 ) . Since the distance error bound is 𝜖, we obtain that𝑑𝑔 (𝑝 ′𝑘 , 𝑞
′
𝑘
) ≥ 𝑑𝑔 (𝑝 ′𝑘 , 𝑞

′
𝑘
) (1−𝜖).

Thus, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑝′𝑘 ,𝑞
′
𝑘
)

𝑑𝑔 (𝑝𝑘 ,𝑞𝑘 ) (1−𝜖) . By the definition of ⟨𝑝𝑘 , 𝑞𝑘⟩, we obtain that 𝑑𝑔 (𝑝𝑘 , 𝑞𝑘 ) ≥

𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ). Thus, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑝′𝑘 ,𝑞
′
𝑘
)

𝑑𝑔 (𝑢𝑘 ,𝑣𝑘 ) (1−𝜖) . Since the distance error bound is 𝜖, we ob-

tain that 𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ) ≤ 𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ) (1+ 𝜖). Thus, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑝′𝑘 ,𝑞
′
𝑘
) (1+𝜖)

𝑑𝑔 (𝑢𝑘 ,𝑣𝑘 ) (1−𝜖)
. By the definition
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Dataset No. of Vertices No. of POIs Region Covered Resolution
GunnisonForest (GF) 101,583 4,234 10038 km2 300 meters

LaramieMountain (LM) 101,627 3,896 12400 km2 300 meters
OkanoganForest (OF) 102,171 5,235 10651 km2 300 meters
RockyMountain (RM) 101,520 4,098 10828 km2 300 meters

Table 9. Statistics of Additional Terrain Datasets

Dataset max min avg. std.
GF 157.46 0.27 36.30 39.77
LM 190.48 3.35 42.44 45.46
OF 208.37 2.10 44.24 47.53
RM 169.39 2.20 38.61 41.52

Table 10. Statistics of Query Distances (km) of Additional Datasets

of ⟨𝑢 ′
𝑘
, 𝑣 ′
𝑘
⟩, we obtain that 𝑑𝑔 (𝑢 ′𝑘 , 𝑣

′
𝑘
) ≥ 𝑑𝑔 (𝑝 ′𝑘 , 𝑞

′
𝑘
). Thus, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑢′𝑘 ,𝑣

′
𝑘
) (1+𝜖)

𝑑𝑔 (𝑢𝑘 ,𝑣𝑘 ) (1−𝜖)
. By

our algorithm, we obtain that 𝑑𝑔 (𝑢 ′𝑘 , 𝑣
′
𝑘
) ≤ 𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ). Thus, we obtain that 𝛼 ≤ 1+𝜖

1−𝜖 = 1 + 2𝜖
1−𝜖 =

1 + 𝜖 ′. □

Proof of Lemma 4.4. Let 𝑑𝑔 (𝑝, 𝑞) denote the distance between 𝑝 and 𝑞 returned by the
distance query. Let 𝐾𝐶𝑃 denote a list containing the exact top-𝑘 farthest pairs and let 𝐾𝐶𝑃 ′

denote a list containing the𝑘 pairs returned by our algorithm. Let𝐾𝐹𝑃 denote a list containing
the exact top-𝑘 farthest pair query. Let ⟨𝑝𝑘 , 𝑞𝑘⟩ (resp., ⟨𝑢𝑘 , 𝑣𝑘⟩) denote the a pair in 𝐾𝐶𝑃 such
that 𝑑𝑔 (𝑝𝑘 , 𝑞𝑘 ) = min⟨𝑝,𝑞⟩∈𝐾𝐶𝑃 𝑑𝑔 (𝑝, 𝑞) (resp., 𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ) = min⟨𝑝,𝑞⟩∈𝐾𝐶𝑃 𝑑𝑔 (𝑝, 𝑞)). Let ⟨𝑝 ′𝑘 , 𝑞

′
𝑘
⟩

(resp., ⟨𝑢 ′
𝑘
, 𝑣 ′
𝑘
⟩) denote the pair in 𝐾𝐶𝑃 ′ such that 𝑑𝑔 (𝑝 ′𝑘 , 𝑞

′
𝑘
) = min⟨𝑝,𝑞⟩∈𝐾𝐶𝑃 ′ 𝑑𝑔 (𝑝, 𝑞) (resp.,

𝑑𝑔 (𝑢 ′𝑘 , 𝑣
′
𝑘
) = min⟨𝑝,𝑞⟩∈𝐾𝐶𝑃 𝑑𝑔 (𝑝, 𝑞)). Recall that the approximate ratio 𝛼 =

𝑑𝑔 (𝑝𝑘 ,𝑞𝑘 )
𝑑𝑔 (𝑝′𝑘 ,𝑞

′
𝑘
) . Since the

distance error bound is 𝜖, we obtain that 𝑑𝑔 (𝑝 ′𝑘 , 𝑞
′
𝑘
) ≤ 𝑑𝑔 (𝑝 ′𝑘 , 𝑞

′
𝑘
) (1 + 𝜖). Thus, we obtain

that 𝛼 ≤ 𝑑𝑔 (𝑝𝑘 ,𝑞𝑘 ) (1+𝜖)
𝑑𝑔 (𝑝′𝑘 ,𝑞

′
𝑘
)

. By the definition of ⟨𝑝𝑘 , 𝑞𝑘⟩, we obtain that 𝑑𝑔 (𝑝𝑘 , 𝑞𝑘 ) ≤ 𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ).

Thus, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑢𝑘 ,𝑣𝑘 ) (1+𝜖)
𝑑𝑔 (𝑝′𝑘 ,𝑞

′
𝑘
)

. Since the distance error bound is 𝜖, we obtain that

𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ) ≥ 𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ) (1−𝜖). Thus, we obtain that𝛼 ≤ 𝑑𝑔 (𝑢𝑘 ,𝑣𝑘 ) (1+𝜖)
𝑑𝑔 (𝑝′𝑘 ,𝑞

′
𝑘
) (1−𝜖)

. By the definition of ⟨𝑢 ′
𝑘
, 𝑣 ′
𝑘
⟩,

we obtain that 𝑑𝑔 (𝑢 ′𝑘 , 𝑣
′
𝑘
) ≤ 𝑑𝑔 (𝑝 ′𝑘 , 𝑞

′
𝑘
). Thus, we obtain that 𝛼 ≤ 𝑑𝑔 (𝑢𝑘 ,𝑣𝑘 ) (1+𝜖)

𝑑𝑔 (𝑢′𝑘 ,𝑣
′
𝑘
) (1−𝜖)

. By our algorithm,

we obtain that 𝑑𝑔 (𝑢 ′𝑘 , 𝑣
′
𝑘
) ≥ 𝑑𝑔 (𝑢𝑘 , 𝑣𝑘 ). Thus, we obtain that 𝛼 ≤ 1+𝜖

1−𝜖 = 1 + 2𝜖
1−𝜖 = 1 + 𝜖 ′. □

C EXPERIMENTS ON ADDITIONAL DATASETS

Additional Datasets.We also collected four additional real terrain datasets, namely Gun-
nisonForest (in short, GF), LaramieMountain (in short, LM), OkanoganForest (in short,
OF), and RockyMountain (in short, RM) and these datasets can be downloaded from
https://doi.org/10.5069/G98K778D. For each of these terrain datasets, we extracted a set of
POIs from the corresponding region in OpenStreetMap. Table 9 shows the dataset statistics
and Table 10 shows the statistics of the query distances on these datasets. As could be
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Fig. 45. Effect of 𝜖 on GF dataset (P2P Distance and Path Queries)
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Fig. 46. Effect of 𝜖 on LM dataset (P2P Distance and Path Queries)
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Fig. 47. Effect of 𝜖 on OF dataset (P2P Distance and Path Queries)
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Fig. 48. Effect of 𝜖 on RM dataset (P2P Distance and Path Queries)

observed from the two tables, the four additional datasets have different properties (i.e.,
regions covered, query distances) from the BH, EP and SF datasets.

The results on the other four datasets, namely GF, LM, OF and RM, are shown in Figure 45,
Figure 46, Figure 47 and Figure 48, respectively. As could be observed from the figures,
our oracle SE outperforms SP-Oracle in terms of building time, oracle size and distance
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query time by orders of magnitudes. The path query time of SE is smaller than that of
SP-Oracle by several times. SE also outperforms K-Algo in terms of distance query time and
path query time by several orders of magnitudes. Note that due to the different properties
of the additional datasets, the curve of each measurement (esp., distance query time) on
any additional dataset looks different from that of BH, EP and SF. Specifically, the curves
on the additional datasets look smoother than that of BH, EP and SF. This is because the
resolution of each additional dataset (i.e., 300 meters) is 10-30 times larger than that of BH,
EP and SF. In other words, the resolution of each additional dataset has a lower resolution
(or a coarser resolution). In general, a dataset with a coarser resolution means that some
detailed up-and-down details could not be represented in this dataset. Instead, the detailed
up-and-down details are represented by a flat triangle. Thus, it is more likely that in a dataset
with a coarser resolution, each POI (or the center of each node in our partition tree) is not
located at the up-and-down detailed terrain (and it is located at the flat triangle). Thus,
the results obtained from the POIs chosen from the dataset with a coarser resolution could
be stabler or smoother. In conclusion, each additional dataset (with a coarser resolution)
is more robust to the factors in our algorithm and more robust to the randomness of the
locations of the query points.

D EXPERIMENTS ON EFFECT OF ROOT SELECTION METHODS
We study the effect of the root selectionmethods by testing P2P queries on the low resolution
BH (resolution: 30 meter, 150k vertices) dataset by varying 𝜖 from {0.05, 0.1, 0.15, 0.2, 0.25}.
The low resolution BH dataset has the same set of POIs and the same region covered as
the BH dataset mentioned in Section 6.1. But, the low resolution BH dataset has different
resolution and fewer vertices. In the vanilla SE, we randomly select one of the POIs as the
center of the root node of partition tree. In this study, we also developed a new algorithm
for the selection of the center of the root node which better optimizes the selection by using
the information on the 𝑥-𝑦 plane. In the selection, it first finds the geometric center 𝑐 of the
projections of all POIs on the 𝑥-𝑦 plane. Then, it finds the POI 𝑝 whose projection point on
𝑥-𝑦 plane is closest to 𝑐 and it finally assigns 𝑝 to be the center of the root node. Figure 49
demonstrates the results. In this figure, SE is our vanilla SE algorithm and SE-root is the
same as SE except that it uses the our newly developed algorithm to select the center of
the root node in the partition tree instead of random selection. As could be observed from
this figure, SE and SE-root have neglectable differences which shows that the selection of
the center of the root node in the partition tree has a minor effect on the performance of
our algorithm. We also provide the analysis of this result from the perspective of theory as
follows. Although the selection of the center of the root node in our partition tree determines
𝑟0, in the worse case where a boundary point is selected, 𝑟0 is at most 2 times larger than its
optimal value, as a result of which, the height of the partition tree is increased by at most
one and the performance only has a neglectable degradation. Thus, we conclude that it is a
minor factor in our algorithm.

E EXPERIMENTS ON EFFECT OF RADIUS RATIO OF PARTITION TREE
We study the effect of the radius ratio (denoted by 𝛼) of the partition tree by testing P2P
queries on the low resolution BH (resolution: 30 meter, 150k vertices) dataset by varying 𝛼
from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. 𝜖 is set to be 0.25 in this study. Note that the radius
ratio is the ratio of the radii of two adjacent layers in the partition tree. The low resolution BH
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Fig. 49. Effect of Root Selection Methods on BH dataset (P2P Distance and Path Queries)

dataset has the same set of POIs and the same region covered as the BH dataset mentioned
in Section 6.1. But, the low resolution BH dataset has different resolution and fewer vertices.
The result is shown in Figure 50. Besides the oracle building time, oracle size, distance

query time, error of distance query, path query time and approximate ratio of path query, we
also tested the depth of the compressed partition tree and the number of node pairs under
different values of 𝛼 . The results are shown in Figure 50(a) - Figure 50(h), respectively.
As could be observed from this figure, the depth of the compressed partition tree is

monotonically increasing with the increase of 𝛼 (by Figure 50(g)) since (1) the radius of
the bottom layer of the partition tree must be smaller than the minimum pairwise distance
between all POIs, and (2) for a larger 𝛼 , it requires more layers to make the radius of the
bottom layer smaller than the minimum pairwise distance between all POIs. As such, the
oracle building time and the distance query time are also monotonically increasing with
the increase of 𝛼 by Figure 50(a) and Figure 50(b). Secondly, the number of node pairs in
SE is monotonically decreasing with the increase of 𝛼 (by Figure 50(h)). This is because a
smaller 𝛼 results in fewer layers in the compressed partition tree, as a result of which, the
oracle size is monotonically decreasing with the increase of 𝛼 by Figure 50(d). Besides, the
error of the distance query is also monotonically increasing by Figure 50(c) since the fewer
node pairs that SE has, the fewer distances pre-computed for the query processing.

We also normalized the 𝑦 values tested in each figure from Figure 50(a) to Figure 50(h) by
using the method of Min-max feature scaling (i.e., the normalized value 𝑦 ′ of 𝑦 is calculated
as 𝑦−𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛 , where 𝑦𝑚𝑎𝑥 (resp. 𝑦𝑚𝑖𝑛) is the maximum (resp. minimum) value of 𝑦). Then,
at each value of 𝛼 we tested, we average all normalized 𝑦 values in the Figure 50(a) -
Figure 50(h) at the same 𝛼 to obtain the average normalized score under that 𝛼 . Figure 50(i)
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reports the result of the average normalized score of all values for 𝛼 , in which the average
normalized score achieves its minimum at 0.5. Thus, we conclude that SE has the best overall
performance when 𝛼 is equal to 0.5.
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Fig. 50. Effect of Radius Ratio on BH dataset (P2P Distance and Path Queries)

F A2A DISTANCE QUERY PROCESSING
We present an oracle to answer the arbitrary point-to-arbitrary point (A2A) distance
query based on our proposed distance oracle SE. This oracle is the same as that presented
in Section 3 except that it takes some Steiner points introduced as input instead of all
POIs, where Steiner points are introduced by the method proposed in [15] (there are
𝑂 ( 𝑁

sin(𝜃 ) ·
√
𝜖
log 1

𝜖
) Steiner points, where 𝜃 is the minimum inner angle of any face). Then,

we present the query processing. Given two arbitrary points 𝑠 and 𝑡 , we first find the
neighborhood of 𝑠 (resp., 𝑡), denoted by N(𝑠) (resp., N(𝑡)) (It is a set of Steiner points
on the same face containing 𝑠 (resp., 𝑡) and its adjacent face(s) [15]. Finally, we return
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Fig. 51. Effect of 𝜖 on real dataset, BearHead,
for monotonic 𝑘FN
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Fig. 52. Effect of 𝜖 on real dataset, EaglePeak,
for monotonic 𝑘FN
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Fig. 53. Effect of 𝜖 on real dataset, San Fran-
cisco, for monotonic 𝑘FN
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Fig. 54. Effect of 𝜖 on real dataset, BearHead,
for bichromatic 𝑘FN

𝑑𝑔 (𝑠, 𝑡) = min𝑝∈N(𝑠),𝑞∈N(𝑡 ) [𝑑𝑔 (𝑠, 𝑝) + 𝑑𝑔 (𝑝, 𝑞) + 𝑑𝑔 (𝑞, 𝑡)], where 𝑑𝑔 (𝑠, 𝑝) and 𝑑𝑔 (𝑞, 𝑡) could be
computed in constant time by SSAD algorithm and 𝑑𝑔 (𝑝, 𝑞) is the distance between 𝑝 and
𝑞 estimated by the oracle constructed. By [15], |N (𝑠) | · |N (𝑡) | = 1

sin(𝜃 ) ·𝜖 and if 𝑑𝑔 (𝑝, 𝑞) is an
𝜖-approximate distance of𝑑𝑔 (𝑝, 𝑞), then𝑑𝑔 (𝑠, 𝑡) is also an 𝜖-approximate distance of𝑑𝑔 (𝑠, 𝑡). By
Theorem 3.12, we obtain that for any two Steiner points 𝑝 and 𝑞, 𝑑𝑔 (𝑝, 𝑞) is an 𝜖-approximate
distance of 𝑑𝑔 (𝑝, 𝑞) and it takes𝑂 (ℎ) time to compute 𝑑𝑔 (𝑝, 𝑞) and the building time (resp., or-
acle size) is𝑂 ( 𝑁 log2 𝑁

𝜖2𝛽
+ 𝑁ℎ

sin(𝜃 )
√
𝜖
·log 1

𝜖
·log 𝑁 log 1

𝜖

sin(𝜃 )
√
𝜖
+ 𝑁ℎ

sin(𝜃 )
√
𝜖 ·𝜖2𝛽 ·log

1
𝜖
) (resp.,𝑂 ( 𝑁ℎ

sin(𝜃 )
√
𝜖 ·𝜖2𝛽 ·log

1
𝜖
)).

Thus, we obtain that for any two arbitrary points 𝑠 and 𝑡 , the oracle gives an 𝜖-approximate
distance of 𝑑𝑔 (𝑠, 𝑡) and the query time is 𝑂 ( ℎ

sin(𝜃 ) ·𝜖 ).

G EXPERIMENT ON 𝐾 FARTHEST NEIGHBOR AND TOP-𝐾 FARTHEST PAIR
QUERIES

G.1 Monochromatic and Bichromatic 𝑘 Farthest Neighbor Query
In this section, we report the experimental results of the monotonic and bichromatic 𝑘
farthest neighbor (FN) queries.
Effect of 𝜖. We tested 5 different values of 𝜖 (i.e., 0.05, 0.1, 0.15, 0.2, 0.25). The results on

the two types of queries in the datasets, BearHead, EaglePeak and San Francisco South are
shown in Figure 51 - Figure 56. As the figures show, the 𝑘FN query time of SE is smaller
than that of SP-Oracle and SI by several orders of magnitude in BH and EP. Although SE
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Fig. 55. Effect of 𝜖 on real dataset, EaglePeak,
for bichromatic 𝑘FN
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Fig. 56. Effect of 𝜖 on real dataset, San Fran-
cisco, for bichromatic 𝑘FN
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Fig. 57. Effect of 𝑘 on real dataset, BearHead,
for monotonic 𝑘FN
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Fig. 58. Effect of 𝑘 on real dataset, EaglePeak,
for monotonic 𝑘FN
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Fig. 59. Effect of 𝑘 on real dataset, San Fran-
cisco South, for monotonic 𝑘FN
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Fig. 60. Effect of 𝑘 on real dataset, BearHead,
for bichromatic 𝑘FN

could not consistently outperform baseline algorithms in San Fransisco dataset, SE is still
the fastest one in most cases in Figure 53 and Figure 56. The appro. errors of SE, SI and
SP-Oracle are very similar and are much smaller than the theoretical bound.
Effect of 𝑘. We tested 4 different values of 𝑘, namely 5, 10, 15, 20. The results on the two

types of queries in the datasets, BearHead, EaglePeak and San Francisco South are shown in
Figure 57 - Figure 62. As the figures show, the 𝑘NN query time of SE is smaller than that of
SP-Oracle and SI by several orders of magnitude in BH and EP. Although the speedup of SE
compared with the baselines is not that significant in San Fransisco dataset, SE is still the
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Fig. 61. Effect of 𝑘 on real dataset, EaglePeak,
for bichromatic 𝑘FN
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Fig. 62. Effect of 𝑘 on real dataset, San Fran-
cisco South, for bichromatic 𝑘FN
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Fig. 63. Effect of 𝑛 on dataset, BearHead, for
bichromatic 𝑘FN
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Fig. 64. Effect of 𝑁 on dataset, BearHead, for
bichromatic 𝑘FN
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Fig. 65. Effect of 𝑛 on dataset, BearHead, for
monotonic 𝑘FN
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Fig. 66. Effect of 𝑁 on dataset, BearHead, for
monotonic 𝑘FN

fastest one. The appro. error of SE, SI and SP-Oracle are very small in practice and much
smaller than the theoretical bound.
Effect of 𝑛. We studied the effect of the number of POIs 𝑛 on a synthetic dataset. The

values of 𝑛 we tested are 50𝑘, 60𝑘, 70𝑘, 80𝑘, 90𝑘. We generate the synthetic POIs in the same
way as stated in Section 6.2.1. The results are shown in Figure 63 and Figure 65. As figures
shows, the 𝑘FN query time of either SE is smaller than that of SP-Oracle and SI by several
times. The appro. error of SE, SI and SP-Oracle are very small in practice and much smaller
than the theoretical bound.
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Effect of 𝑁 .We studied the effect of the number of vertices 𝑁 on the terrain surface on
a synthetic dataset. The values of 𝑁 we tested are 100𝑘, 150𝑘, 200𝑘, 250𝑘. We generated the
terrain data in the same way as stated in Section 6.2.1. The results are shown in Figure 64
and Figure 66. As figures shows, the 𝑘FN query time of SE is smaller than that of SP-Oracle
and SI by 0.5-3 orders of magnitude. The appro. error of SE is larger than that of SP-Oracle
but is much smaller than the theoretical bound.

G.2 Top-𝑘 Bichromatic and Monotonic Farthest-Pair Query
We present the experimental results of the top-𝑘 bichromatic farthest-pair (BFP) and mono-
tonic farthest-pair (MFP) queries.

Effect of 𝜖. We tested 5 different values of 𝜖 (i.e., 0.05, 0.1, 0.15, 0.2, 0.25). The results of the
top-𝑘 BFP query on BearHead, EaglePeak and San Fransisco are shown in Figure 67(a),
Figure 68(a) and Figure 69(a). The results of the top-𝑘 MFP query on BearHead, EaglePeak
and San Fransisco are shown in Figure 71(a), Figure 72(a) and Figure 73(a). The query time
of SE for both types of queries is very small in practice. The top-𝑘 BFP query and the top-𝑘
MFP query processing of SP-Oracle could not be finished within a reasonable time and thus
it is not shown in the figure. As the figures show, the query time of SE is smaller than that
of baselines by 1-3 orders of magnitude. Since there is no exact algorithm for the closest pair
query, we are not able to calculate the appro. error.

Effect of 𝑘 .We tested 4 different values of 𝑘 , namely 5, 10, 15, 20. The results of the top-𝑘 BFP
query on BearHead, EaglePeak and San Fransisco are shown in Figure 67(b), Figure 68(b)
and Figure 69(b). The results of the top-𝑘 MFP query on BearHead, EaglePeak and San
Fransisco are shown in Figure 71(b), Figure 72(b) and Figure 73(b). The query time of
SE for both types of queries is small in practice. The top-𝑘 BFP query and the top-𝑘 MFP
processing of SP-Oracle could not be finished within a reasonable time and thus it is not
shown in the figure.
Effect of 𝑛. We studied the effect of the number of POIs 𝑛 on a synthetic dataset. The

values of 𝑛 we tested are 50𝑘, 60𝑘, 70𝑘, 80𝑘, 90𝑘. The data is generated in the same way as
stated in Section 6.2.1.
The results of the top-𝑘 BFP and the top-𝑘 MFP query are shown in Figure 70(a) and

Figure 74(a). As Figure 70(a) shows, the query time of SE for the top-𝑘 BFP query is small
in practice. The top-𝑘 BFP query processing of SP-Oracle could not be finished within a
reasonable time and thus it is not shown in the figure. We observe similar result for the
top-𝑘 MFP query.
Effect of 𝑁 .We studied the effect of the number of vertices 𝑁 on the terrain surface on

a synthetic dataset. The values of 𝑁 we tested are 100𝑘, 150𝑘, 200𝑘, 250𝑘. We generated the
terrain data as stated in Section 6.2.1. The results of the top-𝑘 BFP and the top-𝑘 MFP query
are shown in Figure 70(b) and Figure 74(b). As Figure 70(b) shows, the query time of SE
for the top-𝑘 BFP query is small in practice. The top-𝑘 BFP query processing of SP-Oracle
could not be finished within a reasonable time and thus it is not shown in the figure. We
observe similar result for the top-𝑘 MFP query.

H DISCUSSION FOR CASE WHEN 𝑛 > 𝑁

When 𝑛 > 𝑁 , we adopt the same distance oracle described in Appendix F, which is POI-
independent. This distance oracle could answer not only A2A distance queries but also V2V
distance queries and P2P distance queries (because A2A distance queries could be regarded
as a general setting compared with V2V distance queries and P2P distance queries).
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Fig. 67. Effect of 𝜖 and 𝑘 on real dataset, Bear-
Head, for Top-𝑘 BFP
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Fig. 68. Effect of 𝜖 and 𝑘 on real dataset, Eagle-
Peak, for Top-𝑘 BFP
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Fig. 69. Effect of 𝜖 and 𝑘 on real dataset, San
Fransisco, for Top-𝑘 BFP Query
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Fig. 70. Effect of 𝑛 and 𝑁 on dataset, San
Francisco South, for Top-𝑘 BFP Query
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Fig. 71. Effect of 𝜖 and 𝑘 on real dataset, Bear-
Head, for Top-𝑘 MFP Query
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Fig. 72. Effect of 𝜖 and 𝑘 on real dataset, Eagle-
Peak, for Top-𝑘 MFP Query

I EXTENSION TO WEIGHTED TERRAIN SURFACE
Weighted terrain surface is a variant of the terrain surface studied in the paper. The same
as the terrain surface which is studied in this paper, a weighted terrain surface also has a
set of vertices, a set of edges and a set of faces. Each edge is adjacent to two vertices and
each face has three adjacent vertices and three adjacent edges. Each vertex 𝑣 ∈ 𝑉 has three
coordinate values, denoted by 𝑥𝑣, 𝑦𝑣 and 𝑧𝑣 . But differently, in the weighted terrain surface,
each face is assigned a positive real-valued weight and the weight information captures
different travel cost (e.g., travel effort and energy consumption, etc.) in different faces and
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Fig. 73. Effect of 𝜖 and 𝑘 on real dataset, San
Fransisco, for Top-𝑘 MFP Query
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Fig. 74. Effect of 𝑛 and 𝑁 on dataset, San
Francisco South, for Top-𝑘 MFP Query

the weight information encodes many different features such as slope, terrain type (e.g.,
sand, wet land), obstacles, etc. [3, 15, 29]. Consider two points 𝑠, 𝑡 and let 𝜋𝑔 (𝑠, 𝑡) denote a
path between them on a weighted terrain surface. Formally, 𝜋𝑔 (𝑠, 𝑡) consists of a sequence
𝑋 of line segments and each segment lies on a unique face of the terrain surface. Given a
line segment 𝑥 ∈ 𝑋 , we denote the unique face that 𝑥 lies on by 𝑓𝑥 and we denote the length
of 𝑥 by 𝑙 (𝑥). The length of 𝜋𝑔 (𝑠, 𝑡) on the weighted terrain surface, denoted by 𝑙 (𝜋𝑤𝑔 (𝑠, 𝑡)), is
defined to be

∑
𝑥 ∈𝑋 (𝑤 (𝑓𝑥 ) · 𝑙 (𝑥)) which is the sum over the product of the length of each line

segment in 𝑋 and the weight of the face it lies on. The geodesic shortest path on the weighted
terrain surface between 𝑠 and 𝑡 , denoted by Π𝑤𝑔 (𝑠, 𝑡), is defined to be the path between 𝑠 and
𝑡 on the terrain surface with the smallest length (i.e., Π𝑤𝑔 (𝑠, 𝑡) = argmin𝜋𝑔 (𝑠,𝑡 ) {𝑙 (𝜋𝑔 (𝑠, 𝑡))}).
The weighted geodesic distance between 𝑠 and 𝑡 , denoted by 𝑑𝑤𝑔 (𝑠, 𝑡), is defined to be the length
of Π𝑤𝑔 (𝑠, 𝑡).
Although our technique is originally designed for the unweighted terrain, it paves the

way to the research on weighted terrain surface and our technique could be easily adapted
to the weighted terrain surface with some minor modifications. The adaptation is demon-
strated as follows. In a word, the adaptation simply replaces the geodesic distance and path
computation involved in the original SE by the corresponding weighted geodesic distance
computation and the computation of the shortest path on weighted terrain surface in the
preprocessing phase. As a result of that, SE would pre-compute and store several weighted
geodesic distances in place of the original geodesic distances and the operations in the query
phase keeps intact. Specifically, there are three subroutines in the pre-computation of the
originalSE which requires the geodesic distance or path computation and they are disk
computation, enhance edge computation and node pair generation. In the implementation
level, they all invoke the single-source all-destination (SSAD) algorithm for this geodesic
distance and path computation. Thus, we replace the SSAD algorithm for the geodesic
distance and path computation by the corresponding SSAD algorithm for the weighted
geodesic distance and geodesic path computation on weighted terrain surfaces [4]. We also
conducted empirical study on this weighted terrain surface. We used the low resolution BH
(resolution: 30 meter, 150k vertices) for this experiment. Note that the dataset only provides
the information of vertices, edges and faces and does not contain the weight information
of each face. For the experiment on the weighted terrain surface, we adopted the method
in [42] to generate the weight for each face. The result is shown in Table 11 and the error
parameter 𝜖 is set to be the default value (i.e., 0.2). We compared SE with [4] (which is
the best existing on-the-fly algorithm for the weighted geodesic distance computation) and
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SP-Oracle [15] (which is the best existing index-based algorithm for the weighted geodesic
distance computation) in this experiment. Note that SP-Oracle could also be adapted to
weighted terrain surfaces [15]. As could be observed from this table, SE significantly outper-
forms SP-Oracle in terms of building time, space consumption and query time. The query
time of SE is several orders of magnitude smaller than that of [4]. The three algorithms
tested all have neglectable error which is much smaller than the error parameter.

Algorithm Building Time (s) Oracle Size (MB) Distance Query Time (ms) Path Query Time (ms) Error
[4] - - 1,982,097 1,997,234 0.001

SP-Oracle [15] 598,231 89,337 5,387 5,674 0.002
SE 42,031 5,345 29 146 0.03

Table 11. Performances of All Algorithms on Weighted Terrain Surface (BH, low resolution)
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