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Source: Refinitv

Why Machine Learning in Finance?

4

Motivation

72% of existing institutional investor base utilize Machine Learning

Industry Drivers

80% of institutional 
investors making significant 
investment

27% of institutional 
investors utilize AI/ML in 
trade execution

80% of institutional 
investors utilize AI/ML in risk 
management

in enhancing trading lifecycle 
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Literature Review – “Attention is All You Need”

5

Motivation & Literature Review

Key Takeaway Transformer Models are very effective at pattern recognition within a sequential context 

Key Features

Self-Attention

•Allows each time point in the sequence to understand 
how it relates with every other time point.

Multi-Headed Attention

•Multiple self-attention modules can learn different 
types of relationships.

Positional Encoding

•Allows the model to understand the sequential nature 
of data.

Parallelization

•Models can be efficiently trained with large datasets.

Transformer 
Encoder Module

Transformer 
Decoder Module
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Literature Review – “Attention is All You Need”

6

Motivation & Literature Review

Transformer Encoder 
Module

Transformer Decoder 
Module
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Motivation & Literature Review

Key Takeaway Transformer Models are very effective at pattern recognition within a sequential context 

Key Features

Self-Attention

•Allows each time point in the sequence to understand 
how it relates with every other time point.
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A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I. 
Polosukhin, "Attention Is All You Need," arXiv, 2017.

Literature Review – The Success of the Transformer Model Architecture

11

Motivation & Literature Review

Results from NLP, DETR

Natural Language Processing (Machine Translation) Video Processing (Panoptic Segmentation)

N. Carion, F. Massa "End-to-End Object Detection with Transformers," arXiv, 2020.

Key Takeaway Transformer Models have surpassed the state-of-the-art in various time-series domains 



Introduction Methodology Evaluation Conclusion 12

12

Conduct preliminary statistical 
data analysis to identify the 

most important factors to act 
as input for the model.

1

Design and train a transformer-
based model and develop a 
supplementary profitable 

trading strategy, that accounts 
for market friction in its 

decision-making process. 

2

Systematically evaluate the 
performance of each factor 

pillar model to understand the 
benefits of each factor pillar 
and to determine the best 

performing model.

3

Change the background of the selected strategy to blue
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Design – Scope of Securities

14

Methodology

Equity Market Foreign Exchange (FX) Market

S&P500 (SPY) Apple Inc. (AAPL)

Amazon.com, Inc. (AMZN) Microsoft Corp (MSFT)

USD/CAD AUD/USD

USD/CHF GBP/USD

USD/JPY CNY/USD

EUR/USD



Introduction Methodology Evaluation Conclusion

Design – Multifactor Approach
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Methodology

T

T+F

T+M

T+V
T+F+
M+V

Technical Factors Model

Technical + Fundamental Factors 
Model

Technical + Macroeconomic Factors 
Model

Technical + Value Factors Model

All Factors Model

E F

E

E*

E*

E*
E – For All Equity Securities

E* - For All Equity Securities except SPY 
F – For All FX Securities

Technical 
Factors

Price & Trading Data

Fundamental 
Factors

Numbers from Accounting 
Statements

Macro-
economic 
Factors

External Factors that describe 
prevailing macroeconomic 
conditions

Value Factors Metrics that describe how 
under/overvalued the security is.

Factor Pillars
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Design – High Level System Architecture
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Methodology

Transformer Encoder: Self-
attention Visualization

0.02367%

Input Data: Selected factors over 10 days

Core model

Time Series 

Multifactor Data
Input Projection

Positional 

Encoding

Transformer Encoder Module x2
Return 

Prediction

Trading 

Algorithm

Model Backbone

Model Backbone Output: Learned 
Features + Positional Encoding

Core Model Output: Predicted 
Normalized Average Return
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Design – Evaluation Criteria
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Methodology

calculates the annually 
compounded 

equivalent rate of 
return over a period.

M e t r i c D e f i n i t i o n W h y ? D e s i r e d  V a l u e

Cumulative 
Annual Growth 

Rate (CAGR)

GREATER
than CAGR of Buy & Hold 

Strategy

Instead of using overall return, using 
CAGR is more objective since the 
timeframe is standardized into annual 
growth.

calculated by dividing 
the average returns 
over the standard 

deviation of returns.

Sharpe Ratio
GREATER

than Sharpe Ratio of Buy & 
Hold Strategy

It measures risk-adjusted returns and 
shows that the trading strategy can 
produce higher returns while taking 
on less risk. 

measures the maximum 
decline (in %) of the 

trading balance from its 
peak to its trough.

Maximum 
Drawdown

LESSER
than Maximum Drawdown 

of Buy & Hold Strategy

High maximum drawdown despite 
high returns indicate that the trading 
strategy is inconsistent.



Introduction Methodology Evaluation Conclusion

Data Sourcing
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Implementation

18

• Fundamental Data
• Macroeconomic Data 
• Value Data

1 2 3

• Technical Data
• Fundamental Data
• Macroeconomic Data

Security Start Date End Date Number of Trading Day Data Points

AAPL 02-Jan-04 21-Sep-21 4410

AMZN 02-Jan-04 29-Sep-20 4163

MSFT 02-Jan-04 29-Sep-20 4163

SPY 02-Jan-04 17-Feb-23 4766

All FX 17-Sep-03 17-Feb-23 4998

To make accurate comparisons between securities, we 
standardized the time period for all factors 

Due to limited Fundamental Data, the dataset within 
Equities was limited to September 2020
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Factor Selection
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Implementation

Technical

Daily data
• Opening Price
• Closing Price
• Highest Price
• Lowest Price
• Daily Trading Volume

W h y ?

Standard technical Indicators

Value

Put Call ratio 

First three indicate underlying valuation relative to 
the firms’ earnings and revenue

Put Call Ratio summarizes the stock options trading 
flow and highlights investor sentiment on value

Ratios
• Price to Earnings ratio
• Price to Sales ratio
• EV to EBITDA ratio

F a c t o r s  U s e d
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Factor Selection
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Implementation

F a c t o r s  U s e d W h y ?

Treasury bills/bonds represent the overall 
interest rate conditions

Crude Oil prices reflect all major industries and 
consumption across US industries

Gold portray broader macroeconomic and 
business conditions influencing stock price 

movements.

Currency pairs represent the largest trading 
partners of the US

Macroeconomic

Treasury bills/bonds
• 13-week treasury bill
• 10-year treasury bond
• 30-year treasury bond

Crude oil

Gold

Currency pairs
• CAD to USD exchange rate
• JPY to USD exchange rate
• EUR to USD exchange rate
• CNY to USD exchange rate
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Fundamental Factor Selection
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Implementation

Stage 1: Identifying Key Fundamental Factors

Stage 2: Evaluate Profitability the Factors

1. XGBoost Regressor returned 5 key fundamental 
factors based on feature importance

2. Extratree Regressor returned 16 key fundamental 
factors based on feature importance 

3. Selected the 16 key features for evaluation

1. For each key feature, we rank 100+ securities based on 
the security’s respective value

2. We create a portfolio for each key feature that longs the 
top 5 securities and shorts the bottom 5 securities per 
quarter

3. We calculate the profit for each feature and rank the 16 
stocks

4. Top 5 stocks from this ranking are the key fundamental 
features used for the pillar 

XGBoost Regressor 
+ Extratree Regressor

Mock Factor Portfolio
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Fundamental Factor Selection
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Implementation

Key Features:

• Total Liabilities
• Total Assets
• Total Stockholder Equity
• Common Stock
• Other Current Assets
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Fundamental Factor Selection
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Implementation

Per Quarter

1. For each key feature, we rank 100+ securities based on 
the security’s respective value

2. We create a portfolio for each key feature that longs the 
top 5 securities and shorts the bottom 5 securities per 
quarter

3. We calculate the profit for each feature and rank the 16 
stocks

4. Top 5 stocks from this ranking are the key fundamental 
features used for the pillar 

Mock Factor Portfolio

Fundamental Data
Extract Features per 

Security
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Implementation

1. For each key feature, we rank 100+ securities based on 
the security’s respective value

2. We create a portfolio for each key feature that longs the 
top 5 securities and shorts the bottom 5 securities per 
quarter

3. We calculate the profit for each feature and rank the 16 
stocks

4. Top 5 stocks from this ranking are the key fundamental 
features used for the pillar 

Mock Factor Portfolio Retrieve Best and Worst 5 Securities

GE
WMT
XOM
VZ
PFE
.
.
.
NFLX
VRTX
EQIX
LRCX
REGN

Total Assets “Total Assets” Mock Factor 
Portfolio
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Implementation

1. For each key feature, we rank 100+ securities based on 
the security’s respective value

2. We create a portfolio for each key feature that longs the 
top 5 securities and shorts the bottom 5 securities per 
quarter

3. We calculate the profit for each feature and rank the 16 
stocks

4. Top 5 stocks from this ranking are the key fundamental 
features used for the pillar 

Mock Factor Portfolio Retrieve Best and Worst 5 Securities
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Fundamental Factor Selection
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Implementation

Key Features:

• Total Assets

• Total Liabilities

• Net Debt

• Intangible Assets

• Total non-current Assets.

Rank Feature

1 Total Non-Current Assets

2 Total Liabilities

3 Net Debt

4 Total Assets

5 Intangible Assets

6 Other Non Cash Items

7 Dividends Paid

8 Other Cashflows From Investing Activities

9 Gross Profit

10 Total Stockholder Equity

11 Net Working Capital

12 Common Stock

13 EBITDA
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Pre-processing and Transformation
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Implementation

Stationarity

• The condition where the 
statistical properties of the 
data remain unchanged over 
time

• Use percentage change which 
removes trends and frame the 
data into rate of change 
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Pre-processing and Transformation
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Implementation

Transformation

• Rolling geometric mean 
transformation was used to 
smooth data and reduce noise

• Rolling mean window is set to 
10 to cover an average of two 
weeks in our daily data.
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Pre-processing and Transformation
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Implementation

Outlier Selection

• Remove data points where 
the factor values were higher 
than 10 times the Inter 
Quartile Range of that factor
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Pre-processing and Transformation

30

Implementation

Normalization

• Performed max absolute 
scaling for features that 
includes negative values

• Takes the values in each factor 
and divides it with the 
maximum absolute value of 
that feature
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Pre-processing and Transformation
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Implementation

Normalization

• Performed min-max scaling 
for that only include positive 
values

• Takes the minimum and 
maximum values of the 
feature and scale the data 
into the range from 0.0 to 1.0
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Pre-processing and Transformation
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Implementation

Principal Component Analysis Dataset Split

• A dimensionality reduction method that is often 
used to reduce the dimensionality of large data sets

• Chose the components that cumulatively explained 
greater than 99% of covariance between the factors 80%

10%

10%

Data 
Split

Training

Validation

Testing
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Model Design and Training
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Implementation
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Model Design and Training
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Implementation

Time2Vec Layer for positional encoding

• Designed to use 10 days of continuous daily data to 
predict the following day’s closing returns

• Utilizes a feedforward layer as the input projection 
layer 

• Use Time2Vec to apply positional encoding on the 
predicted data 
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Model Design and Training
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Implementation

Transformer Encoders

• Data is passed through two consecutive transformer 
encoder modules

• Data is then followed by global average pooling to 
turn the data into one dimension

• Two dropout-enabled feedforward layers are used 
to output a single value price
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Trading strategy
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Implementation

𝐶𝑙𝑜𝑠𝑒4 = 1 + 𝑥0 × 1 + 𝑥1 × 1 + 𝑥2 × 1 + 𝑥3 × 1 + 𝑥4
1
5 − 1

𝐶𝑙𝑜𝑠𝑒5 = 1 + 𝑥1 × 1 + 𝑥2 × 1 + 𝑥3 × 1 + 𝑥4 × 1 + 𝑥5
1
5 − 1

For time t4

For time t5

Pre-processing of Close Price:

How to generate buy or sell instructions?                      

i) Daily raw close price

ii) % change in close price (𝑥𝑖)

iii) Processed labels (𝐶𝑙𝑜𝑠𝑒𝑖) for Close Price [sample calculation]:

Based on target variable: Close Price

Notes on actual 
implementation:

1) 10 day rolling window utilized for geometric mean

2) Max absolute normalization after label generation 𝐶𝑙𝑜𝑠𝑒𝑖 does not impact buy/sell instruction logic
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Trading strategy
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Implementation

𝐶𝑙𝑜𝑠𝑒4 = 1 + 𝑥0 ∗ 1 + 𝑥1 ∗ 1 + 𝑥2 ∗ 1 + 𝑥3 ∗ 1 + 𝑥4
1
5 − 1

𝐶𝑙𝑜𝑠𝑒5 = 1 + 𝑥1 ∗ 1 + 𝑥2 ∗ 1 + 𝑥3 ∗ 1 + 𝑥4 ∗ 1 + 𝑥5
1
5 − 1

For time t4

For time t5

Processed data labels for two consecutive days

What is the difference?

1 + 𝑥0 vs 1 + 𝑥5

How does the difference help 
generate trading signals?

Buy Signal

𝐶𝑙𝑜𝑠𝑒5 > 𝐶𝑙𝑜𝑠𝑒4 → 𝑥5 > 𝑥0

What if 𝑥5 & 𝑥0 are negative?

→ Narrowed down buy condition:
𝑪𝒍𝒐𝒔𝒆𝟓 > 𝑪𝒍𝒐𝒔𝒆𝟒 and 𝒙𝟎 > 𝟎 → 𝒙𝟓 > 𝟎

Sell Signal

𝐶𝑙𝑜𝑠𝑒5 < 𝐶𝑙𝑜𝑠𝑒4 → 𝑥5 < 𝑥0

What if 𝑥5 & 𝑥0 are positive?

→ Narrowed down sell condition:
𝑪𝒍𝒐𝒔𝒆𝟓 < 𝑪𝒍𝒐𝒔𝒆𝟒 and 𝒙𝟎 < 𝟎 → 𝒙𝟓 < 𝟎
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Back-testing
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Implementation

Stop Loss Implementation

i) Tested stop-loss levels on validation set:
0.0001% to 10% at every 10x multiple

ii) Utilized the optimal on testing data set

iii) Stop-loss trigger mechanism:
→ Measured as % change in daily close price

iv) Limitation on daily frequency data:
→ If %Δ(Opent – Closet-1) > %Δ(Closet – Closet-1)

→ Loss set at Δ(Opent – Closet-1) 

Buy on closing price

Unexpected loss on 
opening price

Example of unexpected loss

Stop loss level
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Back-testing
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Implementation

Stop Loss Implementation

i) Tested stop-loss levels on validation set:
0.0001% to 10% at every 10x multiple

ii) Utilized the optimal on testing data set

iii) Stop-loss trigger mechanism:
→ Measured as % change in daily close price

iv) Limitation on daily frequency data:
→ If %Δ(Opent – Closet-1) > %Δ(Closet – Closet-1)

→ Loss set at Δ(Opent – Closet-1) 

Trading Simulation

i) Set 10,000 USD initial trading balance

ii) Used Interactive Brokers’ rates for commission 
simulation as one of Hong Kong’s largest retail brokers

iii) Rates breakdown:
→ Equities: 0.05 USD/share (min. 1 USD – max. 1% notional)

→ FX: 0.2 bps or 0.02% of notional trade
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Data and Pre-processing Testing
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Testing

Data Testing

Cross referencing collected data across multiple 
sources.

Pre-processing Testing

Inversion of processed data to retrieve pre-processed 
data in the inverted 3 step process.

Percentage Change transformation

Geometric Mean transformation

Min-Max or Max Abs. Scaling transformation
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Model Testing

41

Testing

To evaluate the learning ability of the transformer model:

Self generated data set 1:

𝐶𝑡 = 1.001 × 𝐶𝑡−1 − 1.0009 × 𝐶𝑡−2 + 1.0008 × 𝐶𝑡−3 − 1.0007 × 𝐶𝑡−4

+ 1.0006 × 𝐶𝑡−5 − 1.0005 × 𝐶𝑡−6 + 1.0004 × 𝐶𝑡−7 − 1.0003 × 𝐶𝑡−8

+1.0002 × 𝐶𝑡−9 − 1.0001 × 𝐶𝑡−10

i) 𝐶𝑡 stands for closing price on day t

ii) Simulates the relational trend of a stock price with historical 
context

iii) Choice of co-efficient and linear function was arbitrary 

Self generated data set 2:

𝐶𝑡 = sin 𝑥 ,𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

i) 𝐶𝑡 stands for closing price on day t

ii) Devoid of any relational trends and historical context

iii) Creates a random path for closing price
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Model Testing
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Testing

To evaluate the learning ability of the transformer model:

Self generated data set 1: Self generated data set 2:

--- Predicted Returns --- Actual Returns --- Predicted Returns --- Actual Returns

Key Takeaway:
1) Transformer is able to learn trends and underlying patterns from a sequential and relational data set.
2) Transformer does not learn under randomness without relational/sequential trends.
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Equity: Technical model
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Evaluation of model trading performance on equity
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Key takeaway

Transformer Model is profitable but not better than 
buy-and-hold strategy

Transformer model  has lower risk-adjusted returns
Transformer model was able to reduce maximum 
drawdown by taking less trades, especially losing trades
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Evaluation of model trading performance on equity
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Equity: Technical + Fundamental model
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Evaluation of model trading performance on equity

Key takeaway

Transformer model was able to outperform buy-and-
hold strategy  CAGR when using stoploss

Transformer model with stoploss mechanism produce 
higher risk-adjusted returns

Transformer model has lower maximum drawdown 
than buy-and-hold strategy 
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Equity: Technical + Fundamental model
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Evaluation of model trading performance on equity
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Equity: Technical + Macroeconomic model
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Evaluation of model trading performance on equity

Key takeaway

Transformer model was not able to outperform buy-
and-hold strategy  CAGR when using stoploss

Transformer model with stoploss mechanism produce 
lower risk-adjusted returns 

Transformer model has lower maximum drawdown 
than buy-and-hold strategy 
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Evaluation of model trading performance on equity

Key takeaway

Transformer model was not able to outperform buy-
and-hold strategy  CAGR when using stoploss

Transformer model with stoploss mechanism produce 
lower risk-adjusted returns 

Transformer model has lower maximum drawdown 
than buy-and-hold strategy 
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Evaluation of model trading performance on equity

Key takeaway

Transformer model was not able to outperform buy-
and-hold strategy  CAGR when using stoploss

Transformer model with stoploss mechanism produce 
higher risk-adjusted returns for AAPL but are fairly 
lower for the other equities

Transformer model has lower maximum drawdown 
than buy-and-hold strategy 
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Discussion
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Key takeaway

Technical + Fundamental model is the only 
transformer model that is more profitable 

than buy-and-hold

Fundamental information introduce 
company specific intrinsic information that 

impacts the performance and investors’ 
speculation

All models have lower maximum drawdown 
compared to the buy-and-hold
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Discussion

Key takeaway

Technical + Fundamental model is the only 
transformer model that is more profitable 

than buy-and-hold

Fundamental information introduce 
company specific intrinsic information that 

impacts the performance and investors’ 
speculation

All models have lower maximum drawdown 
compared to the buy-and-hold
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Discussion

Key takeaway

Technical + Fundamental model is the only 
transformer model that is more profitable 

than buy-and-hold

Fundamental information introduce 
company specific intrinsic information that 

impacts the performance and investors’ 
speculation

All models have lower maximum drawdown 
compared to the buy-and-hold
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Evaluation of model trading performance on FX

Key takeaway

Transformer model outperformed buy-and-hold 
strategy  CAGR even without stoploss

Transformer model was able to produce higher risk-
adjusted returns across all currency pairs

Transformer model has lower maximum drawdown 
than buy-and-hold strategy across all currency pairs

4
5

.9
8

%

0
.9

1
%

1
5

.3
4

%

1
3

.0
5

%

1
3

.6
4

%

2
4

.5
7

%

3
3

.4
2

%

4
5

.9
8

%

5
.7

5
%

1
5

.5
9

%

1
4

.1
6

%

1
5

.1
3

%

1
6

.3
1

%

3
3

.4
2

%

-5
.4

6
%

-2
.6

6
%

-5
.5

9
%

-7
.7

2
%

3
.6

5
%

-0
.7

0
%

9
.2

4
%

A U D / U S D C N Y / U S D E U R / U S D G B P / U S D U S D / C A D U S D / C H F U S D / J P Y

CAGR

Without stoploss With stoploss Buy and Hold

1
2

8
.5

6
4

6
.2

7
7

5
5

.3
6

4

3
8

.5
7

3

5
8

.8
2

3

1
3

5
.4

7
4

1
9

9
.0

9
4

1
2

8
.5

6
4

7
0

.6
3

7

7
9

.1
5

8

6
0

.4
0

4 9
0

.2
7

3

9
2

.2
7

9

1
9

9
.0

9
4

-1
1

.8
3

3

-1
7

.8

-1
9

.5
5

5

-2
1

.6
3

7

1
4

.9
8

%

-2
.6

1
7

4
5

.9
3

%

A U D U S D C N Y U S D E U R U S D G B P U S D U S D C A D U S D C H F U S D J P Y

SHARPE RATIO

Without stoploss With stoploss Buy and Hold

-2
.5

4
%

-3
.7

8
%

-3
.4

2
%

-2
.9

5
%

-3
.7

2
%

-0
.6

0
%

-0
.6

3
%

-2
.5

4
% -0

.0
6

%

-0
.0

3
%

-0
.0

4
%

-0
.0

1
%

-0
.0

1
%

-0
.6

3
%

-1
7

.9
5

%

-1
2

.0
1

%

-1
7

.8
7

%

-2
2

.3
9

%

-4
.6

2
%

-1
0

.4
8

%

-1
4

.7
5

%

A U D U S D C N Y U S D E U R U S D G B P U S D U S D C A D U S D C H F U S D J P Y

MAXIMUM DRAWDOWN

Without stoploss With stoploss Buy and Hold



Introduction Methodology Evaluation Conclusion

FX: Technical model
Evaluation of model trading performance on FX



Introduction Methodology Evaluation Conclusion

Analysis of equities vs FX

59

Discussion
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Key question

Why Transformer model on FX performs better than buy-and-hold consistently compared to equities?  
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Discussion

Different trading hours

24 hours
Monday to Friday

FX

9 am to 4.30 pm
Monday to Friday

Buy on closing price

Unexpected loss on 
opening price

Example of unexpected loss

External company-specific factors

Equity’s prices are also subjected to idiosyncratic risk

Management Supply chain disruption

Lawsuit Change in regulations

Equity
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FX is characterized by stable prices

Price movements can induce arbitrage opportunities

FX is also less volatile than Equities. This can be seen 
from the:
• CAGR
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Discussion

FX is characterized by stable prices

Price movements can induce arbitrage opportunities

FX is also less volatile than Equities. This can be seen 
from the:
• CAGR
• Maximum drawdown
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Technical accomplishments
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Conclusion

Transformer model for trading

• Successfully developed a transformer model that can 
follow the return changes

• Formulated a trading strategy based on the model 
output 

Optimizing transformer model for trading

Technical FX model
19.4% in excess from 
buy-and-hold CAGR

Technical + Fundamental
Equity model

16.3% in excess from buy-
and-hold CAGR
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More data
More complex input projection layer
Perform learned durational feature 

extraction

Adding decoder module
Predict future values for 

multiple days86308 parameters for each encoder
But only,

4000 datapoints for each model
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𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
→ 𝑥 =

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑥 − 𝑥𝑚𝑖𝑛
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𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥

|max(𝑥)|
→ 𝑥 = 𝑥𝑠𝑐𝑎𝑙𝑒𝑑 × |max(𝑥)|
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𝑔𝑚𝑒𝑎𝑛0 = 1 + 𝑥0 × 1 + 𝑥−1 × 1 + 𝑥−2 × 1 + 𝑥−3 × 1 + 𝑥−4
1
5 − 1

𝑥0 =
൧ሾ𝑔

𝑚𝑒𝑎𝑛
+ 1

5

1 + 𝑥−1 × 1 + 𝑥−2 × 1 + 𝑥−3 × 1 + 𝑥−4
− 1
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𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑐ℎ𝑎𝑛𝑔𝑒0 =
𝑐𝑙𝑜𝑠𝑒0 − 𝑐𝑙𝑜𝑠𝑒−1

𝑐𝑙𝑜𝑠𝑒−1

𝑐𝑙𝑜𝑠𝑒0 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_𝑐ℎ𝑎𝑛𝑔𝑒0 × 𝑐𝑙𝑜𝑠𝑒−1 + 𝑐𝑙𝑜𝑠𝑒−1
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https://github.com/antonioxav/FYP_model

https://github.com/antonioxav/FYP_model
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Stock Name Evaluation Metrics Without stoploss With stoploss Buy and hold

AAPL

Win rate 65.38% 65.38% 52.99%
CAGR 33.67% 34.10% 47.94%

Sharpe Ratio 23.32 23.82 39.32
Max. Drawdown -18.28% -17.85% -31.43%
Trade turnover 5.69 days 5.69 days 1.46 days

AMZN

Win rate 50.49% 25.74% 54.88%
CAGR -13.26% 2.57% 50.35%

Sharpe Ratio -9.72 2.63 47.95
Max. Drawdown -23.81% -10.59% -22.75%
Trade turnover 5.673 days 5.673 days 1.44 days

MSFT

Win rate 50.00% 27.27% 58.58%
CAGR 12.18% 13.04% 51.57%

Sharpe Ratio 9.72 12.79 42.94
Max. Drawdown -16.47% -9.68% -28.24%
Trade turnover 5.22 days 5.22 days 1.44 days

SPY

Win rate 53.33% 25.18% 50.213
CAGR 4.26% 6.39% 0.223%

Sharpe Ratio 6.41 14.33 0.333
Max. Drawdown -8.31% -6.14% -25.361%
Trade turnover 4.837 days 4.837 days 1.46 days
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Stock Name Evaluation Metrics Without stoploss With stoploss Buy and hold

AAPL

Win rate 55.32% 34.75% 52.99%
CAGR 15.40% 75.69% 47.94%

Sharpe Ratio 11.15 116.18 39.32
Max. Drawdown -18.61% -0.18% -31.43%
Trade turnover 4.37 days 4.37 days 1.46 days

AMZN

Win rate 46.59% 23.30% 54.88%
CAGR -3.98% 57.16% 50.35%

Sharpe Ratio -3.25 98.56 47.95
Max. Drawdown -21.42% -0.19% -22.75%
Trade turnover 3.31 days 3.31 days 1.44 days

MSFT

Win rate 61.60% 37.60% 58.58%
CAGR 41.87% 65.94% 51.57%

Sharpe Ratio 38.75 91.13 42.94
Max. Drawdown -7.05% -0.099% -28.24%
Trade turnover 4.64 days 4.64 days 1.44 days
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Stock Name Evaluation Metrics Without stoploss With stoploss Buy and hold

AAPL

Win rate 50.70% 29.58% 52.99%
CAGR 10.05% 22.99% 47.94%

Sharpe Ratio 6.85 21.41 39.32
Max. Drawdown -19.72% -7.77% -31.43%
Trade turnover 5.69 days 5.69 days 1.46 days

AMZN

Win rate 52.89% 30.58% 54.88%
CAGR 8.04% 19.34% 50.35%

Sharpe Ratio 7.35 22.82 47.95
Max. Drawdown -17.69% -8.54% -22.75%
Trade turnover 5.673 days 5.673 days 1.44 days

MSFT

Win rate 51.20% 21.08% 58.58%
CAGR 14.81% 9.18% 51.57%

Sharpe Ratio 12.27 8.44 42.94
Max. Drawdown -21.34% -17.42% -28.24%
Trade turnover 3.86 days 3.86 days 1.44 days

SPY

Win rate 55.28% 23.60% 50.213
CAGR -0.06% 0.39% 0.22%

Sharpe Ratio -0.09 0.85 0.33
Max. Drawdown -18.22% -15.09% -25.36%
Trade turnover 4.08 days 4.08 days 1.46 days
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Stock Name Evaluation Metrics Without stoploss With stoploss Buy and hold

AAPL

Win rate 55.13% 30.77% 52.99%
CAGR 25.02% 25.15% 47.94%

Sharpe Ratio 17.92 22.06 39.32
Max. Drawdown -19.18% -11.29% -31.43%
Trade turnover 3.95 days 3.95 days 1.46 days

AMZN

Win rate 50.00% 23.00% 54.88%
CAGR 5.71% 16.46% 50.35%

Sharpe Ratio 4.54 21.48 47.95
Max. Drawdown -11.62% -3.94% -22.75%
Trade turnover 5.67 days 5.67 days 1.44 days

MSFT

Win rate 52.69% 33.33% 58.58%
CAGR 4.11% 11.59% 51.57%

Sharpe Ratio 3.29 12 42.94
Max. Drawdown -16.57% -9.63% -28.24%
Trade turnover 6.14 days 6.14 days 1.44 days
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Stock Name Evaluation Metrics Without stoploss With stoploss Buy and hold

AAPL

Win rate 56.21% 34.91% 52.99%
CAGR 22.66% 42.72% 47.94%

Sharpe Ratio 18.50 48.84 39.32
Max. Drawdown -17.58% -11.18% -31.43%
Trade turnover 3.81 days 3.81 days 1.46 days

AMZN

Win rate 50.00% 28.76% 54.88%
CAGR 0.54% 9.42% 50.35%

Sharpe Ratio 0.45 10.75 47.95
Max. Drawdown -21.93% -10.79% -22.75%
Trade turnover 4.10 days 4.10 days 1.44 days

MSFT

Win rate 55.37% 32.23% 58.58%
CAGR 15.46% 21.65% 51.57%

Sharpe Ratio 11.58 18.22 42.94
Max. Drawdown -13.46% -8.38% -28.24%
Trade turnover 4.88 days 4.88 days 1.44 days
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Currency pair name Evaluation metrics Without stoploss With stoploss Buy and hold

AUDUSD

Win rate 77.612% 77.612% 48.471%

CAGR 45.979% 45.979% -5.457%

Sharpe Ratio 128.564 128.564 -11.833

Max. Drawdown -2.537% -2.537% -17.952%

Trade turnover 4.291 4.291 1.398

CNYUSD

Win rate 53.896% 31.169% 50.487%

CAGR 0.913% 5.753% -2.658%

Sharpe Ratio 6.277 70.637 -17.800

Max. Drawdown -3.781% -0.055% -12.011%

Trade turnover 4.773 4.773 1.410

EURUSD

Win rate 70.161% 42.742% 47.942%

CAGR 15.341% 15.592% -5.590%

Sharpe Ratio 55.364 79.158 -19.555

Max. Drawdown -3.424% -0.030% -17.866%

Trade turnover 5.355 5.355 1.395

GBPUSD

Win rate 65.812% 32.479% 47.541%

CAGR 13.049% 14.161% -7.716%

Sharpe Ratio 38.573 60.404 -21.637

Max. Drawdown -2.952% -0.035% -22.394%

Trade turnover 5.701 5.701 1.395
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Currency pair name Evaluation metrics Without stoploss With stoploss Buy and hold

USDCAD

Win rate 64.748% 35.971% 50.405%

CAGR 13.640% 15.125% 3.654%

Sharpe Ratio 58.823 90.273 14.982%

Max. Drawdown -3.718% -0.011% -4.618%

Trade turnover 4.892 4.892 1.395

USDCHF

Win rate 85.714% 49.107% 51.822%

CAGR 24.565% 16.306% -0.704%

Sharpe Ratio 135.474 92.279 -2.617

Max. Drawdown -0.595% -0.008% -10.475%

Trade turnover 6.018 6.018 1.395

USDJPY

Win rate 85.106% 85.106% 54.627%

CAGR 33.420% 33.420% 9.238%

Sharpe Ratio 199.094 199.094 45.929%

Max. Drawdown -0.631 % -0.631% -14.749%

Trade turnover 4.888 4.888 1.398
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