
The VLDB Journal (2020) 29:147–175
https://doi.org/10.1007/s00778-019-00570-z

SPEC IAL ISSUE PAPER

An experimental survey of regret minimization query and variants:
bridging the best worlds between top-k query and skyline query

Min Xie1,3 · Raymond Chi-Wing Wong1 · Ashwin Lall2

Received: 31 December 2018 / Revised: 27 June 2019 / Accepted: 4 September 2019 / Published online: 14 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
When faced with a database containing millions of tuples, a user may be only interested in a (typically much) smaller
representative subset. Recently, a query called the regret minimization query was proposed toward this purpose to create such
a subset for users. Specifically, this query finds a set of tuples that minimizes the user regret (measured by how far the user’s
favorite tuple in the selected set is from his/her favorite tuple in the whole database). The regret minimization query was shown
to be very useful in bridging the best worlds between two existing well-known queries, top-k queries and skyline queries:
Like top-k queries, the total number of tuples returned in this new query is controllable, and like skyline queries, this new
query does not require a user to specify any preference function. Thus, it has attracted a lot of attention from researchers in the
database community. Various methods were proposed for regret minimization. However, despite the abundant research effort,
there is no systematic comparison among the existing methods. This paper surveys this interesting and evolving research
topic by broadly reviewing and comparing the state-of-the-art methods for regret minimization. Moreover, we study different
variants of the regret minimization query that has garnered considerable attention in recent years and present some interesting
problems that have not yet been addressed in the literature. We implemented 12 state-of-the-art methods published in top-tier
venues such as SIGMOD and VLDB from 2010 to 2018 for obtaining regret minimization sets and give an experimental
comparison under various parameter settings on both synthetic and real datasets. Our evaluation shows that the optimal
choice of methods for regret minimization depends on the application demands. This paper provides an empirical guideline
for making such a decision.

Keywords Query processing · Regret minimization · Data analysis · Multi-criteria decision making

1 Introduction

Nowadays, a database system usually contains millions of
tuples and an end user might be interested in finding his/her
favorite tuples in the database. Consider the following sce-

B Min Xie
mxieaa@cse.ust.hk

Raymond Chi-Wing Wong
raywong@cse.ust.hk
http://www.cse.ust.hk/∼raywong/

Ashwin Lall
lalla@denison.edu

1 The Hong Kong University of Science and Technology, Clear
Water Bay, Hong Kong

2 Denison University, Granville, USA

3 Shenzhen Institute of Computing Sciences, Shenzhen
University, Shenzhen, China

nario for a car database where each car is described by some
attributes. Alice visits the car database and wants to find a
car with high horse power (HP) and high miles per gallon
(MPG) (i.e., HP and MPG are the two attributes picked by
Alice, based on which she makes a decision). Note that the
car database can be very large and it may consist of thou-
sands of cars and thus, it might be impossible for Alice to go
through every car tuple in the database. A possible solution is
that the database system provides some operators to show a
representative subset of cars to Alice. Such operators can be
regarded as multi-criteria decision-making tools. In order to
decide which cars to be shown toAlice, we implicitly assume
that there is a preference function, called a utility function,
in Alice’s mind. Based on this function, we can compute a
utility for each car in the database. A high utility indicates
that this car is favored by Alice and a car with the highest
utility is a favorite car of Alice. Depending on whether the
utility function is provided to the database system, different

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-019-00570-z&domain=pdf
http://orcid.org/0000-0003-2356-782X
http://orcid.org/0000-0001-7045-6503

148 M. Xie et al.

operators were proposed toward multi-criteria decision mak-
ing. Examples are the top-k query, the skyline query and the
regret minimization query.

In the setting of the traditional top-k query [14,22,23,30,
38], a user is required to provide his/her exact utility function
explicitly to the database system. Then, the k tuples with the
highest utilities are returned to the user. For example, Alice’s
utility function can have weight 70% for HP and weight 30%
forMPG.Here, a higherweight indicates that the correspond-
ing attribute is more important to Alice. With this utility
function, each car’s utility is computed, and the k cars with
the highest utilities are shown to Alice. Unfortunately, it is
hard formost users to provide their utility functions explicitly
to the database system and even the users themselves might
not know their exact utility functions.

Alternatively, the skyline query [8,9,24,26,29] could be
used if the utility function (assumed to be monotonic) is not
provided to the database system. In particular, a “domina-
tion” concept is applied.A tuple p is said to dominate another
tuple q if p is not worse than q on each attribute and p is
better than q on at least one attribute. For example, car p with
HP 300 andMPG 30 dominates car q with HP 250 andMPG
25 since no matter what utility function Alice has, the utility
of car p is always higher than the utility of car q and thus,
car p is more desirable to Alice. The skyline query returns
all tuples that are not dominated by any other tuples to the
users and those tuples are also called the skyline tuples. It
is easy to see that the user’s favorite tuple must be a sky-
line tuple. Unfortunately, the output size of a skyline query
is uncontrollable. In the worst case, the whole database can
be returned by a skyline query, resulting in its difficulty in
providing a small representative subset to the users.

Recently, a regret minimization query [28] was proposed,
which solves multi-criteria decision making from a novel
perspective. In particular, it overcomes the deficiencies of
both the top-k query (which requires the user to provide the
exact utility function) and the skyline query (which does not
have a controllable output size). Instead, it maintains the
major advantage of the top-k query (whose output size is
controllable) and the major advantage of the skyline query
(which does not require the user to provide any exact utility
function). Specifically, a regret minimization query finds a
small set of tuples from the database such that the utility of
any user’s favorite among these tuples is guaranteed to be
a small fraction, quantified as the regret ratio, less than the
utility of his/her favorite in the whole database, regardless
of his/her utility function. Intuitively, the regret ratio quan-
tifies the “regret” level of a user if she/he gets the best tuple
in the selected subset, but not the best tuple in the whole
database. For example, a regret minimization query on the
car database returns a set of cars from the database so that
Alice can find some cars in the returned set that she is inter-
ested in (since her regret ratio is small) without providing her

Fig. 1 Taxonomy of regret minimization queries

utility function. In addition to the car database application,
the regret minimization query can be applied in many other
scenarios. For example, on an online shopping application,
each product is usually described by multiple attributes (e.g.,
rating and quality). Different users can have different pref-
erences in their minds. For example, some users might think
that a higher rating is more important while the other users
might think that higher quality is more important. A regret
minimization query finds a set of products minimizing the
“regret” level of all users. Those products can be promoted
on the home page to attract customers since no matter what
preference a customer has, she/he can always find a prod-
uct in the suggested set that she/he is interested in (since the
regret ratio is small). Other applications of regret minimiza-
tion queries include Information Retrieval (IR) [3,35,37] and
Recommendation Systems (RS) [19,25,42].

Due to the superiority of regret minimization queries,
extensive efforts [2,4,7,11,21,28,31,44] in the database com-
munity have been spent on finding algorithms for computing
regret minimization sets (RMS). However, there lacks a com-
prehensive comparison among them. In this paper, we give
an overview of existing methods for RMS and present some
interesting variants of RMS that receive considerable atten-
tion in the last decade (Fig. 1). Specifically, we start with an
extensive survey that covers 12 existing methods for RMS.
We describe the key idea behind each method and sum-
marize the main results known for each method. We also
classify the existing methods into three categories: (1) the
exact approaches for RMS when each tuple in the database
is described by two attributes, (2) the heuristic approaches
and (3) the theoretical approaches for RMS when each tuple
in the database is described by d attributes (d ≥ 2). Then,
we present nine popular variants of RMS studied in the lit-
erature. In particular, kRMS and nonlinear RMS are the two
major variants of RMS andwe show how some existing algo-
rithms designed for RMS can be extended to handling these
variants (shown in circles and stars in Fig. 1).

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 149

Table 1 Car database and car utilities

Car(p) HP MPG f0.4,0.6(p) f0.2,0.8(p) f0.7,0.3(p)
p1 40 40 40 40 40
p2 120 36 69.6 52.8 94.8
p3 180 24 86.4 55.2 133.2
p4 200 8 84.8 46.4 142.4
p5 70 8 32.8 20.4 51.4
p6 60 24 38.4 31.2 49.2

Regret Ratio of {p1, p4} 1− 86.4
84.8

= 1.85%
1− 46.4

55.2
= 15.9%

1− 142.4
142.4

= 0%

We performed a comprehensive experimental evaluation
on the 12 existing methods for RMS on synthetic datasets
[6] with different distribution characteristics (e.g., corre-
lated datasets and anti-correlated datasets) and six commonly
used real-world datasets with up to five million tuples
[2,4,7,11,21,28,31,44]. The experimental results could give
an insight to researchers for RMS. According to our experi-
ments, there is no single algorithmwhich dominates the other
algorithms in all aspects. Specifically, some algorithms (e.g.,
2d-BiSearch [7]) solve RMS optimally, but it is restricted
when each tuple in the database is described by two attributes,
while someother algorithms (e.g.,Greedy [28]) are heuristic
based, but they are executable ondatasets of anydimensional-
ities. Some algorithms (e.g., Cube [28]) construct a solution
for RMS efficiently, but the empirical maximum regret ratios
of their solutions are large, which means that the users can
be regretful if they see the solutions, while some other algo-
rithms (e.g., HittingSet [2]) spend more time to return the
solutions, but they are good at constructing a small represen-
tative subset of the whole database for the users. The best
choice of algorithms depends on the user demands.

The rest of the paper is organized as follows. The for-
mal definition of regret minimization set (RMS) and some
known properties/theoretical lower bounds on this problem
are described in Sect. 2. In Sect. 3, we survey the exist-
ing methods for RMS, summarize the main results for each
method and provide a comprehensive comparison among
them. Different variants of RMS are described in Sect. 4, and
experimental evaluations on both real and synthetic datasets
are presented in Sect. 5. Some open problems that have not
yet been explored in the literature are summarized in Sect. 6,
while conclusions are found in Sect. 7.

2 Problem definition

The input to our problem is a tuple set D with n tuples (i.e.,
|D| = n) in a d-dimensional space where each dimension
corresponds to an attribute of a tuple. In this paper,we assume
that the dimensionality d is a fixed constant. Note that each
tuple in D could be described by more than d attributes, but
the user will select precisely d of them that she/he is inter-
ested in, and based on which she/he makes decisions.

2.1 Terminologies

We use the words “tuple” and “point” interchangeably and
use thewords “attribute” and “dimension” interchangeably in
the rest of the paper. Denote the i th value of a d-dimensional
point p ∈ D by p[i] where i ∈ [1, d] and denote the L2-
norm of p by ‖p‖. Without loss of generality, we assume
that the value in each dimension is nonnegative and a larger
value in each dimension is preferable to all users. If a smaller
value is preferable in a dimension (e.g., price), we canmodify
the dimension by subtracting each value from the maximum
value so that it satisfies the above assumption. Recall that
in a car database, each car is associated with two attributes,
HP and MPG. Consider the example in Table 1. The car
database, i.e., D = {p1, p2, p3, p4, p5, p6}, contains six
two-dimensional points, each of which represents a car in
the database.

Similar to [10,23,27,28,31], the user’s happiness can be
modeled by an unknown utility function, denoted by f , which
is a mapping f :Rd+ → R+. Denote the utility of a point p in
D w.r.t. f by f (p). A high utility indicates that p is favored
by the user and a point with the highest utility is a favorite
point of the user. For each user, we define a regret ratio based
on his/her utility function f .

Definition 1 [28] Given a set S ⊆ D and a utility function f ,
the regret ratio of S over D w.r.t. f , denoted by rrD(S, f),

is defined to be
maxp∈D f (p)−maxp∈S f (p)

maxp∈D f (p)
= 1 − maxp∈S f (p)

maxp∈D f (p)
.

For example, given a utility function f0.4,0.6 where
fa,b(p) = a × p[1] + b × p[2] and a point p4 in Table 1,
the utility of p4 w.r.t. f0.4,0.6 is f0.4,0.6(p4) = 0.4 × 200 +
0.6 × 8 = 84.8. The utilities of remaining points in D w.r.t.
f0.4,0.6 are computed similarly in Table 1. Consider a set
S = {p1, p4} (shown shaded in Table 1). The point with
the highest utility in S w.r.t. f0.4,0.6 is p4, and its utility is
equal to 84.8, while the point with the highest utility in D
w.r.t. f0.4,0.6 is p3 and its utility is equal to 86.4. Then, we

can compute rrD(S, f0.4,0.6) to be 1 − maxp∈S f0.4,0.6(p)

maxp∈D f0.4,0.6(p)
=

1 − 84.8
86.4 = 1.85%.

Given a set S ⊆ D,wehavemaxp∈S f (p)≤ maxp∈D f (p)

(since S is a subset of D) and thus, the regret ratio in Def-
inition 1 ranges from 0 to 1. A user is happy (some papers
use the term not regretful) with a given set S if his/her regret
ratio is close to 0 since the highest utility in S is close to
the highest utility in D (i.e., the best tuple in the selected set
S is close to his/her favorite tuple in the whole D). Table 2
summarizes the frequently used notations in the paper.

Unfortunately, in real cases, it is difficult to obtain the
user’s exact utility function. Thus, we assume that the user’s
utility function in a function class denoted by FC. Examples
of function classes include the linear [28] and multiplicative
function class [32]. Then, the maximum regret ratio of a set

123

150 M. Xie et al.

Table 2 Frequently used
notations

Notation Meaning

D The set of d-dimensional points (|D| = n)

f (p) The utility of p w.r.t. a function f

FC A utility function class

L The linear utility function class

rrD(S, f) The regret ratio of S over D w.r.t. f

mrrD(S, FC) The maximum regret ratio of S w.r.t. FC

r The maximum output size, i.e., |S| ≤ r

ε The required maximum regret ratio, i.e.,mrrD(S, FC) ≤ ε

rε The smallest size of any set with maximum regret ratio at most ε

εr The smallest maximum regret ratio of any set with at most r points

k-maxp∈D f (p) The kth highest utility among points in D

k-rrD(S, f) (k-mrrD(S, FC)) The (maximum) k-regret ratio of S

S is defined over a function class FC, which can be regarded
as the worst-case regret ratio w.r.t. a utility function in FC.

Definition 2 [28] Given a set S ⊆ D and a function class FC,
the maximum regret ratio of S over D w.r.t. FC, denoted by
mrrD(S, FC), is defined to be sup f ∈FC rrD(S, f).1

To illustrate, assume that FC consists of three utility func-
tions f0.4,0.6, f0.2,0.8 and f0.7,0.3 in Table 1. By following a
similar procedure before, we can compute rrD(S, f0.4,0.6) =
1.85%, rrD(S, f0.2,0.8) = 15.9% and rrD(S, f0.7,0.3) = 0%.
Then, the maximum regret ratio mrrD(S, FC) is computed
to be sup f ∈FC rrD(S, f) = max{1.85%, 15.9%, 0%} =
15.9%.

2.2 Problem definition

Without knowing which function a user exactly uses in FC
and the distribution of functions in FC, our goal is to find a
regret minimization set S ⊆ D, optimizing over the worst
case (maximum regret ratio), so that the worst-case regret
is minimized and the happiness of each user is guaranteed.
Formally, we define the regret minimization query (RMS).

Problem 1 (The regret minimization query (RMS) [28])
Given a set D and a function class FC, we want to find a
regret minimization set S ⊆ D of at most r points so that the
maximum regret ratiomrrD(S, FC) is at most ε.

There are two parameters that come into play in RMS,
namely (1) the maximum output size r and (2) the required
maximum regret ratio ε. We assume that r ≥ d. Otherwise,
the maximum regret ratio might not be bounded [28]. In
traditional RMS, we aim at minimizing (or bounding) the

1 Wedefine themaximumregret ratio using the supremum instead of the
maximum since the function class FC can consist of an infinite number
of utility functions and a maximum may not exist.

maximum regret ratio while fixing the output size [28,31].
Recently, however, some existing studies focus on a dual
version of RMS which aims at minimizing (or bounding)
the output size while fixing the maximum regret ratio [2,7].
Moreover, some recent methods relax both the maximum
regret ratio and the output size simultaneously [4,21]. For
the ease of illustration, we do not distinguish these variants
explicitly but describe them in a unifiedmanner in Problem 1.

In general, any function class FC can be applied in RMS
and the utility functions in FC can have an arbitrary distribu-
tion. For the ease of illustration, we first focus on the class
of linear utility functions, denoted by L, which is very pop-
ular in modeling user preferences [10,11,23,27,28,31]. We
relax this assumption in Sect. 4 by considering other vari-
ants of RMS. Specifically, a utility function f is linear if
f (p) = u · p where u is a utility vector. The utility vector u
is a d-dimensional nonnegative vector where u[i] measures
the importance of the i th dimensional value in the user pref-
erence. In the rest of this paper, we refer to a utility function
f by its utility vector u when FC = L is clear in the context.

2.3 Properties

In this section, we introduce the scale-invariance and the sta-
bility of RMS, which are two important properties of RMS.
Scale-invariance Intuitively, RMS is said to be scale-
invariant if the maximum regret ratio of a given solution set
is the same evenwhen the attribute value of each point in D is
scaled by a certain factor. Specifically, we consider a scaled
dataset D′ = {p′

1, . . . , p′
n} of D where p′

i [j] = λ j pi [j],
λ j ≥ 0 for each j ∈ [1, d]. For example, we can create a
scaled dataset D′ for the car database in Table 1 by convert-
ing HP to watts and MPG to kilometers per liter by setting
λ1 = 750 and λ2 = 0.425 since 1HP = 750watts and 1MPG
= 0.425 kilometers per liter. The following theorem shows

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 151

that the definition, maximum regret ratio, is independent of
the scale of each attribute and thus, RMS is scale-invariant.

Theorem 1 (Scale-invariance [28]) Let S = {pi1, . . . , pik }
be any subset of D and S′ = {p′

i1
, . . . , p′

ik
} be the corre-

sponding subset of D′ where D′ is a scaled dataset of D (i.e.,
for each pi in D and each p′

i in D′, p′
i [j] = λ j pi [j] where

λ j ≥ 0 and j ∈ [1, d]). We havemrrD(S, L) = mrrD′(S′, L).

Stability RMS is said to be stable if the maximum regret
ratio of any set S is independent of the junk points being
inserted into or deleted from the database. Specifically, a
point in D is said to be a junk point if it does not have the
highest utility w.r.t. any utility function in L. Intuitively, a
junk point is the point not favored by any user. According to
the definitions above, stability is a desirable property since
a database system is not allowed to manipulate the solution
by strategically inserting/deleting a number of junk points
not favored by any user. The stability of RMS is summarized
below.

Theorem 2 (Stability [28]) Given a set S ⊆ D and a junk
point p, mrrD(S, L) = mrrD/{p}(S, L) = mrrD∪{p}(S, L).

2.4 Lower bound and NP-hardness

In this section, we summarize the best-known lower bounds
on RMS [27,44]. Informally, we show that by returning a set
of at most r points from the database, it is not possible to

guarantee a maximum regret ratio better than Ω(r− 2
d−1).

Theorem 3 (Lower bound [44]) For any dimensionality d,
there is a d-dimensional database such that the maximum
regret ratio of any set of at most r points is at least 1

8 (2r)−
2

d−1 .

Corollary 1 [27] For any dimensionality d and ε ∈ (0, 1],
there is a d-dimensional database such that any RMS algo-

rithm needs to return at least 1
2 (

1
8ε)

d−1
2 points from the

database to guarantee a maximum regret ratio at most ε.

Finding an optimal solution for RMS (i.e., finding a min-
imum size set guaranteeing a certain regret ratio ε or finding
theminimum regret set with atmost r points) was first proven
to be an NP-hard problem in general by Chester et al. [11].
Formally, we formulate the decision version of RMS below,
whose NP-hardness is shown in Theorem 4.

Problem 2 (Decision-RMS) Given a set D, a function class
FC, an integer r and a real value ε, we want to determine
whether there exists a solution set S ⊆ D of at most r points
so that the maximum regret ratiomrrD(S, FC) is at most ε.

Theorem 4 (NP-hardness [11]) Decision-RMS is NP-hard.

Table 3 Known results about RMS

Results Related materials

RMS Scale-invariance Theorem 1

Stability Theorem 2

Lower bound (Ω(r− 2
d−1)) Theorem 3

NP-hardness Theorem 4

Unfortunately, the NP-hardness proof in [11] required
both the size and the dimensionality of the dataset to be
arbitrarily large. In particular, it was left open whether this
problem is NP-hard for small dimensionalities. Cao et al. [7]
and Agarwal et al. [2] resolved this issue independently by
showing that RMS is NP-hard for all d ≥ 3. Table 3 summa-
rizes all the aforementioned known results about RMS.

2.5 Computingmaximum regret ratio

Given a set S ⊆ D, it is difficult to compute the maximum
regret ratio mrrD(S, L) directly according to Definition 2
since there are an infinite number of linear utility functions
in L. In practice, we can approximate mrrD(S, L) by sam-
pling a finite number of utility functions (e.g., 100,000 utility
functions [2]) in L, based on which we compute their regret
ratios. Then, mrrD(S, L) can be estimated to be the largest
regret ratio among them. Alternatively, we can also compute
the exactmrrD(S, L). This is done by dividing the computa-
tion ofmrrD(S, L) into a finite number of smaller problems.
Formally, we have the following lemma from [28].

Lemma 1 [28]mrrD(S, L) = maxp∈D mrrS∪{p}(S, L).

According toLemma1,we can obtainmrrD(S, L)by com-
puting n alternative maximum regret ratios mrrS∪{p}(S, L)
for each p in D (which are easier to be computed). Specifi-
cally, given a point p in D, we compute itsmrrS∪{p}(S, L) by
formulating it as a linear programming (LP) problem [28]:

max x
s.t . (p − q) · u ≥ x ∀q ∈ S

p · u = 1
u[j] ≥ 0 ∀1 ≤ j ≤ d

(1)

where the optimal objective x∗ is the desired maximum
regret ratiomrrS∪{p}(S, L) for the given p and, by Lemma 1,
mrrD(S, L) is themaximumsuch x∗ valueover all points in D.

2.6 SQL extensions

Similar to the SQL extension for the skyline query (i.e.,
the SKYLINE OF clause in [6]), SQL’s SELECT statement
can be extended by an optional REGRET-SET OF…WITH…
clause for the regret minimization query (RMS) as follows.

123

152 M. Xie et al.

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
REGRET-SET OF A1 [MIN|MAX], ..., Ad [MIN|MAX]
WITH [SIZE r | ERROR ε]
ORDER BY ...

where A1, . . . , Ad denote the d attributes selected by the
user, e.g., HP,MPG and price. MIN and MAX specify whether
a smaller or a larger value is preferable in the correspond-
ing dimension. For example, a larger HP is preferred (MAX
annotation), whereas a lower price is preferred (MIN anno-
tation). Besides, r and ε are the parameters we constrain in
RMS (see Problem 1), which represent the output size and
the required maximum regret ratio, respectively. The query
below is a SQL query for RMS, which finds at most r cars
from a car database CARS with high HP, high MPG and low
price.

SELECT * FROM CARS
REGRET-SET OF H P MAX, M PG MAX, price MIN
WITH SIZE r

The semantics of REGRET-SET OF clause are very
straightforward. The implementation of REGRET-SET OF
clause can be encapsulated by a new logical operator
in a database system, say the regret operator, which is
typically executed after SELECT…FROM…WHERE…GROUP
BY…HAVING… but before the ORDER BY clause. In other
words, the implementation of existing logical operators (e.g.,
scan and join) of a database system does not need to be
changed and we can easily integrate the regret operator into
a traditional SQL query processor with some minor modifi-
cations on the existing parser and query optimizer. Same as
most of other logical operators of a database system (e.g.,
scan and join), the regret operator can be implemented in
different (physical) ways, which will be discussed shortly in
Sect. 3.

3 RMS algorithms

In this section, we survey the existing algorithms for RMS
and they can be classified into three categories according
to the dimensionality and whether they provide theoreti-
cal guarantees on the solutions, as summarized in Table 4.
Specifically, when d = 2, RMS can be solved opti-
mally in polynomial time. The two-dimensional exact RMS
algorithms are presented in Sect. 3.1. The heuristic-based
algorithms and the algorithms with theoretical guarantees in
d-dimensional spaces are discussed in Sects. 3.2 and 3.3,
respectively. Finally, a theoretical comparison among all
existing RMS algorithms is provided in Sect. 3.4, while the
experimental comparison appears later in Sect. 5.

Recall that an algorithm can control either the maximum
output size r or the required maximum regret ratio ε (or

both) for solving RMS. Let rε denote the smallest size of any
solution set in the dataset whose maximum regret ratio is at
most ε and εr denote the smallest maximum regret ratio of
any solution set in the dataset with at most r points.

3.1 Two-dimensional approaches

In this section, we present the algorithms, which solve RMS
optimally in two-dimensional spaces (i.e., d = 2). Some
existing algorithms are properly renamed to avoid confusion.
2d-SweepDP (denoted as 2d-kRMS in [11]). Chester et
al. [11] offered the first exact algorithm for RMS in two-
dimensional spaces. Specifically, they worked on a dual
space where each point in D is represented by a line, and
then, they showed that solving RMS in the original space is
equivalent to finding a subset of lines in the dual space whose
lower envelope is close to the lower envelope of the dual lines
of all points in D. Note that the lower envelope of a set of
lines in the dual space is a piecewise linear convex chain,
which is a sequence of line segments with decreasing slopes
where any two consecutive line segments have a common
end point. Thus, the proximity between two lower envelopes
can be computed by evaluating the end points of each line
segments in lower envelopes. They proposed a plane sweep-
ing algorithm,which computes the desired lower envelope by
rotating a line L from the positive x-axis to positive y-axis.
When L encounters a new intersection point (of two lines in
the dual space), it checks whether the lower envelope of the
current selection set of lines can be improved using dynamic
programming. The optimality of 2d-SweepDP is shown as
follows.

Theorem 5 [11] Given an integer r , the 2d-SweepDP algo-
rithm returns an optimal solution set of at most r points for
RMS (d = 2) in O(rn2) time.

For example, given a dataset D with three dual lines
(a, f), (b, e) and (c, d) in Fig. 2, their lower envelope is
(a, j, h, d) (shown in red). Assume that initially, the solu-
tion set has a single line (a, f) (whose lower envelope is
(a, f) itself) and the rotating line L encounters the intersec-
tion point, namely j , between (a, f) and (b, e). If we include
(b, e) into the solution set, the lower envelope of the updated
solution set becomes (a, j, e), which is closer to the target
lower envelope (a, j, h, d). Then, the dynamic programming
data structure in 2d-SweepDPwill be updated by adding the
line (b, e). Similar process continues until L reaches the pos-
itive y-axis.
2d-BiSearch (denoted as E- Greedy- 1 in [7]). Cao et al.
proposed the 2d-BiSearch algorithm [7] for solving RMS
optimally, which improves the efficiency of 2d-SweepDP.

2d-BiSearch is a randomized binary search algorithm
and it uses the solutions of Decision-RMS (i.e., Problem 2)
as subroutines. Specifically, given the maximum output size

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 153

Ta
bl
e
4

Su
m
m
ar
y
of

ex
is
tin

g
R
M
S
al
go

ri
th
m
s
in

te
rm

s
of

(1
)
ou

tp
ut

si
ze
,(
2)

m
ax
im

um
re
gr
et
ra
tio

an
d
(3
)
tim

e
co
m
pl
ex
ity

A
lg
or
ith

m
O
ut
pu

ts
iz
e

M
ax
im

um
re
gr
et
ra
tio

T
im

e
co
m
pl
ex
ity

R
em

ar
k

R
el
at
ed

m
at
er
ia
l

Tw
o-
di
m
en
si
on
al

ex
ac
t

al
go

ri
th
m
s

2d
-S
w
ee
pD

P
[1
1]

r
ε r

O
(r

n2
)

T
he
or
em

5

2d
-B
iS
ea

rc
h
[7
]

O
(n

lo
g

n)
T
he
or
em

6

2d
-G

ra
ph

D
P
[4
]

O
(r

s
lo
g

s
lo
g

c)
s
is
#
of

sk
yl
in
e

po
in
ts
,c

is
#
of

co
nv
ex

hu
ll

po
in
ts

T
he
or
em

7

d
-D

im
en
si
on
al

he
ur
is
tic

al
go

ri
th
m
s

G
re

ed
y
[2
8]

|S|
=

r
or

m
rr

D
(S

,
L)

≤
ε

O
(n

r2
)

Im
pG

re
ed

y
[4
4]

O
(n

r2
)

su
pp
or
tp

ru
ni
ng

L
em

m
as

2
an
d
3

G
eo

G
re

ed
y
[3
1]

O
(n

rO
(d

)
)

L
em

m
a
4

St
o
re

d
L
is
t
[3
1]

O
(r

)
re
qu
ir
e

pr
e-
pr
oc
es
si
ng

d
-D

im
en
si
on
al

th
eo
re
tic

al
al
go

ri
th
m
s

C
u
be

[2
8]

r
O

(r
−1

/
(d

−1
)
)

O
(n

)
T
he
or
em

8

ε
-
K
er

n
el

[2
,7
]

O
(

1
ε
(d

−1
)/
2
)

ε
O

(n
+

1 ε
d
)

th
er
e
is
a
la
rg
e

hi
dd
en

co
ns
ta
nt

in
bi
g-
O

no
ta
tio

ns

T
he
or
em

9

r
O

(r
−2

/
(d

−1
)
)

O
(n

+
r2

d
/
(d

−1
))

Sp
h
er

e
[4
4]

r
O

(r
−2

/
(d

−1
)
)

O
(n

r2
)

T
he
or
em

10

H
it
ti
n
g
Se

t
[2
,2
1]

O
(r

ε
)
fo
r

d
≤

3
an
d

O
(r

ε
lo
g

r ε
)
fo
r

d
≥

4
(1

−
γ
)ε

+
γ

O
(n

+
1

γ
d
−1

+
lo
g2

1 γ

γ
3(

d
−1

)/
2
)

γ
is
a

us
er
-c
on

tr
ol
le
d

pa
ra
m
et
er

(0
≤

γ
≤

1)

T
he
or
em

11

O
(r

)
fo
r

d
≤

3
an
d

O
(r

lo
g

r)
fo
r

d
≥

4
(1

−
γ
)ε

r
+

γ
O

(n
+

1
γ

d
−1

+
lo
g3

1 γ

γ
3(

d
−1

)/
2
)

D
M
M

[4
]

r
cε

r
+

(1
−

c)
O

(l
og

(n
γ

d
)
·(n

γ
d

+(
2m

in
{2γ

d
,n

} γ
d
))

)
γ
,c

ar
e

us
er
-c
on

tr
ol
le
d

pa
ra
m
et
er
s

(0
≤

c
≤

1,
γ

≥
1)

T
he
or
em

12

rd
lo
g

γ
cε

r
+

(1
−

c)
O

(2
nγ

d
lo
g(

nγ
d
))

123

154 M. Xie et al.

Fig. 2 2d-SweepDP example

r , it maintains a finite number of candidate values of the
optimal ε and determines the smallest possible value of ε

such that there is a solution whose size is at most r and
maximum regret ratio is at most ε (which is a Decision-RMS
problem) by performing a binary search on different values
of ε.

To solve a Decision-RMS problem, Cao et al. also trans-
formed the dataset D into a set of lines in a dual space
and solved it in a geometric way. Specifically, given a point
p in D, they defined a dual line in the parametric form
f p(λ) = p[1]λ + p[2](1 − λ) with λ ∈ [0, 1]. Given a
set S ⊆ D, the upper envelope of S in the dual space can be
expressed as maxp∈S f p(λ) for λ ∈ [0, 1]. Then, given a real
value ε and an integer r , it solves the Decision-RMS problem
by computing a set S of at most r points such that the upper
envelop of S lies entirely above the scaled upper envelop of
D in the dual space where the scaling factor is 1 − ε (i.e.,
maxp∈S f p(λ) ≥ maxp∈D(1 − ε) f p(λ) for λ ∈ [0, 1]). The
main result of 2d-BiSearch is shown as follows.

Theorem 6 [7] Given an integer r , the 2d-BiSearch algo-
rithm returns an optimal solution set of at most r points for
RMS (d = 2) in O(n log n) time.

To illustrate, assume that there are four dual lines of D in
Fig. 3. The upper envelope of D is shown in solid red while
the (1−ε)-scaled upper envelop of D is drawn in dashed red,
which lies entirely below the line (a, b) in Fig. 4. If p is the
corresponding point of (a, b) in the original space, S = {p}
is a valid solution for this Decision-RMS.
2d-GraphDP (denoted as 2d-RRMS in [4]). Asudeh et al. [4]
transformed RMS in a two-dimensional dataset into a path
search problem in a weighted complete graph G = (V , E)

where V is the set of all skyline points p1, p2, . . . , ps−1, ps

in D and twodummypoints p0 and ps+1, sorted in the “clock-
wise” order and E is the set of edges between every pair of
points in V . In particular, for each edge ei j between pi and
p j in E , the edge weight, denoted by wi, j , is defined to be
the regret ratio of removing all skyline points between pi and
p j . Then, given the output size r , the goal is to find a path
from p0 to ps+1 with at most r intermediate points whose
subscripts are in an increasing order so that the maximum
of the edge weights is minimized, which can be efficiently
computed based on dynamic programming (see Fig. 5).

Formally, let D P(pi , r ′) be the optimal solution of a path
starting from pi to ps+1 with at most r ′ ≤ r intermediate

Fig. 3 Upper envelope

Fig. 4 2d-BiSearch example

i i i

j j j

s s s

s

s

j

i

r

Fig. 5 2d-GraphDP example

points whichminimizes themaximum edgeweights. Clearly,
D P(p0, r) is the desired solution for RMS. The recursive
formula for the dynamic programming is given as follows:

D P(pi , r ′) = min
j>i

{max{wi, j , D P(p j , r ′ − 1)}}

where D P(pi , 0) is initialized to be wi,s+1. Note that the
pairwise regret ratios (i.e., the edge weights in G = (V , E))
are efficiently computed in [4] by simply checking the end
points of each edge (instead of solving the LPs in Sect. 2).
The performance of 2d-GraphDP is summarized as follows.

Theorem 7 [4] Given an integer r , the 2d-GraphDP algo-
rithm returns an optimal set of at most r points for RMS
(d = 2) in O(rs log s log c) time where s is the number of
skyline points in D and c is the number of points in D, which
are also on the boundary of the convex hull of D (i.e., the
smallest convex set containing D).

3.2 d-dimensional heuristic approaches

In this section, we summarize the heuristic-based approaches
for RMS in d-dimensional spaces, including the linear
programming (LP) algorithms, namely Greedy [28] and
ImpGreedy [44], and the geometric algorithms, namely

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 155

GeoGreedy [31] and StoredList [31]. Note that all heuris-
tic algorithms presented here mainly differ in implementa-
tions, and thus, they produce exactly the same solution sets.
Greedy [28]. Greedy is the first heuristic algorithm for
RMS, which performs well by returning a set S with a small
maximum regret ratio empirically. Initially, S can be ini-
tialized to be the point with the highest first dimensional
value [28] (or d points where the i th point has the highest i th
dimensional value [31]). Then,Greedy iteratively addsmore
points into S until |S| = r or mrrD(S, L) ≤ ε (depending
on which parameters we are controlling). At each iteration,
the point in D that realizes the current maximum regret ratio
mrrD(S, L) is included into the current set S. We say that
a point q realizes the maximum regret ratio mrrD(S, L) if
mrrD(S, L) = mrrS∪{q}(S, L) [28]. Such a point q is deter-
mined by computing mrrS∪{p}(S, L) using LP (1) for each
p ∈ D, and then, we have q = argmaxp∈D mrrS∪{p}(S, L).

Example 1 Consider our car database in Table 1. Assume
that we want a solution set S ⊆ D with mrrD(S, L) = 0.
We illustrate howGreedyworks in Table 5 (where each cell
contains a maximum regret ratio mrrS∪{p}(S, L)). Assume
that S is initialized to be {p4} which is the point with the
highest first dimensional value. Then, in the first iteration,
p1 is the point realizing the current maximum regret ratio
since p1 = argmaxp∈D mrrS∪{p}(S, L) (shown in bold)
and p1 is inserted to S. This process continues until we
find that mrrD(S, L) = 0 after four iterations and S =
{p1, p2, p3, p4}.
�
ImpGreedy [34,44]. To determine the point realizing the
current maximum regret ratio, Greedy solves LP (1) for
each point in D in every iteration, which is very expen-
sive. ImpGreedy overcomes this deficiency by identifying
the unnecessary LP computations and, thus, speeds up the
overall process. Specifically, it develops the following pun-
ning strategies for reducing the LP computations:

1. Upper bounding Since we want the point with the largest
mrrS∪{p}(S, L) in every iteration, ImpGreedy maintains
an upper bound of mrrS∪{p}(S, L) for each p during the
computation. If the bound is atmost the largestmaximum
regret ratio observed so far, we skip the exact computa-
tion of mrrS∪{p}(S, L) since p cannot be the point to be
included. Formally, given a p in D, the upper bound of
mrrS∪{p}(S, L) is presented in the following lemma.

Lemma 2 ([34,44]) Given a set S and a point p in D,
mrrS∪{p}(S, L) ≤ mrrS′∪{p}(S′, L) where S′ = S \ {q} and q
is the last point added to S in previous greedy process.

2. Invariant checking The LP solutions obtained in previ-
ous iterations can be reused directly for computing the

Table 5 Greedy & ImpGreedy example

Itr S
mrrS∪{p}(S,L)

p1 p2 p3 p4 p5 p6
1 {p4} 0.80 0.78 0.67 0 0 0.67
2 {p1, p4} 0 0.20 0.20 0 0 0
3 {p1, p2, p4} 0 0 0.13 0 0 0
4 {p1, p2, p3p4} 0 0 0 0 0 0

mrrS∪{p}(S) in the current iteration if certain conditions
are satisfied. Formally, the lemma is shown as follows.

Lemma 3 [44] Given a set S and a point p in D, we
have mrrS∪{p}(S, L) = mrrS′∪{p}(S′, L) if (p − q) · uq ≥
mrrS′∪{p}(S′, L) where S′ = S \ {q}, q is the last point added
to S in previous greedy process and uq is the utility vector
such that rrS′∪{p}(S′, uq) = mrrS′∪{p}(S′, L).

Example 2 Let Si be the solution set obtained in the i th iter-
ation in Table 5. According to Lemma 2, we know that
mrrSi ∪{p}(Si , L) ≤ mrrSi−1∪{p}(Si−1, L). It conforms with
our computations in Table 5 where maximum regret ratios in
the same column are non-increasing from top to bottom.

We show how LP computations are reduced in Imp-
Greedy. Assume that points in Table 5 are processed from
left to right in each iteration of ImpGreedy. In the first iter-
ation, we computed the maximum regret ratios for all points
in D. Just before we process p5 in the second iteration, we
know that the upper bound of mrrS2∪{p5}(S2, L) is ub =
mrrS1∪{p5}(S1, L) = 0 and the largest maximum regret ratio
observed so far is mrr∗ = maxi∈[1,4] mrrS2∪{pi }(S2, L) =
0.2. Since ub < mrr∗, we can directly conclude that p5 can-
not be the point with the largest maximum regret ratio and
skip its LP computation. Similarly, some other LP computa-
tions can also be skipped in ImpGreedy and they are shown
shaded in Table 5.
�

Note that Qiu et al. [34] also considered a variation of
ImpGreedy by applying a randomized sampling on D before
performing the greedy selection to further reduce the number
of LP computations. However, they sacrificed the quality of
the solution set (e.g., the maximum regret ratio) for better
efficiency and there is no theoretical guarantee on the quality
of the solution set provided in [34].
GeoGreedy [31]. GeoGreedy follows the same framework
as that inGreedy. However, it differs fromGreedy by com-
puting mrrS∪{p}(S, L) using the critical ratio of p (whose
formal definition is given shortly) instead of LP (1).

Before we introduce the critical ratio, we present some
terminology first. For each point p ∈ D, we define the ortho-
tope set of p [31], denoted by Orth(p), to be a set of 2d

d-dimensional points constructed by {0, p[1]}× {0, p[2]}×
. . .×{0, p[d]}. That is, for each i ∈ [1, d], the i-dimensional

123

156 M. Xie et al.

Fig. 6 Orthotope set

Fig. 7 Critical ratio

value of a point in Orth(p) is equal to either 0 or p[i]. Given
a set S ⊆ D, we define the orthotope set of S, denoted by
Orth(S), to be

⋃
p∈S Orth(p) and we let Conv(S) be the

convex hull, the smallest convex set, of the orthotope set of
S.

Definition 3 [31] Given a set S ⊆ D and a point p ∈ D, the
critical ratio of p w.r.t. S, denoted by cRatio(S, p), is defined
to be min{ ‖p′‖

‖p‖ , 1}, where p′ is the intersection between the
ray shooting from O to p and the surface of Conv(S).

The following lemma shows that the definition of critical
ratio cRatio(S, p) is closely related to mrrS∪{p}(S, L) and
thus, we can compute mrrS∪{p}(S, L) in a geometric way
(i.e., by computing the critical ratio using a ray intersection).

Lemma 4 [31]mrrS∪{p}(S, L) = 1 − cRatio(S, p).

Example 3 Consider our running example in Table 1 where
D = {p1, p2, p3, p4, p5, p6}. For the ease of presentation,
we normalize HP/MPG to (0,1] and visualize the points
in Fig. 6 where the X1 and X2 coordinates represent HP
and MPG, respectively. The orthotope set Orth(p2) = {p2,
p′
2, p′′

2 , (0, 0)} is shown in Fig. 6 where p′
2 = (0, p2[2])

and p′′
2 = (p2[1], 0). Similarly, Orth(p3) is shown in the

same figure. Given S = {p2, p3}, we define Orth(S) to be
Orth(p2) ∪ Orth(p3). The convex hull Conv(S) is shown
in Fig. 7. Given p1 and S = {p2, p3}, the intersection
between Op1 and the surface ofConv(S) is denotedby p′

1.By

Lemma 4, mrrS∪{p1}(S, L) = 1 − cRatio(S, p1) = ‖p′
1‖‖p1‖ =

0.9.
�
StoredList [31]. StoredList, proposed by Peng et al. [31], is
a materialized version of GeoGreedy. Specifically, it pre-
computes a set of candidate points for RMS, called happy
points, in D, based on which it runs GeoGreedy and mate-
rializes the results. Then, when the user issues a query, RMS
can be answered efficiently with the materialized results.

Fig. 8 Cube example ∗

3.3 d-dimensional theoretical approaches

In this section, we summarize the d-dimensional algorithms
(d ≥ 2), namely Cube [28], ε- Kernel [2,7], Sphere [44],
HittingSet [2,21] and DMM [4], which provide theoretical
guarantees on the solutions returned for RMS.
Cube [28].Cube is the first algorithmwhich provides a prov-
able theoretical guarantee on solutions returned for RMS.
Specifically, after some initialization steps, Cube constructs
the solution set S by first, dividing the data space into mul-
tiple hypercubes based on the first d − 1 dimensions of the
data space and second, picking a point from each hypercube,
which has the largest d-dimensional value in that hypercube
and inserting that point into S. Since Cube picks one point
from each hypercube, the number of hypercubes constructed
in Cube has to be determined appropriately according to the
maximum output size. For example, in the three-dimensional
example in Fig. 8, the data space is divided into four hyper-
cubes based on the first two dimensions and the points,
namely s1, s2, s3 and s4, which have the largest third dimen-
sional value in each hypercube, are inserted to the solution
set S. According to the construction above, no matter which
hypercube the user’s favorite point is in, there is a point p in
S which is in the same hypercube and thus, the utility of p is
close to the utility of the user’s favorite point. For example, if
a user’s favorite point is p∗ as indicated in Fig. 8, there exists
a point, say s1, which is in S and is in the same hypercube
as p∗. Thus, s1 has its utility close to the utility of p∗. Since
s1 has been included into S, the user will be satisfied with S
and we can bound the regret ratio. Formally, we provide its
theoretical guarantee as follows.

Theorem 8 [28] Given an integer r , Cube returns a set S of
at most r points such that mrrD(S, L) ≤ d−1

�r−d+1� 1
d−1 +d−1

.

Specifically, for a fixed dimensionality,

mrrD(S, L) = O(r− 1
d−1).

ε-Kernel [2,7]. ε- Kernel improves the upper bound in
Cube by utilizing the concept of “ε-kernel,” which was first
introduced by Agarwal et al. [1]. Specifically, a set S ⊆ D is
said to be an ε-kernel of D if

maxp∈S v·p−minp∈S v·p
maxp∈D v·p−minp∈D v·p ≥ 1 − ε

for each non-zero vector v. Intuitively, an ε-kernel of D pre-
serves the “width” of D for each direction, e.g., Fig. 9 shows a
set D (dot points), its ε-kernel S (points enclosed by circles),

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 157

Fig. 9 ε-Kernel example

the width of D (denoted by w) and the width of S (which is
(1 − ε)w) along one particular direction v.

It was shown in [2,7] that the definition of ε-kernel is
closely related to RMS. Specifically, if S is an ε-kernel of
D, mrrD(S, L) ≤ ε, which indicates that S can be returned
as a solution for RMS. Moreover, it is well known that one
can compute an ε-kernel of size O(ε− d−1

2) according to the
procedure in [1,45]. The following theorem follows directly.

Theorem 9 [2,7] Given a real value ε > 0, one can compute

a set S ⊆ D of size O(ε− d−1
2) with mrrD(S) ≤ ε.

Cao et al. [7] translatedTheorem9 to an approximate algo-
rithm for RMS for obtaining an ε-kernel of at most r points.
This is done by setting a proper value of ε in Theorem 9. The
result is summarized in the following corollary.

Corollary 2 [7] Given an integer r , one can compute a set

S ⊆ D of at most r points with mrrD(S) = O(r− 2
d−1).

Combining the results above with the lower bounds pre-
sented in Sect. 2, ε- Kernel is the first asymptotical optimal
algorithm for RMS. Another advantage of ε- Kernel is that
it allows for maintaining the solution efficiently when the
dataset is changed by point insertions and deletions with-
out building the entire solution from scratch. However, the
hidden constant behind the big-O notations of ε- Kernel
is extremely large (see a more detailed discussion in [44]),
making it difficult to be applied in real scenarios.
Sphere [44]. Recently, Sphere, which is also an asymptotical
optimal algorithm forRMS,was proposed byXie et al. [44] to
reduce the hidden constant in ε- Kernel. The core of Sphere
constructs a small set of “representative” utility functions in
L and, then, includes the points in D with high utilities w.r.t.
those utility functions into the solution set.

Formally, Sphere computes a small setU of utility vectors
such that for each utility vector u in L, there is a utility vector
in U, denoted by u′, and dist(u, u′) ≤ δ where dist(u, u′)
denotes the Euclidean distance between u and u′, and δ is
a nonnegative similarity threshold (i.e., u is similar to u′).
Intuitively, U can be regarded as a representative set of utility
vectors that are uniformly distributed in the utility space such
that for any utility vector u in L, there is a utility vector in
U, which u is similar to. Then, for each utility vector u′ in
U, Sphere searches its D-basis (to be defined shortly) in D,
which is then included into the solution set S.

Fig. 10 Sphere example

q

u

u

D,

Given B ⊆ D and a vector u′ in U, we define the distance
between B and u′, denoted by dist(B, u′), to be theminimum
distance between the end point of vector u′ and a point in the
convex hull of B. Then, we define the “D-basis” as follows.

Definition 4 [44] Given a set B ⊆ D and a utility vector u′ in
U, B is said to be a D-basis of u′ if (1) for each proper subset
B ′ of B (i.e., B ′ ⊂ B), we have dist(B, u′) < dist(B ′, u′)
and (2) we have dist(B, u′) = dist(D, u′).

Intuitively, the D-basis of u′ is a minimal subset of D
whose distance to u′ is equal to the distance between D
and u′. For example, consider the car database in Fig. 10
where the end point of a vector u′ in U is indicated.
The distance between D and u′, dist(D, u′), is drawn in
dashed, which is the minimum distance between the end
point of u′ and a point in the convex hull of D (drawn
in solid lines). Point q, represented by a cross-point, is
the point in the convex hull of D achieving such mini-
mum distance. The D-basis of u′ is B = {p2, p3} since
dist(B, u′) = dist(D, u′) = dist({q}, u′) and, for each
B ′ ⊂ B, dist(B, u′) < dist(B ′, u′) (i.e., dist(B, u′) <

dist({p2}, u′) and dist(B, u′) < dist({p3}, u′)).
It was shown in [44] that, given a u′ in U, the points in

the D-basis of u′ have high utilities w.r.t. u′. For each utility
vector u in L, since the D-basis of u′ has been included into
the solution set S and u and u′ are similar, the points in S
also have high utilities w.r.t. u, and thus, the regret ratio can
be bounded. Formally, we have the following theorem.

Theorem 10 [44] Given an integer r , Sphere returns a set S
of at most r points such that mrrD(S, L) ≤

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − 1

d
,

(d − 1)d

max

{

1/4,

⌊(
r−d
d2

) 1
d−1

⌋2
}

+ (d − 1)d

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Specifically, for a fixed dimensionality, mrrD(S, L) =
O(r− 2

d−1).

HittingSet [2,21]. RMS was first formulated as a hitting set
problem in [2]. Specifically, given the set D, [2] constructs
a set system (or a range system)

∑ = (D, R) where R is a
family of subsets of D. Each subset R in R is created based

123

158 M. Xie et al.

on a particular utility function f in L, and R is defined to be
{q ∈ D | f (q) ≥ (1 − ε)maxp∈D f (p)}. That is, the utility
of any point in R is at least (1 − ε) of the utility of user’s
(whose utility function is f) favorite point in the whole D.

To illustrate, assume that ε is set to be 0.1 and we con-
struct the set system

∑ = (D, R) based on the dataset D
and three particular functions f0.4,0.6, f0.2,0.8 and f0.7,0.3 as
shown inTable 1. Take the utility function f0.4,0.6 as an exam-
ple. We define the set R0.4,0.6 to be {q ∈ D | f0.4,0.6(q) ≥
(1 − ε)maxp∈D f0.4,0.6(p)} = {q ∈ D | f0.4,0.6(q) ≥
0.9 × 86.4 = 77.76} = {p3, p4}. Similarly, we have
R0.2,0.8 = {p2, p3}, R0.7,0.3 = {p3, p4} and thus, R =
{R0.4,0.6, R0.2,0.8, R0.7,0.3}.

According to the way we define
∑

, it can be easily veri-
fied that a set S ⊆ D is a hitting set of

∑
(i.e., S ∩ R �= ∅ for

all R ∈ R) if and only ifmrrD(S, L) ≤ ε. For example, given
ε = 0.1, the set S = {p3} is a hitting set of

∑ = (D, R)

where R = {R0.4,0.6, R0.2,0.8, R0.7,0.3} (defined above) and
thus,mrrD(S, { f0.4,0.6, f0.2,0.8, f0.7,0.3}) ≤ ε = 0.1. By uti-
lizing the well-known approximate algorithm for the hitting
set problem [20] and allowing approximations on both the
maximum regret ratio and the output size simultaneously,
HittingSet solves RMS by (1) sampling a finite number
of utility functions in L, (2) constructing the corresponding
set system and (3) solving the resulting hitting set problem.
Formally, the result is summarized as follows.

Theorem 11 [2] Given ε and a user-controlled parame-
ter 0 ≤ γ ≤ 1, HittingSet returns a set S such that
mrrD(S, L) ≤ (1 − γ)ε + γ and |S| = O(rε) for d ≤ 3
and |S| = (rε log rε) for d ≥ 4 where rε is the smallest size
of any solution set in the dataset whose maximum regret ratio
is at most ε.

Note that the bound (1− γ)ε + γ on the maximum regret
ratio in Theorem 11 can be made arbitrarily close to ε by
increasing the execution time (i.e., sampling more utility
functions). Kumar et al. [21] improved the execution time
of HittingSet by applying it on a pre-computed ε-kernel
of D. Besides, Agarwal et al. [2] extended the HittingSet
algorithm to find a solution set for RMS with size at most
cr log r (for a given output size constraint r) where c is an
appropriate constant by running HittingSet multiple times
in a binary search manner on different values of maximum
regret ratios. Formally, the result is summarized below.

Corollary 3 [2] Given r and a user-controlled parameter
0 ≤ γ ≤ 1, HittingSet returns a set S of points such that
mrrD(S, L) ≤ (1− γ)εr + γ and |S| = O(r) for d ≤ 3 and
|S| = (r log r) for d ≥ 4 where εr is the smallest maximum
regret ratio of any set in the dataset with at most r points.

DMM [4]. DMM works similarly as HittingSet by dis-
cretizing the utility space based on a user-controlled parame-
ter and formulating RMS as a matrix min-max problem [36].

Fig. 11 DMM example

max

f

}

Specifically, consider a matrix M where each row corre-
sponds to a point in D and each column corresponds to a
utility function in L (see Fig. 11 as an example). Each cell
M[p, f] of the matrix is the regret ratio of p w.r.t. f . Given
a set S of r points and a utility function f , the regret ratio
rrD(S, f) can be computed to be the minimum value (among
the selected r rows of points in S, shown in shaded in Fig. 11)
on the corresponding column of f , and the maximum regret
ratio mrrD(S, L) is estimated to be the maximum assigned
regret ratio among all columns in M . Then, RMS is trans-
formed to a min–max problem on M , which can be solved as
a number of set cover problems in a binary search manner.
Its theoretical performance is shown as follows.

Theorem 12 [4] Given r and a user-controlled parameter
α ∈ [0, π

2], DMM returns a set S of at most r points
such that mrrD(S, L) ≤ cεr + (1 − c) where εr is the
smallest maximum regret ratio of any solution set in the
dataset with at most r points, c = cos(α′/2) cos(π/4)

cos(π/4−α′/2) and

α′ = 2 arcsin

(√
1−cosd−1 α

2

)

.

While DMM runs in O(n log n) time in theory, its
dependence on the parameter α is exponential. To improve
its efficiency, we can solve the matrix min–max problem
approximately by solving set cover problems using the well-
known greedy strategy,which, however, adds another level of
approximation and increases the output size by a log factor.

3.4 Theoretical comparison

After surveying different RMSalgorithms,we provide a brief
theoretical comparison among them. In particular, in addition
to the complexity analysis shown in Table 4, we also consider
the following aspects which were considered in the literature
[7,44] for evaluating the theoretical performance of an algo-
rithm A for RMS (see the summary in Table 6):

– Deterministic?Algorithm A is a deterministic algorithm.
– Has Bounds? Algorithm A provides theoretical bounds
on the size/maximum regret ratio of the returned set.

– Restriction-free MRR bound? The definition of
restriction-free MRR bound was first proposed in [44].
Specifically, it means that when there is a bound on
the maximum regret ratio, there is no restriction on the

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 159

Ta
bl
e
6

T
he
or
et
ic
al
co
m
pa
ri
so
n
am

on
g
ex
is
tin

g
R
M
S
al
go
ri
th
m
s

A
lg
or
ith

m
D
et
er
m
in
is
tic

?
H
as

T
he
or
et
ic
al
G
ua
ra
nt
ee
s?

A
rb
itr
ar
y
di
m
en
si
on

al
ity

?
Pa
ra
m
et
er
-f
re
e?

H
as

bo
un
ds
?

R
es
tr
ic
tio

n-
fr
ee

M
R
R
bo
un
d?

A
sy
m
pt
ot
ic
al
ly

op
tim

al
?

O
pt
im

al
?

Tw
o-
di
m
en
si
on
al
ex
ac
ta
lg
or
ith

m
s

2d
-S
w
ee
pD

P
[1
1]

�
�

�
�

�
�

2d
-B
iS
ea

rc
h
[7
]

�
�

�
�

�
2d

-G
ra

ph
D
P
[4
]

�
�

�
�

�
�

d
-D

im
en
si
on

al
he
ur
is
tic

al
go

ri
th
m
s

G
re

ed
y
[2
8]

�
�

�
Im

pG
re

ed
y
[4
4]

�
�

�
G
eo

G
re

ed
y
[3
1]

�
�

�
St

o
re

d
L
is
t
[3
1]

�
�

�
d
-D

im
en
si
on

al
th
eo
re
tic

al
al
go

ri
th
m
s
C
u
be

[2
8]

�
�

�
�

�
ε
-
K
er

n
el

[2
,7
]

�
�

�
�

Sp
h
er

e
[4
4]

�
�

�
�

�
�

H
it
ti
n
g
Se

t
[2
,2
1]

�
�

�
D
M
M

[4
]

�
�

�
�

bound.Recall that themaximumregret ratio is a real value
between 0 and 1. If the bound of themaximum regret ratio
of the solution set returned by A is in the range between
0 and 1 for any setting, we say that algorithm A has a
restriction-free MRR bound. Otherwise, the bound is in
the range between 0 and 1 in some restricted cases, and
thus, we say that A does not have a restriction-free MRR
bound.

– Asymptotically Optimal? Algorithm A returns an asymp-
totically optimal solution for RMS.

– Optimal? Algorithm A returns an optimal solution.
– Arbitrary Dimensionality? Algorithm A could be exe-
cuted on datasets with an arbitrary dimensionality.

– Parameter-free? Algorithm A does not require users to
specify additional parameters for executing the algo-
rithm.

All aspects are important to RMS since (1) a deterministic
algorithm could be more desirable than a randomized algo-
rithm in some applications since it returns stable solutions;
(2) an algorithm which returns a solution with theoretical
bounds is more useful than an algorithm which does not.
In particular, the tighter the bound, the more desirable the
algorithm. For example, an optimal algorithm is better than
an asymptotically optimal one, which is then better than a
theoretically bounded (but not asymptotically optimal) algo-
rithm; (3) an algorithmwhich does not have a restriction-free
MRR boundmay give an invalid bound (e.g., a bound greater
than 1) on the maximum regret ratio, which implies that this
algorithm does not have a useful bound since the maximum
regret ratio itself is a real number from0 to 1; (4) an algorithm
which could not be executed on datasets of some dimension-
alities could have limited generality; and (5) a parameter-free
algorithm is user friendly since setting appropriate parame-
ters requires additional user effort.

Consider the comparison summarized in Tables 4 and
6. Due to the NP-harness of the problem, only the two-
dimensional exact algorithms return optimal solutions for
RMS. Among them, 2d-BiSearch has a clearly better time
complexity (O(n log n)) than 2d-SweepDP (O(rn2)), while
2d-GraphDP is the best algorithm when the number of sky-
line/convex hull points in the dataset is much smaller than the
dataset size. Unfortunately, the two-dimensional exact algo-
rithms are restricted when the datasets have two attributes
only. In contrast, the heuristic algorithms can be executed
on datasets of any dimensionality. However, they fail to pro-
vide any theoretical guarantee on the solutions. Among them,
Greedy and ImpGreedy scale better than GeoGreedy,
whose performance degrades when the dimensionality is
large due to its exponential dependency on d. Finally, among
alld-dimensional theoretical algorithms,Cubehas the small-
est time complexity since it constructs the solution set by
scanning the database once, while the time complexities

123

160 M. Xie et al.

of most of the other theoretical algorithms exponentially
depend on d. Meanwhile, Cube is the first theoretically
bounded algorithm for RMS, whose bound is improved later
by Sphere and ε- Kernel. Although both Sphere and ε-
Kernel provide asymptotically optimal guarantees on the
solutions, the large hidden constant in the bound of ε-
Kernel prohibits it from being a restriction-free algorithm.
Moreover, in practice, ε- Kernel and HittingSet are usu-
ally implemented in a randomized manner. HittingSet and
DMM are not parameter-free algorithms since they require
additional parameters from users and they relax both the out-
put size and maximum regret ratio simultaneously.

4 Variants

In this section, we summarize the variants of RMS studied in
the literature. In particular, we present the generalized kRMS
problem in Sect. 4.1 and RMS over nonlinear utility function
class in Sect. 4.2, which are two major variants of RMS.
Other variants are shown in Sect. 4.3.

4.1 The kRMS problem

A major variant of RMS is the kRMS problem proposed by
Chester et al. [11], which can be regarded as a generalization
of the traditionalRMSproblem.Denote the kth highest utility
among points in D by k-maxp∈D f (p). In this variant, the
“regret ratio” (“maximum regret ratio”) is generalized to the
“k-regret ratio” (“maximum k-regret ratio”).

Definition 5 [11]Given a set S ⊆ D, an integer k and a utility
function f , the k-regret ratio of S over D w.r.t. f , denoted
by k-rrD(S, f), is defined to be max{0, 1 − maxp∈S f (p)

k- maxp∈D f (p)
}.

Definition 6 [11] Given a set S ⊆ D and a function class FC,
the maximum k-regret ratio of S over D w.r.t. FC, denoted by
k-mrrD(S, FC), is defined to be sup f ∈FC k-rrD(S, f).

Different from RMS where a user is happy with S if the
highest utility in S is close to the highest utility in D, a user
will be happy with S in kRMS and his/her k-regret ratio is
0 if the highest utility in S is at least the kth highest utility
in D. Similar to RMS, the goal of kRMS is to optimize the
worst-case k-regret ratio, i.e., we want a set S ⊆ D such that
the maximum k-regret ratio k-mrrD(S, L) is minimized.

When k is set to be 1, kRMS is reduced to the original
RMS problem. Besides, if S is a solution of RMS, it is also
a solution of kRMS. However, there can be another solution
for kRMS whose size and maximum k-regret ratio are much
smaller. Next, we show how to extend some algorithms orig-
inally designed for RMS to find a better solution for kRMS.
2d-kRMS [4,11]. 2d-SweepDP [11] and 2d-BiSearch [4]
can be extended to handling kRMS in two-dimensional

spaces. Specifically, 2d-SweepDP can be modified to solve
kRMS by finding a set S of lines in the dual space whose
lower envelope (which corresponds to the top-ranked points
in S) is close to the top-k rank contour of the dual lines of
all points in D (which corresponds to the k-ranked points in
D). Similarly, 2d-BiSearch can solve kRMS optimally by
determining the candidate values of the optimal ε (here, ε is
the maximum k-regret ratio rather than the maximum regret
ratio in RMS) implicitly based on a line sweeping algorithm
since there are much more such values than those in RMS.
kRMS-Greedy [11]. Chester et al. extended Greedy to a
randomized algorithm for the more general kRMS prob-
lem. Intuitively, it decomposes each iteration in the greedy
process, which identifies the point realizing the current max-
imum k-regret ratio, into a set of 2RMS problems and looks
for a common solution. Specifically, given a utility function
f , if p is the k-ranked point in D w.r.t. f , D must be able
to be divided into k −1 partitions, namely D1, . . . , Dk−1, so
that p is the 2-ranked point on each of these k − 1 partitions
(i.e., there is exactly one point in each partition with a higher
utility than p). However, it is difficult to find such a partition
without the knowledge of f . They used a randompartitioning
approach to construct candidate partitions. In particular, they
modified LP (1) to tell whether the partitioning is successful
and whether they need to try new partitions.
kRMS-HittingSet [2,21]. HittingSet [2,21] can be easily
extended to handling the kRMS problem by re-defining the
set system

∑ = (D, R) where each set R in R is defined
to be {q ∈ D | f (q) ≥ (1 − ε)k-maxp∈D f (p)}. In other
words, the utility of any point in the redefined set R is at
least (1 − ε) of the kth highest utility among all points in
D. The remaining procedure of kRMS- HittingSet is kept
unchanged.

When k is large, Kumar et al. [21] further improved the
efficiency by sampling a smaller subset D′ of D. It was
proven in [21] that, given any function f in L, we can approx-
imate the k-ranked point in D by the k′-ranked point in D′
with a high probability where k′ � k and |D′| � |D| so that
we can solve the original kRMS problem by solving an alter-
native k′RMS problem with a smaller input size in a shorter
time.
kRMS-DMM. Similar to HittingSet [2,21], DMM [4] can
also be extended to support kRMSwith aminormodification.
This is done by redefining each cell M[p, f] of M to be the
k-regret ratio of p w.r.t. f (instead of the regret ratio). The
remaining steps of kRMS- DMM are kept unchanged.

Remark kRMS can be further generalized to the top-k RMS
problem [21] where we want a set S such that the i th highest
utility in S is close to the i th highest utility in D for every
i ∈ [1, k]. Intuitively, the goal of top-k RMS is to find a set
S approximating the top-k query well. A multi-hitting set-
based algorithm was proposed in [21] to solve top-k RMS.

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 161

4.2 RMS over nonlinear utility functions

In Sect. 3, we focus on RMS where FC = L, the class of
linear utility functions. Now, we relax this assumption by
considering different types of nonlinear utility functions.

Definition 7 (Convex function) A function f is said to be
convex over R+ if for all x1, x2 ≥ 0 and λ ∈ [0, 1], we have
f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2).

Definition 8 (Concave function) A function f is said to be
concave over R+ if − f is a convex function.

Definition 9 (CES function) A function f is said to be a con-
stant elasticity of substitution (CES) function overRd+ if f is

in the form f (p) = (
∑d

i=1 ai p[i]b)
1
b where b > 0, ai > 0.

Definition 10 (MUF) A function f is said to be a mul-
tiplicative function (MUF) over R

d+ if f is in the form
f (p) = ∏d

i=1 p[i]αi where each αi ≥ 0 and
∑d

i=1 αi ≤ 1.

Given a function f , consider the marginal gain on its
utility f (p) caused by every unit increment on a particu-
lar dimensional value of point p. If f is a linear function
where f (p) = u · p = ∑

u[i]p[i], it corresponds to a con-
stant marginal gain since f (p) always increases u[i] units
for every unit increment on the i th dimensional value of p
(i.e., p[i]). In comparison, nonlinear functions correspond
to other types of marginal gains, e.g., a convex (concave)
function corresponds to an increasing (decreasing) marginal
gain.

Based on the definitions above, we summarize the nonlin-
ear function classes commonly studied in the literature:

– Convex function class FC is said to be a convex function
class if FC = { f | f (p) = ∑d

i=1 fi (p[i]) where each
fi is a convex function over R+}. For the purpose of
illustration, we stick to a particular convex function class
FC = { f | f (p) = ∑d

i=1 ai p[i]b where ai ≥ 0 and b ≥
1}, e.g., f (p) = ∑d

i=1 p[i]2 is in the convex function
class.

– Concave function class FC is a concave function class
if FC = { f | f (p) = ∑d

i=1 fi (p[i]) where each fi is
a concave function over R+}. For the purpose of illus-
tration, we stick to a particular concave function class
FC = { f | f (p) = ∑d

i=1 ai p[i]b where ai ≥ 0 and
0 < b < 1}, e.g., f (p) = ∑d

i=1
√

p[i] is in the concave
function class.

– CES function class FC is said to be a CES function class
if FC = { f | f is a CES function}. The CES function
class is a popular function class in economics.

– Multiplicative function (MUF) class FC is said to be a
MUF class if FC = { f | f is a MUF}. TheMUF class is a

function class that has more expressive power in model-
ing the diminishing marginal rate of substitution (DMRS)
[41] (a popular economic concept).

Note that according to [13,32], the scale-invariance of
RMS is preserved under all nonlinear utility function classes
defined above. In the following, we summarize the known
lower bounds on RMS when considering nonlinear utility
function classes and the best-known algorithms proposed
(both theoretical and heuristic) for solving nonlinear RMS.
Lower bound Assume that the maximum output size is fixed
to be r . The authors in [13,32] derived the lower bounds on
the maximum regret ratio over each of the nonlinear function
classes described above in two-dimensional spaces, and their
main results are summarized in Table 7.
Theoretical algorithms Cube [28] was extended to han-
dling nonlinear function classes with provable guarantees in
[13,32]. Specifically, Kessler Faulkner et al. [13] proposed
MinWidth, which omits empty hypercubes in Cube so that
sparse datasets can be better handled. Qi et al. [32] pro-
posedMinVar,whichperformswell evenwhen thedataset is
skewed. Their corresponding bounds on the maximum regret
ratio for a fixed output size r are shown in Table 7.
Heuristic algorithms Algorithms were also proposed for
solving nonlinear RMS heuristically. Specifically, Area-
Greedy [13] constructs a solution iteratively by including
the point that greatly increases the area under the current set
at each iteration. Angle [13] computes a set of directions
discretizing the polar space and identifies the farthest point
in each direction, which is added to the solution. MaxDif
[32] greedily selects points according to an upper bound on
the maximum regret ratio for each point in D.

4.3 Other variants

Many other variants of RMS were also studied in the litera-
ture, and they are summarized in this section.
Interactive RMS Nanongkai et al. [27] enhanced traditional
RMS with user interactions. Intuitively, instead of asking
the user for the exact utility functions directly, they implic-
itly learned the user’s utility function by asking the user to
provide some “hints.” Specifically, at each interaction, a user
is presented with a short list of points and she/he is asked to
indicate the point she/he favors the most among them. Based
on the user feedback, the utility function is learned implicitly
and finally, the user’s favorite point can be identified. User
interactions are shown to be very useful in [27]: They reduce
both the user regret and the output size exponentially. The
main result known for interactive RMS is shown as follows.

Theorem 13 [27] Given a real value ε > 0, one can guar-
antee an ε regret ratio by displaying O(s logs

1
ε
) points to

the user where s is the number of points displayed at each

123

162 M. Xie et al.

Table 7 RMS over nonlinear
utility function classes

FC Lower bound Upper bound

MinWidth [13] MinVar [32]

Convex Ω(1/r2b) O(1/r
1

d−1) –

Concave Ω(1/r2) O(1/r
1

d−1) –

CES (b < 1) Ω(1/br2) O(1/br
b

d−1) O(1/r
1

d−1)

CES (b ≥ 1) Ω(1/br2) O(1/r
1

b(d−1)) –

MUF Ω(1/r2) – O(ln(1 + 1/r
1

d−1))

interaction (i.e., the number of rounds of interactions is
O(logs

1
ε
)).

In most cases, s is small and it can be regarded as a fixed
constant. Comparedwith the traditionalRMSalgorithms pre-
sented in Sect. 3 (e.g., Theorem 9), Theorem 13 shows an
exponential improvement in the output size when user inter-
actions are allowed. Moreover, by combining Theorem 13
with the following lower bound on interactiveRMS,we know
that the algorithm in [27] is almost optimal.

Theorem 14 (Lower bound on interactive RMS [27]) For
any dimensionality d and ε ∈ (0, 1], there is a d-
dimensional database such that any algorithm needs to
present Ω(s logs

1
ε
) points from the database (i.e., to inter-

act with the user for Ω(logs
1
ε
) rounds) to guarantee a regret

ratio at most ε.

However, [27] has twomajor disadvantages. Firstly, it per-
forms poorly in the number of rounds of interactions when a
user wants to find the point with a 0 regret ratio (i.e., ε = 0).
Secondly, during interaction, it presents users with some
fake/artifical points (i.e., points not in the database). Fortu-
nately, Xie et al. [43] proposed algorithms which overcome
these deficiencies. Specifically, they used a concept, called
the utility hyperplane, to model the user preference and two
effective pruning strategies to locate the user’s favorite tuple
in the database. Moreover, the algorithms in [43] always dis-
play true tuples in the database during interaction, and thus,
they are said to be strongly truthful algorithms.
Average RMS [33,46,47] studied the regret ratios in the aver-
age case, rather than the worst case. In this setting, it is
assumed that the probability distribution of utility functions
in FC is given. Then, the average regret ratio is defined to be
the integral of regret ratios over this probability distribution,
which is also known as the expected regret ratio. To improve
the computational efficiency, they used sampling to estimate
the average regret ratio, which is within an additive distance
to its true value with a high probability. It was proven in
[33,46,47] that the average regret ratio is a monotonically
non-increasing supermodular set function. Thus, they find
a set with small average regret ratio using the well-known

greedy algorithm for minimizing a supermodular set func-
tion [18]. Specifically, the solution S is initialized to be the
whole database D, and then, they iteratively remove points
from S until there are at most r points in S. At each iteration,
the point which minimizes the average regret ratio of S is
removed. Unfortunately, the above algorithm is very ineffi-
cient and it has a cubic execution time in the dataset size.

Various techniqueswere proposed to improve its empirical
performance. For example, lazy evaluations, which main-
tain a list of lower bounds on the average regret ratios, were
considered in [33] to remove unnecessary computations. Pre-
computations and reused computations were also utilized in
[47] to improve the efficiency. In particular, when only con-
sidering linear utility functions on a two-dimensional dataset,
a dynamic programming- based algorithm was proposed in
[47] to solve the average RMS problem optimally.
Diversified RMS Hussain et al. [17] examined how user
regret can be minimized while maximizing the diversity
of the solution set. In their context, diversity is measured
as the average distance (e.g., Euclidean distance) between
every pairs of points in the returned set. They aimed at
optimizing an objective function which is a linear combi-
nation of appropriately scaled diversity and regret metrics.
Specifically, they proposed a greedy-based algorithm, which
incrementally constructs the solution by adding one point at a
time, and a swap-based algorithm, which iteratively updates
the solution by swapping points to improve the objective
value.
RMS in multi-objective submodular function maximization
(multi-RMS) Instead of optimizing over a single utility func-
tion in RMS, it is assumed in [39] that there are multiple
submodular objective functions in the user’s mind and they
studied the regret minimization in the context of multi-
objective submodular function maximization (multi-RMS).
In this setting, the approximate algorithm for each single
objective function maximization is taken as an input. To
solve multi-RMS, a coordinate-wise maximum method [39]
was proposed to output a fixed size solution and a polytope
method [39] was presented to enable users to control the
output size. In particular, in the biobjective case, the poly-
tope method provides a provable guarantee on the regret

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 163

ratio which cannot be improved significantly according to
the lower bound Ω(1/r2) proven for multi-RMS in [39].
Rank RMS While RMSmeasures the user regret based on the
utility difference between the points in the selected set and
in the whole database, Asudeh et al. [5] measured the user
regret based on their rank difference, which is also known
as rank RMS. In a two-dimensional space, they proposed a
2-approximation algorithm based on angular sweeping. In
a d-dimensional space, they modeled rank RMS by a geo-
metric hitting set problem based on the k-set enumeration (a
well-known concept in computational geometry) and solve
it with a logarithmic approximation factor. A function space
partition-based algorithm was also proposed in [5], which
provides a fixed approximation on rank RMS.
Candidate set for RMS A problem, which is orthogonal to
RMS, was raised in [31], which aims at reducing the set of
candidate points that we need to consider for RMS. It is well-
known [32] that when we are constructing a solution set S
for RMS, it suffices to consider the set of all skyline points
in D, denoted by Dsky , since the maximum regret ratio of S
will not be larger if we replace any non-skyline point p in
S with a skyline point that dominates p in Dsky . Peng and
Wong [31] further reduced the candidate set to be the set of
happy points, denoted by Dhappy . In particular, they proved
that Dhappy ⊆ Dsky ⊆ D and the optimal solution of RMS
must be a subset of Dhappy , which is summarized below.

Lemma 5 [31] Given an integer r , Dhappy ⊆ Dsky ⊆ D
and there exists a set S ⊆ Dhappy such that mrrD(S, L) =
mrrD(S∗, L) and |S| = |S∗| ≤ r where S∗ is the optimal
solution of RMS.

Apart from [31], [15,16] computed the candidate set for
RMS by considering skyline points with high priority and
frequency. However, these approaches are heuristic based,
and there is no known guarantees on their effectiveness.
RMS with binary constraints [12] augmented traditional
RMSwith binary constraints. Examples of binary constraints
include “the HP of this car is among top 10% in the database”
and “it is a limousine.” Heuristic algorithms were proposed
in [12] to find a set with a small maximum regret ratio while
maximizing the number of binary constraints it satisfies.

5 Experiments

Weconducted experiments on amachinewith 1.60GHzCPU
and 8GB RAM. All programs were implemented in C/C++.
Most of the experimental settings follow those in [4,28,44].
Both synthetic and real datasets are used in our experiments.

Synthetic datasets were generated using a dataset gen-
erator developed for skyline queries in [6]. Three types of
synthetic datasets with diverse characteristics were consid-
ered: (1) anti-correlated datasets (points which are good in

Table 8 Real datasets

Dataset d |D| |Dsky |
AL 2 5,810,462 37

IL 2 63,383 206

EN 5 178,080 483

NBA 6 16,916 130

HH 7 1,048,578 57

CL 9 68,040 3,460

one attribute are bad in some of other attributes); (2) corre-
lated datasets (points which are good in one attribute are also
good in other attributes); and (3) independent datasets (all
attributes are generated independently). Unless stated explic-
itly, for each synthetic dataset, the number of tuples is set to be
100,000 (i.e., n = 100,000). Note that anti-correlated datasets
are the most interesting synthetic datasets where the skyline
set is large and cannot be returned as a whole. Thus, we
used anti-correlated datasets as our default synthetic datasets.
Real datasets contain six datasets commonly used in existing
studies [4,11,27,28,44]. Airline (AL) [4] and Island (IL) [28]
are two-dimensional datasets, containing the information of
5,810,462 flights and 63,383 geographic locations, respec-
tively, and they are used for evaluating two-dimensional
algorithms. EL Nino (EN) [11] consists of 178,080 tuples
with five oceanographic attributes taken at the Pacific Ocean.
NBA [44] contains 16,916 tuples for each player/season
combination from 1946 to 2009. Six attributes are selected
to represent the performance of each player. Household
(HH) [44] contains 1,048,576 family tuples with seven
attributes, showing economic characteristics of each family.
Color (CL) [27,28] contains the color histograms of 68,040
images. The statistics about real datasets are summarized in
Table 8.

For all datasets, each attribute is normalized to (0, 1]. We
preprocessed each dataset such that the preprocessed dataset
contains skyline points only. The sizes of preprocessed anti-
correlated datasets are shown in Fig. 12. Note that someRMS
algorithms constrain the output size and some other RMS
algorithms constrain the maximum regret ratio during exe-
cution. Unless specified explicitly, the default output size is
set to be 30 (i.e., r = 30) if we constrain the output size,
and the default maximum regret ratio is set to be 0.05 (i.e.,
ε = 0.05) if we constrain the maximum regret ratio. The per-
formance of each algorithm is measured by its query time,
output size and maximum regret ratio. The query time of an
algorithm is the execution time of the algorithm. The output
size of an algorithm is the number of points returned by the
algorithm. The maximum regret ratio of an algorithm is the
maximum regret ratio of the set returned by the algorithm.
Some results are plotted in log scale for better visualization.

123

164 M. Xie et al.

d=2
d=3

d=4
d=5

102

103

104

105

1k 10k 50k 100k 500k 1M 5M 10M

sk
yl

in
e

si
ze

dataset size (n)

Fig. 12 Preprocessed anti-correlated datasets

2d-SweepDP 2d-BiSearch 2d-GraphDP

 0
 1
 2
 3
 4
 5
 6

 2 4 6 8 10

tim
e

(m
s)

output size (r)

 0
 1
 2
 3
 4
 5
 6

1k 10k 50k 100k 500k 1M

tim
e

(m
s)

dataset size (n)

(a) (b)

Fig. 13 Two-dimensional algorithms on anti-correlated datasets

We compared the following three sets of algorithms.
Firstly, we compared the two-dimensional algorithms 2d-
SweepDP [11], 2d-BiSearch [7] and 2d-GraphDP [4],
which solve RMS optimally. Secondly, we evaluated the d-
dimensional heuristic algorithms Greedy [28], ImpGreedy
[44] and GeoGreedy [31]. Note that StoredList [31] is a
materialized version of GeoGreedy and thus, it is excluded.
Thirdly, we studied the performance of d-dimensional the-
oretical algorithms, which can be further divided into two
sub-categories according to their primary purposes: (1) min-
error algorithms which minimizes the maximum regret ratio
while fixing the output size (i.e., Cube [28], Sphere [44]
and DMM [4]) and (2) min-size algorithms which minimizes
the output size while fixing the maximum regret ratio (i.e.,
HittingSet [2,21] and ε- Kernel [2,7]). Note that some
algorithms (e.g.,HittingSet) could be applied in both cases
(with somemodifications).We postpone the detailed descrip-
tion of these variations to later sections. We optimize the
performance of each algorithm, and the parameters are set
following the setting reported in existing studies.

We proceed with the experiments on synthetic and real
datasets in Sects. 5.1 and 5.2. In Sect. 5.3, we evaluated some
existing algorithms when they are extended to handling dif-
ferent variants of RMS. A user study about RMS can be
found in Sect. 5.4. Finally, we summarize our findings and
the empirical guideline for RMS in Sect. 5.5.

5.1 Results on synthetic datasets

5.1.1 Two-dimensional exact algorithms

We start with the performance evaluation of two-dimensional
algorithms (2d-SweepDP, 2d-BiSearch and2d-GraphDP),
and the results are summarized in Fig. 13. Since RMS can
be solved optimally in two-dimensional spaces, all two-
dimensional algorithmsproduce the same solutions, and thus,
we only report their query times. Figure 13a depicts the query
time by varying the output size r . All algorithms are fast,
and they take only a few milliseconds to return the opti-
mal solutions. However, 2d-SweepDP and 2d-BiSearch are
slightly slower than 2d-GraphDP, which is consistent with
the results reported in [4]. This is because both 2d-SweepDP
and 2d-BiSearch have to compute the lower/upper envelope
of a given set of lines, while 2d-GraphDP avoids the enve-
lope computation and solves RMS from a graph perspective.
We also show the query time of each two-dimensional algo-
rithm by varying the dataset size n in Fig. 13b. Since each
point is only described by two attributes, all algorithms are
fast and not very sensitive to the dataset size n. Similar to the
result in Fig. 13a, 2d-GraphDP achieves the smallest run-
ning time in all cases due to its efficient computations on the
regret ratios and its concise graph representation.

5.1.2 d-dimensional heuristic algorithms

We studied the performance of d-dimensional heuristic algo-
rithms inFig. 14 onfive-dimensional anti-correlated datasets.
Note that all heuristic algorithms differ in implementation
and they produce the same solutions. Thus, we only com-
pared their query times. (Their output sizes and maximum
regret ratios will be shown later.) Firstly, we varied the out-
put size r in Fig. 14a. In general, ImpGreedy runs faster
than Greedy since ImpGreedy avoids the unnecessary LP
computations inGreedywhile guaranteeing the correctness.
When r is small, GeoGreedy is the fastest algorithm. How-
ever, when r is larger, its performance degrades and becomes
slower than ImpGreedy. This is becauseGeoGreedy heav-
ily relies on the convex hull computation to obtain the critical
ratios and the next point to be included in the greedy pro-
cess. Unfortunately, computing the convex hull of r points
in GeoGreedy takes O(r O(d)) time, which is expensive for
large r , while other algorithms are quadratic in r . Secondly,
we proceed with the experiments by varying the maximum
regret ratio ε in Fig. 14b. In most cases, when a user specifies
a smaller ε, the problem becomes more challenging and an
RMS algorithm needs to return more points to guarantee the
required maximum regret ratio. Thus, when ε is smaller, the
running times of all heuristic algorithms increase. Among
all algorithms, ImpGreedy achieves the best performance
by being faster and less sensitive to ε. Thirdly, in Fig. 14c,

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 165

(a) (b) (c) (d)

Fig. 14 Heuristic algorithms on anti-correlated datasets

(a) (b)

Fig. 15 Min-error—vary r on anti-correlated (n = 100, 000, d = 5)

we evaluated the scalability of the heuristic algorithms by
varying the dataset size n. When there are more points in
the database, both LP-based algorithms and geometric-based
algorithms spendmore time to execute, which conformswith
human intuition. However, when considering the scalabil-
ity by varying the dimensionality d in Fig. 14d, LP-based
approaches (Greedy and ImpGreedy) scale better than
the geometric-based approach, GeoGreedy, since the time
of computing convex hulls in GeoGreedy exponentially
depends on d. According to the experiments above,we obtain
the following useful observations. Firstly, the geometric-
based approach, i.e., GeoGreedy does not scale well with
large dimensionality and large output size since its operation
is expensive in these cases. Secondly, ImpGreedy achieves
a superior performance among all heuristic algorithms with a
shorter query time and better scalability inmost cases since it
avoids a large number of redundant computations. Motivated
by this, in the rest experiments,we only compare ImpGreedy
and omit the results of other heuristic algorithms.

5.1.3 d-dimensional theoretical algorithms

In the following, we conducted two sets of experiments for
evaluating the d-dimensional theoretical algorithms. Specifi-
cally, we experimentally compared the min-error algorithms
Cube, Sphere and DMM (Figs. 15 and 16), and the min-
size algorithms, HittingSet and ε- Kernel (Figs. 17 and
18). For completeness, we also compared the best heuristic
algorithm, ImpGreedy, in the experiments.

Min-error In Fig. 15, we show the performance of the
min-error algorithms by varying the output sizes r on a
five-dimensional anti-correlated dataset. Note that although
HittingSet and ε- Kernel, which are primarily designed
as min-size algorithms, can be modified to answer min-error
RMS in theory, their empirical performances on solvingmin-
error RMS are poor due to the large running time (e.g.,
O(nd) in HittingSet) and the large maximum regret ratio
(e.g., ε- Kernel). Thus, we did not include these two vari-
ations in the figure for better visualization. We measured
the maximum regret ratio in Fig. 15a. Cube produces the
worst maximum regret ratio, while other algorithms return
solutions with smaller maximum regret ratios. For exam-
ple, when r = 30, the maximum regret ratio of Cube is
around 0.4, which is four times larger than the maximum
regret ratios of other algorithms. Moreover, according to our
results in Fig. 15a, none of the algorithms dominates the oth-
ers in terms of maximum regret ratio. Specifically, when r
is smaller, the maximum regret ratio of DMM is smaller,
while when r is larger, the maximum regret ratios of Sphere
and ImpGreedy are smaller. Similarly, we plotted the run-
ning time in Fig. 15b. Although the maximum regret ratio of
Cube is large, it is extremely fast compared with other algo-
rithms since it constructs the solution by simply scanning
the database once, which can be efficiently implemented.
Apart from Cube, Sphere is the most efficient algorithm
and it is faster than both ImpGreedy and DMM in all val-
ues of r . However, unlike Cube which performs poorly in
maximum regret ratio, the maximum regret ratio of Sphere
is not only asymptotically optimal, but also small empiri-
cally. Another interesting phenomenon that we can observe
from the experiments is that it takes more time for Sphere
and ImpGreedy to construct a solution with a larger size,
while the execution time of DMM is less sensitive to the
output size. Specifically, Sphere and ImpGreedy construct
solutions incrementally: They start with an empty solution
set and construct the solution set by gradually adding more
points to it. In particular, when a larger output size is required,
an incremental algorithm takesmore time to execute. In com-
parison,DMM solves RMS by solving a number of set cover
problems in a binary search manner, and thus, its perfor-

123

166 M. Xie et al.

mance is less dependent on the output size (but it is slower
than Sphere and ImpGreedy). Note that in some scenarios,
a user might want a large output size. For example, when a
job seeker is looking for a job in a job recommendation sys-
tem, she/he is willing to be recommended with a sufficient
number of positions to increase his/her chance to get some
jobs finally since each job position will only hire one or a
few people from a large number of candidates. The exist-
ing min-error algorithms are not efficient in these scenarios.
It is not clear whether RMS can be solved decrementally
with theoretical guarantees, that is, it starts with the entire
dataset as the solution and constructs the solution set by grad-
ually removing points from it. In particular, when a larger
output size is required, it takes less time to construct the
solution.
Min-error (scalability test) We studied the scalability of
the min-error algorithms in Fig. 16 where r is fixed to be
30. When the dataset size n (Fig. 16a) or the skyline size
(Fig. 16b) increases, the maximum regret ratios of all algo-
rithms are stable and are not sensitive to the increasing
dataset/skyline size. It conforms with the lower bounds in
Sect. 2, which is independent of the dataset/skyline size.
In particular, Sphere and ImpGreedy return the set with
the smallest maximum regret ratios in most cases. Differ-
ent from the stable performance in maximum regret ratio, all
algorithms take longer execution times when the dataset con-
tains more points. Cube is still the fastest one, while DMM
and ImpGreedy are slower. For example, when the dataset
contains 1 million points,DMM is 0.5∼10 times slower than
other algorithms.The increasing trendof execution timew.r.t.
the dataset size is very intuitive. However, in the era of big
data, the sizes of datasets are increasing at an unprecedented
rate (e.g., the whole dataset cannot be loaded into the main
memory). Moreover, data nowadays are distributed over dif-
ferent data centers, and thus, it is important to design RMS
algorithms in a distributed environment so that large datasets
can be handled more efficiently. However, these issues are
not considered in existing RMS algorithms, limiting their
applicability in real applications.

Similarly, when the dimensionality d increases (Fig. 16c),
the maximum regret ratios of most algorithms increase
slightly. This conforms with the lower bounds in Sect. 2,
and it is intuitive since it is more difficult to guarantee the
same regret with the same number of points on datasets with
larger dimensionalitieswhere eachpoint is describedbymore
attributes. On datasets with large dimensionalities, all algo-
rithms spend more time to execute. In particular, the running
time of DMM increases rapidly when d ≥ 7. For example,
when d = 7, DMM takes more than 300s to determine a
solution, while other algorithms finish in seconds. This is
because the operations of DMM are exponentially depen-
dent on d and thus, its execution time is sensitive to d. For
better visualization, we omit its results when d ≥ 7.

(a)

(b)

(c)

Fig. 16 Min-error—scalability test on anti-correlated datasets

Min-size We evaluated the min-size algorithms by varying
ε on a three-dimensional anti-correlated dataset in Fig. 17.
Note that it is possible to modify DMM [4] to be a min-size
algorithm by solving a so-called Minimum Rows Satisfy-
ing the given Threshold (MRST) problem [4]. However,
due to its large output size, we did not plot its result for
better visualization. Figure 17a depicts the output size of
each algorithm. When the user requires a smaller maxi-
mum regret ratio, all algorithms tend to return more points
to the user. In particular, ε- Kernel has the largest out-
put size in all cases, while the output size of ImpGreedy
and HittingSet is comparably smaller. For example, Imp-
Greedy and HittingSet return less than 30 points, which
is half of the points needed by ε- Kernel to guarantee a
0.01 regret ratio. This also justifies that the notion of max-
imum regret ratio is useful in giving a “big picture” of the
database and helping users to find the points that they are
interested in: Instead of asking the user to examine the entire
dataset containing 100,000 points, a user only needs to exam-
ine as few as 30 options to get a “good” point (only with
0.01 regret), without providing his/her exact utility func-
tion. Figure 17b shows the execution time of each algorithm.
Both HittingSet and ε- Kernel have comparable execu-

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 167

(a) (b)

Fig. 17 Min-size—vary ε on anti-correlated (n = 100, 000, d = 3)

tion times, but they are slower than the heuristic algorithm,
ImpGreedy.
Min-size (scalability test) The scalability test of the min-
size algorithms is provided in Fig. 18 where ε is fixed to be
0.05. According to the results, the output size of HittingSet
is smaller than ε- Kernel and ImpGreedy in most of the
cases while its running time is comparable to ε- Kernel,
but slower than that of ImpGreedy. In particular, compared
with ImpGreedy, the running times of HittingSet and ε-
Kernel aremore sensitive to the dimensionality d since their
operations are exponentially dependent on d. This indicates
the insufficiencies of the existing RMS algorithms (espe-
cially, the min-size RMS algorithms) in handling datasets
with large dimensionalities, which might be the case in real
scenarios. This claim also conforms with our theoretical
results summarized in Table 4 where the execution times
of HittingSet and ε- Kernel are exponentially dependent
on the dataset dimensionality.
Theoretical algorithms on other synthetic datasets Finally,
we studied the performance of the RMS algorithms on other
synthetic datasets with different characteristics (i.e., inde-
pendent datasets and correlated datasets) in Figs. 19 and
20 (results on the anti-correlated datasets have been pre-
sented in Figs. 16 and 18). Each algorithm follows a similar
trend as it behaves on anti-correlated datasets. However,
the maximum regret ratios / output size of each algorithm
on correlated datasets is smaller than those on independent
datasets, which is then smaller than those on anti-correlated
datasets. For example, to guarantee a 0.01 regret ratio, Imp-
Greedy has to return more than 20 points on anti-correlated
datasets, while on independent and correlated datasets, it
needs as few as 8 and 4 points, respectively, to guarantee
the same regret ratio. This observation is consistent with
dataset characteristics. For example, correlated datasets con-
tain points with high values in all attributes, and thus, only
a small number of points are needed to guarantee a small
maximum regret ratio. Similar phenomenon can also be
observed in the running time of each algorithm. For exam-
ple, points in anti-correlated datasets which have high values
in some dimensions might have low values in other dimen-

(a)

(b)

(c)

Fig. 18 Min-size—scalability test on anti-correlated datasets

(a)

(b)

Fig. 19 Min-error—vary r on other synthetic datasets

sions, making the trade-off among dimensions more difficult
and making it more time-consuming to construct the final
solution.

123

168 M. Xie et al.

(a)

(b)

Fig. 20 Min-size—vary ε on other synthetic datasets

(a) (b)

Fig. 21 2D algorithms on real datasets

5.2 Results on real datasets

On two-dimensional real datasets, Airline and Island, in
Fig. 21,weevaluated theperformanceof the two-dimensional
algorithms by varying the output size r . Similar to the results
observed on synthetic datasets, 2d-SweepDP is the slowest
algorithm and 2d-GraphDP is consistently faster than both
2d-SweepDP and 2d-BiSearchwhile being not sensitive to
r . This is because 2d-GraphDP avoids the expensive enve-
lope computation and it computes regret ratios (i.e., the edge
weights in the graph representation) efficiently.

In Figs. 22 and 23, we evaluated the performance of
each d-dimensional algorithm on the El Nino, NBA, House-
hold and Color datasets. In particular, we studied min-error
algorithms and min-size algorithms in Figs. 22 and 23,
respectively. Firstly, consider the results of min-error algo-
rithms in Fig. 22 where we varied the output size r . Similar
to what we observed on synthetic datasets, DMM does not
scale well w.r.t. the dimensionality, and thus, its results on
Color are omitted due to the large execution time. Except
for r ≥ 40 on El Nino, DMM has the largest execution time

and its maximum regret ratio is much worse than those of
Sphere and ImpGreedy, e.g., when r = 50 on NBA and El
Nino, both Sphere and ImpGreedy achieve 0 regret, while
the maximum regret ratio of DMM is greater than 0.1. In
addition, though Sphere and ImpGreedy have comparably
small running times, Sphere gives a smaller empirical max-
imum regret ratio than ImpGreedy, which is also observed
in [44]. For example, when r = 12 on NBA, the maximum
regret ratio of ImpGreedy is 0.075, while the maximum
regret ratio of Sphere is 0.05, which is a 30% improvement
over ImpGreedy. Secondly, consider the results of min-size
algorithms in Fig. 23 where we varied the maximum regret
ratio ε. HittingSet and ε- Kernel take more time to exe-
cute compared with ImpGreedy. Nevertheless,HittingSet
consistently returns the smallest solution set in all setting,
and thus, it is suitable in providing a small representative set
of the database in multi-criteria decision making. Note that
the evaluation on real datasets is consistent with our observa-
tions on synthetic datasets and it supports the claimswemake
in Sect. 5.1. In Sect. 5.5, we will formally summarize those
claims/observations,which alsomotivates the open problems
introduced in Sect. 6.

5.3 Results on variants of RMS

In this section, we demonstrate the experimental perfor-
mance of some existing RMS algorithms when they are
extended to solving different variants of RMS. In particular,
two major variants of RMS, namely kRMS and nonlinear
RMS, are studied in Sects. 5.3.1 and 5.3.2, respectively.
Besides, although none of the existing RMS algorithms can
be directly extended to handling interactive RMSwhere user
interaction is involved, we also conducted experiments in
Sect. 5.3.3 comparing the best performing RMS algorithms
against those interactive RMS algorithms, demonstrating the
effectiveness of user interactions in reducing the user regret
and the output size. Due to the limited space, we only report
the experimental results of each RMS variant on the anti-
correlated dataset and theNBAdataset in this section.Results
on other datasets are similar and thus are omitted.

5.3.1 Results on kRMS

We evaluated the performance of DMM [7] and Hit-
tingSet [2,21]when they are extended to handling kRMSfor
min-error RMS and min-size RMS, respectively. Although
Greedy [28] is extended to solving kRMS in [11] as kRMS-
Greedy, its execution time is much worse than those of
DMM and HittingSet since the number of LPs and the size
of each LP in kRMS-Greedy are very large. For the ease of
presentation, results of kRMS-Greedy are not reported.

Results on the anti-correlated and NBA dataset are shown
in Figs. 24 and 25. In general, when the parameter k in kRMS

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 169

(a) (b)

(c) (d)

Fig. 22 Min-error algorithms on real datasets

(a) (b)

(c) (d)

Fig. 23 Min-size algorithms on real datasets

increases from 1 to 5, the running time of each algorithm
increases. Meanwhile, we also observe that the maximum k-
regret ratio and the size of the solution set returned for large
k tend to be smaller than those returned for small k. This
conforms with our intuition that we can guarantee the same
k-regret ratio with a smaller set when k is larger since kRMS
can regard as a relaxation of traditional RMS.

5.3.2 Results on nonlinear RMS

Weperformed the experimental evaluationonnonlinearRMS
by comparing the following algorithms: (1) the original
Cube algorithm [28] and its extensions for nonlinear RMS,
MinWidth [13] andMinVar [32]; and (2) the heuristic algo-
rithms for nonlinear RMS, AreaGreedy [13], Angle [13]
and MaxDif [32]. Both MinWidth and MinVar provide
guarantees on nonlinear RMS (see Table 7).

123

170 M. Xie et al.

(a) (b)

Fig. 24 Results on min-error kRMS

(a) (b)

Fig. 25 Results on min-size kRMS

(a) (b)

Fig. 26 Running times on nonlinear RMS

In Fig. 26, we plotted the running time of each algorithm
by varying the output size r on the anti-correlated dataset and
the NBA dataset. According to the results, AreaGreedy is
the most time-consuming nonlinear RMS algorithm since it
requires expensive area computation. MaxDif is faster than
AreaGreedy, but is slower than Angle and cube-based
algorithms, which only scans the database once.

We also evaluated the maximum regret ratio of each algo-
rithm on four nonlinear utility function classes defined in
Sect. 4.2: convex function class, concave function class, CES
function class and multiplicative function (MUF) class in
Figs. 27 and 28.On the anti-correlated dataset,AreaGreedy
and Angle perform the best by returning the set with the
smallest maximum regret ratio over most of the nonlinear
function classes. In contrast, MinVar performs better on
NBA where it has the smallest maximum regret ratio over
both convex and multiplicative function classes.

5.3.3 Results on interactive RMS

We proceed with the experiments on interactive RMS. Recall
that in interactiveRMS, a user interactswith the database sys-
tem for rounds. At each round, the system displays s points
and the user is asked to select the point that she/he favors
the most among them. Based on the feedback, the system
learns the user’s preference implicitly and, finally, identifies
the user’s favorite point and returns that point to the user.

We implemented the best-known algorithms for inter-
active RMS: UH- Simplex [43], UH- Random [43] and
UtilityApprox [27].We set s (i.e., the number of points dis-
played at each round) to be 2. Then, we compared the above
algorithms against the single-round algorithms, Sphere [44]
and HittingSet [2,21] to demonstrate the effectiveness of
user interactions in reducing the regret ratio and the output
size, respectively. Since user feedback is required in interac-
tive algorithms, wemodeled the users’ behavior by randomly
generating their utility vectors. The exact utility vectors we
generated were not disclosed to any algorithms. Different
from traditional RMS, the performance of each algorithm in
interactive RMS is evaluated using two measurements: (1)
Regret Ratio. The regret ratio of an interactive algorithm (a
single-round algorithm) is the regret ratio (w.r.t. the gener-
ated utility vector) of the final point suggested (the solution
set returned); and (2) the maximum number of points dis-
played. For a single-round algorithm, the number of points
displayed is the size of the solution set returned. For an inter-
active algorithm, the number of points displayed is at most

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 171

(a) (b) (c) (d)

Fig. 27 Maximum regret ratios on nonlinear RMS (anti-correlated datasets where n = 100, 000, d = 3)

(a) (b) (c) (d)

Fig. 28 Maximum regret ratios on nonlinear RMS (NBA)

(a) (b)

Fig. 29 Vary number of points displayed on interactive RMS

(a) (b)

Fig. 30 Vary regret ratio on interactive RMS

the number of rounds multiplied by s (i.e., the number of
points displayed at each round).

We first constrain the number of points that an algorithm
can display in Fig. 29 (similar to the min-error RMS set-
ting). It shows that user interactions are very useful since

they can guarantee a smaller regret ratio compared with
the single-round algorithm, Sphere, where no user interac-
tion is allowed. Specifically, by only displaying 4 points,
UH- Simplex can guarantee a 0 regret ratio, while the
regret ratio of Sphere is around 0.1. Similarly, consider
Fig. 30 where we constrain the regret ratio of each algo-
rithm (similar to the min-size RMS setting). Due to the small
skyline size in NBA, HittingSet performs slightly better
than the interactive algorithms on NBA. However, on the
anti-correlated dataset where the skyline size is larger, its
output size is twice more than that of UH- Random when
the regret ratio is at most 0.01, which also verifies the use-
fulness of interactions in reducing the output size in some
scenarios.

5.4 User study

To verify the effectiveness of RMS in real scenarios, we
conducted a user study on statistics of the 2018–2019 NBA
regular season. After removing players who played less than
40 games during this season, there were 386 players remain-
ing. Six popular attributes (game played, minutes played,
rebound/assist/steal/points per game) were used to describe
the statistical performance of each player. We compared the
players returned by min-error RMS (we used ImpGreedy)
with three existing skyline variants, which are compared
in [28] where RMS was first proposed: distance-skyline
[40], MaxDom [24] and k-dominance [8]. Distance-skyline
picks r players that admit the best r-center clustering. Max-

123

172 M. Xie et al.

Table 9 Five NBA players
returned by different queries
(MVP candidates are in bold)

RMS Distance-skyline [40] MaxDom [24] k-Dominance [8]

James Harden James Harden Nikola Jokic Bradley Beal

Andre Drummond DeAndre Jordan Bradley Beal Andre Drummond

Russell Westbrook P.J. Tucker Russell Westbrook Paul George

Joel Embiid Chris Paul James Harden James Harden

Paul George Karl-Anthony Towns Rudy Gobert Russell Westbrook

Table 10 Top ten candidates for MVP award

Top 1–5 Top 6–10

Giannis Antetokounmpo Joel Embiid

James Harden Damian Lillard

Nikola Jokic Stephen Curry

Kawhi Leonard Paul George

Kevin Durant Russell Westbrook

Dom picks r players that dominate the largest number of
players. k-dominance relaxes the concept “domination” to
“k-domination” and finds r players that best k-dominate oth-
ers. Each query returns a set of five players, as shown in
Table 9.

Following [47], we conducted a survey on “Amazon
Mechanical Turk”. We asked participants with NBA knowl-
edge to indicate the set of players they prefer among
four candidates considering the statistical performance of
each player. If the statistical performance of a player (e.g.,
rebound) in a set is better than another in another set, the for-
mer set is better. In other words, we want a set such that the
statistical performance of each player is as good as possible.
We paid each participant $0.05 and there were 104 responses
in total.

According to the responses, 44.55% of participants
thought that the set returned by RMS has better overall per-
formance, while 22.72%, 13.63% and 19.09% prefer the sets
returned by distance-skyline, MaxDom and k-dominance,
respectively. Besides, we observed that the players returned
by RMS play in different positions such as point guard, small
forward and shooting guard and they enjoy diverse statisti-
cal performance. For example, Andre Drummond plays in
the center position and he has high rebounds, while James
Harden plays as a shooting guard and he achieves the high-
est points. In other words, the players returned by RMS not
only have good statistical performance, but also satisfy dif-
ferent NBA fans who are interested in diverse positions and
statistics.

As another reference on whether the players returned by
each query is useful in real world, we compared the play-
ers returned by each query to the top-10 NBA MVP award

candidates,2 as shown in Table 10. Four out of five players
returned by RMS are among the top ten candidates (bold in
Table 9), which is more than those in other queries, e.g., only
one player returned by distance-skyline appears in the MVP
list.

5.5 Summary

We conducted comprehensive experiments in this section on
both real and synthetic datasets, comparing the existing algo-
rithms for RMS under various parameter settings. The ability
of existing RMS algorithms on handling different variants of
RMS and the usefulness of RMS over other variants of the
skyline query are also clearly demonstrated.

Specifically, wemake the following observations and they
provide an empirical guideline to users on choosing the best
algorithm when solving RMS. Firstly, none of the existing
algorithms dominates others in all aspects. Specifically, some
algorithmsmight be good in one aspect (e.g., execution time)
while being poor in other aspects (e.g., maximum regret
ratio). Secondly, some RMS algorithms can be extended to
handling different variants of RMS. For example, DMM and
HittingSet can be extended to solving kRMS, while Cube
can be extended to solving nonlinear RMS. Thirdly, on two-
dimensional datasets where RMS can be solved optimally,
2d-GraphDP achieves the best performance by returning
the optimal solution in the shortest amount of time. Thus,
if the dataset only contains two attributes and the skyline
size is small, it is good to use 2d-GraphDP to find the opti-
mal solution for RMS. Fourthly, ImpGreedy scales better
and requires a shorter execution time compared with other
heuristic algorithms inmost cases. If the userswant a solution
for RMS which (1) is fast; (2) has a good empirical per-
formance; and (3) does not require theoretical guarantees,
ImpGreedy is a good option. Finally, different theoretical
algorithms have different advantages and they can be applied
in different scenarios. Specifically, among min-error algo-
rithms which optimize over the maximum regret ratio, Cube
is the fastest one, while Sphere guarantees a small maxi-
mum regret ratio in most cases; among min-size algorithms
which optimize over the output size, HittingSet returns a

2 https://www.basketball-reference.com/friv/mvp.html.

123

https://www.basketball-reference.com/friv/mvp.html

An experimental survey of regret minimization query and variants: bridging the best worlds… 173

small number of points in most cases while guaranteeing the
maximum regret ratio, and thus, it provides a good represen-
tative subset of the database. The best choice of algorithms
depends on application needs.

6 Open problems

In this section,we highlight the open problems and some pos-
sible future directions for RMS according to our discussion
and experimental observations in previous sections.
Optimal algorithms While there is an asymptotically tight
bound proven on RMS [2,7,44] (e.g., Theorem 9), the ques-
tion of an exact (non-asymptotic) bound remains open.
Developing an algorithm that computes an optimal bound
efficiently is an open algorithmic problem in this area.
Monotonically decreasing utility functions We assume that a
larger value is preferable to all users and only monotonically
increasing utility functions are considered in the existing
studies. However, it could happen in reality that a smaller
value in some dimensions is better. For example, a lower
price is better. Although we can use the trick of subtracting
each value from the maximum value in those dimensions (so
that the “larger is better” assumption is satisfied in Sect. 2), it
changes the value of those attributes and it is no longer clear
if the notation of regret still applies. None of the results so
far can be extended easily to this case.
Arbitrary monotonic utility functions While results on RMS
are known for some particular function classes, e.g., the
convex and CES function classes presented in Sect. 4.2, it
remains unknown whether we can get a general result that
applies for any monotonic utility function class.
High-dimensional RMS According to our experimental
evaluation, some existing algorithms (e.g., GeoGreedy,
ε- Kernel, HittingSet) do not scale well w.r.t. to the
dimensionality. Specifically, it takes them a very long time
to execute and the maximum regret ratios / the output sizes
of the solution sets they return are quite large even when the
dimensionality is of a medium value (e.g., d = 8). Given
the known lower bounds on RMS (e.g., Theorem 3), com-
puting a small set with a small regret on high-dimensional
datasets is a hard problem. Some additional assumptions
would have to be made on the data. Besides, when handling
datasets with very large dimensionalities, it is also important
to handle them very efficiently. Unfortunately, the execution
times of many existing algorithms exponentially depend on
the dimensionality. It remains open whether some dimension
reduction techniques could help in high-dimensional RMS.
Large size RMS In the era of big data, the size of dataset
is increasing in an unprecedented speed and the data might
come in a sequential manner. Most existing RMS algorithms
implicitly assume that the entire dataset can be loaded into the
main memory. Unfortunately, this assumption hardly holds

in real-world applications. Besides, data nowadays are dis-
tributed over different data centers. Computing a solution for
RMS across distributed databases so that the communication
cost is minimized (i.e., do not need to send all the datasets to
a single location) remains open.
RMS with dynamic updates Nowadays, the database is
updated frequently with point insertions and deletions. How
to extend the existing methods when the dataset is changed
dynamically is an interesting problem. Only ε-Kernel has
this ability, but the results of other methods are unknown.
Decremental RMS According to the experimental observa-
tions, most existing algorithms construct solutions incremen-
tally (i.e., start with an empty set and gradually add points).
In particular, to return more points or to guarantee smaller
regret, it takes more time for them to execute. However, in
reality, users are interested in small maximum regret ratios
(e.g., Alice wants a car which is as close to her favorite car
as possible) and in some scenarios, a larger output size is
desirable (e.g., the job recommendation example in Sect. 5).
Motivated by this, it is interesting to develop some decre-
mental RMS algorithms (i.e., start with the entire database
and gradually delete points) so that we can output a large
number of points or guarantee small regret efficiently.

7 Conclusion

In this survey, we comprehensively review existing meth-
ods for RMS. Specifically, various methods were proposed
for solving RMS optimally, but they are restricted in two-
dimensional spaces. In d-dimensional spaces, RMS was
proven to be an NP-hard problem. Heuristic algorithms
were proposed to obtain solutions with small regret/output
sizes and theoretical algorithms were also studied to provide
bounded guarantees on the solutions. Different variants of
RMSwere also reviewed and experimented in this paper. We
conducted a comprehensive experimental evaluation of all
state-of-the-art RMS algorithms on both synthetic datasets
and real datasets, demonstrating the advantages of different
RMS algorithms under various parameter settings. A user
study comparing RMS with other skyline variants was also
conducted, verifying the usefulness of RMS in real-world
scenarios.

Acknowledgements The research of Min Xie and Raymond Chi-Wing
Wong is supported by HKRGC GRF 16214017.

References

1. Agarwal, P., Peled, S., Varadarajan, K.: Approximating extentmea-
sures of points. J. ACM 51, 606–635 (2004)

123

174 M. Xie et al.

2. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Efficient algo-
rithms for k-regret minimizing sets. In: International Symposium
on Experimental Algorithms (SEA) (2017)

3. Alhenshiri, A.: Web information retrieval and search engines tech-
niques. Al-Satil J. (2010)

4. Asudeh, A., Nazi, A., Zhang, N., Das, G.: Efficient computation of
regret-ratio minimizing set: a compact maxima representative. In:
Proceedings of theACM International Conference onManagement
of Data (2017)

5. Asudeh, A., Nazi, A., Zhang, N., Dasm, G., Jagadish, H.: Rrr:
rank-regret representative. In: Proceedings of the 2019 ACM Inter-
national Conference on Management of Data (2019)

6. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In:
Proceedings of the 17th International Conference on Data Engi-
neering (2001)

7. Cao, W., Li, J., Wang, H., Wang, K., Wang, R., Wong, R., Zhan,
W.: k-regret minimizing set: efficient algorithms and hardness. In:
ICDT (2017)

8. Chan, C., Jagadish, H., Tan, K., Tung, A., Zhang, Z.: Finding k-
dominant skylines in highdimensional space. In: Proceedings of the
2006 ACMSIGMOD International Conference onManagement of
Data (2006)

9. Chan, C., Jagadish, H., Tan, K., Tung, A., Zhang, Z.: On high
dimensional skylines. In: Advances in Database Technology-
EDBT 2006 (2006)

10. Chang, Y., Bergman, L., Castelli, V., Li, C., Lo, M., Smith, J.:
The onion technique: Indexing for linear optimization queries. In:
Proceedings of the 2000 SIGMOD International Conference on
Management of Data (2000)

11. Chester, S., Thomo, A., Venkatesh, S., Whitesides, S.: Computing
k-regretminimizing sets. In: Proceedings of theVLDBEndowment
(2014)

12. Dong, Q., Zheng, J., Qiu, X., Huang, X.: Efficient approximate
algorithms for k-regret queries with binary constraints. In: Interna-
tional Conference on Web Information Systems and Applications
(2018)

13. Faulkner, T.K., Brackenbury, W., Lall, A.: K-regret queries with
nonlinear utilities. In: Proceedings of the VLDB Endowment
(2015)

14. Goncalves, M., Yidal, M.: Top-k skyline: a unified approach. In:
On the Move to Meaningful Internet System 2005: OTM 2005
workshops (2005)

15. Han, S., Zheng, H., Dong, Q.: Efficient processing of k-regret
queries via skyline priority. In: International Conference on Web
Information Systems and Applications (2018)

16. Han, S., Zheng, J., Dong, Q.: Efficient processing of k-regret
queries via skyline frequency. In: International Conference onWeb
Information Systems and Applications (2018)

17. Hussain, Z., Khan, H., Sharaf, M.: Diversifying with few regrets,
but too few to mention. In: Proceedings of the Second International
Workshop on Exploratory Search in Databases and theWeb (2015)

18. Il’ev, V.: An approximation guarantee of the greedy descent algo-
rithm for minimizing a supermodular set function. Discrete Appl.
Math. 114, 131–146 (2001)

19. Kenthapadi, K., Le, B., Venkataraman, G.: Personalized job rec-
ommendation system at LinkedIn: practical challenges and lessons
learned. In: Proceedings of the 11th ACM Conference on Recom-
mender Systems (2017)

20. Kleinberg, J., Tardos, E.: Algorithm Design. Addison Wesley,
Boston (2006)

21. Kumar, N., Sintos, S.: Faster approximation algorithm for the k-
regret minimizing set and related problems. In: 2018 Proceedings
of the Twentieth Workshop on Algorithm Engineering and Exper-
iments (ALENEX) (2018)

22. Lee, J., You, G., Hwang, S.: Personalized top-k skyline queries in
high-dimensional space. Inf. Syst. 34, 45–61 (2009)

23. Lian, X., Chen, L.: Top-k dominating queries in uncertain
databases. In: Proceedings of International Conference on Extend-
ing Database Technology: Advances in Database Technology
(2009)

24. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The kmost
representative skyline operator. In: Proceedings of International
Conference on Data Engineering (2007)

25. McDonald, D., Ackerman, M.: Expertise recommender: a flexible
recommendation system and architecture. In: Proceedings of the
2000 ACM conference on Computer supported cooperative work
(2000)

26. Mindolin, D., Chomicki, J.: Discovering relative importance of
skyline attributes. In: Proceedings of theVLDBEndowment (2009)

27. Nanongkai, D., Lall, A., Sarma, A.D., Makino, K.: Interactive
regret minimization. In: Proceedings of the 2012 ACM Interna-
tional Conference on Management of Data (2012)

28. Nanongkai, D., Sarma, A., Lall, A., Lipton, R., Xu, J.: Regret-
minimizing representative databases. In: Proceedings of the VLDB
Endowment (2010)

29. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline com-
putation in database systems. ACM Trans. Database Syst. (TODS)
30, 41–82 (2005)

30. Papadopoulos, A.N., Lyritsis, A., Nanopoulos, A., Manolopoulos,
Y.: Domination mining and querying. In: DaWaK (2007)

31. Peng, P., Wong, R.: Geometry approach for k regret query. In: Pro-
ceedings of International Conference on Data Engineering (2014)

32. Qi, J., Zuo, F., Samet, H., Yao, J.: K-regret queries using multi-
plicative utility functions. ACM Trans. Database Syst. TODS 43,
10 (2018)

33. Qiu, X., Zheng, J.: An efficient algorithm for computing k-average-
regret minimizing sets in databases. In: International Conference
on Web Information Systems and Applications (2018)

34. Qiu, X., Zheng, J., Dong, Q., Huang, X.: Speed-up algorithms for
happiness-maximizing representative databases. In: Asia-Pacific
Web (APWeb) and Web-Age Information Management (WAIM)
Joint International Conference on Web and Big Data (2018)

35. Roshdi, A., Roohparvar, A.: Information retrieval techniques and
applications. Int. J. Comput. Netw. Commun. Secur. 3, 373–377
(2015)

36. Russell, S., Norvig, P.: Artificial Intelligence:AModernApproach.
Pearson Education Limited, Malaysia (2016)

37. Salton, G., McGill, M.: Introduction to Modern Information
Retrieval. McGraw-Hill, New York (1986)

38. Soliman, M., Ilyas, I., Chang, K.C.C.: Top-k query processing in
uncertain databases. In: Proceedings of International Conference
on Data Engineering (2007)

39. Soma, T., Yoshida, Y.: Regret ratio minimization in multi-objective
submodular function maximization. In: AAAI (2017)

40. Tao, Y., Ding, L., Pei, J.: Distance-based representative skyline.
In: Proceedings of International Conference on Data Engineering
(2009)

41. Varian, H.: Microeconomic Analysis. Norton and Company, New
York (1992)

42. Walter, F., Battiston, S., Schweitzer, F.: A model of a trust-based
recommendation system on a social network. Auton. AgentsMulti-
Agent Syst. 16, 57–74 (2008)

43. Xie, M., Wong, R., Lall, A.: Strongly truthful interactive regret
minimization. In: Proceedings of the 2019ACMInternational Con-
ference on Management of Data (2019)

44. Xie, M., Wong, R., Li, J., Long, C., Lall, A.: Efficient k-regret
query algorithmwith restriction-free bound for any dimensionality.
In: Proceedings of the 2018 ACM International Conference on
Management of Data (2018)

45. Yu, H., Agarwal, P., Varadarajan, R.P.K.: Practical methods for
shape fitting and kinetic data structures using coresets. Algorith-
mica 52(3), 378–402 (2008)

123

An experimental survey of regret minimization query and variants: bridging the best worlds… 175

46. Zeighami, S., Wong, R.: Minimizing average regret ratio in
database. In: Proceedings of the 2016 International Conference
on Management of Data (2016)

47. Zeighami, S., Wong, R.: Finding average regret ratio minimizing
set in database. In: Proceedings of 35th International Conference
on Data Engineering (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	An experimental survey of regret minimization query and variants: bridging the best worlds between top-k query and skyline query
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Terminologies
	2.2 Problem definition
	2.3 Properties
	2.4 Lower bound and NP-hardness
	2.5 Computing maximum regret ratio
	2.6 SQL extensions

	3 RMS algorithms
	3.1 Two-dimensional approaches
	3.2 d-dimensional heuristic approaches
	3.3 d-dimensional theoretical approaches
	3.4 Theoretical comparison

	4 Variants
	4.1 The kRMS problem
	4.2 RMS over nonlinear utility functions
	4.3 Other variants

	5 Experiments
	5.1 Results on synthetic datasets
	5.1.1 Two-dimensional exact algorithms
	5.1.2 d-dimensional heuristic algorithms
	5.1.3 d-dimensional theoretical algorithms

	5.2 Results on real datasets
	5.3 Results on variants of RMS
	5.3.1 Results on kRMS
	5.3.2 Results on nonlinear RMS
	5.3.3 Results on interactive RMS

	5.4 User study
	5.5 Summary

	6 Open problems
	7 Conclusion
	Acknowledgements
	References

