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Abstract 

The project aims to provide retail investors with a third-party investment mobile application to              

navigate through the stock market. This is achieved through the use of machine learning and               

mobile web technologies. Several stock price prediction approaches and models are developed            

including dense, feedforward neural networks, recurrent neural networks, simple linear          

regressions, and linear interpolations. Model architectures and hyperparameters are optimized          

and automatically searched by evolution algorithm. Promising results are found for trend            

prediction. The project serves as a foundation for democratizing machine learning technologies            

to the general public in the context of discovering investment opportunities. It paves the way               

for extending and testing out new models, and developing AutoML in the financial context in               

the future. 
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1. Introduction 

1.1 Overview 

There are over 2.2 million Hong Kong stock investors, who contributed about 15% of the cash                

market trading value in 2016. The total cash market trading turnover is around HK$1.6 trillion.               

In particular, retail investors have made buy or sell investment decisions worth a total turnover               

of $240 billion for the year of 2016 [1]. In Hong Kong, there are a lot of investment decisions                   

that involve a large sum amount of money being made. 

 

Retail investors spend a lot of time finding investment opportunities. Wealthier investors could             

seek professional financial advisory services, but for typical retail investors, the costs are             

prohibitive. Thus, retail investors have to figure out the market themselves and make informed              

decisions on their own.  This makes investment very stressful in modern societies. 

 

Unfortunately, humans are irrational in nature. Without quantitative, data-driven models,          

decisions get swayed by cognitive biases or personal emotions, resulting in unnecessary losses.             

Even if investors are cautious enough, most do not have sufficient skills to process a huge                

volume of data required to make good judgments. Institutional investors rely on sophisticated             

models supported by technologies to avoid traps, but retail investors do not have access to               

such technologies and often find themselves falling behind the market. 
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Without access to quantitative and data-driven models, one obvious approach retail investors            

could use to evaluate the market is through simple indicators, for example, linear regression              

and exponential moving average (EMA) (Figure 1.1). Two important indicators are 20-day EMA             

and 50-day EMA. When the 20-day EMA rises above the 50-day EMA, the stock is likely to trend                  

upward, and vice versa. Another obvious approach retail investors might use to predict the              

stock market is to draw a linear regression line that connects the maximum or minimum of                

candlesticks. 

 

Figure 1.1​ Linear regression method to evaluate and predict the market trend 

 

Inspired by the increasing popularity of deep learning algorithms for forecasting application,            

these algorithms might serve as potential tools to find hidden patterns in the trend of stock                

prices, this information could be useful to provide extra insights for retail investors when              

making investment decisions. Therefore, this final year project aims to investigate the            
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usefulness of deep learning algorithms in predicting stock prices and democratize such            

technologies through an easy to use interface for the general public. 
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1.2 Objectives 

1.2.1 Introduction 

The ultimate goal of our application is to serve retail investors as a third party investment tool                 

that uses machine learning to help them navigate in the fast-changing stock market. The project               

aims to introduce and democratize the latest machine learning technologies for retail investors.             

No prediction is 100% accurate. Therefore, the upper bound and lower bound of the stock               

prices will be displayed to illustrate the trading range the investors should be looking at. This                

application serves as a supplementary quantitative tool for investors to see the market at a               

different perspective with the help of technology. 

 

This project is divided into 2 parts, namely a research component and an application              

component, aiming to provide retail investors with stock price predictions using different            

machine learning models in a good user experience way for reference. 

 

1.2.2 Research 

This project will investigate how different machine learning techniques can be used and will              

affect the accuracy of stock price predictions. Different models, from linear regression to dense              

and recurrent neural networks are tested. Different hyperparameters are also tuned for better             

performance. 
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The search space for all neural network architectures and hyperparameter combinations is            

huge, and with limited time in conducting this project, apart from manually trying different              

reasonable combinations, the team optimizes the models with evolution algorithm, replicating           

AutoML techniques from other researches with promising results in the financial context. 

 

1.2.3 Application 

This project aims to provide stock price predictions based on the latest machine learning              

technologies to all retail investors. A mobile web application is developed to provide             

predictions in an intuitive way. Different models’ performance and accuracy can also be             

compared. The application also serves as another user interface (UI) in visualizing results from              

the research apart from Jupyter notebooks with lots of tables and graphs. 
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1.3 Literature Survey 

1.3.1 Stock Price Predictions 

From the research paper “Machine Learning in Stock Price Trend Forecasting” written by Y. Dai               

and Y. Zhang in Stanford University, they used features like PE ratio, PX volume, PX EBITDA,                

10-day volatility, 50-day moving average, etc. to predict the next-day stock price and a              

long-term stock price [2]. The machine learning algorithms used in the research are Logistic              

Regression, Gaussian Discriminant Analysis, Quadratic Discriminant Analysis, and SVM. The          

accuracy ratio is defined as the number of days that the model correctly classified the testing                

data over the total number of testing days. With the short term model predicting the next day                 

stock price, it has very low accuracy, the Quadratic Discriminant Analysis is the best among all                

models, it scored a 58.2% accuracy. With the long term model predicting the next n days stock                 

prices, the longer the time frame, the better in the accuracy for SVM. With a time window of 44                   

days, the SVM model’s accuracy reached 79.3%. Apart from that, it was found that by               

increasing the number of features, the accuracy increased. When all of the 16 features were               

used, the accuracy of the model reached 79%, while it fell to 64% when only 8 features were                  

used, and 55% if only 1 feature was used. Our project will also investigate how the timeframe                 

would affect the accuracy of price predictions of different models. As models have to reach a                

certain threshold to have significance for the users to work as a reference, it is essential for us                  

to optimize our model to figure out what the optimal parameters and model structure are for                

our stock price prediction purpose. 
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The research paper “Predicting stock and stock price index movement using Trend            

Deterministic Data Preparation and machine learning techniques” written by J. Patel, S. Shah, P.              

Thakkar, and K. Kotecha for the “Expert Systems with Applications” international journal            

demonstrated a way to use trend deterministic data to predict stock price movement [3]. They               

conducted experiments in using 10 technical indicators’ signals as inputs, then they use             

prediction models to predict whether the stock will go up or down in the coming 10 days,                 

Technical analysis indicators include SMA, EMA, Momentum, Stochastic SK, Stochastic SK,           

MACD, RSI, etc. The prediction models they have used include ANN, SVM, Random Forest, and               

Naive Bayesian models. The model outputs “up” or “down” movement signals. Experiments            

have shown random forest scored the highest performance with 83.56% accuracy with their             

inputs. 

 

B. Wanjawa and L. Muchemi demonstrated the potential in predicting stock prices using ANN,              

as shown in the research paper “ANN Model to Predict Stock Prices at Stock Exchange Markets”                

[4]. They used 70% of the training data to predict the stock prices for the next 60 days. Through                   

optimizations, they were able to predict the actual closing prices within 0.71% mean absolute              

percentage error (MAPE), with the highest variance -3.2% among all of the 62 days. This               

demonstrated a high potential for using machine learning to accurately predict stock prices.             

This is one of the key components in our application where algorithms have to be designed to                 

have high accuracy, such that the platform could be useful for retail investors. 
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1.3.2 Neural Network 

A neural network attempts to learn a function that maps the input features to the output                

predictions, serving as a universal function approximator [5]. It consists of a network of              

neurons, each of which represents a weighted sum of inputs. Outputs from neurons are fit into                

activation functions which introduce non-linearity to the system, and then passed to some             

other neurons. In a typical dense feedforward neural network, the network consists of layers of               

neurons stacked together, with neurons between individual layers fully connected. 

 

Optimization of neural networks is usually done through backpropagation with gradient           

descent, which essentially propagates the error from the output layer back to the input layer,               

while computing the gradient of the error against each parameter in the process. 

 

1.3.3 Recurrent Neural Network 

Recurrent neural network [5] is a type of neural network where connections between neurons              

allow temporal, sequential information to be stored and processed in the network. One typical              

architecture is formed by feeding the output of the current unit back to the input with a time                  

delay so that the network can use the information in processing the next input. Various               

techniques have been developed over the years to train such type of network. One of the                

popular approaches is backpropagation through time (BPTT) [6], whose central idea is to unroll              

the recurrent network into a feedforward network, where each layer represents a timestep.             

Backpropagation with gradient descent could then be performed to optimize the network, just             

like how we optimize a feedforward network. Unfortunately, it has been shown that             
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techniques like BPTT result in either vanishing or exploding gradients [7]. Vanishing gradients             

lead to unrealistically long training time, and sometimes training is infeasible while exploding             

gradients result in fluctuating weights, which leads to unstable training. Both are undesirable in              

neural network training. Thus, new training methods and architectures are needed to mitigate             

the problems. 

 

1.3.4 Long Short-Term Memory (LSTM) 

Long short-term memory [8] was first introduced by Hochreiter and Schmidhuber in 1997 to              

address the aforementioned problems. Long-short term memory tackles the problem of           

learning to remember information over a time interval, by introducing memory cells and gate              

units in the neural network architecture. A typical formulation involves the use of memory              

cells, each of which has a cell state that store previously encountered information. Every time               

an input is passed into the memory cell, and the output is determined by a combination of the                  

cell state (which is a representation of the previous information), and the cell state is updated.                

When another input is passed into the memory cell, the updated cell state and the new input                 

can be used to compute the new output. 

 

1.3.5 Gated Recurrent Unit (GRU) 

Gated recurrent unit [9] follows the same architecture as long short-term memory, except that              

it simplifies the design of the memory cell, by reducing the structure to contain only two gates,                 

the reset gate, which controls how much information to forget when taking in the new               

information, and the update gate, which controls the proportion of cell state updated by the               
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contribution. Although it has been shown that LSTM is more powerful than GRU [10], GRU has                

the advantage of lower training time and may perform better on smaller datasets [11]. 

 

1.3.6 Evolution Algorithm 

Researches have shown that large-scale evolution can auto-generate neural network model           

architectures and hyperparameters with performance comparable with state-of-the-art        

human-designed models. In a research in 2017 [12], a large-scale evolution for discovering             

image classification neural networks was run. It started with a huge population of randomized              

simple 1-layer models, then slowly evolved the population by removing a poor model and              

generating a new model by mutating some parameters of a good model in each iteration. After                

hundreds of hours of running the algorithm with huge computing power, most models in the               

population achieved state-of-the-art results on CIFAR datasets. In each iteration, only a simple             

mutation that changed 1 parameter was applied, which allowed searching in a large search              

space. The paper showed the possibility of finding good models by using lots of computational               

power to replace human-machine learning experts and has set the foundation of democratizing             

machine learning with AutoML. 
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2. Methodology - Design 

2.1 System Architecture 

The architecture of the system follows a client-server model, where the server and the client 

are loosely coupled. 

 

 

Figure 2.1 ​System Architecture Diagram 
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After relevant stock data are retrieved from the third-party data provider through the cloud,              

the backend pre-processes the data and builds the models. After that, predictions are made              

and the prediction results will be stored on another cloud, which can be retrieved from the                

mobile application. 

 

The advantages of the loosely coupled architecture include improved scalability and ease of             

collaboration. The workload for the cloud which serves the models and the one which serves               

the mobile application will be very different. One cloud serves the model prediction results,              

which are simple text files; another cloud serves the mobile application with a lot of rich user                 

content such as images and large UI libraries. Having two clouds to adapt to two different                

demand patterns is more efficient, especially since cloud providers these days usually serve             

content on demand. 

 

Also, the separation allows different team members in the team to focus on different parts               

after agreeing on a common interface. It speeds up development as team members             

responsible for different parts of the system do not need to take care of the underlying                

implementation details. Also, it is easier to swap out different components, e.g. to replace the               

models the team could simply make changes to the backend, while the frontend remains              

unaffected. 
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2.2 Research Design 

2.2.1 Problem Framing 

The problem of the project is set to predict the stock price for the next 10 business days. “10                   

days” is chosen as the timeframe as short term price movements tend to depend more on                

trend momentum and price pattern, while long term price movements depend on the             

fundamentals of a stock (e.g. company management capabilities, revenue model, market           

demand, macroeconomic factors, etc.). 

 

The loss function of the training algorithm is the mean squared error of the 10 predicted stock                 

prices. The training algorithm or optimizer is set to minimize its value, and it serves as the basic                  

performance metric for comparing different models. 

 

Other scores are defined to provide more in-depth insights on a model predictability             

performance and finance-domain-based comparisons between models for investors. 

 

Two different prediction approaches are mainly tested, predicting the stock prices for the next              

10 days directly and predicting the stock price of the next day 1 at a time. It is suspected that                    

the two different problem framing approaches will result in different abstractions learned            

hence performance for different use-cases. 

 

As different stocks have very different characteristics and the stock prices exhibit different             

trends, individual models will be built for separate stocks. 
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For the project, S&P 500 stocks from different industries are selected. Multiple factors are              

considered when picking the stocks, including stock price volatility, the absolute magnitude of             

the price, the respective industries, company size, etc., and stocks exhibiting different            

characteristics are picked.  The stocks are listed as below: 

- Alphabet Inc., GOOGL (Technology) 

- Amazon.com Inc., AMZN (Technology) 

- Apple Inc., APPL (Technology) 

- AT&T Inc., T (Telecom Services) 

- Boeing Co., BA (Industrials) 

- Caterpillar Inc., CAT (Industrials) 

- Facebook Inc., FB (Technology) 

- General Electric Co, GE (Industrials) 

- Harley-Davidson, Inc., HOG (Consumer Cyclical) 

- Microsoft Inc., MSFT (Technology) 

- Procter & Gamble Co, PG (Consumer Defensive) 

- Tesla Inc., TSLA (Consumer Durables) 

- Walmart Inc., WMT (Consumer Defensive) 

 

2.2.2 Robust Design 

For the research side, the system is designed to be as robust as possible to facilitate model                 

testing. Each model can be defined by a pair of model options and input options, specifying the                 
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model configurations and the inputs it takes. This accelerates the process of testing out              

different model and/or input configuration combinations. 

 

2.2.3 Data Pre-processing 

Raw stock price data is pre-processed before inputting into machine learning models.            

Pre-processing includes transforming the raw data into a format that models can take from and               

operate on, most likely feature matrix. It also attempts to extract some features,             

financial-domain-specific especially, manually to improve results, allowing the model to learn           

more abstractions. 

 

Two key features are selected as the input. First is a fixed-length list of some raw historical data                  

like stock price and daily percentage change. The fixed length chosen specifies the length of the                

historical period to look back from today when predicting future stock prices. Referring to the               

principle of technical analysis, as the stock price reflects all relevant information, a technical              

analyst would focus on the trading pattern of the stock rather than the economic fundamentals               

and company fundamentals. Therefore, by getting a period of historical stock prices as the              

input for the training model, it could be a piece of useful information in finding the trading                 

patterns and hence predicting the trend of future stock prices. Given a set lookback period, it is                 

assumed that the price movement patterns that are predictive would occur in the specified              

historical period. 
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The second feature input is arithmetic moving averages. As mentioned in 1.1, one of the               

obvious approaches for retail investors to identify the trend of the market is through moving               

averages. With the robust system design, different period of moving averages could be used as               

the input into the model for stock price prediction, for example, a set of 22, 50, 100, 200 days                   

moving averages, which are commonly used by investors [13]. 

 

2.2.4 Prediction Output 

As mentioned in 2.2.1, 2 different prediction approaches are tested, which will have different              

outputs. 

 

For 10-day predictions, there will be 10 output units, resulting in a one-dimensional vector with               

10 stock prices, where the ​i-​th element represents the ​i-​th day stock price prediction. 

 

For 1-day prediction, there will be 1 output unit which is the stock price in the following day.                  

The predicted stock price of will then be the input of the next prediction, to predict the stock                  

price in the second day, the process repeats until all 10 predictions are generated. 

 

2.2.5 Model 

Different common neural network models are tested, including dense neural network, simple            

recurrent neural networks (RNNs), long short-term memory networks (LSTMs) and gated           

recurrent unit networks (GRUs). 
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Different model architectures are tested by changing the number of hidden layers, the number              

of hidden units per hidden layer, and the activation function or recurrent activation function              

used in each hidden layer. 

 

All recurrent neural networks, RNNs, LSTMs, and GRUs, are set to have the same high-level               

architecture (Figure 2.2), a stack of recurrent layers by passing the full output sequence to the                

next layer, followed by a stack of dense layers. 

 

Figure 2.2​ Example of the common high-level architecture of recurrent neural networks 

 

Linear Regression on features, as well as trendlines which interpolate the stock prices next 10               

days linearly, are also tested. 
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2.2.6 Model Architecture and Hyperparameter Search With Evolution Algorithm 

Designing neural network architecture is challenging, even for computer scientists, researchers           

and machine learning experts. The team does not have the expertise in designing innovative              

and suitable architectures that will fit the requirement. Given the huge number of architecture              

types and hyper-parameters for each model, the search space is basically infinite, so a              

brute-force approach with grid search would not be practical. 

 

Inspired by the paper [12], this project replicates the evolution algorithm in the context of stock                

price prediction. The algorithm serves as a heuristic for architecture search, using reasonable             

and affordable computing power to search for ideal architectures. 

 

The same evolution algorithm was used in the paper [12] to train large-scale image classifiers.               

The following is the evolution algorithm used, and the corresponding algorithm parameters are             

defined in Appendix E. 

1. Create a population of size POPULATION_SIZE of random simple neural networks. 

2. Train all neural networks in the population. 

3. Calculate the mean squared error on the test set for each trained neural network. 

4. Randomly select 2 networks. Select the one with better performance (lower error) as             

the parent network, and remove the one with a worse performance from the             

population. 

5. Mutate the parent network to generate a new network and add it to the population. 

6. Train the new network. 
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7. Calculate the mean squared error of the new network on the test set. 

8. Repeat steps 3 - 7 for ITERATIONS number of iterations. 

 

Different mutations are used at each step to slowly evolve the population, for example adding a                

dense layer, changing the number of units in a certain layer or changing the learning rate. For a                  

full mutation list, see Appendix D. 

 

In theory, it is also possible to put the model inputs as a variable into the evolution algorithm,                  

using the algorithm to find the optimal inputs. However, this would increase the search space               

significantly, and with limited resources, only a certain number of fixed inputs are tried. 

 

2.2.7 Performance Evaluation 

2.2.7.1 Motivation 

As mentioned in 2.2.1, apart from the mean squared error that a model tries to minimize,                

different finance-specific scores are introduced to evaluate and compare performance of           

different models, namely model accuracy score, model trend score and stock buy/sell score.             

The scores are also designed to convey useful and meaningful messages to help investors              

understand a stock and make investment decisions. 

 

2.2.7.2 Definitions  

In this project, the test set is defined as the last 100 days stock price. 
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To clearly explain the performance evaluation rationale, the following symbols are defined. 

 

 

“Snakes” is defined as 10-day disjoint prediction segments in the test set, which will be a set of                  

10 “snake”. It includes the actual prices and the predicted prices for the last 100 days.                

Specifically, Snakes are defined below: 

 

 

It is named as “Snakes” because intuitively the 10-day disjoint segments look like snakes when 

being plotted on a graph of historical prices. 

 

2.2.7.3 Model Accuracy Score 

The first indicator of the performance is the ​Model Accuracy Score (MAS)​. It describes the               

accuracy of the price prediction regarding the actual price. It is a weighted sum of ​Model                

Prediction Score (MPS) and ​Model Direction Score (MDS)​, ranging in [0,1]. A variable α is               

declared to adjust the weighting between MPS and MDS contributing to MAS. Its formula is               

defined below: 

 

 

MPS is the average of Snake Prediction Scores (SPS). Each SPS is calculated by the prediction                

error in each of the 10-day disjoint segments, where the error is basically an average of the                 
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absolute relative change between the predicted prices and the actual prices over the 10 days. It                

is defined that SPS is 0 If the error is larger than the standard deviation of the stock, as the                    

prediction would have no reference value under this circumstance. If otherwise, a scoring             

concave upward function is applied to scale the error to a range of [0,1] based on the standard                  

deviation. A concave upward function is applied because the marginal usefulness of the model              

decreases with a marginal increase in error. 

 

 

Meanwhile, MDS is the average of Snake Direction Scores (SDS). Each SDS is evaluated by the                

alignment of the prediction direction and the actual direction of the stock trend in each of the                 

10-day disjoint segments. If the prediction has a different direction with the actual direction, it               

means the prediction is giving a false trend signal to the users. Thus, SDS is 0. Otherwise, SDS                  

would be evaluated based on the direction of the estimation error. In other words, if the                

prediction is overestimated, SDS is 0.8. Otherwise, it is 1. It is because it is assumed that an                  

underestimated prediction means the model is more reserved and is better off than an              

overestimating model. 
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2.2.7.4 Model Trend Score 

Another indicator of the performance is the ​Model Trend Score (MTS)​. It describes the              

correctness of the trend predicted by the models regarding the actual price, ranging in [0,1].               

Since an accurate model in terms of the degree of price changes is difficult to obtain,                

sometimes the ​Model ​Accuracy Score might not be intuitive. As a result, instead of observing               

the exact changes in prices using MAS, we could look at the trend of the predictions which is                  

easier to be accurate. With ​Model Trend Score (MTS), the users could gain accuracy insight on                

the future price change of the stock. It is defined as: 

 

Where TS is the Trend Score for ​i​-day Prediction. It is the percentage of having a correct trend                  

prediction of price ​i​ days later. 

 

 

 

2.2.7.5 Buy/Sell Score 

An overall Buy/Sell Score is given to the users to indicate the likeness of the stock going up or                   

down to assist the users in making decisions. It ranges in [-1, 1], with 1 means expecting an                  

uptrend, -1 means expecting a downtrend, and 0 means the prediction is inconclusive. Some              

symbols are defined below: 
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A score threshold T is applied to filter out the inaccurate models. The remaining models               M ′  

would be used to calculate the Buy/Sell Score by multiplying the ​Model Trend Score of each                

valid model with its ​Trend Direction (TD) and then averaging them. TD is determined by voting                

from the directions of the predicted prices in the coming 10 days. It is 1 or -1 if the majority of                     

the predicted prices are higher/lower than today’s price. It is 0 when tie. 

 

 

2.2.7.6 Upper Bounds and Lower Bounds for Prediction 

Stock prices are volatile in nature and predictions could almost impossibly be 100% accurate. To               

give investors more information about how the stock price may fluctuate, upper bounds and              

lower bounds of prediction error range are also calculated. The upper bounds and lower              

bounds are defined as: 
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Since the model predicts the stock prices of the following 10 days, i.e. [P​1​, P​2​, ... , P​10 ​], each day                     

of the prediction, P​i follows a different distribution, and the prediction error for each of the ​k​-th                 

day is different. 

 

is the collection of all ​i-​th day prediction generated by the model in the test set, while isP j ˆ                  P j  

the corresponding collection of actual stock prices. The standard deviation of the difference             

between the two shows how much the model’s ​i-​th day predictions vary. By adding and               

subtracting one standard deviation of the error from the predicted ​i​-th day stock price to get                

the upper bounds and lower bounds of the stock price predictions, investors can know about               

how much the actual price might fluctuate around the predicted price. 
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2.3 Application Design 

2.3.1 User Groups 

Users are separated into two groups, normal users and advanced users. For users that would               

like to know about the historical (test set) performance of a model and more information               

behind the machine learning models like the architecture and inputs, they can enable advanced              

user mode in the settings page to view those details in each individual stock page. 

 

 

Figure 2.3​ Functionality accessible by normal users and advanced users 
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2.3.2 User Journey 

 

Figure 2.4​ User Journey 

 

First of all, users need to login to use the system, as there will be customization options for                  

different users. Since users might not want to create a separate account just for our               

application, it will more convenient if users can log in with their existing social media accounts.                

In particular, Facebook login is a good option, since there are over 2 billion users worldwide.                

Thus, it might be possible to reach a larger market by adopting Facebook login. Only the very                 

basic user information like the user name will be collected by the system. 

 

For normal users (advanced user mode disabled), after logging into the system, they can view               

the stock list and search from it by stock name. After they find the stock that they are                  

interested in, they can bookmark the stock as a favorite stock for easier access later. After                

selecting a stock, they can view 3 key information in the details page. 

 

First, the next 10-day predictions and the corresponding upper/lower bounds of the            

pre-selected best model together with 3 months of historical stock prices. 

 

Second, they can look at the buy/sell score to get an intuitive sense on whether the stock is                  

currently on an uptrend or downtrend based on the predictions. 
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Third, the user can view the individual trend score, predicted trend direction, accuracy score,              

and predicted price movement for each individual prediction model. 

 

For advanced users, apart from the 3 key information, they can view 2 additional pieces of                

information for more in-depth insights, understanding and analysis. 

 

First, they can toggle to view the historical predictions, which helps to evaluate the              

trustworthiness of different models. There are 2 ways to view the historical prediction             

performance. For 1-day historical prediction, it could let the user understand how well the              

model could predict the next day stock price. For 10-days historical prediction (defined as              

Snakes in 2.2.7.2), it could let the user understand 10 trials of how well a model could predict                  

the stock price in 10-day segments. Thus, this information would help the user to get more                

information to determine whether the model is relevant and accurate enough for their             

references. 

 

The second additional information is the layers, hyperparameters and model inputs configured            

for each individual machine learning model. This information would be useful for them to              

understand the topology of the model. 
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All data, including stock prices, predictions, historical predictions and all scores will be updated              

everyday to reflect the latest information and predictions, which allows users to revisit their              

investment position. 

 

2.3.3 UI/UX 

2.3.3.1 Application Screenshots 

The following is a set of screenshots of the implemented application. 

 

 

Figure 2.5​ Login page (left), Home page (middle), Application drawer (right) 
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Figure 2.6​ Details page - Normal user mode (left and middle), Advanced user mode (right) 
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Figure 2.7​ Advanced user mode: Snakes (left), Model information (middle), Chart settings 

(right) 

 

2.3.3.2 Progressive Web Application Motivation 

The application is written as a progressive web application (PWA) [14] instead of a native               

mobile application. The motivation behind this is that the application could be inherently adapt              

to desktop and mobile usage. It would be more costly to create native desktop and native                

mobile application separately. The web application can also allow the system to keep only one               

centralized instance, where information only has to be updated once without any duplicated             

effort. 

 

A progressive web application is typically implemented as a single page application [15], where              

pages do not reload entirely like a web page refresh. Instead, the web application only uploads                

the components as needed as the users interact with the application. It enables smoother,              

more app-like user experience. 

 

2.3.3.3 Responsive Design 

The variety of devices and specifications is also a reason why a responsive-designed web              

application could be useful to solve such fragmentation problem. The experience between            

desktop and mobile should be seamless, and the only difference would be desktop has more               

information displayed than on a mobile screen. By having such configuration, the user’s             

learning curve in adapting to the system on their laptops, tablets, and mobile could be               
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seamless, not only shorten their learning curve on our system across the platform, but also               

introduce familiarity with the platform. 

 

 

Figure 2.8​ Smartphone view (left), Tablet / Desktop view (right) 

 

2.3.3.4 Layout Motivation 

The priority of information display should depend on the relevancy of such information from              

the user’s point of view.  

 

In the stock list page, a “favorite” section is placed above the “recent” section, and “others” are                 

placed below the two (Figure 2.5 middle). This design considered the relevance of the individual               

stock in the user perspective. Favorite stocks should have higher priority as these are their               
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focused stock that they are interested in or have owned shares. The “recent” section is crucial                

as it provides quick access for the user to revisit their recent history and find the stocks that are                   

closely relevant to what they have been checking on recently. 

 

Inside the stock details page (Figure 2.6), the stock name with its stock code has a significant                 

color and portion at the top of the display, and a gray colored industry tag is placed above the                   

stock name. When the user clicked on the stock name, the section will expand to display a brief                  

overview of the stock. This design can make the user quickly recognize which stock they are                

checking on. 

 

As the core component of the application is the predictions with upper and lower bounds that                

provide insight for the retail investors to review the trend of the stock. The chart is placed just                  

below the stock name and being centered on the screen whenever the page is loaded. This                

design let the user quickly review the prediction trend and recognize whether the predicted              

trend would interest them to continue checking out the stock or not. 

 

The chart is also very important for the advanced users to cross-check whether the predictions               

have reference value according to its past performance. The 10-day interval historical            

prediction (Figure 2.7 left) and 1-day interval historical prediction (Figure 2.6 right) are plotted              

on the chart along with the historical stock price when the user enabled such options, this                

serves the purpose of letting the user know how well the model could predict the trend in the                  

past. The legend labels are placed on the top of the graph to make it crystal clear what does                   
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each color of the line represents. Regarding the interactiveness of the chart, the chart changes               

with the time frame that the user has selected. When the user hovers on the line of the chart,                   

actual values and its corresponding legend label are displayed, the chart interface makes it easy               

for the user to validate actual values and demonstrate trust for the flexibility of user able to                 

review on the historical performance of each model. 

 

Following the chart, a buy/sell score is represented by a red-green gradient bar indicating the               

trend of the stock. It summarizes all the available predictions provided by different machine              

learning models. This provides a quick overview of the user to evaluate the trend. As it serves as                  

a weighted average according to the trend prediction accuracy and the trend direction of each               

machine learning model, the red-green gradient bar simplifies all the findings and summarizes             

such trend predictions into an easy to interpret figure. The middle of the red-green gradient bar                

is colored as white because it means the stock does not have obvious direction according to the                 

consensus of the predictions of the machine learning models. The color coding makes it obvious               

for the user to recognize the information at a glance. 

 

The table with checkbox layout is designed for showing detailed results of each machine              

learning model. The user can correlate the model with its trend predictability and accuracy. This               

information would be useful for advanced users to evaluate which model topology or search              

algorithms are useful in providing insightful predictions. Although the trend scores and accuracy             

scores calculated are in range [0, 1], it is scaled to a 0 to 10 scoring scale, which allows easier                    

understanding and perception. The checkbox interface allows further interactivity with the           
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chart display. The user could compare and contrast the recent and historical predictions of              

different machine learning models, and determine which of the algorithm could be as of most               

useful according to their definition. The table allows sorting according to trend score, trend              

prediction, accuracy score, and price prediction. This allows the user to prioritize the             

information according to the metric they would like to investigate. The table is sorted by the                

trend score in descending order and the best model with highest trend score is pre-selected               

initially, as that is presumed to be the first model that users care about. 

 

For advanced users that have machine learning backgrounds, the application caters to their             

needs to look at the layers, hyperparameters, and inputs of the machine learning models. The               

model details page could provide insights for those users to further investigate the prediction              

method on their own and let them understand the underlying hypothesis of the machine              

learning model the application chose to include. 

 

To let the application be smarter and more consistent in terms of user experience, user               

preferences, including whether a user is an advanced user and which historical predictions to              

view, are saved on a cloud database, updated and retrieved whenever the user logins and               

interacts with the preference settings. 

 

A simple loading bar is also included for better user experience, as all data is get from the cloud,                   

and the loading time may vary among users depending on the internet connection. 
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3. Methodology - Implementation 

The implemented application can be accessed at ​https://cmms-fyp.firebaseapp.com/​. 

All implemented code can be found at ​https://github.com/chautsunman/FYP-AI​,        

https://github.com/chautsunman/FYP-pwa​, ​https://github.com/chautsunman/FYP-functions  

and ​https://github.com/chautsunman/FYP-server​. 

 

3.1 Research Implementation 

All machine learning-related code are written in Python. Neural networks are implemented            

with Keras [16] while linear regression model is implemented with scikit-learn [17]. 

 

3.1.1 Stock Price Data Collection 

Data is collected from Alpha Vantage Stock Price API [18]. It offers up to 20 years of daily stock                   

price information on S&P500 stocks. A Python script is written to retrieve stock prices of               

different stocks automatically. The retrieved stock prices are stored as .csv files in a local folder                

during development and testing. In deployment, the downloaded stock price data will be             

transformed into a 2D JavaScript array and uploaded to Firebase Cloud Storage immediately. A              

cron job that launches the data-fetching and data-uploading script is scheduled to run every 8               

p.m. (EDT) after NYSE and NASDAQ are closed.  
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3.1.2 Data Pre-processing 

3 Python scripts are written to transform the raw stock prices (.csv files) into feature vectors,                

for training, predicting and testing respectively. The scripts take the input options and the raw               

stock prices as inputs and produce the correct features by building the lookback arrays and the                

moving averages. It concatenates the features into the final feature vectors, which will be              

passed to the model for training or testing. The 3 scripts share common operations in building a                 

dataset except the output size and the range of dates to build from, so common functions are                 

written to centralize the logic instead of repeating the same index-calculation-intensive work            

across functions. 

 

NumPy and Pandas are used to build the datasets. Numpy [19] is a library that provides                

effective n-dimensional array data structures as well as functions for array manipulations. It is              

frequently used for machine learning tasks because it is much for performant than Python lists,               

as NumPy arrays are implemented as densely packed lists, instead of a dynamic array where the                

elements are not stored contiguously. 

 

Pandas [20] is a popular framework for pre-processing time series data. It has various utilities               

for reading raw input files such as .csv and transforming time series data to the correct format.                 

Pandas uses NumPy as the underlying data structure, so it is very convenient to interoperate               

between the two. 
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3.1.3 Model 

A model base class is used as a common interface for all machine learning models. All models                 

then have their own model class, specifying model-specific details like methods to build the              

model, train the model, use the model and save the model. 

 

To decouple model configurations from software code to provide flexibility and robustness and             

save engineering effort as mentioned in 2.2.2, each model is defined by a JSON object, which                

specifies the model’s architecture and hyperparameters with model options and the model            

inputs with input options. A corresponding model can then be created by passing the object to                

the model class constructor. 

 

The model options specify which machine learning model to use, and the hyperparameters for              

the model like the number of hidden layers, the number of hidden units, activation functions               

used, as well as optimization algorithms and loss functions. Some example model options are in               

Appendix A. 

 

Apart from model configurations, the input can also vary, as there are many possible features               

that could be added to or removed from the feature vectors. The input options specify the                

features input that a model should expect, like the number of previous stock prices as features                

and different moving averages. The input options are related to a model in terms of the input                 

format. All neural networks built in Keras requires the input tensor shape for layer shape               
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inference during model building, a Python function is written to calculate the input shape for a                

given input option. Some example input options are in Appendix B. 

 

3.1.4 Training 

In training, a randomized initial model is first generated from the model options definition. A               

training set is generated by the build training dataset script, which generates the training set               

features from the input options and the raw stock price data. Then, the data is fed into the                  

model for training. 

 

3.1.5 Saving Trained Model 

All trained models are saved for predicting stock prices in the future. Keras models are saved in                 

h5 format, and scikit-learn models are saved with a Python library named ​pickle. A dedicated               

saving format is designed (Appendix C), such that same models (same hash for same model               

options and input options) for different stocks are saved in the same directory with no collision. 

 

3.1.6 Predicting Stock Price 

When predicting stock price, the saved model will first be loaded. Then, a feature vector               

specified by the input options is built with the build predict dataset script, which is the same as                  

the build training dataset except it returns a flatten 1D feature vector. The feature vector is                

inputted into the model to predict stock price. For 10-day predict, the predictions are directly               

outputted. For 1-day predict, the predicted stock price is appended to the raw dataset as if it                 

 Page 44 of 124 



 

happened before, then a new feature vector is generated for predicting the stock price for the                

day after, the process is repeated to predict the stock prices for all next 10 days. 

 

3.1.7 Performance Evaluation 

Each model is evaluated on the test set. A test set can be generated by the build test dataset                   

script, which could generate either a full test set for predicting the last 100 days stock price in                  

1-day or 10-day disjoint intervals. 

 

3.1.8 Model Score, Buy/Sell Score 

Functions are written to calculate different scores for users, 1 for calculating model trend score,               

1 for model accuracy score, and 1 for buy/sell score. For parts that share the same calculation                 

just with different offsets, helper functions are written to separate the main calculation             

function from the repeating steps. 

 

3.1.9 Save Predictions 

For each stock, a prediction file can be generated from the save predictions script. It includes all                 

the data and results that the application needs to display, including all 10-day predictions from               

all models, both 1-day predict test set and snakes test, and the model options and input options                 

for each model. The saved predictions file is then saved to Firebase Cloud Storage and served to                 

the application. During development, the saved predictions file is saved in a local directory. 
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3.2 Model Architecture and Hyperparameter Search With       

Evolution Algorithm 

3.2.1 Running Evolution Algorithm 

All training is done in the Jupyter notebook environment. With hardware limitations, apart from              

each team member’s own computer, Google Colaboratory [21] which provides an easy-to-use            

Jupyter notebook environment and free GPU service is also used to train models and run the                

evolution algorithm. 

 

Each team member is responsible for running the algorithm for a different stock. Since the               

evolution algorithm is a computing power intensive algorithm, training hundreds of neural            

networks, with the limitation in resources, it is impossible for the team to hold up their own                 

personal computers entirely for the training job. Google Colaboratory also puts limitations on             

the free resources it provides, and could not be used to run the algorithm day and night                 

unmonitored. Therefore, a checkpoint-like design is implemented, each person can run a            

certain number of iterations depending on their time and resource availability, then save that              

run result in a last_run.json JSON file, which could be loaded next time to pick up from where                  

the algorithm left off and continue with further iterations. The team is also encouraged to run                

the algorithm in small batches, and frequently checkpointing the algorithm state, avoiding            

runtime errors and losing all results after running the algorithm for a long time. 
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3.2.2 Algorithm Data Collection for Analysis 

Detailed algorithm and training data are gathered for analysis. All errors at each iteration are               

stored, resulting in a 2D iteration-by-population-size array, which is used to analyze the             

population evolution and algorithm convergence. 

 

The error and the model options of all neural networks in the last population are also stored for                  

getting the best model after running a lot of iterations and as a checkpoint for the small-batch                 

running. 

 

The Tensorboard log [22], which includes the neural network graph details and training details              

like loss over epochs, is also stored for every model for deep analysis using Tensorboard. A                

simpler network diagram of layers is also stored for every model. 

 

The best model after running all iterations is saved, as re-training the model with the same                

model architecture and hyperparameters will also result in a different model with different             

predictions. All models are then manually copied and merged to the common saving format as               

introduced in 3.1.5. 
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3.3 Server 

3.3.1 Flask 

For local development and testing, the Flask micro web framework [23] is used to serve local                

saved data like raw stock price data and saved predictions file. It is written in Python and                 

integrates well with the existing backend architecture. Moreover, it has a much more             

lightweight interface than other popular Python web frameworks such as Django and allows             

easier implementation of application programming interfaces. The Flask server simply serves           

the prediction result JSON files to the front-end application. 

 

3.3.2 Firebase Cloud Storage 

For actual deployment, Firebase is used instead. The prediction results are stored in Firebase              

Cloud Storage [24], which provides APIs for mobile clients to access the results as JSON objects                

directly. 
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3.4 Application Implementation 

3.4.1 Stock Information Collection 

Company information is collected from the IEX Stock API [25]. A Firebase Cloud Function [26] is                

written to get the data from the API and store it in Firebase Cloud Firestore [27], which the                  

application will access through another Firebase Callable Cloud Function. 

 

3.4.2 React 

The application is developed in React. React is a library for building user interfaces declaratively               

[28]. A distinctive feature that gives rise to its popularity is the ability to build interfaces by                 

combining different components. In this case, the UI was broken into various components, e.g.              

the application drawer and the stock list. It enables the separation of concerns and the division                

of work among team members effectively. Additionally, it also minimizes the effort to manage              

UI state changes, as there is no need to implement event listeners to watch for UI state                 

changes. Last but not least, it does not directly manipulate the DOM tree. Instead, changes are                

written to a virtual DOM. React then finds what needs to be updated and optimizes how the                 

DOM tree should be updated, which often results in better performance than doing manual              

DOM manipulations. 
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3.4.3 React Router 

To navigate through the single page application, React Router [29] is used to define the routes                

of the application. The library provides utilities to manage browser history and switch between              

different sections of the application. 

 

3.4.4 Redux 

With the application’s growing size, common states are often needed in multiple components.             

As different components make changes to the states, the states often become unmanageable             

as it gets hard to trace how the states are being manipulated from different components, and                

sometimes states across different components are not properly synchronized. 

 

Redux [30] provides a framework and utilities for centralizing the management of UI states. In               

redux, a centralized container was used to store all the states needed across different              

components. In addition, a set of actions, which define changes to the states, and a set of                 

reducers, which define how the new state should look like given a particular action specified.               

After that, individual components only need to dispatch an action to centralize changes to the               

UI states. 
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Figure 3.1​ Redux Architecture 

 

3.4.5 Immutable.js 

When using Redux, developers need to make sure that a reducer does not mutate its               

arguments so that there will be no unintentional side effects. That means a new object needs                

to be created every time states are updated. To start with, it is difficult to ensure that objects                  

are not mutated because JavaScript objects are mutable by default. Also, repeatedly creating             

new objects is inefficient. Immutable.js [31] is a library providing immutable, persistent            

collections that could be created and updated in an efficient manner. This was done through               

structural sharing, Using Immutable.js in combination with Redux guarantees that objects could            

not be modified unintentionally, without the performance penalty of repeatedly creating new            

JavaScript objects. 
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3.4.6 Material UI 

Traditional web application development relies on setting styles on individual tags and pages             

with CSS.  It is challenging to provide a consistent visual experience and theme to users. 

 

To provide a consistent user experience to users, the popular Material Design [32] developed              

by Google was adopted, as it defines a set of layouts, colors, typography and behaviors for                

mobile websites. For ease of implementation, the Material UI library [33] is used, which              

contains a large collection of developed Material Design themed React components. 

 

3.4.7 Google Charts 

Google Charts [34] is used to plot the stock prices and the predictions. It provides a simple and                  

separate set of APIs that does not depend on other libraries while maintaining customizability.              

Also, it integrates nicely with the user interface which follows the Material Design, which              

improves the overall user experience. 

 

3.4.8 Facebook Login via Firebase Authentication  

To facilitate user logins, the popular Facebook login service [35] powered by Firebase             

Authentication [36] is used, which provides a set of rich set of APIs to interact with a range of                   

authentication providers, including Facebook Login, and integrates well with other Firebase           

services that the system relies on. It is also convenient to add other authentication service               

providers in the future. 
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3.4.9 Components 

The whole application is broken down into the following hierarchy of components. 

 

Figure 3.2​ Component Diagram 

 

At the top level, the App component brings everything together. If the user is not logged in                 

he/she will be directed to the login page (LoginPage). 
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The router component (Router) controls where the user will end up at, including the home page                

(HomePage), which is the default starting point for users with a list of stocks and a search bar,                  

all broken down into separate components. 

 

Other components include the details page (DetailPage), which is where details about a stock              

price, including the stock price chart, a list of models with a model score attached to each                 

model, along with a buy/sell score that indicates the overall predictions for whether the stock               

should be purchased or sold, are included in. 
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4. Methodology - Testing 

4.1 Unit Test 

The unittest module from Python [37] is used to implement all unit tests, as it is available by                  

default in Python and integrates well with existing Python codes. 

 

Unit tests are done for the build dataset script, which transforms the raw input data into                

feature vectors usable for training and testing, as well as model score calculations. Unit tests               

are conducted because the components are error-prone, calculation intensive. Also, they           

exhibit garbage-in-garbage-out properties, that the model will be completely wrong if it            

receives the wrong input, and if the model scores are wrong, the final buy-sell recommendation               

will be totally incorrect. 

 

In particular, unit tests are written for the functions to build the dataset for training and                

prediction and the function to build the snakes. Combinations of input options are tested,              

including n-day stock price lookback as well as n-day moving average. Correctness is ensured              

by asserting the feature vectors’ shapes, as well as starting and ending elements. 

 

For model score calculation unit tests, different scenarios are emulated, including the case             

when the model accurately predicts all the stock prices, the case when the model predicts all                

the stock prices wrongly by a very large magnitude, the case when the model predicts the trend                 
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correctly but underestimates the trend, as well as the case when the model predicts the trend                

correctly but overestimates the trend. 
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4.2 Tools Used for Testing 

Various tools have been used to assist in the development of the mobile application. In               

particular, Chrome Mobile Emulator is used to simulate the mobile view while developing the              

mobile application on desktop/laptop computers. After the application is deployed to the            

cloud, mobile phones with different operating systems and browsers, including Google Pixel            

running Android 9 (Google Chrome) and iPhone 7 running iOS 12.1 (Safari), are used to verify                

the user experience is consistent across different devices with different resolutions. 
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5. Methodology - Evaluation 

The project’s objective is to provide a third-party investment tool to investors with             

democratized machine learning technologies. The success of the project is primarily           

determined by two factors, namely, whether the investment tool provides useful, accurate            

stock price predictions to investors, and whether investors can use and understand the             

predictive information provided by the machine learning technologies. The first factor is            

evaluated by the model scores described in 2.2.7. However, the evaluation of the second factor               

is based on user experience. External users have to be involved in the evaluation. For this                

purpose, hallway testing is used. 

 

Hallway testing involves allowing users who have not been involved in the development of the               

project to test the application and give constructive feedbacks about users feel about the              

application. Users participating in the tests are asked a set of questions about the usability and                

whether they understand what the information presented by the mobile application. This            

would give indications about whether the democratization of the machine learning           

technologies succeeds. 
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6. Findings 

All results and findings graphs can be found in a Google Colaboratory notebook at              

https://colab.research.google.com/drive/1GYuxbYywhN8-_D3eycsiQ-iYLzv-YjXq​. 

 

6.1 General Findings 

The following are some general findings from testing out different machine learning models. 

 

 Page 59 of 124 

https://colab.research.google.com/drive/1GYuxbYywhN8-_D3eycsiQ-iYLzv-YjXq


 

 

Figure 6.1a​ 1-day interval historical predictions (GE, Dense Neural Network) 

 

From Figure 6.1a, it shows that the 1-day interval historical predictions line follows closely with               

the historical prices. The graph looks like the prediction line is just 1 day shifting from the                 

historical prices, similar to a shifted and smoothed out historical prices line. Therefore, the              

shape of the historical predictions line is similar to the shape of the exponential moving               

averages (EMA), where the price changes from t to t+1 heavily depends on the direction and                
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magnitude of changes from t-1 to t, followed by decreasing importance from earlier historical              

prices. Other models in predicting stock prices of other stocks also show similar results. 

 

 

Figure 6.1b​ 10-day interval historical predictions (GE, Dense Neural Network) 
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From Figure 6.1b, it shows that the 10-day interval historical predictions line do not follow               

closely with the historical prices but could demonstrate the trend. For example, historical             

predictions 1, 2, 3, 4, 7, 8, 9, 10 provided insights on the correct market direction, yet the                  

magnitude did not match the actual price movements. A possible reason for this error can be                

the 10-day interval prediction has to predict more values while having fewer data compared to               

the case of 1-day interval prediction, which for 1-day interval prediction, data of close prices               

until previous day are available. Therefore, a longer period of interval prediction could subject              

to greater changes in market fundamentals, including market news, macroeconomic factors,           

earning reports, etc. Other models in predicting stock prices of other stocks also show similar               

results. 

 

Although price reflects all available information, the magnitude of price changes in the future              

might need other data for forecasting purpose, such as market sentiment, company            

announcement, retail and institutional investors’ attention on the company, etc. This is one of              

the possible explanation of why the 10-day interval prediction might have a large difference to               

actual values as there are potential shifts in market momentum. Therefore, the price might be               

too compact and other information is required to make a more accurate prediction. 
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Figure 6.1c​ Trend score and accuracy score distribution (16 best models from evolution) 

 

2 scores are used to measure the performance of historical predictions, trend score and              

accuracy score, introduced in 2.2.7. The higher the trend score means that the model is more                

accurate in trend prediction and could provide more meaningful price movement direction            

insights. The score representations used in this application could be useful for the user to               

interpret the errors of predictions in a quantifiable way. The higher the accuracy score means               

that the model could follow the actual stock prices more accurately. From Figure 6.1c, it shows                

that all best models generated from the evolution algorithm experiment have a trend score              

ranging from 6-7 but have an accuracy score ranging from 1-2 on the test set. This finding                 

matches the earlier findings, that the trend could be predictable, especially for less volatile              

stocks, but exact price, especially further into the future, could hardly be predicted accurately. 
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Despite common research findings that recurrent neural networks in general perform better            

than dense feedforward neural networks at predicting time-series data such as stock prices, in              

this project feedforward neural network outperforms recurrent neural networks. One possible           

explanation is that training a recurrent neural network requires more data than the dense              

neural network in general, as recurrent neural networks have more parameters. As the models              

are trained using only daily stock prices dating back 20 years (or less if the stock is listed fewer                   

than 20 years), there might not be enough data for training the recurrent networks to a good                 

performance. 
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6.2 Prediction Approach Findings 

As mentioned in 2.2.1, 2 approaches are tested in predicting the stock prices for the next 10                 

days, predicting all 10-day stock prices directly and predicting each stock price one at a time.                

The 2 different approaches frame the problem totally differently, which introduces a significant             

language bias. 

 

According to the results (e.g. Figure 6.2a and 6.2b), for most stocks, most models that predict                

10-day stock prices directly have a higher error than predicting individual stock price. However,              

the errors in predicting different days in the future are relatively constant for models that               

predict 10-day stock prices directly, while the error increases with the time from now for               

models that predict stock prices one day at a time. 

 

 

Figure 6.2a​ Prediction error in predicting stock price at different future dates  
(GOOGL, 10-day predict) 
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Figure 6.2b​ Prediction error in predicting stock price at different future dates  
(GOOGL, 1-day predict) 

 

 

One possible explanation for such observation is that the 2 problem framing approaches drive              

the model to learn different abstractions. For models that predict 10-day stock prices directly, it               

will learn the abstraction over 10 days. It is assumed that the correlation between the predicted                

stock price and today’s and earlier stock prices decreases when predicting further future. Since              

the learned abstractions need to be applicable throughout 10 days, the high error from further               

prediction because of low correlation is propagated to other closer predictions. It results in a               

constantly higher error for predicting all days. 

 

On the other hand, predicting stock price one at a time allows the model to learn the                 

relationships between more correlated data points. It can be observed from the results that the               
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first-day prediction is more accurate compared to the first prediction from models that predict              

10 days directly. 

 

However, not all 10-day predictions have a lower error, the error for further predictions are               

higher. As mentioned in 6.1, most models, especially those predicting stock price individually,             

behave like an EMA, which put more emphasis on more recent historical prices. Although this               

allows the model to accurately trace recent price movements, when predicting future stock             

prices iteratively the next predicted stock price is most strongly influenced by the previous              

prediction instead of real data. This results in reinforcement effect where predictions further             

ahead reinforce the unverified trend that the model predicts, and the errors amplifies and              

propagates to subsequent predictions. 
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6.3 Accuracy Findings 

6.3.1 Definitions 

 

6.3.2 Baseline Investor 

The baseline for model accuracy comparison is from a hypothesized investor who adopts a              

trading strategy of predicting the stock price will either go up or down by the holding period                 

return calculated from historical data. There will also be a corresponding error for this strategy.               

Assume the hypothesized investor always correctly predicts the stock price movement           

direction. The baseline strategy error is defined as: 

 

If the hypothesized investor always predicts the wrong stock price movement, then the error is 

the maximum of the 2 terms. 

 

6.3.3 Findings 

The errors from 6.2 are compared with the baseline strategy introduced (Figure 6.3a and 6.3b).               

It is found that most models for most stocks achieve comparable performance in terms of error                

as the baseline strategy. Some models for some stocks have a slightly lower error than the                

baseline, and some have higher. 
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Since the baseline error is calculated based on the assumption that the hypothesized investor              

always makes a correct prediction on the price movement direction, despite only having             

marginal improvement on the accuracy or even lower in some cases, the machine learning              

models trained successfully predicted the trend of the price movement, which agrees with the              

findings in 6.1. See Appendix F for similar findings over other stocks. 

 

 

Figure 6.3a​ Comparison between different models (10-day predict) with baseline 
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Figure 6.3b​ Comparison between different models (1-day predict) and baseline 
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6.4 Model Architecture and Hyperparameters Search with       

Evolution Algorithm Findings 

The evolution algorithm experiment conducted has shown promising results in searching model            

architectures and hyperparameters. Multiple experiments are run, for different stocks,          

different neural network types and different inputs. From the prediction error recorded over             

each evolution iteration (e.g. Figure 6.4a and 6.4b), all experiments have shown that the              

evolution algorithm successfully finds better models over time. Hand-designed models based           

on the team’s intuition and basic knowledge could not achieve an error rate lower than that                

achieved by the algorithm’s explored models. 

 

 

Figure 6.4a​ Evolution errors (GOOGL, dense neural network) 
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Figure 6.4b​ Evolution error (GOOGL, LSTM network) 

 

One interesting and unexpected observation from the evolution algorithm results is that a             

number of best models found are fairly simple. The found models are 1 or 2 layers deep with a                   

linear activation function. In the case of having stacks of linear layers, the model is               

mathematically equivalent to a linear regression over features. There are multiple possible            

explanations for this observation. 

 

First, the evolution algorithm hyperparameters used limits the search space for possible model             

architectures and hyperparameters. Due to computational power constraints, only a small           

population with 10 models is used. This limits the variety of models explored by the algorithm                

as the variance within the population is small. Moreover, under constraints, each experiment is              

run for 100 iterations only, which also limits the exploration. On average, the whole population               

is only 10 steps or mutations away from the original random population, which may not be                

significant enough for deep exploration. 
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The evolution algorithm itself, together with its hyperparameters, introduces a search bias, the             

algorithm defines the possible explored models and the search path to achieve them. 

 

Another possible explanation is that the dataset size is relatively small with just daily stock               

prices. Larger deep neural networks with more complicated architectures and thousands or            

even millions of weights require much more data to train and learn from. 

 

A final possible explanation is that the stock market is at least weakly efficient, i.e., stock prices                 

follow random walk given historical price data, and patterns with predictive power could not be               

found just from raw price data. If stock prices follow random walk, a good predicting method is                 

to put strong weights at very recent prices, and hope the actual price will fluctuate closely                

around it, which is very similar to a linear model. 

 

Only using stock price data and simple derivatives like moving averages introduces a language              

bias, as price movements are also highly dependent on news and sentiment. Although stock              

prices reflect information, it is a very compact representation of all information and news.              

Thus, it is difficult to reverse engineer features or information out from a single number,               

especially when only daily stock prices are available. Having other information like real-time             

news sentiment or summary may help to break stock prices down to more granular              

components for machine learning algorithms to learn from. 
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6.5 Other Findings 

6.5.1 Trend lines 

The accuracies of the predictions based on linear trendlines fluctuate very wildly, as they are               

simply linear interpolations, while real stock prices may fluctuate up and down. In particular,              

the accuracy of the predictions depends completely on the choice of the day based on which                

the linear interpolations are made. Since the choice is arbitrary, the predictions based on trend               

lines are not reliable at all. 

 

6.5.2 Alternative Prediction Method - Skip Predict 

To tackle the problem of input bias on the intermediate prediction result and the short term                

noise of the stock, an alternative prediction method “skip predict” is used.  

 

This method has 2 key advantages. First, this method can decouple the dependency of the               

prediction result based on the previous day in the original model. With “skip predict”, the input                

data of n-day before is used for the prediction. For example, if the number of days skipped is                  

10, this represents that input data would not consider the recent 10 days, and the input data                 

would use the shifted time frame. 

 

Second, the prediction result can all depend on the historical prices and not the intermediate               

prediction result. This could be one of the methods to solve the reinforcement problem              

mentioned in 6.2. The error of the first predicted data point would not impact the following                
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predictions result. For example, the incorrect trend of the first predicted data point (t+1) would               

not serve as the input for the predictions later (t+2, t+3, …, t+10). This creates an advantage                 

that the error or bias would not accumulate and the result could solely depend on historical                

data. The hypothesis is that such method could generate a lower root mean square error               

compared to the original model the application is using. 

 

 

Figure 6.5​ Skip predict RMSE (CAT, Dense Neural Network, 1-day predict) 
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From Figure 6.5, the increasing number of skip days can not effectively lower the root mean                

squared error. Similar observations are also seen in other stocks, including TSLA, PG, WMT, etc.               

This is an interesting finding that skipping more days could not improve the accuracy. One               

possible explanation is that the correlation between further apart stock prices is very small, so               

although the reinforcement effect could be solved by this prediction approach, the error is              

amplified by another low correlation factor, which results in a model that fails to capture               

instant and close-by news. 
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6.6 Mobile Application User Experience Testing 

To evaluate the user experience of the mobile application, users who have not been involved in                

the development of the application have been invited to try out the mobile application and give                

constructive feedbacks.  The major findings are summarized as follows: 

 

6.6.1 Useful Insights for Finding General Trend 

Despite the flaws found in the mobile application, users in the test agree that they were able to                  

check out what are the possible movements of the stock prices predicted by the machine               

learning models and the general directions of the stocks are going. Users find it might be useful                 

for finding stocks with upside potential for the coming few days. 

 

6.6.2 Unclear Description of the Models 

In the mobile application, different models are named after their architectures, such as LSTM,              

Dense Neural Network, and GRU. However, these technical names are not familiar to users              

who have no experience in machine learning and cause some confusions among users. 

 

6.6.3 Unclear Presentations of the Prediction Results 

Each stock is associated with a model trend score as described in 2.2.7. However, to laymen                

users, it might not always be clear what these scores represent, as the definitions are not                

clearly explained. The lack of clarity might confuse users or lower their confidence as they               

attempt to take actions following the predictions made by the models. 
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7. Discussion 

As mentioned in 5, the success of the project is primarily determined by two factors, namely,                

whether the investment tool provides useful, accurate stock price predictions to investors, and             

whether investors can use and understand the predictive information provided by the machine             

learning technologies.  The project’s objectives are therefore partially fulfilled. 

 

7.1 Accuracy of Stock Price Predictions 

As shown in 6.1, while the 1-day stock price prediction follow closely with actual stock prices,                

the predictions for stock prices after 10 days deviate considerably from the actual stock prices.               

This shows that machine learning models fail to provide accurate stock price predictions to              

retail investors. 

 

Nevertheless, some of the models have been shown to outperform predictions based on             

random walks as mentioned in 6.2, and therefore might still serve as a reference for more savvy                 

investors, who might be able to compare the results with their own analysis findings to discover                

meaningful trends. 
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7.2 Democratization of Machine Learning Technology 

Another factor when evaluating the project’s success is whether investors can use and             

understand the predictive information provided by the machine learning technologies using our            

mobile application. In spite of the confusions found in some parts of the user interface,               

especially in the advanced user mode, users found useful insights provided by the machine              

learning models, such as identifying stocks with upside potential. The result is significant, in the               

sense that users with little background on machine learning technology and stock trading could              

find potential use cases for the application. The results imply that machine learning             

technologies could be democratized to serve the interest of the general public. Stock price              

prediction is a particularly exciting area, because the level of expertise required to succeed in               

making profitable short-term investments is considered to be prohibitive for small, retail            

investors, and trading with help of machine learning is a feat only institutional investors could               

perform. The application demonstrates one possible way retail investors could use machine            

learning technologies on their own. 
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8. Conclusion 

The project lays the foundation for democratizing machine learning technologies for retail            

investors, connecting predictions made by machine learning models to retail investors through            

a mobile application. It helps investors navigate through the stock markets with additional             

analysis and help them make more informed decisions. 

 

The findings demonstrated that the application provides significance in trend prediction. When            

compared to the baseline, the prediction shows useful trend tendency with the real stock              

trend. Through the application interface, the user can easily compare the predictions and             

model scores from different machine learning models, then choosing the one that fits their              

preference. The models used in the application will continue to improve itself by searching for a                

better model topology, structure and hyperparameters through evolution algorithm. The          

findings concluded the usefulness of evolution algorithm in lowering the mean squared error             

when predicting stock prices, which is helpful for improving the trend prediction for retail              

investors.  

 

Therefore, with the application and research findings, to large extent the project team achieved              

the aim of creating an user-friendly system for retail investors whom does not have previous               

technical knowledge to navigate the machine model predictions result with useful benchmarks. 

 

There are 4 possible further improvements building upon the findings of this project. First,              

multiple approaches to framing the problems could be explored in the future, such as              
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predicting whether the stock price goes up or down (binary classification) based on the              

previous stock prices. Other features could be incorporated, such as market news and             

sentiment. Combined with the development of more advanced machine learning techniques,           

the accuracy of the information provided to retail investors might be improved significantly. 

 

Second, a larger scale of evolution with larger population size and more iterations could also be                

tested for achieving better results. Model inputs can also be included into the evolution              

algorithm as a variable to optimize. Regularized evolution [38] can be tested to eliminate old               

models regardless of their accuracy, which could allow the algorithm to search for more distant               

models in the search space. 

 

Third, it is also possible to use more finance-specific scores, like those introduced, as the               

objective function instead of simple mean squared errors to achieve better results. 

 

Fourth, mobile applications with better presentation of stock price predictions could be            

developed to help investors understand the implications of the stock price predictions, e.g.             

when to buy or sell. This would allow investors to make more informed decisions based on the                 

machine learning models and truly democratize machine learning technologies, which were           

believed to be only in the hands of very few people. 
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10. Appendices 

A - Model Options Example 

Dense neural network model options example: 

"modelOptions": { 

    "network_type": "dense", 

    "net": { 

        "layers": [ 

            {"units": 32, "activation": "relu", "is_input": true, "inputUnits": 10}, 

            {"units": 64, "activation": "relu"}, 

            {"is_output": true, "activation": null} 

        ], 

        "loss": "mse", 

        "optimizer": "adam", 

        "learning_rate": 0.001, 

        "epochs": 20, 

        "batch_size": 32, 

        "metrics": ["accuracy"], 

        "evaluation_criteria": { 

            "minimize": true, 

            "threshold": 10 

        } 

    }, 

    "predict_n": 10 

} 

 

Multi-layer LSTM network model options example: 

"modelOptions": { 

    "network_type": "LSTM", 

    "net": { 

        "layers": [ 

            { 

                "layer_type": "LSTM", 

                "units": 32, 
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                "activation": "relu", 

                "recurrent_activation": "sigmoid", 

                "stateful": false, 

                "is_input": true, 

                "inputUnits": [10, 1], 

                "return_sequences": true 

            }, 

            { 

                "layer_type": "LSTM", 

                "units": 32, 

                "activation": "relu", 

                "recurrent_activation": "sigmoid", 

                "stateful": false, 

                "is_input": true, 

                "inputUnits": [10, 1], 

                "return_sequences": false 

            }, 

            {"units": 64, "activation": "relu"}, 

            {"is_output": true, "activation": null} 

        ], 

        "loss": "mse", 

        "optimizer": "adam", 

        "learning_rate": 0.001, 

        "epochs": 20, 

        "batch_size": 32, 

        "metrics": ["accuracy"], 

        "evaluation_criteria": { 

            "minimize": true, 

            "threshold": 10 

        } 

    }, 

    "predict_n": 10 

} 
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B - Input Options Example 

"inputOptions": { 

    "config": [ 

        {"type": "lookback", "n": 10, "stock_code": "GOOGL", "column": "adjusted_close"}, 

        {"type": "moving_avg", "n": 10, "stock_code": "GOOGL", "column": "adjusted_close"} 

    ], 

    "stock_codes": ["GOOGL"], 

    "stock_code": "GOOGL", 

    "column": "adjusted_close" 

} 
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C - Trained Model Saving Format 

The following is the directory and saving format for trained models. 

/saved_models 

    /dnn 

        /<model_hash_1> 

            /<stock_code_1> 

            /<stock_code_2> 

        /<model_hash_2> 

            /<stock_code_1> 

            /<stock_code_2> 

        models_data.json 

    /linear_regression 

        /<model_hash_1> 

            /<stock_code_1> 

            /<stock_code_2> 

        models_data.json 

 

The following is the data structure of models_data.json, which saves the saved path, model              

options and input options of all trained models of the same type. Each model hash is a SHA256                  

hash calculated from a JSON string combining a model’s model type, model options and input               

options, which prevents collisions from saving all trained models with systematic           

timestamp-based names. 

{ 

    “models”: [ 

        “<model_hash_1>”: { 

            “<stock_code_1>”: [ 

                { 

                    “model_name”: “<model_hash_1>_<timestamp>.h5”, 

                    “model_path”: “<relative_model_path>”, 

                    “model”: “dnn” 

                } 

            ], 

            “<stock_code_2>”: [ 
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                { 

                    “model_name”: “<model_hash_2>_<timestamp>.h5”, 

                    “model_path”: “<relative_model_path>”, 

                    “model”: “dnn” 

                } 

            ] 

        }, 

        “<model_hash_2>”: { 

            “<stock_code_1>”: [ 

                { 

                    “model_name”: “<model_hash_1>_<timestamp>.h5”, 

                    “model_path”: “<relative_model_path”, 

                    “model”: “LSTM” 

                } 

            ], 

        } 

    ], 

    “modelTypes”: { 

        “<model_hash_1>”: { 

            “model”: “dnn”, 

            “modelOptions”: <model_options_dict>, 

            “model”: <input_options_dict>, 

        }, 

        “<model_hash_2>”: { 

            “model”: “dnn”, 

            “modelOptions”: <model_options_dict>, 

            “model”: <input_options_dict>, 

        } 

    } 

} 
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D - Evolution Algorithm Mutations 

Different mutations are available at each step to slowly evolve the population. 

Mutation Description Options 

add_dense_layer Add a dense layer with a 

random number of units and 

random activation function 

 

remove_dense_layer Remove a dense layer  

change_units Change the number of units 

in a randomly chosen layer 

8, 16, 32, 64, 128 

change_activation Change the activation 

function in a randomly 

chosen layer 

ReLU, sigmoid, tanh, linear 

learning_rate Change the learning rate 0.01, 0.001, 0.0001 

batch_size Change the batch size 16, 32, 64 

 

All recurrent neural networks (simple RNN, LSTM network, GRU network) have other additional             

mutations. 

RNN type Mutation Description Options 

Simple RNN add_rnn_layer Add an RNN layer with 

a random number of 

units and a random 

activation function to 

the RNN layer stack 

 

Simple RNN remove_rnn_layer Remove an RNN layer 

from the RNN layer 

stack 
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LSTM add_lstm_layer Add an LSTM layer with 

a random number of 

units, random 

activation function and 

a random recurrent 

activation function to 

the LSTM layer stack 

 

LSTM remove_lstm_layer Remove an LSTM layer 

from the LSTM layer 

stack 

 

LSTM change_recurrent_activ

ation 

Change the recurrent 

activation function in a 

randomly chosen LSTM 

layer 

sigmoid, hard sigmoid 

GRU add_gru_layer Add a GRU layer with a 

random number of 

units, random 

activation function and 

random recurrent 

activation function to 

the GRU layer stack 

 

GRU remove_gru_layer Remove a GRU layer 

from the GRU layer 

stack 

 

GRU change_recurrent_activ

ation 

Change the recurrent 

activation function in a 

randomly chosen GRU 

layer 

sigmoid, hard sigmoid 
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E - Evolution Algorithm Hyperparameters 

There are a number of hyperparameters that can be tuned for the evolution algorithm, which               

are set to a certain value for the experiment. 

Hyperparameter Value 

POPULATION_SIZE 10 

ITERATIONS at least 100 

Optimizer used in all training Adam optimizer 

Epochs 20 
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F - Prediction Results 

The following are the performance of different models on different stocks with the 2 different               

prediction approaches. Each row is the result of a certain stock. The left column is from models                 

that predict 10-day stock prices directly, the right column is from models that individually              

predict 1-day stock price. 
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Figure 9.1 ​Prediction results from 12 different stocks in S&P 500 
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G - Evolution Algorithm Experiment Results 

The following are the results of running the evolution algorithm for all 13 stocks. All results                

have shown that evolution is exploring better and better model architectures and            

hyperparameters over time. 
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Figure 9.2 ​Evolution algorithm experiment results 
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H - (Project Planning) Division of Work 

Task Man Cameron Steven Michael 

Base Code Setup ✓✓ ✓ ✓  

App UI Design    ✓✓ 

     

Model Exploration  (Leader)   

Trend line ✓ ✓ ✓ ✓ 

Linear regression ✓ ✓   

Neural network ✓ ✓   

Recurrent neural network ✓ ✓   

Long-short term memory network ✓ ✓   

Pre-process and Build Training Dataset  ✓   

Separate model and data  ✓   

Options    ✓ 

     

Evolution Algorithm ✓✓    

Architecture Search with Evolution Algorithm (Leader)    

Dense Neural Network ✓ ✓ ✓ ✓ 

Recurrent Neural Network ✓ ✓ ✓ ✓ 

Long-Short Term Memory Network ✓ ✓ ✓ ✓ 

GRU Network ✓ ✓ ✓ ✓ 

Analyze algorithm results ✓ ✓ ✓ ✓ 

     

Investors App    (Leader) 

Basic layout ✓  ✓  

Plot old stock price data ✓    

Change chart time frame   ✓  

Toggle predictions   ✓  

Search stock    ✓ 

Company information    ✓ 

Plot historical predictions    ✓ 

Calculate upper and lower bound   ✓  

Model details ✓    
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Refine and polish UI ✓ ✓ ✓ ✓ 

User Acceptance Test ✓ ✓ ✓ ✓ 

     

Scoring for Investors   (Leader)  

Trend line   ✓  

Model score formula ✓ ✓ ✓ ✓ 

Buy/sell score formula ✓ ✓ ✓ ✓ 

Calculate model score   ✓  

Calculate buy/sell score   ✓  

     

Investors Application Data (Leader)    

Get old stock prices ✓   ✓ 

Cron job to collect stock price daily ✓    

Cron job to predict stock prices daily ✓    

     

Report (Leader)    

Proposal report ✓ ✓ ✓ ✓ 

Draw system architecture  ✓ ✓  

Progress report ✓ ✓ ✓ ✓ 

Final report ✓ ✓ ✓ ✓ 
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I - (Project Planning) Gantt Chart 

Task Start Target End Aug Sep Oct Nov Dec Jan Feb Mar Apr 

Base Code Setup Aug 10 Oct 15          

App UI Design Aug 10 Oct 20          

            

Model Exploration            

Trend line Oct 1 Oct 30          

Linear regression Oct 16 Oct 30          

Neural network Nov 2 Nov 6          

Recurrent neural network Dec 21 Jan 11          

Long-short term memory network Dec 21 Jan 10          

Pre-process and Build Training Dataset Nov 7 Nov 13          

Separate model and data Nov 7 Nov 16          

Options Nov 7 Nov 16          

            

Evolution Algorithm Dec 18 Jan 29          

            

Architecture Search with Evolution 

Algorithm            

Dense Neural Network Feb 1 Feb 22          

Recurrent Neural Network Feb 15 Mar 1          

Long-Short Term Memory Network Feb 15 Mar 1          

GRU Network Feb 15 Mar 1          

Analyze algorithm results Mar 15 Mar 29          
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Investors App            

Basic layout Aug 21 Sep 30          

Plot old stock price data Aug 22 Sep 25          

Change chart time frame Oct 1 Oct 30          

Toggle predictions Oct 1 Oct 30          

Search stock Oct 1 Oct 30          

Company information Dec 21 Jan 24          

Plot historical predictions Jan 24 Feb 8          

Calculate upper and lower bound Jan 24 Feb 8          

Model details Feb 4 Feb 8          

Refine and polish UI Feb 15 Mar 8          

User Acceptance Test Mar 15 Mar 29          

            

Scoring for Investors            

Calculate trend line model score Nov 7 Nov 14          

Model score formula Feb 1 Feb 8          

Buy/sell score formula Feb 1 Feb 8          

Calculate model score Feb 8 Mar 1          

Calculate buy/sell score Feb 8 Mar 1          

            

Investors Application Data            

Get old stock prices Aug 20 Sep 30          

Cron job to collect stock price daily Mar 1 Mar 15          

Cron job to predict stock prices daily Mar 15 Mar 22          

            

Report            

Proposal report Aug 30 Sep 20          

Draw system architecture Dec 21 Feb 13          

Progress report Feb 1 Feb 14          

Final report Mar 15 Apr 17          
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J - Collaboration 

Git and GitHub 

Git is used for version control. 4 GitHub repositories [39] are created, one for each sub-system                

in the project, app, AI server, Node.js data server, and Firebase Cloud Functions. Each new               

feature is implemented on a separate branch, maintained by 1 developer, and merged into              

master when ready. 

 

Task Management 

The whole project is divided into small tasks in the research or the application side. A Google                 

Sheet is used to manage the progress of each task, which describes the task details, the person                 

responsible for working on it, the start date, the expected finish date, and the actual finish date.                 

The Git branch which the work is written on is also recorded. 

 

Figure 9.3​ Task Management List on Google Sheet  
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Meeting 

The team started with general meetings from August to mid-October, discussing the idea and              

the system design. Later on, the project is divided into small tasks, and each member worked                

individually and report to the group the features added or changes made once finished.              

Meetings were held weekly to discuss the next stage of features to work on, while most                

discussions were made on WhatsApp. There were a small to-do or to-discuss list before each               

meeting. Monthly meetings were held with the professor to report the progress and changes in               

idea if any, and seek advice for things to do. 

 

Starting from February, the project stepped into the testing phase, which every member tested              

out numerous models with the evolution algorithm. Weekly meetings are scheduled on every             

Thursday afternoon to discuss and analyze different models and findings. 
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K - Meeting Minutes  

Date: 2018-11-07 
Time: 09:00 - 18:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Walked through the whole system design and architecture 
● Discussed the project plan 
● Discussed separating model and data and input configs 
● Discussed input configs format 
● Discussed how to calculate the error and score of trend lines 
● Discussed how to do evolution with options 
● Discussed options format 

 
To-dos: 

Man ● General linear regression and support vector regression 
● Separate model and data (Re-write train_models.py and 

save_predictions.py) 

Cameron ● Build dataset based on input configs 

Steven ● Calculate trend line models error and score 

Michael ● Generate random options and mutate options based on 
option configs 
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Date: 2018-11-09 
Time: 15:00 - 17:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Worked on linear regression and support vector regression models 
● Worked on trend line models 
● Worked random option generation  
● Discussed and defined input config formats 

 
To-dos: 

Man ● General linear regression and support vector regression 
● Separate model and data (Re-write train_models.py and 

save_predictions.py) 

Cameron ● Build dataset based on input configs 

Steven ● Calculate trend line error and score 

Michael ● Generate random options and mutate options based on 
option configs 
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Date: 2018-11-13 
Time: 12:00 - 13:30 
Team Members: Man, Cameron, Steven, Michael 
 

● Worked on trend line models 
● Worked on random option generation  
● Worked on the module to build the dataset based on input config 
● Discussed documentation issues 

 
To-dos: 

Man ● Document and comment code 

Cameron ● Build dataset based on input configs 

Steven ● Calculate trend line models error and score 

Michael ● Generate random options and mutate options based on 
option configs 
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Date: 2018-11-14 
Time: 15:00 - 16:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Worked on documentation and comments  
● Worked on trend lines 

 
To-dos: 

Man ● Document and comment code 

Cameron ● Build dataset based on input configs 

Steven ● Calculate trend line models error and score 

Michael ● Generate random options and mutate options based on 
option configs 
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Date: 2018-11-16 
Time: 15:00 - 16:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Worked on documentation and comments  
● Worked on options generation and mutation based on option config 

 
To-dos: 

Man ● Document and comment code 

Cameron ● Build dataset based on input configs 

Steven ● Calculate trend line models error and score 

Michael ● Generate random options and mutate options based on 
option configs 
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Date: 2018-11-26 
Time: 11:30 - 12:30 
Team Members: Man, Cameron, Steven, Michael 
 

● Discussed implementation of recurrent neural networks, e.g. LSTM 
● Discussed evolution algorithms  
● Discussed the possible additional features, e.g. company information on mobile 

application 
 
To-dos: 

Man ● Evolution algorithms 

Cameron ● Recurrent Neural Network, LSTM 

Steven ● Calculate trend line models error and score 

Michael ● Displayed Company information on Mobile Application 
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Date: 2019-01-24 
Time: 14:00 - 17:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Discussed how to calculate accuracy, upper bounds and lower bounds of different 
models  

● Discussed new interfaces between server and mobile clients to allow upper/lower 
bounds and previous predictions to be passed 

● Discussed how to present the upper/lower bounds and accuracy on mobile application 
 
To-dos: 

Man ● Evolution algorithms 

Cameron ● Calculate upper/lower bounds for stock price predictions 
● Get previous predictions to show stock prices’ accuracies 

Steven ● Plot score indicators for different models 

Michael ● Plot upper bounds/lower bounds for stock price predictions 
on mobile application  

● Plot previous predictions on mobile application 
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Date: 2019-02-08 
Time: 13:00 - 15:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Worked on calculating accuracy, upper bounds and lower bounds of different models  
● Worked on plotting previous predictions, upper bounds and lower bounds of different 

models in the mobile application 
● Discussed progress report 

 
To-dos: 

Man ● Evolution algorithms 
● Progress Report 

Cameron ● Calculate upper/lower bounds for stock price predictions 
● Get previous predictions to show stock prices’ accuracies 
● Progress Report 

Steven ● Plot score indicators for different models 
● Progress Report 

Michael ● Plot upper bounds/lower bounds for stock price predictions 
on mobile application  

● Plot previous predictions on mobile application 
● Progress Report 
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Date: 2019-02-15 
Time: 13:00 - 15:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Discussed one-day prediction option 
● Discussed formulation of model scores 
● Discussed formulation of buy/sell scores 

 
To-dos: 

Man ● Implement rolling one-day predictions of stock prices 

Cameron ● Implement build_dataset for one-day predictions of stock 
prices 

Steven ● Calculate model score 
● Calculate buy/sell score 

Michael ● Plot model score 
● Plot buy/sell score 
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Date: 2019-02-21 
Time: 16:30 - 18:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Separated build dataset script to build training dataset and build predict dataset 
● Unit-tested build dataset script 
● Discussed the uses of Facebook authentication 
● Discussed the design of user profile 
● Discussed the design of user page 

 
To-dos: 

Man ● Separate build dataset to build training dataset and predict 
dataset 

● Write unit tests for build_dataset 

Cameron ● Write unit tests for build_dataset 

Steven ● Calculate model score 
● Calculate buy/sell score 

Michael ● Plot model score 
● Plot buy/sell score 
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Date: 2019-02-28 
Time: 16:30 - 18:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Discussed what config options to include in the evolution model 
● Discussed normalization of stock prices 
● Discussed user interface changes 
● Demonstrated progress for stock price predictions (in successfully comparing different 

models and plotting it in graphs) 
 
To-dos: 

Man ● Normalization of stock prices 
● Evolution config options 

Cameron ● Favourite list 
● Timeframe select 

Steven ● Calculation model score and plot score 

Michael ● Toggle for the user to choose whether they want to plot 
“rollingPredict” or “snakes” historical predictions (or both) 
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Date: 2019-03-04 
Time: 16:30 - 18:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Discussed the overall user interface design 
● Discussed possible improvements to the UI 
● Discussed how to start evolution 

 
To-dos: 

Man ● Host server  
● Evolution config options 

Cameron ● Start doing evolution 

Steven ● Make improvements on the UI 
● Start doing evolution 

Michael ● Start doing evolution 
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Date: 2019-03-14 
Time: 16:30 - 18:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Discussed model score formula 
● Discussed UI improvements 
● Discussed prediction results 
● Discussed evolution scope 

 
To-dos: 

Man ● Revise model score formula 
● Work on evolution 

Cameron ● Work on evolution 

Steven ● Revise model score formula 
● Work on evolution 

Michael ● Work on evolution 
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Date: 2019-03-28 
Time: 16:30 - 18:00 
Team Members: Man, Cameron, Steven, Michael 
 

● Reviewed page & component diagram for our web application 
● Discussed what we need for our final report  

○ New findings regarding evolution algorithm 
○ Results of hallway testing 
○ Unit tests 
○ Implementation result (with component diagram) 

● Use Google slides for final presentation  
 
To-dos: 

Man ● Work on evolution 
● Host the application to the server 

Cameron ● Work on evolution 

Steven ● System diagram 
● Work on evolution 

Michael ● Work on evolution 
● Add chart settings user profile to cloud 
● Add maximum time frame  
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Date: 2019-04-08 
Time: 12:00 - 18:00 
Team Members: Michael, Man, Cameron 
 

● Discussed the flow of the final report 
● Use case diagram / Functions 
● Questions to the professor 

○ Should we put mockup or real  
○ Should we put application/research part first in our design (2.2 - Application, 2.3 

Research) 
 
To-dos: 

Man ● Plot evolution results as graphs 
● Start working on the final report 

Cameron ● Start working on the final report 

Steven ● Start working on the final report 

Michael ● Start working on the final report 
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L - Required Hardware and Software 
 
Hardware 

● 4 x Windows / Linux / MAC laptops for development 

Software 

● Python 3.6 with machine learning libraries (e.g. scikit-learn, Keras, Tensorflow) 

● Visual Studio Code / Sublime Text for programming 

● Google Chrome for debugging web applications 

Platforms 

● Google Colaboratory for running evolution 

● Firebase Hosting for app 

● Firebase (Cloud Datastore, Cloud Storage, Authentication, Cloud Functions) 
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