

Stock Price Prediction App using Machine

Learning Models Optimized by Evolution

[RO4] Final Year Project Report

By

CHAU Tsun Man,

SUEN Heung Ping,

TO Cheuk Lam,

WONG Cheuk Kin

Advised by

Prof. David ROSSITER

Submitted in partial fulfillment of the requirements for COMP 4981 in the Department of

Computer Science, The Hong Kong University of Science and Technology, 2018-2019

 Page 1 of 124

Abstract

The project aims to provide retail investors with a third-party investment mobile application to

navigate through the stock market. This is achieved through the use of machine learning and

mobile web technologies. Several stock price prediction approaches and models are developed

including dense, feedforward neural networks, recurrent neural networks, simple linear

regressions, and linear interpolations. Model architectures and hyperparameters are optimized

and automatically searched by evolution algorithm. Promising results are found for trend

prediction. The project serves as a foundation for democratizing machine learning technologies

to the general public in the context of discovering investment opportunities. It paves the way

for extending and testing out new models, and developing AutoML in the financial context in

the future.

 Page 2 of 124

Table of Contents

Abstract 2

Table of Contents 3

1. Introduction 7

1.1 Overview 7

1.2 Objectives 10

1.2.1 Introduction 10

1.2.2 Research 10

1.2.3 Application 11

1.3 Literature Survey 12

1.3.1 Stock Price Predictions 12

1.3.2 Neural Network 14

1.3.3 Recurrent Neural Network 14

1.3.4 Long Short-Term Memory (LSTM) 15

1.3.5 Gated Recurrent Unit (GRU) 15

1.3.6 Evolution Algorithm 16

2. Methodology - Design 17

2.1 System Architecture 17

2.2 Research Design 19

2.2.1 Problem Framing 19

2.2.2 Robust Design 20

2.2.3 Data Pre-processing 21

2.2.4 Prediction Output 22

2.2.5 Model 22

2.2.6 Model Architecture and Hyperparameter Search With Evolution Algorithm 24

2.2.7 Performance Evaluation 25

2.2.7.1 Motivation 25

2.2.7.2 Definitions 25

2.2.7.3 Model Accuracy Score 26

2.2.7.4 Model Trend Score 28

2.2.7.5 Buy/Sell Score 28

2.2.7.6 Upper Bounds and Lower Bounds for Prediction 29

2.3 Application Design 31

2.3.1 User Groups 31

 Page 3 of 124

2.3.2 User Journey 32

2.3.3 UI/UX 34

2.3.3.1 Application Screenshots 34

2.3.3.2 Progressive Web Application Motivation 36

2.3.3.3 Responsive Design 36

2.3.3.4 Layout Motivation 37

3. Methodology - Implementation 41

3.1 Research Implementation 41

3.1.1 Stock Price Data Collection 41

3.1.2 Data Pre-processing 42

3.1.3 Model 43

3.1.4 Training 44

3.1.5 Saving Trained Model 44

3.1.6 Predicting Stock Price 44

3.1.7 Performance Evaluation 45

3.1.8 Model Score, Buy/Sell Score 45

3.1.9 Save Predictions 45

3.2 Model Architecture and Hyperparameter Search With Evolution Algorithm 46

3.2.1 Running Evolution Algorithm 46

3.2.2 Algorithm Data Collection for Analysis 47

3.3 Server 48

3.3.1 Flask 48

3.3.2 Firebase Cloud Storage 48

3.4 Application Implementation 49

3.4.1 Stock Information Collection 49

3.4.2 React 49

3.4.3 React Router 50

3.4.4 Redux 50

3.4.5 Immutable.js 51

3.4.6 Material UI 52

3.4.7 Google Charts 52

3.4.8 Facebook Login via Firebase Authentication 52

3.4.9 Components 53

4. Methodology - Testing 55

4.1 Unit Test 55

4.2 Tools Used for Testing 57

 Page 4 of 124

5. Methodology - Evaluation 58

6. Findings 59

6.1 General Findings 59

6.2 Prediction Approach Findings 65

6.3 Accuracy Findings 68

6.3.1 Definitions 68

6.3.2 Baseline Investor 68

6.3.3 Findings 68

6.4 Model Architecture and Hyperparameters Search with Evolution Algorithm Findings 71

6.5 Other Findings 74

6.5.1 Trend lines 74

6.5.2 Alternative Prediction Method - Skip Predict 74

6.6 Mobile Application User Experience Testing 77

6.6.1 Useful Insights for Finding General Trend 77

6.6.2 Unclear Description of the Models 77

6.6.3 Unclear Presentations of the Prediction Results 77

7. Discussion 78

7.1 Accuracy of Stock Price Predictions 78

7.2 Democratization of Machine Learning Technology 79

8. Conclusion 80

9. References 82

10. Appendices 86

A - Model Options Example 86

B - Input Options Example 88

C - Trained Model Saving Format 89

D - Evolution Algorithm Mutations 91

E - Evolution Algorithm Hyperparameters 93

F - Prediction Results 94

G - Evolution Algorithm Experiment Results 98

H - (Project Planning) Division of Work 103

I - (Project Planning) Gantt Chart 105

J - Collaboration 107

Git and GitHub 107

Task Management 107

 Page 5 of 124

Meeting 108

K - Meeting Minutes 109

Date: 2018-11-07 109

Date: 2018-11-09 110

Date: 2018-11-13 111

Date: 2018-11-14 112

Date: 2018-11-16 113

Date: 2018-11-26 114

Date: 2019-01-24 115

Date: 2019-02-08 116

Date: 2019-02-15 117

Date: 2019-02-21 118

Date: 2019-02-28 119

Date: 2019-03-04 120

Date: 2019-03-14 121

Date: 2019-03-28 122

Date: 2019-04-08 123

L - Required Hardware and Software 124

Hardware 124

Software 124

Platforms 124

 Page 6 of 124

1. Introduction

1.1 Overview

There are over 2.2 million Hong Kong stock investors, who contributed about 15% of the cash

market trading value in 2016. The total cash market trading turnover is around HK$1.6 trillion.

In particular, retail investors have made buy or sell investment decisions worth a total turnover

of $240 billion for the year of 2016 [1]. In Hong Kong, there are a lot of investment decisions

that involve a large sum amount of money being made.

Retail investors spend a lot of time finding investment opportunities. Wealthier investors could

seek professional financial advisory services, but for typical retail investors, the costs are

prohibitive. Thus, retail investors have to figure out the market themselves and make informed

decisions on their own. This makes investment very stressful in modern societies.

Unfortunately, humans are irrational in nature. Without quantitative, data-driven models,

decisions get swayed by cognitive biases or personal emotions, resulting in unnecessary losses.

Even if investors are cautious enough, most do not have sufficient skills to process a huge

volume of data required to make good judgments. Institutional investors rely on sophisticated

models supported by technologies to avoid traps, but retail investors do not have access to

such technologies and often find themselves falling behind the market.

 Page 7 of 124

Without access to quantitative and data-driven models, one obvious approach retail investors

could use to evaluate the market is through simple indicators, for example, linear regression

and exponential moving average (EMA) (Figure 1.1). Two important indicators are 20-day EMA

and 50-day EMA. When the 20-day EMA rises above the 50-day EMA, the stock is likely to trend

upward, and vice versa. Another obvious approach retail investors might use to predict the

stock market is to draw a linear regression line that connects the maximum or minimum of

candlesticks.

Figure 1.1​ Linear regression method to evaluate and predict the market trend

Inspired by the increasing popularity of deep learning algorithms for forecasting application,

these algorithms might serve as potential tools to find hidden patterns in the trend of stock

prices, this information could be useful to provide extra insights for retail investors when

making investment decisions. Therefore, this final year project aims to investigate the

 Page 8 of 124

usefulness of deep learning algorithms in predicting stock prices and democratize such

technologies through an easy to use interface for the general public.

 Page 9 of 124

1.2 Objectives

1.2.1 Introduction

The ultimate goal of our application is to serve retail investors as a third party investment tool

that uses machine learning to help them navigate in the fast-changing stock market. The project

aims to introduce and democratize the latest machine learning technologies for retail investors.

No prediction is 100% accurate. Therefore, the upper bound and lower bound of the stock

prices will be displayed to illustrate the trading range the investors should be looking at. This

application serves as a supplementary quantitative tool for investors to see the market at a

different perspective with the help of technology.

This project is divided into 2 parts, namely a research component and an application

component, aiming to provide retail investors with stock price predictions using different

machine learning models in a good user experience way for reference.

1.2.2 Research

This project will investigate how different machine learning techniques can be used and will

affect the accuracy of stock price predictions. Different models, from linear regression to dense

and recurrent neural networks are tested. Different hyperparameters are also tuned for better

performance.

 Page 10 of 124

The search space for all neural network architectures and hyperparameter combinations is

huge, and with limited time in conducting this project, apart from manually trying different

reasonable combinations, the team optimizes the models with evolution algorithm, replicating

AutoML techniques from other researches with promising results in the financial context.

1.2.3 Application

This project aims to provide stock price predictions based on the latest machine learning

technologies to all retail investors. A mobile web application is developed to provide

predictions in an intuitive way. Different models’ performance and accuracy can also be

compared. The application also serves as another user interface (UI) in visualizing results from

the research apart from Jupyter notebooks with lots of tables and graphs.

 Page 11 of 124

1.3 Literature Survey

1.3.1 Stock Price Predictions

From the research paper “Machine Learning in Stock Price Trend Forecasting” written by Y. Dai

and Y. Zhang in Stanford University, they used features like PE ratio, PX volume, PX EBITDA,

10-day volatility, 50-day moving average, etc. to predict the next-day stock price and a

long-term stock price [2]. The machine learning algorithms used in the research are Logistic

Regression, Gaussian Discriminant Analysis, Quadratic Discriminant Analysis, and SVM. The

accuracy ratio is defined as the number of days that the model correctly classified the testing

data over the total number of testing days. With the short term model predicting the next day

stock price, it has very low accuracy, the Quadratic Discriminant Analysis is the best among all

models, it scored a 58.2% accuracy. With the long term model predicting the next n days stock

prices, the longer the time frame, the better in the accuracy for SVM. With a time window of 44

days, the SVM model’s accuracy reached 79.3%. Apart from that, it was found that by

increasing the number of features, the accuracy increased. When all of the 16 features were

used, the accuracy of the model reached 79%, while it fell to 64% when only 8 features were

used, and 55% if only 1 feature was used. Our project will also investigate how the timeframe

would affect the accuracy of price predictions of different models. As models have to reach a

certain threshold to have significance for the users to work as a reference, it is essential for us

to optimize our model to figure out what the optimal parameters and model structure are for

our stock price prediction purpose.

 Page 12 of 124

The research paper “Predicting stock and stock price index movement using Trend

Deterministic Data Preparation and machine learning techniques” written by J. Patel, S. Shah, P.

Thakkar, and K. Kotecha for the “Expert Systems with Applications” international journal

demonstrated a way to use trend deterministic data to predict stock price movement [3]. They

conducted experiments in using 10 technical indicators’ signals as inputs, then they use

prediction models to predict whether the stock will go up or down in the coming 10 days,

Technical analysis indicators include SMA, EMA, Momentum, Stochastic SK, Stochastic SK,

MACD, RSI, etc. The prediction models they have used include ANN, SVM, Random Forest, and

Naive Bayesian models. The model outputs “up” or “down” movement signals. Experiments

have shown random forest scored the highest performance with 83.56% accuracy with their

inputs.

B. Wanjawa and L. Muchemi demonstrated the potential in predicting stock prices using ANN,

as shown in the research paper “ANN Model to Predict Stock Prices at Stock Exchange Markets”

[4]. They used 70% of the training data to predict the stock prices for the next 60 days. Through

optimizations, they were able to predict the actual closing prices within 0.71% mean absolute

percentage error (MAPE), with the highest variance -3.2% among all of the 62 days. This

demonstrated a high potential for using machine learning to accurately predict stock prices.

This is one of the key components in our application where algorithms have to be designed to

have high accuracy, such that the platform could be useful for retail investors.

 Page 13 of 124

1.3.2 Neural Network

A neural network attempts to learn a function that maps the input features to the output

predictions, serving as a universal function approximator [5]. It consists of a network of

neurons, each of which represents a weighted sum of inputs. Outputs from neurons are fit into

activation functions which introduce non-linearity to the system, and then passed to some

other neurons. In a typical dense feedforward neural network, the network consists of layers of

neurons stacked together, with neurons between individual layers fully connected.

Optimization of neural networks is usually done through backpropagation with gradient

descent, which essentially propagates the error from the output layer back to the input layer,

while computing the gradient of the error against each parameter in the process.

1.3.3 Recurrent Neural Network

Recurrent neural network [5] is a type of neural network where connections between neurons

allow temporal, sequential information to be stored and processed in the network. One typical

architecture is formed by feeding the output of the current unit back to the input with a time

delay so that the network can use the information in processing the next input. Various

techniques have been developed over the years to train such type of network. One of the

popular approaches is backpropagation through time (BPTT) [6], whose central idea is to unroll

the recurrent network into a feedforward network, where each layer represents a timestep.

Backpropagation with gradient descent could then be performed to optimize the network, just

like how we optimize a feedforward network. Unfortunately, it has been shown that

 Page 14 of 124

techniques like BPTT result in either vanishing or exploding gradients [7]. Vanishing gradients

lead to unrealistically long training time, and sometimes training is infeasible while exploding

gradients result in fluctuating weights, which leads to unstable training. Both are undesirable in

neural network training. Thus, new training methods and architectures are needed to mitigate

the problems.

1.3.4 Long Short-Term Memory (LSTM)

Long short-term memory [8] was first introduced by Hochreiter and Schmidhuber in 1997 to

address the aforementioned problems. Long-short term memory tackles the problem of

learning to remember information over a time interval, by introducing memory cells and gate

units in the neural network architecture. A typical formulation involves the use of memory

cells, each of which has a cell state that store previously encountered information. Every time

an input is passed into the memory cell, and the output is determined by a combination of the

cell state (which is a representation of the previous information), and the cell state is updated.

When another input is passed into the memory cell, the updated cell state and the new input

can be used to compute the new output.

1.3.5 Gated Recurrent Unit (GRU)

Gated recurrent unit [9] follows the same architecture as long short-term memory, except that

it simplifies the design of the memory cell, by reducing the structure to contain only two gates,

the reset gate, which controls how much information to forget when taking in the new

information, and the update gate, which controls the proportion of cell state updated by the

 Page 15 of 124

contribution. Although it has been shown that LSTM is more powerful than GRU [10], GRU has

the advantage of lower training time and may perform better on smaller datasets [11].

1.3.6 Evolution Algorithm

Researches have shown that large-scale evolution can auto-generate neural network model

architectures and hyperparameters with performance comparable with state-of-the-art

human-designed models. In a research in 2017 [12], a large-scale evolution for discovering

image classification neural networks was run. It started with a huge population of randomized

simple 1-layer models, then slowly evolved the population by removing a poor model and

generating a new model by mutating some parameters of a good model in each iteration. After

hundreds of hours of running the algorithm with huge computing power, most models in the

population achieved state-of-the-art results on CIFAR datasets. In each iteration, only a simple

mutation that changed 1 parameter was applied, which allowed searching in a large search

space. The paper showed the possibility of finding good models by using lots of computational

power to replace human-machine learning experts and has set the foundation of democratizing

machine learning with AutoML.

 Page 16 of 124

2. Methodology - Design

2.1 System Architecture

The architecture of the system follows a client-server model, where the server and the client

are loosely coupled.

Figure 2.1 ​System Architecture Diagram

 Page 17 of 124

After relevant stock data are retrieved from the third-party data provider through the cloud,

the backend pre-processes the data and builds the models. After that, predictions are made

and the prediction results will be stored on another cloud, which can be retrieved from the

mobile application.

The advantages of the loosely coupled architecture include improved scalability and ease of

collaboration. The workload for the cloud which serves the models and the one which serves

the mobile application will be very different. One cloud serves the model prediction results,

which are simple text files; another cloud serves the mobile application with a lot of rich user

content such as images and large UI libraries. Having two clouds to adapt to two different

demand patterns is more efficient, especially since cloud providers these days usually serve

content on demand.

Also, the separation allows different team members in the team to focus on different parts

after agreeing on a common interface. It speeds up development as team members

responsible for different parts of the system do not need to take care of the underlying

implementation details. Also, it is easier to swap out different components, e.g. to replace the

models the team could simply make changes to the backend, while the frontend remains

unaffected.

 Page 18 of 124

2.2 Research Design

2.2.1 Problem Framing

The problem of the project is set to predict the stock price for the next 10 business days. “10

days” is chosen as the timeframe as short term price movements tend to depend more on

trend momentum and price pattern, while long term price movements depend on the

fundamentals of a stock (e.g. company management capabilities, revenue model, market

demand, macroeconomic factors, etc.).

The loss function of the training algorithm is the mean squared error of the 10 predicted stock

prices. The training algorithm or optimizer is set to minimize its value, and it serves as the basic

performance metric for comparing different models.

Other scores are defined to provide more in-depth insights on a model predictability

performance and finance-domain-based comparisons between models for investors.

Two different prediction approaches are mainly tested, predicting the stock prices for the next

10 days directly and predicting the stock price of the next day 1 at a time. It is suspected that

the two different problem framing approaches will result in different abstractions learned

hence performance for different use-cases.

As different stocks have very different characteristics and the stock prices exhibit different

trends, individual models will be built for separate stocks.

 Page 19 of 124

For the project, S&P 500 stocks from different industries are selected. Multiple factors are

considered when picking the stocks, including stock price volatility, the absolute magnitude of

the price, the respective industries, company size, etc., and stocks exhibiting different

characteristics are picked. The stocks are listed as below:

- Alphabet Inc., GOOGL (Technology)

- Amazon.com Inc., AMZN (Technology)

- Apple Inc., APPL (Technology)

- AT&T Inc., T (Telecom Services)

- Boeing Co., BA (Industrials)

- Caterpillar Inc., CAT (Industrials)

- Facebook Inc., FB (Technology)

- General Electric Co, GE (Industrials)

- Harley-Davidson, Inc., HOG (Consumer Cyclical)

- Microsoft Inc., MSFT (Technology)

- Procter & Gamble Co, PG (Consumer Defensive)

- Tesla Inc., TSLA (Consumer Durables)

- Walmart Inc., WMT (Consumer Defensive)

2.2.2 Robust Design

For the research side, the system is designed to be as robust as possible to facilitate model

testing. Each model can be defined by a pair of model options and input options, specifying the

 Page 20 of 124

model configurations and the inputs it takes. This accelerates the process of testing out

different model and/or input configuration combinations.

2.2.3 Data Pre-processing

Raw stock price data is pre-processed before inputting into machine learning models.

Pre-processing includes transforming the raw data into a format that models can take from and

operate on, most likely feature matrix. It also attempts to extract some features,

financial-domain-specific especially, manually to improve results, allowing the model to learn

more abstractions.

Two key features are selected as the input. First is a fixed-length list of some raw historical data

like stock price and daily percentage change. The fixed length chosen specifies the length of the

historical period to look back from today when predicting future stock prices. Referring to the

principle of technical analysis, as the stock price reflects all relevant information, a technical

analyst would focus on the trading pattern of the stock rather than the economic fundamentals

and company fundamentals. Therefore, by getting a period of historical stock prices as the

input for the training model, it could be a piece of useful information in finding the trading

patterns and hence predicting the trend of future stock prices. Given a set lookback period, it is

assumed that the price movement patterns that are predictive would occur in the specified

historical period.

 Page 21 of 124

The second feature input is arithmetic moving averages. As mentioned in 1.1, one of the

obvious approaches for retail investors to identify the trend of the market is through moving

averages. With the robust system design, different period of moving averages could be used as

the input into the model for stock price prediction, for example, a set of 22, 50, 100, 200 days

moving averages, which are commonly used by investors [13].

2.2.4 Prediction Output

As mentioned in 2.2.1, 2 different prediction approaches are tested, which will have different

outputs.

For 10-day predictions, there will be 10 output units, resulting in a one-dimensional vector with

10 stock prices, where the ​i-​th element represents the ​i-​th day stock price prediction.

For 1-day prediction, there will be 1 output unit which is the stock price in the following day.

The predicted stock price of will then be the input of the next prediction, to predict the stock

price in the second day, the process repeats until all 10 predictions are generated.

2.2.5 Model

Different common neural network models are tested, including dense neural network, simple

recurrent neural networks (RNNs), long short-term memory networks (LSTMs) and gated

recurrent unit networks (GRUs).

 Page 22 of 124

Different model architectures are tested by changing the number of hidden layers, the number

of hidden units per hidden layer, and the activation function or recurrent activation function

used in each hidden layer.

All recurrent neural networks, RNNs, LSTMs, and GRUs, are set to have the same high-level

architecture (Figure 2.2), a stack of recurrent layers by passing the full output sequence to the

next layer, followed by a stack of dense layers.

Figure 2.2​ Example of the common high-level architecture of recurrent neural networks

Linear Regression on features, as well as trendlines which interpolate the stock prices next 10

days linearly, are also tested.

 Page 23 of 124

2.2.6 Model Architecture and Hyperparameter Search With Evolution Algorithm

Designing neural network architecture is challenging, even for computer scientists, researchers

and machine learning experts. The team does not have the expertise in designing innovative

and suitable architectures that will fit the requirement. Given the huge number of architecture

types and hyper-parameters for each model, the search space is basically infinite, so a

brute-force approach with grid search would not be practical.

Inspired by the paper [12], this project replicates the evolution algorithm in the context of stock

price prediction. The algorithm serves as a heuristic for architecture search, using reasonable

and affordable computing power to search for ideal architectures.

The same evolution algorithm was used in the paper [12] to train large-scale image classifiers.

The following is the evolution algorithm used, and the corresponding algorithm parameters are

defined in Appendix E.

1. Create a population of size POPULATION_SIZE of random simple neural networks.

2. Train all neural networks in the population.

3. Calculate the mean squared error on the test set for each trained neural network.

4. Randomly select 2 networks. Select the one with better performance (lower error) as

the parent network, and remove the one with a worse performance from the

population.

5. Mutate the parent network to generate a new network and add it to the population.

6. Train the new network.

 Page 24 of 124

7. Calculate the mean squared error of the new network on the test set.

8. Repeat steps 3 - 7 for ITERATIONS number of iterations.

Different mutations are used at each step to slowly evolve the population, for example adding a

dense layer, changing the number of units in a certain layer or changing the learning rate. For a

full mutation list, see Appendix D.

In theory, it is also possible to put the model inputs as a variable into the evolution algorithm,

using the algorithm to find the optimal inputs. However, this would increase the search space

significantly, and with limited resources, only a certain number of fixed inputs are tried.

2.2.7 Performance Evaluation

2.2.7.1 Motivation

As mentioned in 2.2.1, apart from the mean squared error that a model tries to minimize,

different finance-specific scores are introduced to evaluate and compare performance of

different models, namely model accuracy score, model trend score and stock buy/sell score.

The scores are also designed to convey useful and meaningful messages to help investors

understand a stock and make investment decisions.

2.2.7.2 Definitions

In this project, the test set is defined as the last 100 days stock price.

 Page 25 of 124

To clearly explain the performance evaluation rationale, the following symbols are defined.

“Snakes” is defined as 10-day disjoint prediction segments in the test set, which will be a set of

10 “snake”. It includes the actual prices and the predicted prices for the last 100 days.

Specifically, Snakes are defined below:

It is named as “Snakes” because intuitively the 10-day disjoint segments look like snakes when

being plotted on a graph of historical prices.

2.2.7.3 Model Accuracy Score

The first indicator of the performance is the ​Model Accuracy Score (MAS)​. It describes the

accuracy of the price prediction regarding the actual price. It is a weighted sum of ​Model

Prediction Score (MPS) and ​Model Direction Score (MDS)​, ranging in [0,1]. A variable α is

declared to adjust the weighting between MPS and MDS contributing to MAS. Its formula is

defined below:

MPS is the average of Snake Prediction Scores (SPS). Each SPS is calculated by the prediction

error in each of the 10-day disjoint segments, where the error is basically an average of the

 Page 26 of 124

absolute relative change between the predicted prices and the actual prices over the 10 days. It

is defined that SPS is 0 If the error is larger than the standard deviation of the stock, as the

prediction would have no reference value under this circumstance. If otherwise, a scoring

concave upward function is applied to scale the error to a range of [0,1] based on the standard

deviation. A concave upward function is applied because the marginal usefulness of the model

decreases with a marginal increase in error.

Meanwhile, MDS is the average of Snake Direction Scores (SDS). Each SDS is evaluated by the

alignment of the prediction direction and the actual direction of the stock trend in each of the

10-day disjoint segments. If the prediction has a different direction with the actual direction, it

means the prediction is giving a false trend signal to the users. Thus, SDS is 0. Otherwise, SDS

would be evaluated based on the direction of the estimation error. In other words, if the

prediction is overestimated, SDS is 0.8. Otherwise, it is 1. It is because it is assumed that an

underestimated prediction means the model is more reserved and is better off than an

overestimating model.

 Page 27 of 124

2.2.7.4 Model Trend Score

Another indicator of the performance is the ​Model Trend Score (MTS)​. It describes the

correctness of the trend predicted by the models regarding the actual price, ranging in [0,1].

Since an accurate model in terms of the degree of price changes is difficult to obtain,

sometimes the ​Model ​Accuracy Score might not be intuitive. As a result, instead of observing

the exact changes in prices using MAS, we could look at the trend of the predictions which is

easier to be accurate. With ​Model Trend Score (MTS), the users could gain accuracy insight on

the future price change of the stock. It is defined as:

Where TS is the Trend Score for ​i​-day Prediction. It is the percentage of having a correct trend

prediction of price ​i​ days later.

2.2.7.5 Buy/Sell Score

An overall Buy/Sell Score is given to the users to indicate the likeness of the stock going up or

down to assist the users in making decisions. It ranges in [-1, 1], with 1 means expecting an

uptrend, -1 means expecting a downtrend, and 0 means the prediction is inconclusive. Some

symbols are defined below:

 Page 28 of 124

A score threshold T is applied to filter out the inaccurate models. The remaining models M ′

would be used to calculate the Buy/Sell Score by multiplying the ​Model Trend Score of each

valid model with its ​Trend Direction (TD) and then averaging them. TD is determined by voting

from the directions of the predicted prices in the coming 10 days. It is 1 or -1 if the majority of

the predicted prices are higher/lower than today’s price. It is 0 when tie.

2.2.7.6 Upper Bounds and Lower Bounds for Prediction

Stock prices are volatile in nature and predictions could almost impossibly be 100% accurate. To

give investors more information about how the stock price may fluctuate, upper bounds and

lower bounds of prediction error range are also calculated. The upper bounds and lower

bounds are defined as:

 Page 29 of 124

Since the model predicts the stock prices of the following 10 days, i.e. [P​1​, P​2​, ... , P​10 ​], each day

of the prediction, P​i follows a different distribution, and the prediction error for each of the ​k​-th

day is different.

is the collection of all ​i-​th day prediction generated by the model in the test set, while isP j ˆ P j

the corresponding collection of actual stock prices. The standard deviation of the difference

between the two shows how much the model’s ​i-​th day predictions vary. By adding and

subtracting one standard deviation of the error from the predicted ​i​-th day stock price to get

the upper bounds and lower bounds of the stock price predictions, investors can know about

how much the actual price might fluctuate around the predicted price.

 Page 30 of 124

2.3 Application Design

2.3.1 User Groups

Users are separated into two groups, normal users and advanced users. For users that would

like to know about the historical (test set) performance of a model and more information

behind the machine learning models like the architecture and inputs, they can enable advanced

user mode in the settings page to view those details in each individual stock page.

Figure 2.3​ Functionality accessible by normal users and advanced users

 Page 31 of 124

2.3.2 User Journey

Figure 2.4​ User Journey

First of all, users need to login to use the system, as there will be customization options for

different users. Since users might not want to create a separate account just for our

application, it will more convenient if users can log in with their existing social media accounts.

In particular, Facebook login is a good option, since there are over 2 billion users worldwide.

Thus, it might be possible to reach a larger market by adopting Facebook login. Only the very

basic user information like the user name will be collected by the system.

For normal users (advanced user mode disabled), after logging into the system, they can view

the stock list and search from it by stock name. After they find the stock that they are

interested in, they can bookmark the stock as a favorite stock for easier access later. After

selecting a stock, they can view 3 key information in the details page.

First, the next 10-day predictions and the corresponding upper/lower bounds of the

pre-selected best model together with 3 months of historical stock prices.

Second, they can look at the buy/sell score to get an intuitive sense on whether the stock is

currently on an uptrend or downtrend based on the predictions.

 Page 32 of 124

Third, the user can view the individual trend score, predicted trend direction, accuracy score,

and predicted price movement for each individual prediction model.

For advanced users, apart from the 3 key information, they can view 2 additional pieces of

information for more in-depth insights, understanding and analysis.

First, they can toggle to view the historical predictions, which helps to evaluate the

trustworthiness of different models. There are 2 ways to view the historical prediction

performance. For 1-day historical prediction, it could let the user understand how well the

model could predict the next day stock price. For 10-days historical prediction (defined as

Snakes in 2.2.7.2), it could let the user understand 10 trials of how well a model could predict

the stock price in 10-day segments. Thus, this information would help the user to get more

information to determine whether the model is relevant and accurate enough for their

references.

The second additional information is the layers, hyperparameters and model inputs configured

for each individual machine learning model. This information would be useful for them to

understand the topology of the model.

 Page 33 of 124

All data, including stock prices, predictions, historical predictions and all scores will be updated

everyday to reflect the latest information and predictions, which allows users to revisit their

investment position.

2.3.3 UI/UX

2.3.3.1 Application Screenshots

The following is a set of screenshots of the implemented application.

Figure 2.5​ Login page (left), Home page (middle), Application drawer (right)

 Page 34 of 124

Figure 2.6​ Details page - Normal user mode (left and middle), Advanced user mode (right)

 Page 35 of 124

Figure 2.7​ Advanced user mode: Snakes (left), Model information (middle), Chart settings

(right)

2.3.3.2 Progressive Web Application Motivation

The application is written as a progressive web application (PWA) [14] instead of a native

mobile application. The motivation behind this is that the application could be inherently adapt

to desktop and mobile usage. It would be more costly to create native desktop and native

mobile application separately. The web application can also allow the system to keep only one

centralized instance, where information only has to be updated once without any duplicated

effort.

A progressive web application is typically implemented as a single page application [15], where

pages do not reload entirely like a web page refresh. Instead, the web application only uploads

the components as needed as the users interact with the application. It enables smoother,

more app-like user experience.

2.3.3.3 Responsive Design

The variety of devices and specifications is also a reason why a responsive-designed web

application could be useful to solve such fragmentation problem. The experience between

desktop and mobile should be seamless, and the only difference would be desktop has more

information displayed than on a mobile screen. By having such configuration, the user’s

learning curve in adapting to the system on their laptops, tablets, and mobile could be

 Page 36 of 124

seamless, not only shorten their learning curve on our system across the platform, but also

introduce familiarity with the platform.

Figure 2.8​ Smartphone view (left), Tablet / Desktop view (right)

2.3.3.4 Layout Motivation

The priority of information display should depend on the relevancy of such information from

the user’s point of view.

In the stock list page, a “favorite” section is placed above the “recent” section, and “others” are

placed below the two (Figure 2.5 middle). This design considered the relevance of the individual

stock in the user perspective. Favorite stocks should have higher priority as these are their

 Page 37 of 124

focused stock that they are interested in or have owned shares. The “recent” section is crucial

as it provides quick access for the user to revisit their recent history and find the stocks that are

closely relevant to what they have been checking on recently.

Inside the stock details page (Figure 2.6), the stock name with its stock code has a significant

color and portion at the top of the display, and a gray colored industry tag is placed above the

stock name. When the user clicked on the stock name, the section will expand to display a brief

overview of the stock. This design can make the user quickly recognize which stock they are

checking on.

As the core component of the application is the predictions with upper and lower bounds that

provide insight for the retail investors to review the trend of the stock. The chart is placed just

below the stock name and being centered on the screen whenever the page is loaded. This

design let the user quickly review the prediction trend and recognize whether the predicted

trend would interest them to continue checking out the stock or not.

The chart is also very important for the advanced users to cross-check whether the predictions

have reference value according to its past performance. The 10-day interval historical

prediction (Figure 2.7 left) and 1-day interval historical prediction (Figure 2.6 right) are plotted

on the chart along with the historical stock price when the user enabled such options, this

serves the purpose of letting the user know how well the model could predict the trend in the

past. The legend labels are placed on the top of the graph to make it crystal clear what does

 Page 38 of 124

each color of the line represents. Regarding the interactiveness of the chart, the chart changes

with the time frame that the user has selected. When the user hovers on the line of the chart,

actual values and its corresponding legend label are displayed, the chart interface makes it easy

for the user to validate actual values and demonstrate trust for the flexibility of user able to

review on the historical performance of each model.

Following the chart, a buy/sell score is represented by a red-green gradient bar indicating the

trend of the stock. It summarizes all the available predictions provided by different machine

learning models. This provides a quick overview of the user to evaluate the trend. As it serves as

a weighted average according to the trend prediction accuracy and the trend direction of each

machine learning model, the red-green gradient bar simplifies all the findings and summarizes

such trend predictions into an easy to interpret figure. The middle of the red-green gradient bar

is colored as white because it means the stock does not have obvious direction according to the

consensus of the predictions of the machine learning models. The color coding makes it obvious

for the user to recognize the information at a glance.

The table with checkbox layout is designed for showing detailed results of each machine

learning model. The user can correlate the model with its trend predictability and accuracy. This

information would be useful for advanced users to evaluate which model topology or search

algorithms are useful in providing insightful predictions. Although the trend scores and accuracy

scores calculated are in range [0, 1], it is scaled to a 0 to 10 scoring scale, which allows easier

understanding and perception. The checkbox interface allows further interactivity with the

 Page 39 of 124

chart display. The user could compare and contrast the recent and historical predictions of

different machine learning models, and determine which of the algorithm could be as of most

useful according to their definition. The table allows sorting according to trend score, trend

prediction, accuracy score, and price prediction. This allows the user to prioritize the

information according to the metric they would like to investigate. The table is sorted by the

trend score in descending order and the best model with highest trend score is pre-selected

initially, as that is presumed to be the first model that users care about.

For advanced users that have machine learning backgrounds, the application caters to their

needs to look at the layers, hyperparameters, and inputs of the machine learning models. The

model details page could provide insights for those users to further investigate the prediction

method on their own and let them understand the underlying hypothesis of the machine

learning model the application chose to include.

To let the application be smarter and more consistent in terms of user experience, user

preferences, including whether a user is an advanced user and which historical predictions to

view, are saved on a cloud database, updated and retrieved whenever the user logins and

interacts with the preference settings.

A simple loading bar is also included for better user experience, as all data is get from the cloud,

and the loading time may vary among users depending on the internet connection.

 Page 40 of 124

3. Methodology - Implementation

The implemented application can be accessed at ​https://cmms-fyp.firebaseapp.com/​.

All implemented code can be found at ​https://github.com/chautsunman/FYP-AI​,

https://github.com/chautsunman/FYP-pwa​, ​https://github.com/chautsunman/FYP-functions

and ​https://github.com/chautsunman/FYP-server​.

3.1 Research Implementation

All machine learning-related code are written in Python. Neural networks are implemented

with Keras [16] while linear regression model is implemented with scikit-learn [17].

3.1.1 Stock Price Data Collection

Data is collected from Alpha Vantage Stock Price API [18]. It offers up to 20 years of daily stock

price information on S&P500 stocks. A Python script is written to retrieve stock prices of

different stocks automatically. The retrieved stock prices are stored as .csv files in a local folder

during development and testing. In deployment, the downloaded stock price data will be

transformed into a 2D JavaScript array and uploaded to Firebase Cloud Storage immediately. A

cron job that launches the data-fetching and data-uploading script is scheduled to run every 8

p.m. (EDT) after NYSE and NASDAQ are closed.

 Page 41 of 124

https://cmms-fyp.firebaseapp.com/
https://github.com/chautsunman/FYP-AI
https://github.com/chautsunman/FYP-pwa
https://github.com/chautsunman/FYP-functions
https://github.com/chautsunman/FYP-server

3.1.2 Data Pre-processing

3 Python scripts are written to transform the raw stock prices (.csv files) into feature vectors,

for training, predicting and testing respectively. The scripts take the input options and the raw

stock prices as inputs and produce the correct features by building the lookback arrays and the

moving averages. It concatenates the features into the final feature vectors, which will be

passed to the model for training or testing. The 3 scripts share common operations in building a

dataset except the output size and the range of dates to build from, so common functions are

written to centralize the logic instead of repeating the same index-calculation-intensive work

across functions.

NumPy and Pandas are used to build the datasets. Numpy [19] is a library that provides

effective n-dimensional array data structures as well as functions for array manipulations. It is

frequently used for machine learning tasks because it is much for performant than Python lists,

as NumPy arrays are implemented as densely packed lists, instead of a dynamic array where the

elements are not stored contiguously.

Pandas [20] is a popular framework for pre-processing time series data. It has various utilities

for reading raw input files such as .csv and transforming time series data to the correct format.

Pandas uses NumPy as the underlying data structure, so it is very convenient to interoperate

between the two.

 Page 42 of 124

3.1.3 Model

A model base class is used as a common interface for all machine learning models. All models

then have their own model class, specifying model-specific details like methods to build the

model, train the model, use the model and save the model.

To decouple model configurations from software code to provide flexibility and robustness and

save engineering effort as mentioned in 2.2.2, each model is defined by a JSON object, which

specifies the model’s architecture and hyperparameters with model options and the model

inputs with input options. A corresponding model can then be created by passing the object to

the model class constructor.

The model options specify which machine learning model to use, and the hyperparameters for

the model like the number of hidden layers, the number of hidden units, activation functions

used, as well as optimization algorithms and loss functions. Some example model options are in

Appendix A.

Apart from model configurations, the input can also vary, as there are many possible features

that could be added to or removed from the feature vectors. The input options specify the

features input that a model should expect, like the number of previous stock prices as features

and different moving averages. The input options are related to a model in terms of the input

format. All neural networks built in Keras requires the input tensor shape for layer shape

 Page 43 of 124

inference during model building, a Python function is written to calculate the input shape for a

given input option. Some example input options are in Appendix B.

3.1.4 Training

In training, a randomized initial model is first generated from the model options definition. A

training set is generated by the build training dataset script, which generates the training set

features from the input options and the raw stock price data. Then, the data is fed into the

model for training.

3.1.5 Saving Trained Model

All trained models are saved for predicting stock prices in the future. Keras models are saved in

h5 format, and scikit-learn models are saved with a Python library named ​pickle. A dedicated

saving format is designed (Appendix C), such that same models (same hash for same model

options and input options) for different stocks are saved in the same directory with no collision.

3.1.6 Predicting Stock Price

When predicting stock price, the saved model will first be loaded. Then, a feature vector

specified by the input options is built with the build predict dataset script, which is the same as

the build training dataset except it returns a flatten 1D feature vector. The feature vector is

inputted into the model to predict stock price. For 10-day predict, the predictions are directly

outputted. For 1-day predict, the predicted stock price is appended to the raw dataset as if it

 Page 44 of 124

happened before, then a new feature vector is generated for predicting the stock price for the

day after, the process is repeated to predict the stock prices for all next 10 days.

3.1.7 Performance Evaluation

Each model is evaluated on the test set. A test set can be generated by the build test dataset

script, which could generate either a full test set for predicting the last 100 days stock price in

1-day or 10-day disjoint intervals.

3.1.8 Model Score, Buy/Sell Score

Functions are written to calculate different scores for users, 1 for calculating model trend score,

1 for model accuracy score, and 1 for buy/sell score. For parts that share the same calculation

just with different offsets, helper functions are written to separate the main calculation

function from the repeating steps.

3.1.9 Save Predictions

For each stock, a prediction file can be generated from the save predictions script. It includes all

the data and results that the application needs to display, including all 10-day predictions from

all models, both 1-day predict test set and snakes test, and the model options and input options

for each model. The saved predictions file is then saved to Firebase Cloud Storage and served to

the application. During development, the saved predictions file is saved in a local directory.

 Page 45 of 124

3.2 Model Architecture and Hyperparameter Search With

Evolution Algorithm

3.2.1 Running Evolution Algorithm

All training is done in the Jupyter notebook environment. With hardware limitations, apart from

each team member’s own computer, Google Colaboratory [21] which provides an easy-to-use

Jupyter notebook environment and free GPU service is also used to train models and run the

evolution algorithm.

Each team member is responsible for running the algorithm for a different stock. Since the

evolution algorithm is a computing power intensive algorithm, training hundreds of neural

networks, with the limitation in resources, it is impossible for the team to hold up their own

personal computers entirely for the training job. Google Colaboratory also puts limitations on

the free resources it provides, and could not be used to run the algorithm day and night

unmonitored. Therefore, a checkpoint-like design is implemented, each person can run a

certain number of iterations depending on their time and resource availability, then save that

run result in a last_run.json JSON file, which could be loaded next time to pick up from where

the algorithm left off and continue with further iterations. The team is also encouraged to run

the algorithm in small batches, and frequently checkpointing the algorithm state, avoiding

runtime errors and losing all results after running the algorithm for a long time.

 Page 46 of 124

3.2.2 Algorithm Data Collection for Analysis

Detailed algorithm and training data are gathered for analysis. All errors at each iteration are

stored, resulting in a 2D iteration-by-population-size array, which is used to analyze the

population evolution and algorithm convergence.

The error and the model options of all neural networks in the last population are also stored for

getting the best model after running a lot of iterations and as a checkpoint for the small-batch

running.

The Tensorboard log [22], which includes the neural network graph details and training details

like loss over epochs, is also stored for every model for deep analysis using Tensorboard. A

simpler network diagram of layers is also stored for every model.

The best model after running all iterations is saved, as re-training the model with the same

model architecture and hyperparameters will also result in a different model with different

predictions. All models are then manually copied and merged to the common saving format as

introduced in 3.1.5.

 Page 47 of 124

3.3 Server

3.3.1 Flask

For local development and testing, the Flask micro web framework [23] is used to serve local

saved data like raw stock price data and saved predictions file. It is written in Python and

integrates well with the existing backend architecture. Moreover, it has a much more

lightweight interface than other popular Python web frameworks such as Django and allows

easier implementation of application programming interfaces. The Flask server simply serves

the prediction result JSON files to the front-end application.

3.3.2 Firebase Cloud Storage

For actual deployment, Firebase is used instead. The prediction results are stored in Firebase

Cloud Storage [24], which provides APIs for mobile clients to access the results as JSON objects

directly.

 Page 48 of 124

3.4 Application Implementation

3.4.1 Stock Information Collection

Company information is collected from the IEX Stock API [25]. A Firebase Cloud Function [26] is

written to get the data from the API and store it in Firebase Cloud Firestore [27], which the

application will access through another Firebase Callable Cloud Function.

3.4.2 React

The application is developed in React. React is a library for building user interfaces declaratively

[28]. A distinctive feature that gives rise to its popularity is the ability to build interfaces by

combining different components. In this case, the UI was broken into various components, e.g.

the application drawer and the stock list. It enables the separation of concerns and the division

of work among team members effectively. Additionally, it also minimizes the effort to manage

UI state changes, as there is no need to implement event listeners to watch for UI state

changes. Last but not least, it does not directly manipulate the DOM tree. Instead, changes are

written to a virtual DOM. React then finds what needs to be updated and optimizes how the

DOM tree should be updated, which often results in better performance than doing manual

DOM manipulations.

 Page 49 of 124

3.4.3 React Router

To navigate through the single page application, React Router [29] is used to define the routes

of the application. The library provides utilities to manage browser history and switch between

different sections of the application.

3.4.4 Redux

With the application’s growing size, common states are often needed in multiple components.

As different components make changes to the states, the states often become unmanageable

as it gets hard to trace how the states are being manipulated from different components, and

sometimes states across different components are not properly synchronized.

Redux [30] provides a framework and utilities for centralizing the management of UI states. In

redux, a centralized container was used to store all the states needed across different

components. In addition, a set of actions, which define changes to the states, and a set of

reducers, which define how the new state should look like given a particular action specified.

After that, individual components only need to dispatch an action to centralize changes to the

UI states.

 Page 50 of 124

Figure 3.1​ Redux Architecture

3.4.5 Immutable.js

When using Redux, developers need to make sure that a reducer does not mutate its

arguments so that there will be no unintentional side effects. That means a new object needs

to be created every time states are updated. To start with, it is difficult to ensure that objects

are not mutated because JavaScript objects are mutable by default. Also, repeatedly creating

new objects is inefficient. Immutable.js [31] is a library providing immutable, persistent

collections that could be created and updated in an efficient manner. This was done through

structural sharing, Using Immutable.js in combination with Redux guarantees that objects could

not be modified unintentionally, without the performance penalty of repeatedly creating new

JavaScript objects.

 Page 51 of 124

3.4.6 Material UI

Traditional web application development relies on setting styles on individual tags and pages

with CSS. It is challenging to provide a consistent visual experience and theme to users.

To provide a consistent user experience to users, the popular Material Design [32] developed

by Google was adopted, as it defines a set of layouts, colors, typography and behaviors for

mobile websites. For ease of implementation, the Material UI library [33] is used, which

contains a large collection of developed Material Design themed React components.

3.4.7 Google Charts

Google Charts [34] is used to plot the stock prices and the predictions. It provides a simple and

separate set of APIs that does not depend on other libraries while maintaining customizability.

Also, it integrates nicely with the user interface which follows the Material Design, which

improves the overall user experience.

3.4.8 Facebook Login via Firebase Authentication

To facilitate user logins, the popular Facebook login service [35] powered by Firebase

Authentication [36] is used, which provides a set of rich set of APIs to interact with a range of

authentication providers, including Facebook Login, and integrates well with other Firebase

services that the system relies on. It is also convenient to add other authentication service

providers in the future.

 Page 52 of 124

3.4.9 Components

The whole application is broken down into the following hierarchy of components.

Figure 3.2​ Component Diagram

At the top level, the App component brings everything together. If the user is not logged in

he/she will be directed to the login page (LoginPage).

 Page 53 of 124

The router component (Router) controls where the user will end up at, including the home page

(HomePage), which is the default starting point for users with a list of stocks and a search bar,

all broken down into separate components.

Other components include the details page (DetailPage), which is where details about a stock

price, including the stock price chart, a list of models with a model score attached to each

model, along with a buy/sell score that indicates the overall predictions for whether the stock

should be purchased or sold, are included in.

 Page 54 of 124

4. Methodology - Testing

4.1 Unit Test

The unittest module from Python [37] is used to implement all unit tests, as it is available by

default in Python and integrates well with existing Python codes.

Unit tests are done for the build dataset script, which transforms the raw input data into

feature vectors usable for training and testing, as well as model score calculations. Unit tests

are conducted because the components are error-prone, calculation intensive. Also, they

exhibit garbage-in-garbage-out properties, that the model will be completely wrong if it

receives the wrong input, and if the model scores are wrong, the final buy-sell recommendation

will be totally incorrect.

In particular, unit tests are written for the functions to build the dataset for training and

prediction and the function to build the snakes. Combinations of input options are tested,

including n-day stock price lookback as well as n-day moving average. Correctness is ensured

by asserting the feature vectors’ shapes, as well as starting and ending elements.

For model score calculation unit tests, different scenarios are emulated, including the case

when the model accurately predicts all the stock prices, the case when the model predicts all

the stock prices wrongly by a very large magnitude, the case when the model predicts the trend

 Page 55 of 124

correctly but underestimates the trend, as well as the case when the model predicts the trend

correctly but overestimates the trend.

 Page 56 of 124

4.2 Tools Used for Testing

Various tools have been used to assist in the development of the mobile application. In

particular, Chrome Mobile Emulator is used to simulate the mobile view while developing the

mobile application on desktop/laptop computers. After the application is deployed to the

cloud, mobile phones with different operating systems and browsers, including Google Pixel

running Android 9 (Google Chrome) and iPhone 7 running iOS 12.1 (Safari), are used to verify

the user experience is consistent across different devices with different resolutions.

 Page 57 of 124

5. Methodology - Evaluation

The project’s objective is to provide a third-party investment tool to investors with

democratized machine learning technologies. The success of the project is primarily

determined by two factors, namely, whether the investment tool provides useful, accurate

stock price predictions to investors, and whether investors can use and understand the

predictive information provided by the machine learning technologies. The first factor is

evaluated by the model scores described in 2.2.7. However, the evaluation of the second factor

is based on user experience. External users have to be involved in the evaluation. For this

purpose, hallway testing is used.

Hallway testing involves allowing users who have not been involved in the development of the

project to test the application and give constructive feedbacks about users feel about the

application. Users participating in the tests are asked a set of questions about the usability and

whether they understand what the information presented by the mobile application. This

would give indications about whether the democratization of the machine learning

technologies succeeds.

 Page 58 of 124

6. Findings

All results and findings graphs can be found in a Google Colaboratory notebook at

https://colab.research.google.com/drive/1GYuxbYywhN8-_D3eycsiQ-iYLzv-YjXq​.

6.1 General Findings

The following are some general findings from testing out different machine learning models.

 Page 59 of 124

https://colab.research.google.com/drive/1GYuxbYywhN8-_D3eycsiQ-iYLzv-YjXq

Figure 6.1a​ 1-day interval historical predictions (GE, Dense Neural Network)

From Figure 6.1a, it shows that the 1-day interval historical predictions line follows closely with

the historical prices. The graph looks like the prediction line is just 1 day shifting from the

historical prices, similar to a shifted and smoothed out historical prices line. Therefore, the

shape of the historical predictions line is similar to the shape of the exponential moving

averages (EMA), where the price changes from t to t+1 heavily depends on the direction and

 Page 60 of 124

magnitude of changes from t-1 to t, followed by decreasing importance from earlier historical

prices. Other models in predicting stock prices of other stocks also show similar results.

Figure 6.1b​ 10-day interval historical predictions (GE, Dense Neural Network)

 Page 61 of 124

From Figure 6.1b, it shows that the 10-day interval historical predictions line do not follow

closely with the historical prices but could demonstrate the trend. For example, historical

predictions 1, 2, 3, 4, 7, 8, 9, 10 provided insights on the correct market direction, yet the

magnitude did not match the actual price movements. A possible reason for this error can be

the 10-day interval prediction has to predict more values while having fewer data compared to

the case of 1-day interval prediction, which for 1-day interval prediction, data of close prices

until previous day are available. Therefore, a longer period of interval prediction could subject

to greater changes in market fundamentals, including market news, macroeconomic factors,

earning reports, etc. Other models in predicting stock prices of other stocks also show similar

results.

Although price reflects all available information, the magnitude of price changes in the future

might need other data for forecasting purpose, such as market sentiment, company

announcement, retail and institutional investors’ attention on the company, etc. This is one of

the possible explanation of why the 10-day interval prediction might have a large difference to

actual values as there are potential shifts in market momentum. Therefore, the price might be

too compact and other information is required to make a more accurate prediction.

 Page 62 of 124

Figure 6.1c​ Trend score and accuracy score distribution (16 best models from evolution)

2 scores are used to measure the performance of historical predictions, trend score and

accuracy score, introduced in 2.2.7. The higher the trend score means that the model is more

accurate in trend prediction and could provide more meaningful price movement direction

insights. The score representations used in this application could be useful for the user to

interpret the errors of predictions in a quantifiable way. The higher the accuracy score means

that the model could follow the actual stock prices more accurately. From Figure 6.1c, it shows

that all best models generated from the evolution algorithm experiment have a trend score

ranging from 6-7 but have an accuracy score ranging from 1-2 on the test set. This finding

matches the earlier findings, that the trend could be predictable, especially for less volatile

stocks, but exact price, especially further into the future, could hardly be predicted accurately.

 Page 63 of 124

Despite common research findings that recurrent neural networks in general perform better

than dense feedforward neural networks at predicting time-series data such as stock prices, in

this project feedforward neural network outperforms recurrent neural networks. One possible

explanation is that training a recurrent neural network requires more data than the dense

neural network in general, as recurrent neural networks have more parameters. As the models

are trained using only daily stock prices dating back 20 years (or less if the stock is listed fewer

than 20 years), there might not be enough data for training the recurrent networks to a good

performance.

 Page 64 of 124

6.2 Prediction Approach Findings

As mentioned in 2.2.1, 2 approaches are tested in predicting the stock prices for the next 10

days, predicting all 10-day stock prices directly and predicting each stock price one at a time.

The 2 different approaches frame the problem totally differently, which introduces a significant

language bias.

According to the results (e.g. Figure 6.2a and 6.2b), for most stocks, most models that predict

10-day stock prices directly have a higher error than predicting individual stock price. However,

the errors in predicting different days in the future are relatively constant for models that

predict 10-day stock prices directly, while the error increases with the time from now for

models that predict stock prices one day at a time.

Figure 6.2a​ Prediction error in predicting stock price at different future dates
(GOOGL, 10-day predict)

 Page 65 of 124

Figure 6.2b​ Prediction error in predicting stock price at different future dates
(GOOGL, 1-day predict)

One possible explanation for such observation is that the 2 problem framing approaches drive

the model to learn different abstractions. For models that predict 10-day stock prices directly, it

will learn the abstraction over 10 days. It is assumed that the correlation between the predicted

stock price and today’s and earlier stock prices decreases when predicting further future. Since

the learned abstractions need to be applicable throughout 10 days, the high error from further

prediction because of low correlation is propagated to other closer predictions. It results in a

constantly higher error for predicting all days.

On the other hand, predicting stock price one at a time allows the model to learn the

relationships between more correlated data points. It can be observed from the results that the

 Page 66 of 124

first-day prediction is more accurate compared to the first prediction from models that predict

10 days directly.

However, not all 10-day predictions have a lower error, the error for further predictions are

higher. As mentioned in 6.1, most models, especially those predicting stock price individually,

behave like an EMA, which put more emphasis on more recent historical prices. Although this

allows the model to accurately trace recent price movements, when predicting future stock

prices iteratively the next predicted stock price is most strongly influenced by the previous

prediction instead of real data. This results in reinforcement effect where predictions further

ahead reinforce the unverified trend that the model predicts, and the errors amplifies and

propagates to subsequent predictions.

 Page 67 of 124

6.3 Accuracy Findings

6.3.1 Definitions

6.3.2 Baseline Investor

The baseline for model accuracy comparison is from a hypothesized investor who adopts a

trading strategy of predicting the stock price will either go up or down by the holding period

return calculated from historical data. There will also be a corresponding error for this strategy.

Assume the hypothesized investor always correctly predicts the stock price movement

direction. The baseline strategy error is defined as:

If the hypothesized investor always predicts the wrong stock price movement, then the error is

the maximum of the 2 terms.

6.3.3 Findings

The errors from 6.2 are compared with the baseline strategy introduced (Figure 6.3a and 6.3b).

It is found that most models for most stocks achieve comparable performance in terms of error

as the baseline strategy. Some models for some stocks have a slightly lower error than the

baseline, and some have higher.

 Page 68 of 124

Since the baseline error is calculated based on the assumption that the hypothesized investor

always makes a correct prediction on the price movement direction, despite only having

marginal improvement on the accuracy or even lower in some cases, the machine learning

models trained successfully predicted the trend of the price movement, which agrees with the

findings in 6.1. See Appendix F for similar findings over other stocks.

Figure 6.3a​ Comparison between different models (10-day predict) with baseline

 Page 69 of 124

Figure 6.3b​ Comparison between different models (1-day predict) and baseline

 Page 70 of 124

6.4 Model Architecture and Hyperparameters Search with

Evolution Algorithm Findings

The evolution algorithm experiment conducted has shown promising results in searching model

architectures and hyperparameters. Multiple experiments are run, for different stocks,

different neural network types and different inputs. From the prediction error recorded over

each evolution iteration (e.g. Figure 6.4a and 6.4b), all experiments have shown that the

evolution algorithm successfully finds better models over time. Hand-designed models based

on the team’s intuition and basic knowledge could not achieve an error rate lower than that

achieved by the algorithm’s explored models.

Figure 6.4a​ Evolution errors (GOOGL, dense neural network)

 Page 71 of 124

Figure 6.4b​ Evolution error (GOOGL, LSTM network)

One interesting and unexpected observation from the evolution algorithm results is that a

number of best models found are fairly simple. The found models are 1 or 2 layers deep with a

linear activation function. In the case of having stacks of linear layers, the model is

mathematically equivalent to a linear regression over features. There are multiple possible

explanations for this observation.

First, the evolution algorithm hyperparameters used limits the search space for possible model

architectures and hyperparameters. Due to computational power constraints, only a small

population with 10 models is used. This limits the variety of models explored by the algorithm

as the variance within the population is small. Moreover, under constraints, each experiment is

run for 100 iterations only, which also limits the exploration. On average, the whole population

is only 10 steps or mutations away from the original random population, which may not be

significant enough for deep exploration.

 Page 72 of 124

The evolution algorithm itself, together with its hyperparameters, introduces a search bias, the

algorithm defines the possible explored models and the search path to achieve them.

Another possible explanation is that the dataset size is relatively small with just daily stock

prices. Larger deep neural networks with more complicated architectures and thousands or

even millions of weights require much more data to train and learn from.

A final possible explanation is that the stock market is at least weakly efficient, i.e., stock prices

follow random walk given historical price data, and patterns with predictive power could not be

found just from raw price data. If stock prices follow random walk, a good predicting method is

to put strong weights at very recent prices, and hope the actual price will fluctuate closely

around it, which is very similar to a linear model.

Only using stock price data and simple derivatives like moving averages introduces a language

bias, as price movements are also highly dependent on news and sentiment. Although stock

prices reflect information, it is a very compact representation of all information and news.

Thus, it is difficult to reverse engineer features or information out from a single number,

especially when only daily stock prices are available. Having other information like real-time

news sentiment or summary may help to break stock prices down to more granular

components for machine learning algorithms to learn from.

 Page 73 of 124

6.5 Other Findings

6.5.1 Trend lines

The accuracies of the predictions based on linear trendlines fluctuate very wildly, as they are

simply linear interpolations, while real stock prices may fluctuate up and down. In particular,

the accuracy of the predictions depends completely on the choice of the day based on which

the linear interpolations are made. Since the choice is arbitrary, the predictions based on trend

lines are not reliable at all.

6.5.2 Alternative Prediction Method - Skip Predict

To tackle the problem of input bias on the intermediate prediction result and the short term

noise of the stock, an alternative prediction method “skip predict” is used.

This method has 2 key advantages. First, this method can decouple the dependency of the

prediction result based on the previous day in the original model. With “skip predict”, the input

data of n-day before is used for the prediction. For example, if the number of days skipped is

10, this represents that input data would not consider the recent 10 days, and the input data

would use the shifted time frame.

Second, the prediction result can all depend on the historical prices and not the intermediate

prediction result. This could be one of the methods to solve the reinforcement problem

mentioned in 6.2. The error of the first predicted data point would not impact the following

 Page 74 of 124

predictions result. For example, the incorrect trend of the first predicted data point (t+1) would

not serve as the input for the predictions later (t+2, t+3, …, t+10). This creates an advantage

that the error or bias would not accumulate and the result could solely depend on historical

data. The hypothesis is that such method could generate a lower root mean square error

compared to the original model the application is using.

Figure 6.5​ Skip predict RMSE (CAT, Dense Neural Network, 1-day predict)

 Page 75 of 124

From Figure 6.5, the increasing number of skip days can not effectively lower the root mean

squared error. Similar observations are also seen in other stocks, including TSLA, PG, WMT, etc.

This is an interesting finding that skipping more days could not improve the accuracy. One

possible explanation is that the correlation between further apart stock prices is very small, so

although the reinforcement effect could be solved by this prediction approach, the error is

amplified by another low correlation factor, which results in a model that fails to capture

instant and close-by news.

 Page 76 of 124

6.6 Mobile Application User Experience Testing

To evaluate the user experience of the mobile application, users who have not been involved in

the development of the application have been invited to try out the mobile application and give

constructive feedbacks. The major findings are summarized as follows:

6.6.1 Useful Insights for Finding General Trend

Despite the flaws found in the mobile application, users in the test agree that they were able to

check out what are the possible movements of the stock prices predicted by the machine

learning models and the general directions of the stocks are going. Users find it might be useful

for finding stocks with upside potential for the coming few days.

6.6.2 Unclear Description of the Models

In the mobile application, different models are named after their architectures, such as LSTM,

Dense Neural Network, and GRU. However, these technical names are not familiar to users

who have no experience in machine learning and cause some confusions among users.

6.6.3 Unclear Presentations of the Prediction Results

Each stock is associated with a model trend score as described in 2.2.7. However, to laymen

users, it might not always be clear what these scores represent, as the definitions are not

clearly explained. The lack of clarity might confuse users or lower their confidence as they

attempt to take actions following the predictions made by the models.

 Page 77 of 124

7. Discussion

As mentioned in 5, the success of the project is primarily determined by two factors, namely,

whether the investment tool provides useful, accurate stock price predictions to investors, and

whether investors can use and understand the predictive information provided by the machine

learning technologies. The project’s objectives are therefore partially fulfilled.

7.1 Accuracy of Stock Price Predictions

As shown in 6.1, while the 1-day stock price prediction follow closely with actual stock prices,

the predictions for stock prices after 10 days deviate considerably from the actual stock prices.

This shows that machine learning models fail to provide accurate stock price predictions to

retail investors.

Nevertheless, some of the models have been shown to outperform predictions based on

random walks as mentioned in 6.2, and therefore might still serve as a reference for more savvy

investors, who might be able to compare the results with their own analysis findings to discover

meaningful trends.

 Page 78 of 124

7.2 Democratization of Machine Learning Technology

Another factor when evaluating the project’s success is whether investors can use and

understand the predictive information provided by the machine learning technologies using our

mobile application. In spite of the confusions found in some parts of the user interface,

especially in the advanced user mode, users found useful insights provided by the machine

learning models, such as identifying stocks with upside potential. The result is significant, in the

sense that users with little background on machine learning technology and stock trading could

find potential use cases for the application. The results imply that machine learning

technologies could be democratized to serve the interest of the general public. Stock price

prediction is a particularly exciting area, because the level of expertise required to succeed in

making profitable short-term investments is considered to be prohibitive for small, retail

investors, and trading with help of machine learning is a feat only institutional investors could

perform. The application demonstrates one possible way retail investors could use machine

learning technologies on their own.

 Page 79 of 124

8. Conclusion

The project lays the foundation for democratizing machine learning technologies for retail

investors, connecting predictions made by machine learning models to retail investors through

a mobile application. It helps investors navigate through the stock markets with additional

analysis and help them make more informed decisions.

The findings demonstrated that the application provides significance in trend prediction. When

compared to the baseline, the prediction shows useful trend tendency with the real stock

trend. Through the application interface, the user can easily compare the predictions and

model scores from different machine learning models, then choosing the one that fits their

preference. The models used in the application will continue to improve itself by searching for a

better model topology, structure and hyperparameters through evolution algorithm. The

findings concluded the usefulness of evolution algorithm in lowering the mean squared error

when predicting stock prices, which is helpful for improving the trend prediction for retail

investors.

Therefore, with the application and research findings, to large extent the project team achieved

the aim of creating an user-friendly system for retail investors whom does not have previous

technical knowledge to navigate the machine model predictions result with useful benchmarks.

There are 4 possible further improvements building upon the findings of this project. First,

multiple approaches to framing the problems could be explored in the future, such as

 Page 80 of 124

predicting whether the stock price goes up or down (binary classification) based on the

previous stock prices. Other features could be incorporated, such as market news and

sentiment. Combined with the development of more advanced machine learning techniques,

the accuracy of the information provided to retail investors might be improved significantly.

Second, a larger scale of evolution with larger population size and more iterations could also be

tested for achieving better results. Model inputs can also be included into the evolution

algorithm as a variable to optimize. Regularized evolution [38] can be tested to eliminate old

models regardless of their accuracy, which could allow the algorithm to search for more distant

models in the search space.

Third, it is also possible to use more finance-specific scores, like those introduced, as the

objective function instead of simple mean squared errors to achieve better results.

Fourth, mobile applications with better presentation of stock price predictions could be

developed to help investors understand the implications of the stock price predictions, e.g.

when to buy or sell. This would allow investors to make more informed decisions based on the

machine learning models and truly democratize machine learning technologies, which were

believed to be only in the hands of very few people.

 Page 81 of 124

9. References

[1] “Survey Finds Hong Kong Securities Market Attracts Wide Range of Investors,” ​HKEX​, 13 Jul

2017​; ​http://www.hkex.com.hk/news/news-release/2017/170713news?sc_lang=en​.

[2] Y. Dai and Y. Zhang, “Machine Learning in Stock Price Trend Forecasting,” ​Stanford

University​;
http://cs229.stanford.edu/proj2013/DaiZhang-MachineLearningInStockPriceTrendForecasting.p

df​.

[3] J. Patel, S. Shah, P. Thakkar, and K. Kotecha, “Predicting stock and stock price index

movement using Trend Deterministic Data Preparation and machine learning techniques,”

Expert Systems with Applications: An International Journal, ​Vol. 42, Jan. 2015, pp. 259-268

[4] B. Wanjawa and L. Muchemi, “ANN Model to Predict Stock Prices at Stock Exchange

Markets,” arXiv:1502.06434 [q-fin.ST], 2014

[5] D. Mandic and J. Chambers, ​Recurrent Neural Networks for Prediction​, Wiley, 2001

[6] R. Williams and D. Zipser, “Gradient-based learning algorithms for recurrent networks

and their computational complexity”, in ​Back-propagation: Theory, Architectures and Appli-

Cations​, Hillsdale, NJ: Erlbaum, 1992, pp. 433 - 486

[7] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, “Gradient flow in recurrent nets: the

difficulty of learning long-term dependencies”, in ​A Field Guide to Dynamical Recurrent Neural

Networks​, S. C. Kremer and J. F. Kolen, eds., IEEE press, 2001

[8] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory”, ​Neural Computation​, vol. 9,

no. 8, pp. 1735 - 1780, 1997

[9] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for Statistical

Machine Translation”, arXiv:1406.1078 [cs.CL], 2014

 Page 82 of 124

http://www.hkex.com.hk/news/news-release/2017/170713news?sc_lang=en
http://cs229.stanford.edu/proj2013/DaiZhang-MachineLearningInStockPriceTrendForecasting.pdf
http://cs229.stanford.edu/proj2013/DaiZhang-MachineLearningInStockPriceTrendForecasting.pdf

[10] W. Gail, G. Yoav, and Y. Eran, "On the Practical Computational Power of Finite Precision

RNNs for Language Recognition", arXiv:1805.04908 [cs.NE], 2018

[11] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, "Empirical Evaluation of Gated Recurrent

Neural Networks on Sequence Modeling". arXiv:1412.3555 [cs.NE]. 2014

[12] E. Real, et al., “Large-Scale Evolution of Image Classifiers,” arXiv:1703.01041 [cs.NE]. Jun

2017.

[13] D. Alajbeg, Z. Bubas and D. Vasic, “Price Distance To Moving Averages And Subsequent

Returns”, ​International Journal of Economics, Commerce and Management​, Vol. V, Dec 2017,

pp. 33 - 47

[14] Progressive Web Apps, Google. Available:

https://developers.google.com/web/progressive-web-apps/

[15] Neoteric, “Single-page application vs. multiple-page application”, Medium. 2016. Available:

https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591

588efe58

[16] Keras: The Python Deep Learning library, Keras. Available: ​https://keras.io/​.

[17] Documentation of scikit-learn 0.19.2. Available:

http://scikit-learn.org/stable/documentation.html​.

[18] Alpha Vantage API Documentation, Alpha Vantage. Available:

https://www.alphavantage.co/documentation/​.

[19] NumPy v1.14 Manual, The SciPy community. Available:

https://docs.scipy.org/doc/numpy-1.14.5/​.

 Page 83 of 124

https://developers.google.com/web/progressive-web-apps/
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://keras.io/
http://scikit-learn.org/stable/documentation.html
https://www.alphavantage.co/documentation/
https://docs.scipy.org/doc/numpy-1.14.5/

[20] pandas: powerful Python data analysis toolkit, Pandas. Available:

http://pandas.pydata.org/pandas-docs/version/0.23/​.

[21] Hello, Colaboratory - Colaboratory - Google, Google. Available:

https://colab.research.google.com​.

[22] TensorBoard: Visualizing Learning, Google. Available:

https://www.tensorflow.org/guide/summaries_and_tensorboard​.

[23] Welcome to Flask — Flask 1.0.2 documentation, Pallets Team. Available:

http://flask.pocoo.org/docs/1.0/​.

[24] Cloud Storage, Google. Available: ​https://firebase.google.com/docs/storage/​.

[25] Getting Started, The Investors Exchange. Available:

https://iextrading.com/developer/docs/​.

[26] Cloud Functions for Firebase, Google. Available:

https://firebase.google.com/docs/functions/​.

[27] Cloud Firestore, Google. Available: ​https://firebase.google.com/docs/firestore/​.

[28] React – A JavaScript library for building user interfaces, Facebook Inc; ​https://reactjs.org/​.

[29] React Router: Declarative Routing for React.js, React Training. Available:

https://reacttraining.com/react-router/web/guides/philosophy​.

[30] Read Me - Redux, Redux. Available: ​https://redux.js.org/​.

[31] Immutable collections for JavaScript, Facebook Inc. Available:

https://github.com/facebook/immutable-js/​.

[32] Introduction - Material Design, Google. Available: ​https://material.io/design/introduction/​.

[33] Material UI, Material UI Team. Available: ​https://material-ui.com/

 Page 84 of 124

http://pandas.pydata.org/pandas-docs/version/0.23/
https://colab.research.google.com/
https://www.tensorflow.org/guide/summaries_and_tensorboard
http://flask.pocoo.org/docs/1.0/
https://firebase.google.com/docs/storage/
https://iextrading.com/developer/docs/
https://firebase.google.com/docs/functions/
https://firebase.google.com/docs/firestore/
https://reactjs.org/
https://reacttraining.com/react-router/web/guides/philosophy
https://redux.js.org/
https://github.com/facebook/immutable-js/
https://material.io/design/introduction/
https://material-ui.com/

[34] Using Google Charts, Google. Available:

https://developers.google.com/chart/interactive/docs/​.

[35] Facebook Login, Facebook. Available:

https://developers.facebook.com/docs/facebook-login/

[36] Firebase Authentication, Google. Available: ​https://firebase.google.com/docs/auth/

[37] unittest — Unit testing framework, Python Software Foundation. Available:

https://docs.python.org/3.6/library/unittest.html

[38] E. Real, A. Aggarwal, Y. Huang, Q. Le, “Regularized Evolution for Image Classifier

Architecture Search,” arXiv:1802.01548 [cs.NE]. Feb 2018.

[39] GitHub features: the right tools for the job, Github Inc; ​https://github.com/features​.

 Page 85 of 124

https://developers.google.com/chart/interactive/docs/
https://developers.facebook.com/docs/facebook-login/
https://firebase.google.com/docs/auth/
https://docs.python.org/3.6/library/unittest.html
https://github.com/features

10. Appendices

A - Model Options Example

Dense neural network model options example:

"modelOptions": {

 "network_type": "dense",

 "net": {

 "layers": [

 {"units": 32, "activation": "relu", "is_input": true, "inputUnits": 10},

 {"units": 64, "activation": "relu"},

 {"is_output": true, "activation": null}

],

 "loss": "mse",

 "optimizer": "adam",

 "learning_rate": 0.001,

 "epochs": 20,

 "batch_size": 32,

 "metrics": ["accuracy"],

 "evaluation_criteria": {

 "minimize": true,

 "threshold": 10

 }

 },

 "predict_n": 10

}

Multi-layer LSTM network model options example:

"modelOptions": {

 "network_type": "LSTM",

 "net": {

 "layers": [

 {

 "layer_type": "LSTM",

 "units": 32,

 Page 86 of 124

 "activation": "relu",

 "recurrent_activation": "sigmoid",

 "stateful": false,

 "is_input": true,

 "inputUnits": [10, 1],

 "return_sequences": true

 },

 {

 "layer_type": "LSTM",

 "units": 32,

 "activation": "relu",

 "recurrent_activation": "sigmoid",

 "stateful": false,

 "is_input": true,

 "inputUnits": [10, 1],

 "return_sequences": false

 },

 {"units": 64, "activation": "relu"},

 {"is_output": true, "activation": null}

],

 "loss": "mse",

 "optimizer": "adam",

 "learning_rate": 0.001,

 "epochs": 20,

 "batch_size": 32,

 "metrics": ["accuracy"],

 "evaluation_criteria": {

 "minimize": true,

 "threshold": 10

 }

 },

 "predict_n": 10

}

 Page 87 of 124

B - Input Options Example

"inputOptions": {

 "config": [

 {"type": "lookback", "n": 10, "stock_code": "GOOGL", "column": "adjusted_close"},

 {"type": "moving_avg", "n": 10, "stock_code": "GOOGL", "column": "adjusted_close"}

],

 "stock_codes": ["GOOGL"],

 "stock_code": "GOOGL",

 "column": "adjusted_close"

}

 Page 88 of 124

C - Trained Model Saving Format

The following is the directory and saving format for trained models.

/saved_models

 /dnn

 /<model_hash_1>

 /<stock_code_1>

 /<stock_code_2>

 /<model_hash_2>

 /<stock_code_1>

 /<stock_code_2>

 models_data.json

 /linear_regression

 /<model_hash_1>

 /<stock_code_1>

 /<stock_code_2>

 models_data.json

The following is the data structure of models_data.json, which saves the saved path, model

options and input options of all trained models of the same type. Each model hash is a SHA256

hash calculated from a JSON string combining a model’s model type, model options and input

options, which prevents collisions from saving all trained models with systematic

timestamp-based names.

{

 “models”: [

 “<model_hash_1>”: {

 “<stock_code_1>”: [

 {

 “model_name”: “<model_hash_1>_<timestamp>.h5”,

 “model_path”: “<relative_model_path>”,

 “model”: “dnn”

 }

],

 “<stock_code_2>”: [

 Page 89 of 124

 {

 “model_name”: “<model_hash_2>_<timestamp>.h5”,

 “model_path”: “<relative_model_path>”,

 “model”: “dnn”

 }

]

 },

 “<model_hash_2>”: {

 “<stock_code_1>”: [

 {

 “model_name”: “<model_hash_1>_<timestamp>.h5”,

 “model_path”: “<relative_model_path”,

 “model”: “LSTM”

 }

],

 }

],

 “modelTypes”: {

 “<model_hash_1>”: {

 “model”: “dnn”,

 “modelOptions”: <model_options_dict>,

 “model”: <input_options_dict>,

 },

 “<model_hash_2>”: {

 “model”: “dnn”,

 “modelOptions”: <model_options_dict>,

 “model”: <input_options_dict>,

 }

 }

}

 Page 90 of 124

D - Evolution Algorithm Mutations

Different mutations are available at each step to slowly evolve the population.

Mutation Description Options

add_dense_layer Add a dense layer with a

random number of units and

random activation function

remove_dense_layer Remove a dense layer

change_units Change the number of units

in a randomly chosen layer

8, 16, 32, 64, 128

change_activation Change the activation

function in a randomly

chosen layer

ReLU, sigmoid, tanh, linear

learning_rate Change the learning rate 0.01, 0.001, 0.0001

batch_size Change the batch size 16, 32, 64

All recurrent neural networks (simple RNN, LSTM network, GRU network) have other additional

mutations.

RNN type Mutation Description Options

Simple RNN add_rnn_layer Add an RNN layer with

a random number of

units and a random

activation function to

the RNN layer stack

Simple RNN remove_rnn_layer Remove an RNN layer

from the RNN layer

stack

 Page 91 of 124

LSTM add_lstm_layer Add an LSTM layer with

a random number of

units, random

activation function and

a random recurrent

activation function to

the LSTM layer stack

LSTM remove_lstm_layer Remove an LSTM layer

from the LSTM layer

stack

LSTM change_recurrent_activ

ation

Change the recurrent

activation function in a

randomly chosen LSTM

layer

sigmoid, hard sigmoid

GRU add_gru_layer Add a GRU layer with a

random number of

units, random

activation function and

random recurrent

activation function to

the GRU layer stack

GRU remove_gru_layer Remove a GRU layer

from the GRU layer

stack

GRU change_recurrent_activ

ation

Change the recurrent

activation function in a

randomly chosen GRU

layer

sigmoid, hard sigmoid

 Page 92 of 124

E - Evolution Algorithm Hyperparameters

There are a number of hyperparameters that can be tuned for the evolution algorithm, which

are set to a certain value for the experiment.

Hyperparameter Value

POPULATION_SIZE 10

ITERATIONS at least 100

Optimizer used in all training Adam optimizer

Epochs 20

 Page 93 of 124

F - Prediction Results

The following are the performance of different models on different stocks with the 2 different

prediction approaches. Each row is the result of a certain stock. The left column is from models

that predict 10-day stock prices directly, the right column is from models that individually

predict 1-day stock price.

 Page 94 of 124

 Page 95 of 124

 Page 96 of 124

Figure 9.1 ​Prediction results from 12 different stocks in S&P 500

 Page 97 of 124

G - Evolution Algorithm Experiment Results

The following are the results of running the evolution algorithm for all 13 stocks. All results

have shown that evolution is exploring better and better model architectures and

hyperparameters over time.

 Page 98 of 124

 Page 99 of 124

 Page 100 of 124

 Page 101 of 124

Figure 9.2 ​Evolution algorithm experiment results

 Page 102 of 124

H - (Project Planning) Division of Work

Task Man Cameron Steven Michael

Base Code Setup ✓✓ ✓ ✓

App UI Design ✓✓

Model Exploration (Leader)

Trend line ✓ ✓ ✓ ✓

Linear regression ✓ ✓

Neural network ✓ ✓

Recurrent neural network ✓ ✓

Long-short term memory network ✓ ✓

Pre-process and Build Training Dataset ✓

Separate model and data ✓

Options ✓

Evolution Algorithm ✓✓

Architecture Search with Evolution Algorithm (Leader)

Dense Neural Network ✓ ✓ ✓ ✓

Recurrent Neural Network ✓ ✓ ✓ ✓

Long-Short Term Memory Network ✓ ✓ ✓ ✓

GRU Network ✓ ✓ ✓ ✓

Analyze algorithm results ✓ ✓ ✓ ✓

Investors App (Leader)

Basic layout ✓ ✓

Plot old stock price data ✓

Change chart time frame ✓

Toggle predictions ✓

Search stock ✓

Company information ✓

Plot historical predictions ✓

Calculate upper and lower bound ✓

Model details ✓

 Page 103 of 124

Refine and polish UI ✓ ✓ ✓ ✓

User Acceptance Test ✓ ✓ ✓ ✓

Scoring for Investors (Leader)

Trend line ✓

Model score formula ✓ ✓ ✓ ✓

Buy/sell score formula ✓ ✓ ✓ ✓

Calculate model score ✓

Calculate buy/sell score ✓

Investors Application Data (Leader)

Get old stock prices ✓ ✓

Cron job to collect stock price daily ✓

Cron job to predict stock prices daily ✓

Report (Leader)

Proposal report ✓ ✓ ✓ ✓

Draw system architecture ✓ ✓

Progress report ✓ ✓ ✓ ✓

Final report ✓ ✓ ✓ ✓

 Page 104 of 124

I - (Project Planning) Gantt Chart

Task Start Target End Aug Sep Oct Nov Dec Jan Feb Mar Apr

Base Code Setup Aug 10 Oct 15

App UI Design Aug 10 Oct 20

Model Exploration

Trend line Oct 1 Oct 30

Linear regression Oct 16 Oct 30

Neural network Nov 2 Nov 6

Recurrent neural network Dec 21 Jan 11

Long-short term memory network Dec 21 Jan 10

Pre-process and Build Training Dataset Nov 7 Nov 13

Separate model and data Nov 7 Nov 16

Options Nov 7 Nov 16

Evolution Algorithm Dec 18 Jan 29

Architecture Search with Evolution

Algorithm

Dense Neural Network Feb 1 Feb 22

Recurrent Neural Network Feb 15 Mar 1

Long-Short Term Memory Network Feb 15 Mar 1

GRU Network Feb 15 Mar 1

Analyze algorithm results Mar 15 Mar 29

 Page 105 of 124

Investors App

Basic layout Aug 21 Sep 30

Plot old stock price data Aug 22 Sep 25

Change chart time frame Oct 1 Oct 30

Toggle predictions Oct 1 Oct 30

Search stock Oct 1 Oct 30

Company information Dec 21 Jan 24

Plot historical predictions Jan 24 Feb 8

Calculate upper and lower bound Jan 24 Feb 8

Model details Feb 4 Feb 8

Refine and polish UI Feb 15 Mar 8

User Acceptance Test Mar 15 Mar 29

Scoring for Investors

Calculate trend line model score Nov 7 Nov 14

Model score formula Feb 1 Feb 8

Buy/sell score formula Feb 1 Feb 8

Calculate model score Feb 8 Mar 1

Calculate buy/sell score Feb 8 Mar 1

Investors Application Data

Get old stock prices Aug 20 Sep 30

Cron job to collect stock price daily Mar 1 Mar 15

Cron job to predict stock prices daily Mar 15 Mar 22

Report

Proposal report Aug 30 Sep 20

Draw system architecture Dec 21 Feb 13

Progress report Feb 1 Feb 14

Final report Mar 15 Apr 17

 Page 106 of 124

J - Collaboration

Git and GitHub

Git is used for version control. 4 GitHub repositories [39] are created, one for each sub-system

in the project, app, AI server, Node.js data server, and Firebase Cloud Functions. Each new

feature is implemented on a separate branch, maintained by 1 developer, and merged into

master when ready.

Task Management

The whole project is divided into small tasks in the research or the application side. A Google

Sheet is used to manage the progress of each task, which describes the task details, the person

responsible for working on it, the start date, the expected finish date, and the actual finish date.

The Git branch which the work is written on is also recorded.

Figure 9.3​ Task Management List on Google Sheet

 Page 107 of 124

Meeting

The team started with general meetings from August to mid-October, discussing the idea and

the system design. Later on, the project is divided into small tasks, and each member worked

individually and report to the group the features added or changes made once finished.

Meetings were held weekly to discuss the next stage of features to work on, while most

discussions were made on WhatsApp. There were a small to-do or to-discuss list before each

meeting. Monthly meetings were held with the professor to report the progress and changes in

idea if any, and seek advice for things to do.

Starting from February, the project stepped into the testing phase, which every member tested

out numerous models with the evolution algorithm. Weekly meetings are scheduled on every

Thursday afternoon to discuss and analyze different models and findings.

 Page 108 of 124

K - Meeting Minutes

Date: 2018-11-07
Time: 09:00 - 18:00
Team Members: Man, Cameron, Steven, Michael

● Walked through the whole system design and architecture
● Discussed the project plan
● Discussed separating model and data and input configs
● Discussed input configs format
● Discussed how to calculate the error and score of trend lines
● Discussed how to do evolution with options
● Discussed options format

To-dos:

Man ● General linear regression and support vector regression
● Separate model and data (Re-write train_models.py and

save_predictions.py)

Cameron ● Build dataset based on input configs

Steven ● Calculate trend line models error and score

Michael ● Generate random options and mutate options based on
option configs

 Page 109 of 124

Date: 2018-11-09
Time: 15:00 - 17:00
Team Members: Man, Cameron, Steven, Michael

● Worked on linear regression and support vector regression models
● Worked on trend line models
● Worked random option generation
● Discussed and defined input config formats

To-dos:

Man ● General linear regression and support vector regression
● Separate model and data (Re-write train_models.py and

save_predictions.py)

Cameron ● Build dataset based on input configs

Steven ● Calculate trend line error and score

Michael ● Generate random options and mutate options based on
option configs

 Page 110 of 124

Date: 2018-11-13
Time: 12:00 - 13:30
Team Members: Man, Cameron, Steven, Michael

● Worked on trend line models
● Worked on random option generation
● Worked on the module to build the dataset based on input config
● Discussed documentation issues

To-dos:

Man ● Document and comment code

Cameron ● Build dataset based on input configs

Steven ● Calculate trend line models error and score

Michael ● Generate random options and mutate options based on
option configs

 Page 111 of 124

Date: 2018-11-14
Time: 15:00 - 16:00
Team Members: Man, Cameron, Steven, Michael

● Worked on documentation and comments
● Worked on trend lines

To-dos:

Man ● Document and comment code

Cameron ● Build dataset based on input configs

Steven ● Calculate trend line models error and score

Michael ● Generate random options and mutate options based on
option configs

 Page 112 of 124

Date: 2018-11-16
Time: 15:00 - 16:00
Team Members: Man, Cameron, Steven, Michael

● Worked on documentation and comments
● Worked on options generation and mutation based on option config

To-dos:

Man ● Document and comment code

Cameron ● Build dataset based on input configs

Steven ● Calculate trend line models error and score

Michael ● Generate random options and mutate options based on
option configs

 Page 113 of 124

Date: 2018-11-26
Time: 11:30 - 12:30
Team Members: Man, Cameron, Steven, Michael

● Discussed implementation of recurrent neural networks, e.g. LSTM
● Discussed evolution algorithms
● Discussed the possible additional features, e.g. company information on mobile

application

To-dos:

Man ● Evolution algorithms

Cameron ● Recurrent Neural Network, LSTM

Steven ● Calculate trend line models error and score

Michael ● Displayed Company information on Mobile Application

 Page 114 of 124

Date: 2019-01-24
Time: 14:00 - 17:00
Team Members: Man, Cameron, Steven, Michael

● Discussed how to calculate accuracy, upper bounds and lower bounds of different
models

● Discussed new interfaces between server and mobile clients to allow upper/lower
bounds and previous predictions to be passed

● Discussed how to present the upper/lower bounds and accuracy on mobile application

To-dos:

Man ● Evolution algorithms

Cameron ● Calculate upper/lower bounds for stock price predictions
● Get previous predictions to show stock prices’ accuracies

Steven ● Plot score indicators for different models

Michael ● Plot upper bounds/lower bounds for stock price predictions
on mobile application

● Plot previous predictions on mobile application

 Page 115 of 124

Date: 2019-02-08
Time: 13:00 - 15:00
Team Members: Man, Cameron, Steven, Michael

● Worked on calculating accuracy, upper bounds and lower bounds of different models
● Worked on plotting previous predictions, upper bounds and lower bounds of different

models in the mobile application
● Discussed progress report

To-dos:

Man ● Evolution algorithms
● Progress Report

Cameron ● Calculate upper/lower bounds for stock price predictions
● Get previous predictions to show stock prices’ accuracies
● Progress Report

Steven ● Plot score indicators for different models
● Progress Report

Michael ● Plot upper bounds/lower bounds for stock price predictions
on mobile application

● Plot previous predictions on mobile application
● Progress Report

 Page 116 of 124

Date: 2019-02-15
Time: 13:00 - 15:00
Team Members: Man, Cameron, Steven, Michael

● Discussed one-day prediction option
● Discussed formulation of model scores
● Discussed formulation of buy/sell scores

To-dos:

Man ● Implement rolling one-day predictions of stock prices

Cameron ● Implement build_dataset for one-day predictions of stock
prices

Steven ● Calculate model score
● Calculate buy/sell score

Michael ● Plot model score
● Plot buy/sell score

 Page 117 of 124

Date: 2019-02-21
Time: 16:30 - 18:00
Team Members: Man, Cameron, Steven, Michael

● Separated build dataset script to build training dataset and build predict dataset
● Unit-tested build dataset script
● Discussed the uses of Facebook authentication
● Discussed the design of user profile
● Discussed the design of user page

To-dos:

Man ● Separate build dataset to build training dataset and predict
dataset

● Write unit tests for build_dataset

Cameron ● Write unit tests for build_dataset

Steven ● Calculate model score
● Calculate buy/sell score

Michael ● Plot model score
● Plot buy/sell score

 Page 118 of 124

Date: 2019-02-28
Time: 16:30 - 18:00
Team Members: Man, Cameron, Steven, Michael

● Discussed what config options to include in the evolution model
● Discussed normalization of stock prices
● Discussed user interface changes
● Demonstrated progress for stock price predictions (in successfully comparing different

models and plotting it in graphs)

To-dos:

Man ● Normalization of stock prices
● Evolution config options

Cameron ● Favourite list
● Timeframe select

Steven ● Calculation model score and plot score

Michael ● Toggle for the user to choose whether they want to plot
“rollingPredict” or “snakes” historical predictions (or both)

 Page 119 of 124

Date: 2019-03-04
Time: 16:30 - 18:00
Team Members: Man, Cameron, Steven, Michael

● Discussed the overall user interface design
● Discussed possible improvements to the UI
● Discussed how to start evolution

To-dos:

Man ● Host server
● Evolution config options

Cameron ● Start doing evolution

Steven ● Make improvements on the UI
● Start doing evolution

Michael ● Start doing evolution

 Page 120 of 124

Date: 2019-03-14
Time: 16:30 - 18:00
Team Members: Man, Cameron, Steven, Michael

● Discussed model score formula
● Discussed UI improvements
● Discussed prediction results
● Discussed evolution scope

To-dos:

Man ● Revise model score formula
● Work on evolution

Cameron ● Work on evolution

Steven ● Revise model score formula
● Work on evolution

Michael ● Work on evolution

 Page 121 of 124

Date: 2019-03-28
Time: 16:30 - 18:00
Team Members: Man, Cameron, Steven, Michael

● Reviewed page & component diagram for our web application
● Discussed what we need for our final report

○ New findings regarding evolution algorithm
○ Results of hallway testing
○ Unit tests
○ Implementation result (with component diagram)

● Use Google slides for final presentation

To-dos:

Man ● Work on evolution
● Host the application to the server

Cameron ● Work on evolution

Steven ● System diagram
● Work on evolution

Michael ● Work on evolution
● Add chart settings user profile to cloud
● Add maximum time frame

 Page 122 of 124

Date: 2019-04-08
Time: 12:00 - 18:00
Team Members: Michael, Man, Cameron

● Discussed the flow of the final report
● Use case diagram / Functions
● Questions to the professor

○ Should we put mockup or real
○ Should we put application/research part first in our design (2.2 - Application, 2.3

Research)

To-dos:

Man ● Plot evolution results as graphs
● Start working on the final report

Cameron ● Start working on the final report

Steven ● Start working on the final report

Michael ● Start working on the final report

 Page 123 of 124

L - Required Hardware and Software

Hardware

● 4 x Windows / Linux / MAC laptops for development

Software

● Python 3.6 with machine learning libraries (e.g. scikit-learn, Keras, Tensorflow)

● Visual Studio Code / Sublime Text for programming

● Google Chrome for debugging web applications

Platforms

● Google Colaboratory for running evolution

● Firebase Hosting for app

● Firebase (Cloud Datastore, Cloud Storage, Authentication, Cloud Functions)

 Page 124 of 124

