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Abstract
Speech-based inputs have been gaining significant momentum with the popularity of smartphones and tablets in our daily
lives, since voice is the most popular and efficient way for human–computer interaction. This paper works toward designing
more effective speech-based interfaces to query the structured data in relational databases. We first identify a new task named
Speech-to-SQL, which aims to understand the information conveyed by human speech and directly translate it into structured
query language (SQL) statements. A naive solution to this problem can work in a cascaded manner, that is, an automatic
speech recognition component followed by a text-to-SQL component. However, it requires a high-quality ASR system and
also suffers from the error compounding problem between the two components, resulting in limited performance. To handle
these challenges, we propose a novel end-to-end neural architecture named SpeechSQLNet to directly translate human speech
into SQL queries without an external ASR step. SpeechSQLNet has the advantage of making full use of the rich linguistic
information presented in speech. To the best of our knowledge, this is the first attempt to directly synthesize SQL based
on common natural language questions in spoken form, rather than a natural language-based version of SQL. To validate
the effectiveness of the proposed problem and model, we further construct a dataset named SpeechQL, by piggybacking the
widely used text-to-SQL datasets. Extensive experimental evaluations on this dataset show that SpeechSQLNet can directly
synthesize high-quality SQL queries from human speech, outperforming various competitive counterparts as well as the
cascaded methods in terms of exact match accuracies. We expect speech-to-SQL would inspire more research on more
effective and efficient human–machine interfaces to lower the barrier of using relational databases.

Keywords Speech-to-SQL · SQL query generation · Speech-driven querying system · AI/NLP/Speech for database

1 Introduction

Nowadays, the vast majority of data in our lives is stored
in relational databases, and an essential tool for accessing
this data is through structured query language (SQL) com-
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mands [33]. However, SQL has a rather complex grammar
and long learning curve, and the difficulty of mastering SQL
blocks many non-technical users to use SQL. To facilitate
these users to perform data queries, automatically generat-
ing SQL queries from natural language questions (NLQs), or
text-to-SQL, has been extensively studied in natural language
processing (NLP) and database communities recently [3, 25,
34, 43, 44, 53, 64, 100]. For example, Gkini et. al published a
paper [25] in SIGMOD’21which systematically summarizes
popular text-to-SQLmethods and natural language interfaces
(NILs) for databases. Affolter et. al [3] conducted a compre-
hensive survey in VLDBJ about the progress in NLIs for
databases, especially about recent neural-based approaches.

Compared with the text-based input, it is widely believed
that the voice-based interface is a much easier and efficient
way for human-computer interaction. According to the user
study in [65], the voice-based interface could allow users to
compose SQL queries considerably faster by up to 6.7x com-
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Fig. 1 Speech-driven database querying using Speech-to-SQL; two kinds of underlying techniques, the cascaded approach and the end-to-end
approach, are explored in this study. Text is shown only for illustrating the speech content, which is not available in real scenarios

pared to typing on a text-based interface in a tablet device.
Meanwhile, with the popularity of smart mobilephones and
tablets in our daily lives, dozens of voice-based applications
have emerged in the market in the past decades, such as
voice-based search engines [4], voice-basedAI assistants and
chatbots (e.g., Siri, Xiaoice, Google Home and Cortana) [58]
and voice-based databases [65].

In parallel, studies already exist for building voice-based
interfaces for database systems in the research commu-
nity [65, 66, 77, 78]. For example, SpeakQL implements a
voice-based query interface for structured data that enables
users to input SQL with speech. Utama et al. [78] designed
a system named EchoQuery, which also supports users
to query the database with voice. However, these studies
usually restrict the voice query to be an NL-based ver-
sion of SQL or its variants with a limited subset of SQL
grammar, and thus, they still require the users to have profes-
sional background and skill in SQL language. For example,
SpeakQL requires the query to be an exact SQL statement
such as “Select Salary From Employees Where
Name Equals John”, and EchoQuery requires that the
basic query request should be in the form like “What is
the {Aggregation}{Columns(s)} of
{Table(s)}?”.As such, noneof themachieves translating
common flexible speech-basedNLQs (i.e., questionswithout
being restricted by any template) into SQL queries, a harder
yet more valuable task widely believed to be a more efficient
and straightforward way of human–machine interaction that
lowers the barrier of using relational databases.

In this paper, we work toward designing more effec-
tive voice-based interfaces that attempt to handle common
NLQs to manipulate the structured data stored in the rela-
tional database. Toward this goal, we first present a new
task named speech-to-SQL, which aims to understand
the information conveyed by human speech and translate it
into the corresponding SQL query, as shown in Fig. 1. A
naive solution to this task can work in a cascaded fashion,
namely first converting speech signals into their correspond-
ing transcripts with an automatic speech recognition (ASR)

component, and then conducting downstream SQL genera-
tion by a text-to-SQL component. While this approach can
alleviate the problem to a certain extent, it suffers from the
error compounding problem. That is, the ASR module pro-
duces myriad forms of errors in the recognized transcripts
which brings a big technical challenge for the subsequent
text-to-SQL conversion. In our analysis, we found that exist-
ing text-to-SQL models are not robust to these ASR errors.
For example, according to our experiment, a 33% ASR error
rate would cause more than 36% accuracy reduction for the
downstream text-to-SQL conversion.

Motivated by the above-mentioned issues, we aim to
explore the end-to-end neural approach that does not require
an external ASR step for speech-to-SQL in this work. The
benefits of such an end-to-end neural model for speech-to-
SQL are as follows, (i) Potentially good performance: the
end-to-end approach could potentially alleviate the error
compounding problem since the whole network enjoys a
single objective function which is the same as the SQL gen-
eration objective, while each component of the cascaded
approach employs a different optimization objective; (ii)
Less complexity and efforts: the end-to-end approach does
not require to construct separate linguistic components and
assemble them together, which frees the engineers from
the burden of constructing and maintaining of the high-
quality ASR and the text-to-SQL components; (iii) Faster
speed: since the end-to-end models are usually more com-
pact than cascaded models, it could process the query much
faster, which is important since this speech-driven applica-
tion is usually deployed in amobile environment with restrict
resources.

To validate the rationale of this problem and the fol-
lowing possible end-to-end models, we first construct a
benchmark dataset named SpeechQL, by piggybacking
the public text-to-SQL datasets - WikiSQL [103] and Spi-
der [96]. Then, we design an advanced neural architecture,
namely SpeechSQLNet, to directly explore the semantics
presented in the speech and synthesize the corresponding
SQL queries. In particular, SpeechSQLNet seamlessly inte-
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grates speech encoder, graphical neural network (GNN) and
transformer as its backbones to conduct speech parsing for
unlabeled speech data without an ASR step as a premise,
and the whole network is optimized in an end-to-end fash-
ion. There are two challenges. The first challenge is the huge
modality gap (or representation difference) between speech
and text. The second challenge is the schema-linking prob-
lem (identifying the references of tables and columns in the
speech queries). As such, we design two novel pre-training
mechanisms, speech–sentence and speech–item pre-training,
to address these two challenges, respectively. The speech–
sentence pre-training is based on an auto-encoder to force
the two modalities from speech and text to map into the
same hidden space. The speech–item pre-training aims to
identify the references of tables and columns in the speech
queries, which could meanwhile also reduce the modal-
ity gap. Experimental evaluations on this proposed dataset
show that SpeechSQLNet could synthesize high-quality SQL
queries directly from speech. Asides from the experimental
evaluations, the techniques describes in this paper are further
validated byVoiceQuerySystem [70], a voice-based database
querying system that enables users to conduct data operations
with speech-based NLQs.

While artificial intelligence for the database (AI for DB)
has become a hot direction and drawn significant atten-
tion from the database community recently [46, 105], a
few studies have been conducted on advanced natural lan-
guage processing (NLP), especially speech technologies, for
database topics. Speech-to-SQL will become a popular task
towardmore effective and intelligible speech-driven human–
machine interfaces for relational databases. We hope this
work will also inspire more following studies in NLP/Speech
for DB direction to promote the development of the database
area.

In a nutshell, the contributions of the work can be sum-
marized as follows.

• We propose a kind of new query interface with its cor-
responding task, namely speech-to-SQL, that lowers the
barriers of using SQL and relational databases. To pro-
mote further research in this task, we also construct a
benchmark dataset called SpeechQL. This new task and
benchmark dataset would promote the development of
speech-driven interfaces for improving the usability of
traditional databases (Sect. 3).

• We explore two approaches, the cascaded one and the
end-to-end one (i.e., SpeechSQLNet), to synthesize the
SQL queries from speech. Compared with the cascaded
one, SpeechSQLNet has the advantage of reducing the
error compounding problem by optimizing in an end-to-
end style, achieving a better performance compared with
the cascaded methods. To the best of our knowledge, we
are the first in the literature to validate that it is possible

to synthesize SQL from an common human question in
speech andbypasses text. Thiswould open a new research
direction of novel end-to-end neural architectures toward
SQL generation from speech NLQs (Sect. 4 & Sect. 5).

• To bridge the challenging modality gap between the
two modalities of speech and text, we propose a novel
speech–sentence pre-training mechanism that employs
an autoencoder-based framework to map the speech and
text into the same hidden space. Furthermore, to handle
the schema-linking problem,wepropose another speech–
item pre-training mechanism to empower the modal’s
capability in identifying the refereed items in the speech
query. Since these two mechanisms are intended for
reducing themodality gap between the two inputs, speech
NLQ and schema, they would be potentially applied to
any following end-to-end neural networks for speech-to-
SQL (Sect. 6).

• We conducted extensive experiments on this proposed
benchmark dataset, compared with several strong base-
lines [28, 74, 79, 100, 103]. Experimental results show
that SpeechSQLNet can significantly outperform not
only other end-to-end baselines [74, 79] but also improve
the cascadedmodels, such as an advancedmodel—IRNet
[28], by up to 10.22% in terms of query match accuracy
(Sect. 7).

The rest of this paper is organized as follows. We first
introduce some preliminaries in Sect. 2. Then we give the
detailed problem setup in Sect. 3, following by the introduc-
tion of the naive cascaded approach in Sect. 4. The proposed
SpeechSQLNet, including the model structure as well as its
components, is illustrated in Sect. 5. The specially designed
training mechanism is discussed in Sect. 6. Experimental
evaluations are then presented in Sect. 7, followed by a com-
prehensive review of the related work in Sect. 8. Finally, we
conclude the work with discussion especially on this large
language model (LLM) era in Sect. 9.

2 Preliminaries

We introduce some preliminary knowledge about sequence-
to-sequence structure (Seq2Seq) and transformer structure,
which helps the understanding of the concept used.
Sequence-to-Sequence Structure. Seq2Seq [17] refers to
a series of neural architectures that map a given sequence
of elements (e.g., words and speech signals) into another
sequence. Many tasks such as machine translation and ASR
enjoy a common Seq2Seq structure and can be solved under
the Seq2Seq framework. Take English-to-Chinese machine
translation as an example. The input sequence of a Seq2Seq
network designed for this task is the source language (i.e.,
English) and the output sequence is the target language (i.e.,
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Chinese). The network usually consists of an encoder and a
decoder, where the former takes the input sequence and con-
verts it into some hidden representations, and the latter maps
these hidden representations into the target sequence. The
common choice of the encoder and decoder can be a recur-
rent neural network (RNN) [50] or long short-term memory
(LSTM) [27]. The speech-to-SQL problem also enjoys a
Seq2Seq structure and can also be considered to be a special
case of Seq2Seq conversion. Thus, we also employed several
basic Seq2Seq network architectures [74, 103] as baselines
for performance comparison in this work.
Transformer-based Structure. As a special case of the
Seq2Seq structure [17], Ashish et al. [79] proposed a neural
network named Transformer that shows promising perfor-
mance in various NLP tasks such as machine translation and
dialogue systems. A novel architecture named multi-head
self-attention was designed, which is formally defined as

MultiHead(Q, K , V ) = [h1; h2; · · · ; hn]W0, (1)

where [; ] represents the concatenation operation, Q is the
query, K is the key, V is the value, and W0 ∈ R

dmodel×dmodel

is learnable parameters. n is the number of heads, dmodel is
dimensionality of the model, and each hi is obtained from an
attention module, defined as

hi = Attention(QW Q
i , K W K

i , V W V
i ), (2)

Attention(Qi , Ki , Vi ) = softmax(
Qi K T

i√
dk

)Vi , (3)

where dk = � dmodel
n �, dk is the dimensionality of queries Qi ,

W Q
i ∈ R

dmodel×dk , W K
i ∈ R

dmodel×dk and W V
i ∈ R

dmodel×dk

are the parameters.
The transformer consists of multiple stacked encoder and

decoder layers. The encoder contains several layers consist-
ing of a self-attention module followed by a position-wise
feed-forward layer, defined as

FFN(X) = max(0, X W1 + b1)W2 + b2, (4)

where FFN(·) refers to a feed-forward network, W1 ∈
R

dmodel×d f f and W2 ∈ R
d f f ×dmodel are the weight matrices,

b1 ∈ R
d f f and b2 ∈ R

dmodel are the corresponding bias, d f f is
the dimensionality of the inner-layer, and X ∈ R

dmodel×dmodel

is the input matrix. To further capture the sequential informa-
tion, a positional encoding (PE) [79] mechanism is further
employed, which mathematically defined as

PE(pos,2i) = sin(pos/100002i/dmodel), (5)

PE(pos,2i+1) = cos(pos/100002i/dmodel), (6)

Table 1 The statistics of the proposed SpeechQL Dataset

Statistic Train Validation Test Total

No. of Instances 31431 1100 2200 34731

No. of Databases 13199 1058 2023 13601

Length of Speech 37.43h 1.33h 2.61h 41.37h

Avg NLQ Length 11.85 11.97 11.83 11.85

Avg SQL Length 9.1 9.05 9.03 9.09

Vocab Size – – – 15908

where pos is the token position in a sequence and i is the
dimension index.

3 Problem setup

We are ready to give the formal definition of the speech-
to-SQL problem and the benchmark dataset constructed to
evaluate the rationale of the proposed problem and possible
models.

3.1 Speech-to-SQL problem

Suppose that we have a speech corpus D of M instances,
denoted as D = {d1, · · · ,dM }, where di (i ∈ {1, · · · , M})
represents the i-th instance. The superscript i is ignored for
simplicity in the following discussion. Each training instance
d is in the format of {x, y, S}, where x is a speech recording
expressing theNLQ, y is its translation in SQLquery, and S is
the schema of the corresponding database on which y will be
executed. The speech-to-SQL problem aims to learn a model
which can translate an unseen question-schema pair {x ′, S′}
to its corresponding SQL query y′. Specifically, the schema
S includes the collection Tx of N tables where Tx = {ti }N

i=1,

the collection Cx,i of Li columns where Cx,i = {ci, j }Li
j=1

for each table ti ∈ Tx and Li is the number of columns in
table ti for i ∈ [1, N ], and a set Fx of foreign key–primary
key column pairs, where each pair (c f , cp) ∈ Fx refers to
a relation between a foreign key c f and a primary-key cp

where the keys are from two different tables. We use Cx to
include all the columns and Cx = {Cx,i }N

i=1.
Figure 2 gives two example for a vivid illustration. In the

first example, the user expresses their data requirement by
orally asking a question “Please find the average
age of students who do not have a pet?” to
the speech-based interface of the databases. Given the
schema of the database as “student (sid, sname,
age), pet (pid, sid, pname)” and the above
speech (without the corresponding transcript), the speech-
to-text task aims to directly synthesize the desired SQL query
“SELECT AVG(age) FROM student WHERE sid
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Fig. 2 Two examples of the
speech-to-SQL problem,
showing that different databases
(schemas) can result in different
desired SQL queries, even for
the same speech question. Thus,
schema is also essential as a part
of the input for the potential
speech-to-SQL models, which is
the same for the existing
text-to-SQL problem. However,
in practical systems like
VoiceQuerySystem [70], from
the perspective of no-technical
background users, the schemas
are usually preloaded by the
systems, rather than
defined/required from the end
user side

NOT IN (SELECT sid FROM pet)”. Finally, theDBMS
could execute the generated SQL and display the final results
to the user. For the second example, the sameNLQ is queried
by the user on another database with schema “student
(sid, pid, sname, age), pet (pid, color,
pname)”, and the desired SQL would be “SELECT AVG
(age) FROM student WHERE pid = NULL” corre-
spondingly, to guarantee the correctness of the final results.
From the perspective of a potential model, the schema is an
essential part of the input in the speech-to-SQL problem,
which is consistent with the setting of existing text-to-SQL
problem and studies [11, 28, 42, 94, 96]. However, this does
not mean that we require the non-technical background users
to give the schema when we deploy the potential speech-to-
SQL models in a speech-driven querying system. Actually,
in systems like VoiceQuerySystem [70], the schema is usu-
ally preloaded by the systems, rather than required from the
end user side.

3.2 Speech-to-SQL dataset

Since speech-to-SQL is a new task, there are currently no
existing datasets in the literature that are suitable for evalu-
ating its performance. Following the same practice of using
text-to-speech (TTS) technology [22] to generate the spoken
captions in other speech-driven applications like the speech-
to-image task [47, 83, 84], the spoken implicit discourse
relation recognition task [51] and the speech translation task
[87], we create a new dataset based on public text-to-SQL
datasets, namelyWikiSQL [103] and Spider [96], by convert-
ing the textual statement into speech using a TTS module.

There are several text-to-SQL datasets in the text-to-
SQL field [72, 96, 103]. Spider dataset [96] is a small-scale
dataset for cross-domain text-to-SQL evaluation annotated
by human experts. It contains 8,625 training instances, 1,034
validation instances and 2,147 test instances, where one

instance corresponds to {x, y, S} containing x as the text-
based NLQ, y as the SQL and S as the schema of the
corresponding database. One of the reasons that Spider is
popular in the text-to-SQLfield is that it contains complicated
queries from diverse databases, ranging from restaurants
and scholars, to academics. The WikiSQL dataset [103] is
another popular dataset in the text-to-SQL task. Compared
with the Spider,WikiSQL only covers simple queries in form
of aggregate-where-select structure, but the size of
the WikiSQL dataset is much larger.

In our experiments, we mainly created our dataset based
on Spider [96] and WikiSQL [103]. Since speech-based
applications usually require much larger training datasets
to obtain well-trained neural models compared with text-
based neural applications, we try to obtain more training
instances based on the Spider dataset with a method sim-
ilar to [94]. In particular, we first extract some templates
(including both SQL queries and NLQs) from the Spider
dataset, then we choose some new databases from other
sources (i.e., WikiSQL), and finally, we fill the templates
with information (i.e., columns) from these new databases
to generate new instances. Then, we merge the generated
dataset with the original Spider. This step results in a dataset
that is much larger compared with the original Spider, which
is more suitable for exploring speech-driven methodologies
and applications.

For the TTS module, we apply FastSpeech 2 [62] to gen-
erate the Mel spectrogram from text. Then, we synthesize
the raw waveform as a speech recording from the Mel spec-
trogram using MelGAN [38], with a stable and efficient
filter bank - pseudo quadrature mirror filter bank (Pseudo-
QMF) [52]. Finally, we obtain a new dataset whichwe named
SpeechQL. The detailed statistics of this dataset can be found
in Table 1. Then, we randomly split the dataset into training,
validation and testing sets. Following the common practice in
evaluating the quality of the generated speech records [88],
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we also randomly sample 50 records to manually check the
intelligibility rate and it achieves a very high accuracy (near
100%). It is noted that using TTS to generate the speech
recording is a commonly used and widely accepted approach
to create large-scale datasets in evaluating speech-driven
tasks due to its high intelligibility rate (e.g., at least 98%
for commercialized cloud speech services [88]) and mature
of existing TTS technologies, as used in [47, 51, 83, 84, 87].

4 A naive baseline: the cascaded approach

A naive solution to the speech-to-SQL task can work in a
cascaded fashion, namely first converting speech signals into
their corresponding transcripts with an ASR system and then
conducting downstream text-to-SQL conversion. In this sec-
tion, we mainly discuss this cascaded solution from its main
components: ASR in Sect. 4.1 and text-to-SQL in Sect. 4.2.

4.1 Automatic speech recognition

Mathematically, the hybrid ASR component [60] transcribes
the a user’s voice NLQ into a textual output, which can be
expressed as follows:

w∗ = argmax
w

(log PL M (w) + λ log PAM (a|w)), (7)

where λ is a trade-off parameter. PAM is an acoustic model
(AM), evaluating how sounds combine to produce word
sequence, and PL M is a language model (LM), picking the
word sequence that has the largest probability in human lan-
guage perspective [68, 69].

The ASR component plays a critical role in the cas-
caded approach for speech-to-SQL, but constructing a
SQL domain ASR is hard since the NLQs contain many
domain-specific words, especially in the database con-
text. These words can easily be misrecognized. For exam-
ple, in a real case from SpeechQL dataset, the original
NLQ is “Which Video has a PSIP Short Name
of rt?”. It is as easily recognizable as “What video
has a safe short name of artie”, even by the
widely used ASR engines provided by Google,1 Microsoft
AICloud,2 or BaiduCloud.3 The reason for this phenomenon
is obvious. That is, the trained data used to construct their
ASR model usually lack SQL domain-specific data. Hence,
it would be better and flexible if we could construct an ASR
model by ourselves with a SQL domain dataset.

To alleviate the above-mentioned problem, we turn to a
two-step (i.e., pre-training and fine-tuning) approach to build

1 https://cloud.google.com/speech-to-text
2 https://azure.microsoft.com/cognitive-services
3 https://ai.baidu.com/tech/speech/asr

a reliable and accurate ASR model dedicated to the SQL
domain. Specifically, the ASR model is pre-trained with var-
ious English datasets from general domains including Ted
Talks [29, 63] and LibriSpeech [57], then the pre-trained
ASR model is further fine-tuned with the small-scale dataset
in SQL domain to adapt to the database domain. For the ASR
system, we utilize the Kaldi “Chain” model [60] as the AM
component and employ a trigram LM [71] as the LM compo-
nent. The DNN component of the “Chain” model is a Time
Delay Neural Network (TDNN) [82]. To further improve
the performance, an advanced rescoring mechanism named
L2RS [68, 69], integrated with BERT [20], is also adopted
in the N -best rescoring step.

We employ the widely used metric, word error rate
(WER), as the main indicator for the performance of the
constructed ASR model. WER is formally defined as

WER = S + D + I

T
, (8)

where S, D and I represent the number of word substitu-
tions, deletions and insertions, respectively, and T is the total
number ofwords in the ground-truth transcript. From the def-
inition, we can conclude that WER reflects the quality of the
ASR decoding result, and the lower the value, the better the
decoding result. Overall, we achieve a WER of 34.451%,
a relatively low error rate in this specific SQL domain. It
is worth mentioning that this well-tuned ASR model makes
the cascaded approaches very strong baselines since paral-
lel studies in the speech-to-image task such as [84] employ
the ASR model with a far high WER (around 50%) as their
baseline.

4.2 Text-to-SQL conversion

The text-to-SQL model aims to convert the NLQs into
SQL queries, with previous studies such as Seq2SQL [103],
SeqNet [89], EditSQL [100], IRNET [28], and so on. In our
implementation, we directly construct text-to-SQL models
with existing techniques on our datasets. The existing text-to-
SQL model is usually trained based on a clean dataset. That
is, the NLQs contain no errors. However, in our scenario, the
NLQ is recognized by an ASRmodule, which produces myr-
iad forms of errors in recognized transcriptions that further
introduce the error compounding problem, a technical chal-
lenge for the subsequent text-to-SQL conversion. To improve
the performance, we then explore the possibility of end-to-
end speech-to-SQL conversion in Sect. 5.
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Fig. 3 (a) The network structure of the proposed SpeechSQLNet
model, including a speech encoder, a schema encoder, and a SQL-aware
decoder. (b) An example of representing SQL query with abstract struc-

ture tree (AST). The output of the SpeechSQLNet model is an AST ỹ
in SemQL [28], which is further converted into the desired SQL query
y

5 Our proposed end-to-endmodel:
speechSQLNet

Directly synthesizing SQL queries from speech signals is
hard due to the huge modality gap between the two modal-
ities of speech signals (i.e., audio modality) and SQL (i.e.,
programming language modality). To deal with this prob-
lem, SpeechSQLNet first uses a speech encoder to convert
the speech signals into hidden representations. In the mean-
time, the schema, which greatly affects the desired SQL, is
also converted into hidden features by a GNN-based encoder
to preserve its structural information. Finally, the speech
embedding, together with the schema features, is fused
to synthesize the corresponding SQL query with semantic
consistency. The overall structure of the proposed model
is illustrated in Fig. 3. In this section, we detail the pro-
posed SpeechSQLNetmodel from its fourmain components:
Speech Encoder (Sect. 5.1), Schema Encoder (Sect. 5.2),
Speech–Schema Relationship-aware Encoder (Sect. 5.3) and
SQL-aware Decoder (Sect. 5.4).

5.1 Speech encoder

5.1.1 Raw feature extraction from speech signals

Theoretically, it should be possible to synthesize SQL
directly from the digitized waveform, due to the strong mod-
eling capability of existing DNNs. However, human speech
signals are highly variable, and the objective of conducting
feature extraction is to reduce the variabilities. Specifically,
the typical variability thatwewould like to eliminate includes
the effect of the periodicity or pitch, the amplitude of exci-

tation signal and fundamental frequency [14]. Inspired by
the common practice in ASR [60, 68, 91], we extracted 96
log-scaled Mel-band energies from speech x using sliding
windows of 1024 samples (≈ 46ms), with 512 overlaps
and the Hamming windowing function, to serve as inputs
Xa ∈ Rla×96 for speech encoder, where la is the length of
the speech hidden space.

5.1.2 Speech embedding from CNN-based architecture

After extracting the feature embeddings from the digitized
waveform, we design a speech encoder that employs a con-
volutional neural network (CNN)-based structure to preserve
the continuity of speech. Specifically, the network is com-
posed of a series of convolutional blocks, each of which is
stacked by a CNN module [37] and a batch normalization
(BatchNorm) [32] module. The process of each block can
be denoted as:

H (l)
a = f (BatchNorm(l)(CNN(l)(H (l−1)

a ))), (9)

H (0)
a = Xa, (10)

where l ∈ {1, . . . , Na} is the layer number of stacked blocks,

H (l)
a ∈ R

l(l)a ×d(l)
a is the hidden representation of the speech

features, delivered from the l-th layer and sent to the (l + 1)-
th layer, l(l)a and d(l)

a are the length and the dimensionality
of the l-th layer speech hidden representation, respectively.
f (·) is an activation function and in our network, we choose
the popular ReLU function [26]. Lastly, we obtain a speech

embedding Za ∈ R
l(Na )
a ×d(Na )

a by the speech encoder as

Za = H (N )
a , (11)
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Fig. 4 An example of converting database schema into graph

where Na is the number of layers in speech stacked blocks.

5.2 Schema encoder

Even for the same NLQ, it has been proven that the schema
of the database greatly influences the structure of the desired
SQL query [11]. As such, we need to preserve the schema
information from both the semantic and the structural per-
spectives. In SpeechSQLNet, we first convert the database
schemas into graphs and then employ the GNN-based archi-
tecture as the schema encoder.

5.2.1 Converting database schema into graph

To leverage the structure information, we define an undi-
rected graph G = (V , E) to represent the schema. An
example with two tables is shown in Fig. 4. Specifically, each
node vi ∈ V is either a table node t ∈ Tx or a column node
c ∈ Cx , and each edge ei, j = (vi , v j ) ∈ E is designed based
on the database relations. There are two types of edges in the
graph, and each of them represents a way how columns and
tables correlate to one another, including table-column (edge
between table ti ∈ Tx and its column c j ∈ Cx,i ) and foreign
key (edge between a key and its foreign key linking two dif-
ferent tables). Since that itemswith the same name contribute
to the feature construction and SQL decoder in the same
way, the columns with the same name, even in a different
table, are represented by the same node. For each node v, we
could obtain its neighborhood N (v) = {u ∈ V |(u, v) ∈ E}.
Finally, the graph G is serving as inputs Xs for the schema
encoder.

5.2.2 Converting the NL into initial node embedding

To retain the semantic information, instead of randomly ini-
tializing the embedding of each node in the graph, we adopt
an LSTM-based network to generate the initial embedding.
For a node vi ∈ V which may contains more than one tokens

(e.g., ‘Student_ID’ consists of two tokens ‘Student’ and
‘ID’), each token in the node is first converted into an embed-
ding vector denoted by embed(vi ), and then a bidirectional
LSTM (BiLSTM) is employed to convert the variable-length
node tokens’ embedding into fixed-length hidden state vec-
tors. The output vectors of the forward and backward LSTM
are concatenated together, followed by a feed-forward net-
work (FFN) to construct the node embedding hvi ∈ R

dmodel .
Then, the initial embedding of the schema graph, denoted
as Hs ∈ R

ls×dmodel which includes ls nodes, is calculated as
follows.

hvi = FFN(BiLSTM(embed(vi ))), (12)

Hs = [hv1, . . . , hvls
]T . (13)

5.2.3 GCN-based schema encoder

Given the schema in the form of a graph, we would like to
capture the overall structure and the detailed connections for
each node. As such, we use a GNN-based encoder to embed
the schema graph G into a hidden space representation. Its
main idea is to update embedding hv for each node v by
aggregating its own features hv and all of its neighbors’ fea-
tures, each denoted by hu ∈ R

dmodel , where u ∈ N (v), as
shown in Eq. (14).

hv = f (ΘT
∑

u∈{N (v)∪v}
Āu,vhu), (14)

where f (·) is an activation function (ReLU), Θ is a learned
parameter and Āu,v is correlation coefficient between node u
and node v computed by the adjacency matrix [36]. In prac-
tice, we apply a two-layered GCN to obtain the final schema
embedding, namely two-hop neighbors are considered. This
is because that a two-layered GCN ensures that a column
node embedding (e.g., node ‘age’ from Fig. 4) can obtain the
information from its table (e.g., ‘Student’ table) and nodes
in the same table (e.g., nodes ‘sid’ and ‘sname’). The final
schema embedding Zs ∈ R

ls×dmodel is obtained by

Zs = GCN(GCN(Hs)). (15)

5.3 Speech–schema relation-aware encoder

In traditional text-to-SQL tasks, schema-linking, which iden-
tifies references of tables and columns in the NLQs, could
greatly improve the accuracy of the models [42]. While it
is trivial to identify the mentioned database keywords in
an NLQ (e.g., simple keywords matching), it is quite hard
to assign the linking information between the speech and
database in advance since identifying database keywords
from the speech NLQ (without an external ASR compo-
nent) requires much more effort [5]. As such, we design an
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advanced encoder to predict the relation information between
speech and database automatically.

5.3.1 Self-learned schema linking

The goal of schema-linking is to recognize the items (table,
column, and database values) mentioned in the speech NLQ
and then enhance the speech embedding by incorporating the
embeddings from these correlated items. This module takes
the speech embedding Za and the schema embedding Zs as
input and then outputs an advanced hybrid speech embed-
ding. Concretely, a feed-forward network is applied to the
speech and schema embedding firstly, which aims to map
them into a common hidden space. To learn a speech repre-
sentation that considers its related schema items, we further
perform an attention mechanism [79] over the speech frames
and the schema items. A semantic similarity score, denoted
as ga,s ∈ R

la×ls (la is short for l(Na)
a , which denotes the length

of speech in the output layer), and gi, j
a,s is calculated between

the i-th speech frame and the j-th schema nodes to serve as a
schema-linking relevance score, and then the weighted sum
of the schema embedding denoted byCa ∈ R

la×dmodel is con-
catenated to the original speech embedding. Mathematically,
the whole process is represented as follows.

ga,s = Za(Zs)
T

||Za || · ||Zs || ,
(16)

Ca = ga,s Zs, (17)

Za = Za + Ca . (18)

5.3.2 Multi-modal transformer-based fusion

To leverage both multi-modal and long-term temporal rela-
tionships among different modalities (i.e., audio and text),
we learn a joint representation for the speech and the schema
by a multi-modal transformer-based encoder. Inspired by the
vanilla transformer structure [79], the encoder is composed
of a stack of basic blocks, each of which consists of a multi-
head attention mechanism, a fully connected feed-forward
network and a layer normalization [6]. However, different
from the basic transformer structure, we add two attention
modules in our multi-modal transformer, the first of which is
a self-attention (SA) module designed for learning the rela-
tionships inherent in one modality, and the latter of which is
a cross-modal attention (CA), which is proposed to fuse the
latent relation information among different modalities.

Due to space limitations, we only illustrate the genera-
tion process of the improved speech embedding here. We
first employ the SA module over the speech embedding to
obtainY S A

a ∈ R
la×dmodel , then perform the cross-modal atten-

tion between the speech and the schema to obtain Y C A
a ∈

R
la×dmodel . Furthermore, the sum of Y S A

a and Y C A
a is used to

Fig. 5 The grammar of SemQL

represent the multi-modal speech output Ya . Finally, layer
normalization and feed-forward network, which has been
proved effective in improving the performance in prior work
[6], are also incorporated into the encoder. After the above-
mentioned steps, we could obtain a new embedding for the
speech, denoted as Za . Mathematically, the whole process
can be represented as:

Y S A
a = MultiHead(Q, K , V ), Q = K = V = Za, (19)

Y C A
a = MultiHead(Q, K , V ), Q = Za, K = V = Zs,

(20)

Ya = Y SA
a + Y CA

a , (21)

Ya = LayerNorm(Ya + Za), (22)

Za = LayerNorm(FFN(Ya) + Ya), (23)

where MultiHead(·) means the multi-head mechanism
mentioned in Sect. 2, LayerNorm(·) is the layer normal-
ization, and FFN(·) refers to the feed-forward network. We
repeat this process Ne times to obtain the final updated
speech embedding Za . Similar to the generation process of
the improved speech embedding Za (Eq. (19) to (23)), we
could generate the improved schema embedding Zs .

5.4 SQL-aware decoder

Since SQL is a programming language with clear and strict
grammar, it would be better to encode this grammar infor-
mation as a prior to guide the generation process.

Following the practice in text-to-SQL [28], in our imple-
mentation,we also choose the grammar of SemQL(described
in Fig. 5) to represent each SQL query as an Abstract Struc-
ture Tree (AST), with an example shown in Fig. 3(b). Our
decoder is adapted from a grammar-based structure com-
monly used in the text-to-SQL task [28], which employs an
LSTMarchitecture to synthesize SemQLAST ỹ by choosing
a sequence of actions. An action can either be applying a pro-
duction rule (e.g., “Root → Select+Group” in Fig. 3(b)) or
selecting a schema item (e.g., “Column → C OU N T ” and
“Column → C → age” in Fig. 3(b)), which corresponds
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to a branch selection operation in the AST. Mathematically,
the generation process of a SemQL query sequence ỹ can be
formalized as:

p(ỹ|x, S) =
T∏

i=1

p(ai |x, S, a<i ), (24)

where x is the speech-based NLQ, S is the schema, ai means
an action applied at Step i , a<i are all the previous actions
before step i , and T is the number of all the actions to predict
ỹ. The actions involved in the generation process of Eq. (24)
is further categorized into two types: (i) ApplyRule: applying
a production rule to the current grammar tree till finishing the
SQL sketch; (ii) SelectSchema: selecting a column or table
item from the schema to complete the SQL query.

5.4.1 ApplyRule

The objective of the ApplyRule step is to construct a context-
free grammar tree of the SQL query [28]. In every step, we
select the most probable branch given the previous route and
employ an LSTM-based structure to simulate the process.
At each prediction step i , the LSTM state is updated based
on the previous state hi−1 ∈ R

dmodel , the previous action
embedding ai−1 ∈ R

daction (daction is the dimensionality of
the action embedding), the previous action type embedding
ni−1 ∈ R

dtype (dtype is the dimensionality of the action type
embedding), and previous context representation of LSTM
ci−1. Inspired by [48], a Luong attention mechanism is then
applied to obtain the intermediate representation ui based on
current state hi and the final speech embedding Za (Eq. (26)
and (27)). Finally, given ui , the probability of selecting a rule
is calculated by Eq. (28).

hi = LSTM([ai−1; ni−1; ci−1], hi−1), (25)

ci = Softmax(hT
i Wa Z T

a )Za, (26)

ui = tanh([hi ; ci ]Wu + bu), (27)

p(ỹi = ai |x, S, a<i ) = Softmax(tanh(uT
i Wp + bp)),

(28)

where Wa ∈ R
dmodel×dmodel , Wu ∈ R

2dmodel×dmodel are the
trainable weight matrices, Wp ∈ R

dmodel×na (na is the num-
ber of actions and na=46 in our setting), Softmax(·) is the
softmax function, and [; ] refers to concatenation operation.
bu ∈ R

dmodel and bp ∈ R
na are trainable bias, and the initial

state h0 is obtained by a max-pooling operation of the final
speech embedding Za .

5.4.2 SelectSchema

To fill in the specific item in the target SQL, another LSTM-
based structure is also employed. In this part, we need to

predict the operation (e.g., max, min and count) and the
item (column or table) involved in the speech given the
schema. The schema varies in every case and the desired
items are also not fixed, which is quite different from the
ApplyRule part. As such, we further employ the pointer net-
work [80] to handle this issue. The probability of selecting a
schema item ai is calculated as follows,

p(ỹi = ai |x, S, a<i ) = Softmax(uT
i Ws Z T

s ), (29)

where Ws ∈ R
dmodel×dmodel is a trainable weight matrix. In

particular, the candidate tables items/nodes can only be the
ones connecting the selected column items/nodes.

6 Model training

Even though we have designed several modules to fuse the
information from different modalities, there still exists a
large gap between the speech modality and the text modality.
To further minimize this modality gap, we propose a two-
step framework (i.e., pre-training and fine-tuning) to train
this network. The network first conducts model pre-training
(Sect. 6.1 and Sect. 6.2) to align a common hidden space for
each pair of speech and its corresponding transcript sen-
tence and then conducts fine-tuning (Sect. 6.3) based on the
datasets of speech–SQL pairs. It should be noticed that the
pre-training step is optional, depending on the availability
of the transcripts. Furthermore, the dataset used for the pre-
training step is not necessarily required in the SQL domain.

6.1 Speech–sentence pre-training

As shown in Fig. 6, we design an autoencoder (AE)-based
framework to match speech and text sentence with two dif-
ferent AEs. Semantic representations for different modalities
aremapped by a speech autoencoder (SAE) and a text autoen-
coder (TAE), respectively, and these two representations are
forced to be close to each other.We employ the same encoder
like the one mentioned in Sect. 5.1 for the SAE, and although
the encoder mentioned in Sect. 5.2 is designed for database
schema,we could still use itsNL embedding part (Sect. 5.2.2)
here to construct theTAE.Bydoing this, the network parame-
ters of TAE and SAE after this pre-training step can be reused
in the following fine-tuning phase. The decoders of the SAE
and the TAE have reversedmodules of their encoders accord-
ing to the design rules of AEs. The loss L of the network is
composed of three parts: a reconstruction loss La of speech
input, a reconstruction loss Ls of transcript input, and a con-
trastive lossLp between the speech and text pairs, which can
be formulated as follows.

L(X̃a, X̃s) = La + Ls + Lp, (30)
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Fig. 6 The network structure in the speech–sentence pre-training step

La = DK L(X̃a ||X̂a), (31)

Ls = DK L(X̃s ||X̂s), (32)

Lp = − log
exp(sim(hb

a, hb
s ))∑

i[i �=b] exp(sim(hb
a, hi

s))
, (33)

sim(hb
a, hb

s ) = (hb
a)T hb

s∥∥hb
a

∥∥ · ∥∥hb
s

∥∥ , (34)

where X̂a and X̂s are the reconstructed outputs by the AEs,
DK L(·||·) is a KL divergence used to measure the recon-
struction loss, and X̃a and X̃s are the inputs of speech and
transcript. We use two new notations X̃a and X̃s (rather than
Xa and Xs) to emphasize the fact that the inputs of speech
and transcript used in this pre-training step are not restricted
to the speech-based NLQ and schema from the speech-to-
SQL dataset. Any common ASR training data, which is
more abundance in amount, can be used here. For contrastive

loss, suppose a mini-batch G =
{
(X̃b

a, X̃b
s )

}Nb

b=1
with Nb

examples is training simultaneously, and hb
a and hb

s are the
intermediate representation of an example b where hb

a (hb
s )

is produced by a max-pooling operation from Z̃a (Z̃s). The
loss is designed to reduce the distance between the same text
and speech pair and enlarge the distance between different
text and speech pair. After the AEs are trained, embeddings
extracted from the speech and the schema encoder can be
regarded as close enough to each other.

6.2 Speech–item pre-training

The objective of the speech–item pre-training phase serves
as the same objective of the schema-linking step in the text-
to-SQL task, that is, to explicitly identify if an item from the

database schema is refereed by the speech NLQ. Given the
speech query and an item from the schema, their embeddings
are first extracted by the speech encoder and the text encoder
trained in the above-mentioned pre-training phase. Then a
cosine-similarity following by Sigmoid function is employed
to predict the existence as Eq. (35).

ŷf = Sigmoid(W f sim(Za, hs) + b f )), (35)

where W f ∈ R
la and b f ∈ R are trainable parameters and la

is dimensionality of the speech hidden space.
The training dataset for this pre-training step can easily be

obtained from the original speech-to-SQL dataset. For any
instance {x, y, S} in the speech-to-SQL dataset, we could
compose multiple new training instances, each of which can
be denoted as {x, c, y f }, where c is a column item from the
schema S and the label y f is equal to 1 if c appears in SQL
y and is equal to 0 otherwise. We could obtain a new dataset
D

′
with N

′
instances. Finally, we employ the cross-entropy

loss in this pre-training step, defined as

L(x, y f ) = −
∑

i∈D′
yi

f log(ŷi
f ) + (1 − yi

f ) log(1 − ŷi
f )

(36)

where ŷi ∈ {0, 1} is the predicted result.

6.3 Model fine-tuning

After above-mentionedpre-trainingphases,weobtain trained
weights for the speech encoder and the schema (text) encoder.
During this fine-tuning step, we will first load the weights by
the pre-training step in advance if they exist and then train
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themodel globallywith speech-to-SQLdata,maximizing the
log-likelihood of ground true action sequences defined as:

L = max
∑

(x,y,S)∈D

⎡

⎣
∑

ai ∈Apply Rule

log p(ỹi = ai |x, S, a<i )

+
∑

ai ∈Select Schema

log p(ỹi = ai |x, S, a<i )

⎤

⎦ .

(37)

The whole network is trained in an end-to-end style with
stochastic gradient descent methods such as Adam [35].

7 Experiment

In this section, we evaluate the performance of the proposed
model in terms of quantitative metrics. We first describe the
experimental setup, including the datasets used in Sect. 7.1,
baselines in Sect. 7.2, implementation details in Sect. 7.3 and
evaluation measurements in Sect. 7.4. Then, we present the
results in Sect. 7.5 to demonstrate the effectiveness of our
proposed models by comparing them with these baselines.

7.1 Datasets

We use the same training set of the SpeechQL dataset to
train all the models, tune their parameters with the same val-
idation set and finally evaluate the performance on the same
testing set. For the cascaded baselines, the ASRmodel is pre-
trainedwithEnglish datasets fromgeneral domains including
Ted Talks [29, 63] and LibriSpeech [57], and then the pre-
trained ASR model is further fine-tuned with the small-scale
dataset in SQL domain (i.e., SpeechQL) to adapt to the
database domain. For our design SpeechSQLNet approach,
the speech–sentence pre-training is also conducted with the
LibriSpeech [57] dataset.

7.2 Baselines

There is currently no literature that achieves direct SQL gen-
eration from common speech NLQs. Existing text-to-SQL
approaches assume the availability of the transcripts for each
speech, either labeled by human annotators or recognized by
an ASR system. In our experiments, we compare carefully
designed methods for this problem, which can be roughly
categorized into the cascaded approach and the end-to-end
approach. For the cascaded approach, the discussed well-
trained ASR system in Sect. 4.1 is first used to decode the
transcripts for each speech, and then a text-to-SQL model is
adopted to generate the SQL queries. Specifically, we adopt
the following four cascaded baselines.

• ASR-Seq2SQL: Seq2SQL [103] is the first DNN-based
approach to solve text-to-SQL problem. The model is a
straightforward Seq2Seq neural network, which takes the
text as the input and the SQL statement as the output.

• ASR-SQLNet: SQLNet [89] employs a more refined slot
filling strategy. It takes advantage of the fact that most of
the queries in the WikiSQL dataset can be represented in
a standard “SELECT _ FROM _ WHERE _” format.

• ASR-IRNet: IRNet [28] is an advanced text-to-SQL
model that improves the above two methods by repre-
senting the SQL statement with the SemSQL grammar in
an abstract syntax tree (AST) format. This representation
captures the structure information of the SQL generation
problem and achieves much better results than the previ-
ous methods.

• ASR-EditSQL: EditSQL [100] is another advanced text-
to-SQLmodel that performs verywell onSQLgeneration
task. This model could reuse previously generation SQL
results from adjacent NLQs, whichmakes it a very strong
baseline for performance comparison.

For the end-to-end approach, we design and implement the
following three baselines. It should be noted that these two
end-to-end baseline models can not only work for speech-to-
SQL, but also be used as end-to-end speech-to-code models.

– SpeechSeq2SQL: This baseline employs avanilla Seq2Seq
model directly trained on the speech-to-SQL dataset that
converts the speech signals into its corresponding SQL.
The encoder and the decoder are both Bi-LSTM, and we
name this method SpeechSeq2SQL.

– Transformer: Transformer has shown quite promising
performance on various NLP tasks frommachine transla-
tion [18, 39] and dialogue system [40, 101], to ASR [99,
104]. In our experiment, we also implement the trans-
former structure according to [79], with the speechNLQs
as the input and the SQL query as the output.

– SpeechSQLNet: Thismethod is the end-to-endmodel that
we designed in this work, which employs novel encoders,
SQL-aware decoder and pre-training mechanisms that
are dedicated to this speech-to-SQL task.

7.3 Implementation details

The speech encoder is composed of a six-layer CNN mod-
ule with 1 input channel and 128 output channels, which
takes speech features of the same size by resampling and
zero-padding as needed. The schema encoder takes word
embedding as inputs, which is initialized with a BiLSTM
with 512 hidden units, and the outputs are produced by a
two-layer GCN. The transformer has a two-layer encoder,
with head size, feed-forward size and hidden size set to be
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4, 1024 and 512, respectively. The dimensionality of action
embedding and type embedding in the SQL-aware decoder
are all set to 12. In addition, the pre-training models keep the
same size as the above settings. During the training period,
the learning rate, decay rate, dropout rate and batch size of
the network are set to 0.0001, 0.8, 0.3 and 256, respectively.
All the experiments were conducted on a server with a 72
Intel Core Processor (Xeon), 314 GB memory, Tesla K80
GPU and CentOS.

7.4 Evaluationmetrics

Two widely used metrics in SQL generation task are used in
our experiments to validate the effectiveness of the proposed
model.

– Query-Match Accuracy: This metric evaluates the per-
centage of matches between the generated SQL with the
ground truth. To alleviate the negative effect of condi-
tion order, we further decouple each SQL statement into
several parts: “select column”, “aggregator” and “con-
dition”. Instead of directly comparing the SQL string, we
take the condition part as a set and compare each element
in the set.

– Average Time Per Query (TPQ): This metric evaluates
the average inference time cost of a query by various
methods, and it reflects how fast a model processes the
speech query.

7.5 Experimental results

7.5.1 Comparison of accuracy

The accuracies of our proposed model together with the
baseline on the validation and test datasets are presented in
Table 2, from which we could conclude the following obser-
vations.

Some end-to-end methods can outperform the cascaded
methods by a large margin (e.g., ASR-Seq2SQL vs Speech-

Table 2 Performance of different speech-to-SQL models

Model Validation Test
Query Acc. TPQ Query Acc. TPQ

ASR-Seq2SQL 0.0236 0.093 0.0195 0.089

ASR-Transformer 0.0273 0.096 0.0259 0.094

ASR-IRNet 0.4345 0.146 0.4500 0.140

ASR-EditSQL 0.4973 0.128 0.5116 0.125

SpeechSeq2SQL 0.0700 0.003 0.0695 0.003

Transformer 0.0755 0.003 0.0709 0.004

SpeechSQLNet 0.5355 0.070 0.5395 0.070

Seq2SQL), proving the necessity of exploring approaches
that bypass the text for the speech-to-SQL problem. The
end-to-end approach has the advantage of naturally retaining
the rich linguistic information in the speech, and conducting
global optimization to reduce the errors. However, their capa-
bilities of capturing this linguistic information are not equally
powerful. The performance of the baseline SpeechSeq2SQL
method is less powerful than other end-to-end methods, and
the reason is obvious. The SpeechSeq2SQL does not con-
sider the specificity of the SQL generation problem and
thus has a limited ability in both understanding the informa-
tion converted in the speech and the database schema. The
transformer-based structure could improve the performance
compared with the basic SpeechSeq2SQL model, which
is consistent with previous studies [39, 101]. Among all
these methods, the proposed method, SpeechSQLNet, uses
a powerful speech encoder and a schema encoder to extract
meanings from the speech and database schema, and thus,
it could beat all compared methods. Furthermore, the SQL-
aware decoder can guide the generation processwith the SQL
grammar. This set of experiments verifies the rationale of the
proposed speech-to-SQL problem and the effectiveness and
necessity of the end-to-end approach.

For the cascaded approach, we also included the detailed
ratio of errors made by the first stage (i.e., ASR) and the
second stage (i.e., text-to-SQL) in Table 3. Specifically, the
errors made in the first stage is obtained by calculating the
percentage of instances that ASR (of the ASR-X model) cre-
ates a cascading error among all instances that the whole
ASR-X model creates an error. For example, suppose that
there are N instances that the whole ASR-X model creates
an error. Let M be the instances that the text-to-SQL module
in the ASR-X model, taking the original text of the speech
input, generates no error. Note that we know that the rea-
son why these M instances have errors is the introduction
of the error of the ASR module. Thus, the error rate of the
first stage is equal to M/N . Similarly, the errors made in
the second stage means the percentage of instances that text-
to-SQL (of the ASR-X model) creates an error among all
instances that the whole ASR-Xmodel creates an error. Note
that we know that for each of these (N − M) instances, the
text-to-SQLmodule in the ASR-Xmodel, taking the original
text of the speech input, generates an error. Thus, the error
rate of the second stage is equal to (N − M)/M . We can
see that the cascaded approaches do not perform very well
and are not that competitive. The main reason is that they
suffer from the error compounding problem between com-
ponents, i.e., speech recognition errors leading to following
SQL conversion errors, besides the errors made by the text-
to-SQL module. From Table 3, we can see that for some
cascaded baselines like ASR-IRNet and ASR-EditSQL, the
errors caused by the ASR step account for more than 60% of
all the errors.
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Table 3 The ratio of errors from
the two stages for the cascaded
speech-to-SQL baselines

Model Validation Test
ASR stage Text-to-SQL stage ASR stage Text-to-SQL stage

ASR-Seq2SQL 4.84% 95.16% 3.99% 96.01%

ASR-Transformer 6.54% 93.46% 7.19% 92.81%

ASR-IRNet 60.36% 39.64% 60.63% 39.37%

ASR-EditSQL 64.73% 35.27% 62.85% 39.37%

Table 4 The detailed accuracy of the speechSQLNet model

Data source Validation Test

Spider DB source 0.1667 0.1538

WikiSQL DB source 0.5416 0.5470

Table 5 Ablation study results: the effect of each network component

Model Validation query acc. Test query acc.

SpeechSQLNet 0.5355 0.5395

w/o GCN 0.5209 0.5159

w/o Linking 0.5273 0.5177

w/o Fusion 0.4600 0.4568

w/o SQL 0.3227 0.3250

We also split the results on our dataset from the database
sources (i.e., fromWikiSQL databases and Spider databases)
and the results are shown in Table 4. The reasons for this
unbalanced prediction rate between these two kinds are: (i)
Even though the templates of these “WikiSQL DB Source”
instances are coming from Spider, simple SQL queries from
Spider are easier to use to generate correct new instances
than complicated queries. Thus, the overall difficulty level of
these queries from the “WikiSQL DB Source” is easier than
the queries from the “Spider DB Source”; (ii) The training
set contains more newly generated instances with “WikiSQL
DB Source”. Thus, the trained model is better in these cases,
resulting in a higher prediction rate. From the result, wemust
admit that compared with text-to-SQL, which has achieved
great development in recent years, speech-to-SQL still has a
large room to improve. An important reason is that limited
studies have been conducted on this valuable task and we
hope this study would draw more attention from the commu-
nity to this task. We believe that with more effort being put
in, the performance of speech-to-SQL will also be greatly
improved.

7.5.2 Ablation studies: the effect of each network
component

In this section, we performed ablation studies (Table 5) to
show the contribution of each component in SpeechSQLNet.

Table 6 Ablation study results: the effect of the pre-training mecha-
nisms

Model Validation query acc. Test query acc.

SpeechSQLNet 0.5355 0.5395

w/o SSPT 0.5136 0.5023

w/o SIPT 0.4982 0.5105

w/o Both 0.4655 0.4573

Specifically, we first evaluate the SpeechSQLNet with all
the components as the baseline. Each model is then repre-
sented by the name(s) of the components that it removed
or replaced. To evaluate the effectiveness of the schema
encoder, we replace it with a vanilla RNN-based encoder
(w/o GCN). For the schema-linking component (introduced
in Sect. 5.3.1), we compared it with a baseline without it (w/o
Linking). For the transformer-based fusion part, we remove
it and name the baseline w/o Fusion. Finally, for the SQL-
aware decoder,we replace itwith a basicRNN-based decoder
(w/o SQL).

Compared with the model without the schema-linking
part, the performance decreases remarkably, up to 4.21% rel-
ative accuracy reduction. The significant reduction demon-
strates the effectiveness of our proposed schema-linking
mechanism in addressing the speech-to-SQL task. Other
modules show similar conclusions. For example, the fusion
mechanism brings around 18.10% relative improvement,
while the SQL-aware decoder shows around 66.00% rela-
tive improvement. However, compared with a vanilla RNN
encoder, the GNN-based schema encoder only shows a
4.57% relative improvement. The main reason is that the
schema encoder mainly handles the complicated queries
across tables, but most of the cases in our dataset involve
SQL queries on single tables (from WikiSQL). However, a
further case study with multiple tables in Sect. 7.5.6 shows
the necessity of involving a GNN-based schema encoder in
handling these complicated queries.

7.5.3 Ablation studies: the effect of the pre-training
mechanisms

We also conduct another set of ablation studies to show the
effectiveness of the two proposed pre-training mechanisms.
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Fig. 7 The hyper-parameter study of the SpeechSQLNet model

Table 7 The effect of our proposed pre-training mechanism (i.e.,
sentence-item pre-training, SIPT) on the text-to-SQL and the cascaded
approach

Model Validation query acc. Test query acc.

IRNet 0.7709 0.7764

+ SIPT 0.7700 0.7745

ASR-IRNet 0.4345 0.4500

+ SIPT 0.4064 0.4232

Each model is still represented by the name(s) of the compo-
nents that is/are removed, namely w/o SSPT, w/o SIPT and
w/o Both, referring to trained models without the speech-
sentence pre-training mechanism, without the speech-item
pre-training mechanism, and without these two pre-training
mechanisms, respectively.

As shown in Table 6, these two pre-training mechanisms
together bring around 17.98% relative query match accuracy
improvements in the test set, showing the necessity and effec-
tiveness of involving these pre-training mechanisms to align
the semantic representation for speech and text. Specifically,
the speech–sentence pre-training mechanism solely brings
about 7.41% relative query match accuracy improvement in
the test set, while the speech–item pre-training mechanism
solely shows a5.68%relative querymatch accuracy improve-
ment. Lastly, it is noted that, unlike the training step, the
labeled data used in the pre-training step are not restricted to
the SQL domain, and any labeled ASR dataset can be used.

Compared with text-to-SQL, speech-to-SQL is a much
more complicated and harder task due to the huge modal-
ity gap between the two inputs (i.e., speech modality and
schema (text) modality). Then, we design these two pre-
training mechanisms which are proved to be effective for
our speech-to-SQL model. An interesting problem would be
if these two mechanisms are also effective for the text-to-
SQLmodels (the cascaded approach). The SSPTmechanism
aims to reduce the hugemodality gap. For text-to-SQL, since
the two inputs (i.e., question and schema) are already from
the same text modality and could easily be mapped into the

same hidden space (e.g., by Glove embedding [59]), our first
mechanism, SSPT, cannot be used on text-to-SQL models.
The second mechanism, SIPT, serves the goal of reducing
the modality gap and meanwhile also enhances the schema-
linking part between the speech-based NLQ and the schema.
Theoretically speaking, it could also be customized for the
text-to-SQL models and the cascaded approach. However,
compared with speech-to-SQL, the schema-linking part is
much easier for the text-to-SQL task since the question and
the schema are both from the same text modality. In the text-
to-SQL task, a string matching between the NLQ and the
schema is proven to be good enough as a schema-linking
step [28], and existing text-to-SQL models usually already
contain their schema-linking sub-component. As a result,
our designed SIPT would barely improve these text-to-SQL
models when directly applied to them for the schema-linking
purpose. This could also be validated by another set of exper-
iments in Table 7, where the performance of the popular
text-to-SQLmodel - IRNet (w/oASR) keeps almost the same
(i.e., 0.7764 vs 0.7745) after this pre-training mechanism.
Furthermore, we notice that the performance of the cascaded
approach (ASR-IRNet) with the SIPT mechanism is worse
than the baseline, which indicates that the cascaded approach
is not robust to the ASR errors (i.e., error compounding prob-
lem) and SIPT enlarges the effect of the ASR errors for the
cascaded approach since it relies on the correctness of the
text.

7.5.4 Hyper-parameter study

In this section, we study the performance variation affected
by the parameters such as the number of GCN layers, the
number of heads and the number of transformer layers. The
results are shown in Fig. 7.

As shown in Fig. 6, a large number of GCN layers does not
always lead to better performance. The performance reaches
a peakwhen the number of layers is set to 2 and thendecreases
when the number exceeds this value. Previous studies on
GNN [16] have also shown similar observations. The rea-
son is obvious. That is, the learning capacity of the model
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Table 8 Two SQL examples generated by various cascaded and the end-to-end methods

Case Case 1 Case 2

Speech Query What is the lowest number of draws
with more than 1 byes?

What is the average number of votes of representatives
from party “Republican"

Schema wimmra(Wimmera_fl,wins,byes,losses,
draws,against)

election(election_id, representative_id, date,
votes, vote_percent, seats, place), representa-
tive(representative_id, name, state, party, lifespan)

Ground Truth SQL select min(draws) from wimmera
where byes > 1

select avg(t1.votes) from election as t1 join
representative as t2 on t1.representative_id =
t2.representative_id where t2.party = 1

ASR Result what is the lowest number of draw-
ers with more than one bites

what is the average number of votes of representatives
from party republican

ASR-Seq2SQL
[103]

select min(no) from 2008 where
long > 1

select avg(#) from united where party = 1

ASR-Transformer
[79]

select min(jake) from 2008 where
runner > 1 and pass_def > 1

select avg(round) from list where nation = 1 and party
= 1

ASR-IRNet [28] select min(*) from wimmera where
draws > 1

select avg(t1.votes) from election as t1 join
representative as t2 on t1.representative_id =
t2.representative_id where t2.party = 1

ASR-EditSQL [100] select min(draws) from wimmera
where wimmera_fl = 1

select avg(votes) from representative where party = 1

SpeechSeq2SQL
[74]

select min(draws) from imperfect
where byes > 1

select avg(votes) from list where party = 1

Transformer [79] select min(draws) from golden
where byes > 1

select avg(votes) from list where difference =1

SpeechSQLNet (Our
Proposed Model)

select min(draws) from wimmera
where byes > 1

select avg(t1.votes) from election as t1 join
representative as t2 on t1.representative_id =
t2.representative_id where t2.party = 1

increases with the number of the layers, but, too many lay-
ers require more data to train [45]. Then, for the other two
parameters - the number of transformer layers and the num-
ber of heads, we also observe similar phenomena in Fig. 7b
and Fig. 7c, respectively.

7.5.5 The robustness analysis

In this section, we add some noise in the input speech-
based NLQs and test the robustness of the methods. Specifi-
cally, we add the different ratios of noise into the original
speech waveform and then check the performance of the
speech-to-SQL model. The signal-to-noise ratio (SNR) is
used to evaluate the degree of noise added, and the smaller
the value, the more noise it is added. The result is shown in
Fig. 8.

As we can see, with the input of more noise, the accuracy
of the models decreases slightly. However, there is around
a 5% accuracy decrease when the noisy level increases to
40db. This validates that our model (as well as the cascaded
methods) has some robustness. We believe that exploring
robust speech-driven SQL systems (e.g., more comprehen-
sive study of model robustness against lexical and phrasal

Fig. 8 The robustness analysis

variability [24]) will be a very promising research direction,
and we left it as a next step study.

7.5.6 Case study

We list two cases to vividly show the generated SQLs by
the various baselines as well as our model in Table 8. The
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Table 9 A failure example due to the challenges in speech-to-SQL

Case Case 1

Speech Query Give me the name of the customer who ordered the most items in total.

Schema Addresses [address_id, address_content, city, zip_postcode, state_province_county, coun-
try, other_address_details], Products [product_id, product_details], Customers [customer_id,
payment_method, customer_name, date_became_customer, other_customer_details], Cus-
tomer_Addresses [customer_id, address_id, date_address_from, address_type, date_address_to],
Customer_Contact_Channels [customer_id, channel_code, active_from_date, active_to_date, con-
tact_number], Customer_Orders [order_id, customer_id, order_status, order_date, order_details],
Order_Items [order_id, product_id, order_quantity]

Ground Truth SQL SELECT t1.customer_name FROM customers AS t1 JOIN customer_orders AS t2 ON
t1.customer_id = t2.customer_id JOIN order_items AS t3 ON t2.order_id = t3.order_id GROUP
BY t1.customer_name ORDER BY sum(t3.order_quantity) DESC LIMIT 1

Our Predicted SELECT T1.customer_name FROMCustomers AS T1 JOIN Customer_Orders AS T2 ORDER BY
T2.order_date ASC LIMIT 1

first case illustrates the error compounding problem between
the ASR and the text-to-SQL components. The cascaded
methods fail since the ASR model misrecognized “draws”
to “drawers” and “byes” to “bites”, and thus, the down-
stream text-to-SQL models all failed. This reflects the fact
that the robustness of the cascaded solution is weak and the
error compounding problem greatly affects the final SQL
conversion accuracy. However, the results generated by the
end-to-end baselines such as SpeechSeq2SQL and Trans-
former are partly correct. Compared with all these baselines,
our designed SpeechSQLNet could accurately capture the
semantics conveyed by the speech NLQs and then generates
the SQL query accurately.

The second case shows how the schema could affect the
predicted SQL. Since the required columns are from two
tables, the desired SQL has a complicated ‘Join’ opera-
tions between the ‘election’ and the ‘representative’ tables.
In this case, even the ASR module correctly recognizes
the transcript, most of the cascaded approaches such as
ASR-EditSQL and ASR-Transformer still fail to give the
correct predictions. In contrast, SpeechSQLNet could accu-
rately identify the corresponding tables and columns, which
validates the necessity of the end-to-end approach for this
speech-to-SQL task.

7.5.7 Failure analysis and challenges

We also analyze the cases that still fail by the current speech-
to-SQL model. We identified the following two challenging
points from the observations. (i) The large dataset required
to construct speech-driven applications and models; As we
mentioned before, speech-driven models usually require a
larger dataset to train the model compared with text-based
models. For these failed cases, increasing the size of the
training datasets will alleviate this problem and improve the
accuracy. Thus, one potential approach is to use other datasets

(e.g., weakly labeled data) to pre-train the speech-to-SQL
model. In the text-to-SQL area, there are these pre-training
mechanisms like GraPPA [93]. (ii) The huge modality gap
between speech-based NLQ and schema; Even though we
designed a novel mechanism to alleviate the huge modal-
ity gap problem between speech and schema, there are still
rooms to improve it further, and we believe pre-training lan-
guagemodels (PLMs)would be a potential research direction
to this problem. For the text-to-SQL problem, we already
have various PLMs (e.g., TaBERT [90] and TaPas [30]) that
could generate high-quality hidden representations for the
text-based input. These PLMs are usually trained with very
large-scale datasets, and thus, they could accurately cap-
ture the hidden semantic information behind the text and the
schema. However, currently, no previous studies have been
conducted on PLMs dedicated to speech-to-SQL (i.e., a PLM
that could understand both speech-based NLQ and schema).
We believe this would also be a good future research direc-
tion for this problem. A case that failed due to this reason is
shown in Table 9.

7.5.8 Summary and limitations

The experimental evaluations on the SpeechQL dataset
demonstrate the superiority of SpeechSQLNet model over
several strong baselines, including various cascaded ones as
well as the end-to-end ones. For example, SpeechSQLNet
achieves up to 10.22% exact match accuracy improvements
compared with the advanced IRNet model. The effectiveness
of each designed component is further validated by the abla-
tion study. Specifically, the novel pre-training mechanisms
bring around 17.98% relative querymatch accuracy improve-
ments in the test set. The two cases in Sect. 7.5.6 also vividly
reflect the value of this problem and the superiority of our
proposed method.
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We also identify several limitations of this study and
they have shown potential directions for next step research.
(i) Human-generated Datasets. The speech NLQs are cur-
rently generated using the TTS techniques. Even though
this approach is common in studying speech-driven appli-
cations [47, 51, 83, 84, 87], it would be better if we could
hire diverse native speakers to generate the speech waves
of the NLQs. This will require much more effort, and we
expect the communitywill propose this kind of study afterwe
release this paper, using techniques like crowd-sourcing. (ii)
Robust speech-to-SQL models. In the ASR area, an impor-
tant research direction is focusing on constructing robust
systems. In text-to-SQL area, many studies [24] have also
been conducted to explore the robustness against lexical
and phrasal variability. For the speech-to-SQL problem, an
interesting following direction is to construct robust speech-
to-SQL systems and models. (iii) Other network structures
and alternatives. We only design and explore the current net-
work structure for this problem. This model validates the
possibility of direct SQLgeneration from speechNLQswith-
out the intermedia of text. We believe there are more other
novel neural networks to further improve the performance,
just like the rich community in the parallel text-to-SQL area.
(iv) More Difficult Datasets with Diverse SQL Queries. The
experimental analysis shows that the proposed model per-
forms better on simple queries, which make up a substantial
portion of the dataset. It would be very valuable to construct
large-scale speech-to-SQL datasets containing more difficult
and diverse SQL queries to further challenge the task.

8 Related work

Our topic is closely related to the research fields of text-to-
SQL (Sect. 8.1), speech-driven querying systems (Sect. 8.2)
and speech-to-X (Sect. 8.3). We briefly survey the most
related work from these three aspects.

8.1 Text-to-SQL

Text-to-SQL aims to provide databases with a text-based
interface. It has a long history dating back to 1970s. Past lit-
erature in this field can be classified into two categories: rule
and template-based approach and end-to-endneural network-
based approach. Typical studies in rule and template-based
approaches include studies such as SODA [10], QUICK [98],
SINA [67] and NLQ/A [102]. These approaches normally
work in a similar style and suffer the drawback of poor flexi-
bility since users may express their questions using different
linguistic styles. For example, SODA [10] adopts a five-step
pipeline to translate a keyword-based NL input question into
a SQLquery.NLQ/A [102] extends the input to pattern-based
NL and supports more complex questions like concepts. A

comprehensive survey on classic approaches can be found in
[3].

Recent trends in deep neural networks (DNNs) also pro-
mote the development on end-to-end neural network-based
approaches. Representative studies in this category include
Seq2SQL [103], SQLNet [89], TypeSQL [92], Syntax SQL
[73], IRNET [28] and its extensions such as NL2pSQL
[15]. Furthermore, many studies focus on pre-train the text-
to-SQL models with augmented data, with representative
studies like [93] and [95]. Compared with the traditional
approaches, these neural-based models have the advantages
of reducing the workload of engineers of maintaining mul-
tiple components and, at the same time, achieve a much
better performance since the whole model enjoys a single
optimization objective (i.e., SQL generation accuracy). The
neural-based approach has already dominated the text-to-
SQL area. A survey that summarizes recent progress in these
neural-based models can be found in [31].

The success of the neural-based approach relies heavily
on the releasing of evaluation benchmarks. There are some
public datasets widely used in the community, such as Spider
[96], TableQA [72] and WikiSQL [103]. The Spider dataset
is a small-scale cross-domain dataset that contains complex
nested and join queries. WikiSQL is much larger in size,
but, it mainly focuses on simple queries on limited domains.
TableQA is a large-scale cross-domain NL2SQL dataset in
the Chinese language. However, for speech-to-SQL, despite
several studies related to speech-driven querying systems
[49, 54, 65], there are no public benchmarks in the com-
munity. Our constructed SpeechQL dataset aims to fill this
void.

The rapid development of the neural-based text-to-SQL
approach also influences the development of the speech-
to-SQL area. On one hand, even though text-to-SQL can
bridge the gap between SQL and Natural Language Process-
ing (NLP) and can provide a text-based interface for DMBS,
we believe that the voice-based interface is a much easier and
faster way for interacting with DBMS. According to the user
study in [65], the voice-based interface can enable users to
compose SQL queries considerably faster by up to 6.7x com-
pared to typing on a text-based interface in a tablet device.
Hence, in this work, we take one step further to explore the
possibility of a speech-driven interface for databases. On the
other hand, the development history and trend in text-to-
SQL (i.e., from traditional multi-stage or multi-component
approach to recent end-to-end neural-based approach) also
inspires us (i) to formally define this speech-to-SQL task
and construct the benchmarks; (ii) to explore this end-to-
end approach for speech-to-SQL task, which is a pioneering
study in this area. Our work is a good start that promotes
the development of speech-to-SQL, and we expect speech-
to-SQL will soon become as popular as text-to-SQL.
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8.2 Speech-driven querying systems

Speech-driven querying systems have a long history with
a substantial amount of industrial applications. To name a
few, Nuance’s Dragon NaturallySpeaking4 supports various
basic voice commands. Mainstream search engines such as
Google, Baidu and Bing all provide voice-based inputs to
search the web. With the popularity of smart devices and
mobile phones, AI-powered assistants such as Xiaoice, Siri,
Alexa and Google Home also provide user interaction with
the system based on voice, e.g., querying daily weather and
traffic, keeping track of airline flight and so on.

Speech-driven SQL-based systems have also been stud-
ied in the research community. For example, EchoQuery
[49] aims to translate user’s voice input into SQL queries.
SpeakQL [65, 66] supports a subset of SQL statements and
enables users to interact with the systemwith a speech-based
interface. TalkSQL [54] implements a similar function to
SpeakQL, which also works in a three-step manner, first
allowing a user to input some voice command, then trans-
lating the inputs into SQL queries and finally delivering
execution results to the user. CiceroDB-Zero [77] enables
participants to explore large data sets via voice interfaces.

However, none of these studies focuses directly on SQL
generation from arbitrary common NLQs expressed in
speech, and they usually work in a cascaded manner. Fur-
thermore, some of them restrict the spoken queries to be
an NL-based version of SQL or its variants with a limited
subset of SQL grammar, and thus, they still require users
to have a professional background in SQL. Furthermore,
our developedVoiceQuerySystem [70] also demonstrates the
feasibility of a speech-driven database querying system with
the cascaded and the end-to-end techniques provided in this
study.

8.3 Speech-to-X

Speech-to-X refers to a wide range of speech-driven tasks
including speech-to-text, speech-to-image, speech-to-code,
speech-to-model and so on.Among all these tasks, speech-to-
text is the most common one with dozens of existing studies.
When the text refers to the transcript corresponding to the
speech, this problem is also well-known as the ASR prob-
lem. Currently, the most commonly used ASR model is the
hybrid model, which typically consists of two components:
an acoustic model (AM) and a language model (LM). The
AM translates the speech signals features (e.g., MFCC [23])
into the corresponding phonemic representation, and the LM
calculates the probability of the decoded word sequences
from the natural language perspective. With the dominating
performance ofDNN-basedmodels inNLP tasks, the end-to-

4 https://www.nuance.com/dragon

end ASR system also becomes quite popular in the research
community with studies such as LAS [13], RNN Transducer
[61], attention-based models [7, 85] and RNN transducer
with Attention [75]. However, in terms of ASR applications
in the industry, the hybrid one still dominates the market
due to its relatively good performance. In our work, we also
employ the hybrid ASR [68, 69] in the cascaded baselines.

The speech-to-text problem also covers diverse applica-
tions besides ASR. Another task worth mentioning is the
speech-to-text translation [8], where the “text” here refers to
the translated text in another language different from the one
in the source speech. The speech-to-text translation is very
helpful especially for low-resource scenarios where neither
machine translation nor ASR is available. Speech-to-speech
translation [81] takes one step further to directly generate
speech in the target language, and it is applied in NLP appli-
cations such as cross-lingual dialogue systems. Besides text,
dozens of studies have also explored the possibility of con-
verting othermodalities such as image (i.e., speech-to-image)
[47, 83, 84] and software model (i.e., voice-driven mod-
eling) [9]. Our proposed speech-to-SQL problem can also
be considered as a special case of the speech-to-code prob-
lem (i.e., programming-by-voice) [19, 41]. To the best of
our knowledge, in the literature of the speech-to-code, there
are studies for generating code in general programming lan-
guages such as Python and Java [1, 2]. All these systems
(e.g., Serenade5 and Talon6) could not be adapted or used to
generate SQL. This is because i) SQL is more complicated
due to the existence of database schema; ii) these systems
usually work by mapping limited pre-defined voice-based
programming commands into code (e.g., delete line three
to line four), and they have a limited ability both in under-
standing commonNLQ and translatingNLQ to code because
they usually involve limited (DNN) learning-based models.
They usually require users to iteratively input a series of pre-
defined commands rather than anNLQ to generate a program
(e.g., “add class Test”, · · · , “go to line two”, “add func-
tion string helloworld”, “add return string hello world” and
creating a simple “Test” class with a function that returns
a “helloworld” string). In terms of high-level design logic,
these studies are similar to existing speech-to-SQL systems
like SpeakQL and EchoQuery surveyed in Sect. 8.2, which
either requires the user’s input to be an exact SQL query
or follow some pre-defined command templates. Since none
of them achieve translates common NLQ into programming
code (including SQL), these systems still require the users
have a strong background in programming languages.

To sum up, speech-to-SQL is an urgent task that aims
to explore the information conveyed by human speech
and convert it into a SQL statement. These aforemen-

5 https://serenade.ai/
6 https://talonvoice.com/
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tioned speech-driven applications, including speech-to-SQL,
directly generate the target due to following reasons: (i)
avoiding the possible error compounding between compo-
nents in the cascaded systems; (ii) further reducing the error
by retaining the rich linguistic information in the speech; and
(iii) improving the query processing efficiency; (iv) unlock-
ing the power of advancedNLP technologies to the languages
that lack a commonly used written form [84]. We believe
that speech-to-SQL would not only benefit the database area
for providing user-friendly interfaces of DBMS, but also
promote research of programming-by-voice in software engi-
neering and enlarge the speech-to-X family.

9 Conclusion and discussion

In this paper, we propose a novel paradigm speech-driven
interface for the relational database, together with its cor-
responding task speech-to-SQL, aiming to directly convert
human speech into SQL queries. Cascaded methods, as well
as end-to-end models named SpeechSQLNet, are proposed
to solve this problem. Extensive experimental evaluations
on the constructed corpus show that SpeechSQLNet can
generate high-quality SQL queries, outperforming several
competitive baselines. The experimental results also validate
the rationale of the speech-to-SQL problem.

In the next step, we would like to explore other novel
end-to-end network structures on speech-to-SQL. In par-
ticular, as a good start, SpeechSQLNet shows that speech
signals contain rich linguistic information, and it would be
interesting to explore the inner structure of speech signals
when designing speech-to-SQLmodels. Furthermore, Voice-
QuerySystem validates the feasibility of a speech-driven
database querying system with the techniques provided in
this study, and we would also like to follow this line of
research of developingmore user-friendly speech-driven sys-
tems, especially in vertical domains like the medical or ticket
booking scenarios.

The recent trend of large language models (LLMs, e.g.,
ChatGPT [55], GPT-4 [56], LLaMA [76] and ChatGLM
[97][21]) has evolved almost all areas, including the NLP
and database communities. While LLMs have demonstrated
impressive reasoning abilities, such as few-shot and zero-shot
learning [12] aswell as chain-of-thought reasoning [86], their
scale results in substantial computational costs. In contrast,
traditional neural network models like our designed Speech-
SQLNet benefit from cheaper training due to their relatively
compact size. For most of the existing tasks, including text-
to-SQL, users could design suitable prompts for querying
the LLMs about the corresponding SQL query. Rather than
spending efforts in designing the architecture of the neural
networks, the focus of solving existing tasks by prompting
LLMs lies in how to design suitable prompts (i.e., prompt-

ing engineering) and how to decouple the complicated task
into multiple sub-tasks and then tackle them step-by-step.
The popularity of LLMs has provided us with new oppor-
tunities and alternative approaches to solving text-to-SQL
and speech-to-SQL problems. In a nutshell, we believe that
speech-to-SQL will become as popular a task as text-to-
SQL or other speech-to-X tasks and will also inspire further
work on designing novel speech-driven applications in the
database area.
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