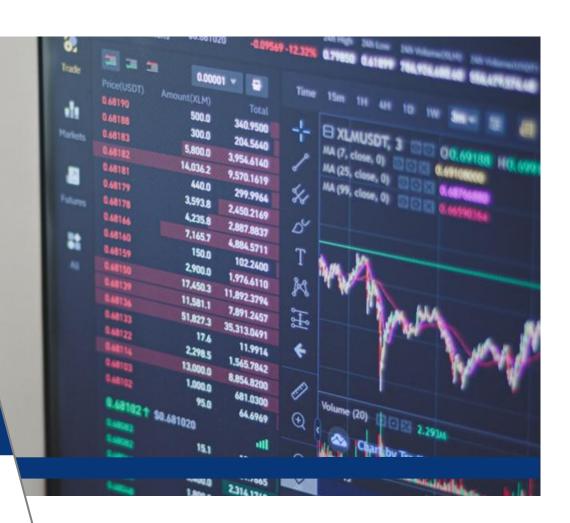
Optimizing the Transformer Model Architecture for trading in Equity and FX

- FYP Group RO4 (SAXENA Srijan, GOEL Kalpa, DYCHENGBENG, Matthew, CHRISTANTO, Nicholas)



Presentation Agenda

Motivation Lit. Review Objectives

Equity Models
FX Models
Discussion



Technical Accomplishments

Why Machine Learning in Finance?

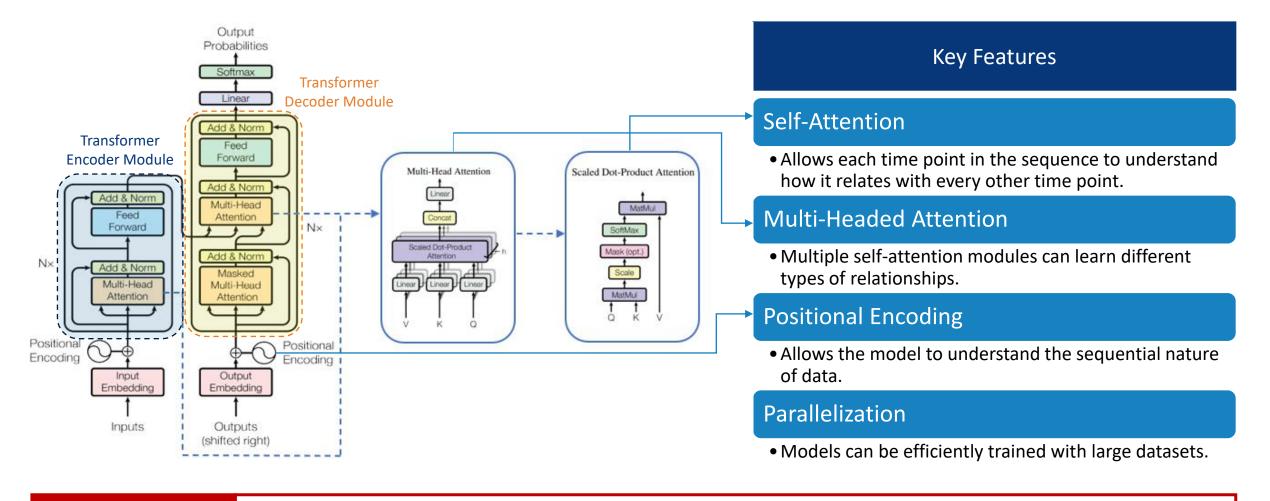
Industry Drivers

80% of institutional investors making significant investment

27% of institutional investors utilize AI/ML in trade execution

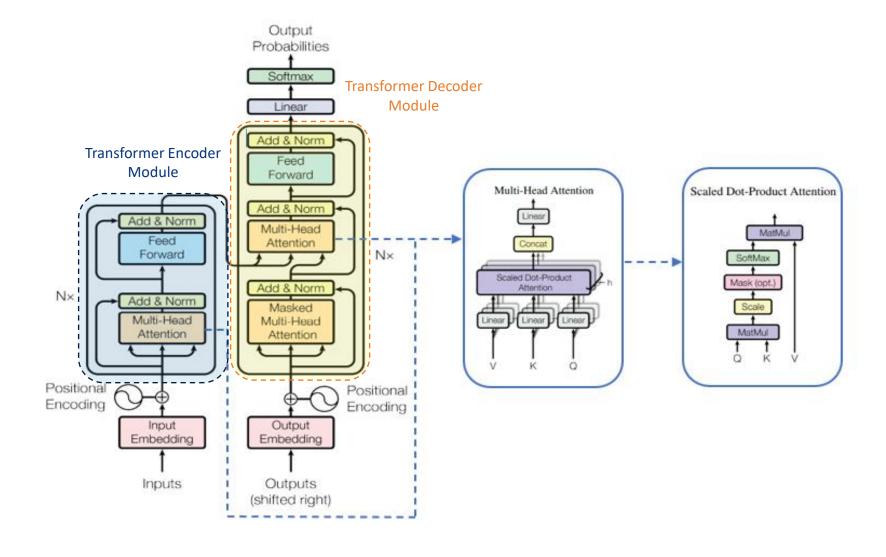
80% of institutional investors utilize AI/ML in risk management

Source: Refinity



Key Takeaway

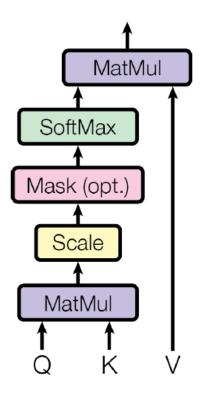
Transformer Models are very effective at pattern recognition within a sequential context



Introduction Methodology Evaluation Conclusion

6

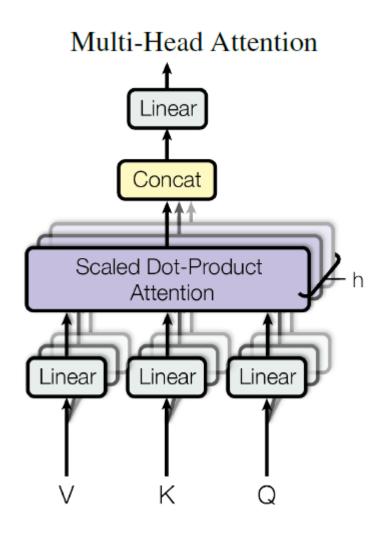
Scaled Dot-Product Attention



Key Features

Self-Attention

• Allows each time point in the sequence to understand how it relates with every other time point.



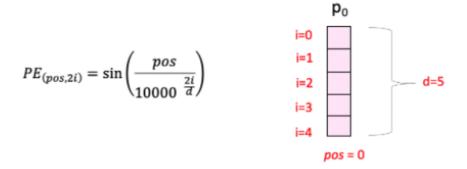
Key Features

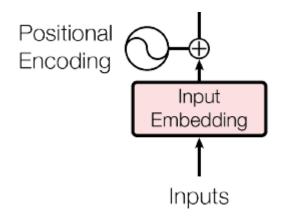
Self-Attention

• Allows each time point in the sequence to understand how it relates with every other time point.

Multi-Headed Attention

• Multiple self-attention modules can learn different types of relationships.





Key Features

Self-Attention

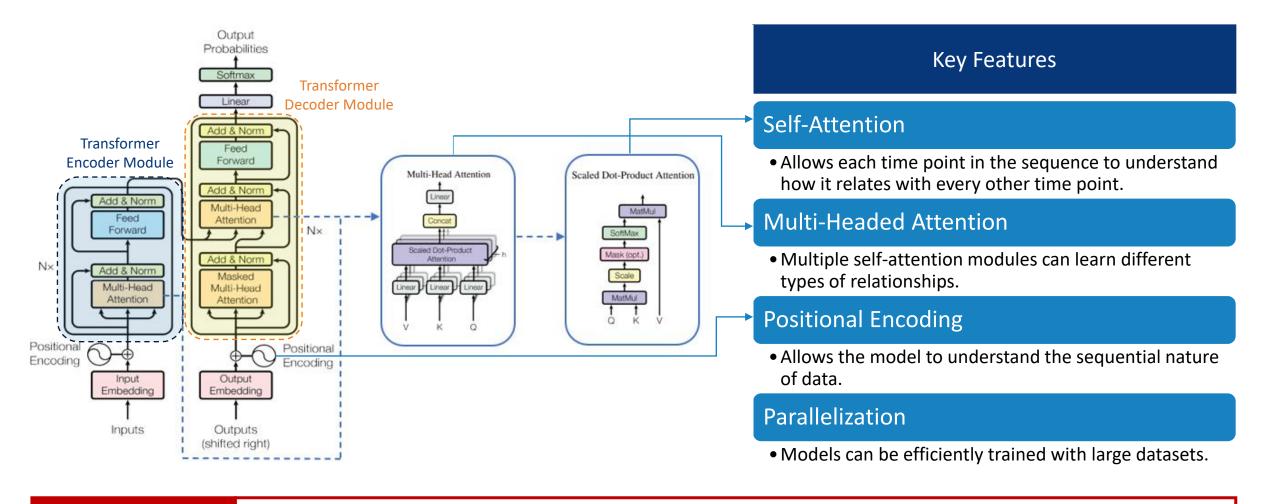
• Allows each time point in the sequence to understand how it relates with every other time point.

Multi-Headed Attention

 Multiple self-attention modules can learn different types of relationships.

Positional Encoding

• Allows the model to understand the sequential nature of data.



Key Takeaway

Transformer Models are very effective at pattern recognition within a sequential context

Literature Review – The Success of the Transformer Model Architecture

Natural Language Processing (Machine Translation)

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

M-J-1	BL	EU	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR	
ByteNet [18]	23.75				
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$	
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$	
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$	
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$	
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$	
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$	
ConvS2S Ensemble 9	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$	
Transformer (base model)	27.3	38.1		10^{18}	
Transformer (big)	28.4	41.8	2.3 ·	10^{19}	

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I. Polosukhin, "Attention Is All You Need," arXiv, 2017.

Video Processing (Panoptic Segmentation)

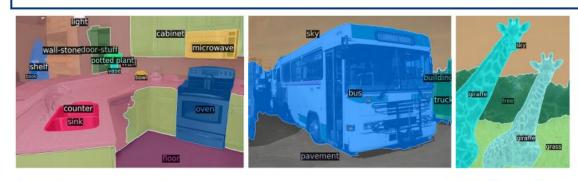


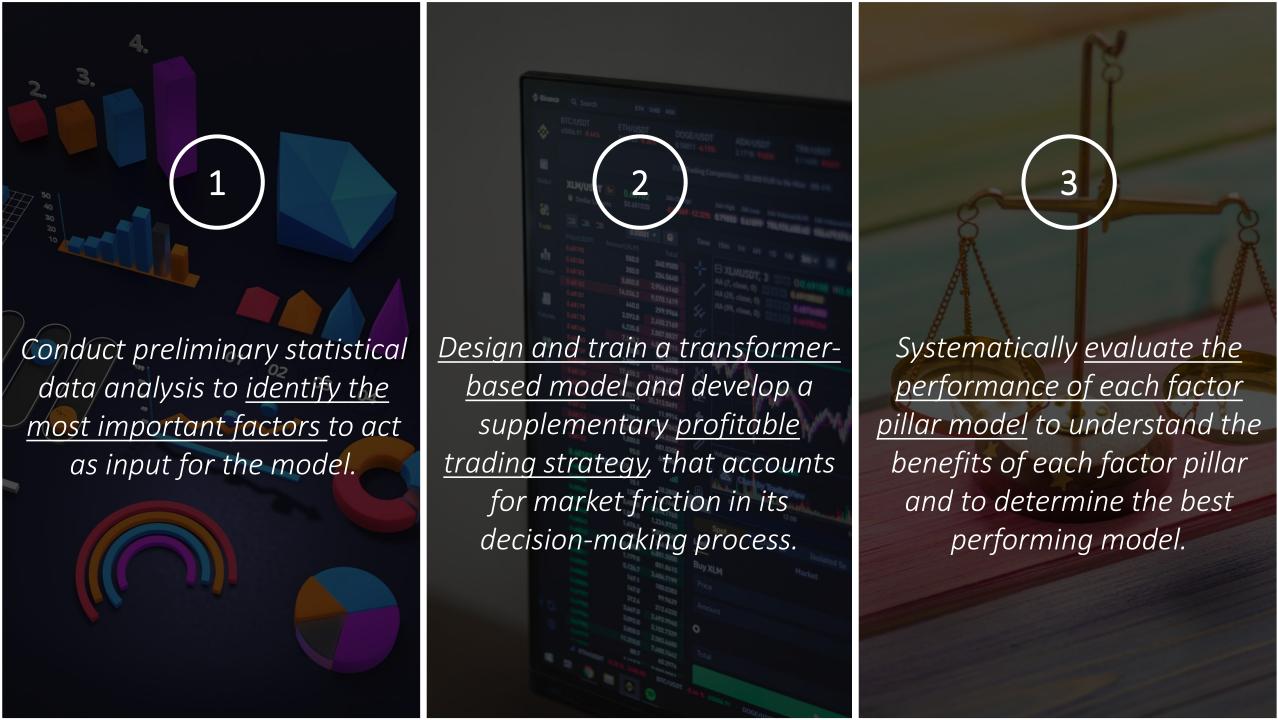
Fig. 9: Qualitative results for panoptic segmentation generated by DETR-R101. DETR produces aligned mask predictions in a unified manner for things and stuff.

Model	Backbone	PQ	SQ	RQ	$ PQ^{th} $	$\mathrm{SQ}^{\mathrm{th}}$	RQ^{th}	$ PQ^{st} $	SQ^{st}	RQ^{st}	AP
PanopticFPN++	R50	42.4	79.3	51.6	49.2	82.4	58.8	32.3	74.8	40.6	37.7
UPSnet	R50	42.5	78.0	52.5	48.6	79.4	59.6	33.4	75.9	41.7	34.3
UPSnet-M	R50	43.0	79.1	52.8	48.9	79.7	59.7	34.1	78.2	42.3	34.3
PanopticFPN++	R101	44.1	79.5	53.3	51.0	83.2	60.6	33.6	74.0	42.1	39.7
DETR	R50	43.4	79.3	53.8	48.2	79.8	59.5	36.3	78.5	45.3	31.1
DETR-DC5	R50	44.6	79.8	55.0	49.4	80.5	60.6	37.3	78.7	46.5	31.9
DETR-R101	R101	45.1	79.9	55.5	50.5	80.9	61.7	37.0	78.5	46.0	33.0

N. Carion, F. Massa "End-to-End Object Detection with Transformers," arXiv, 2020.

Key Takeaway

Transformer Models have surpassed the state-of-the-art in various time-series domains



Introduction

Motivation Lit. Review Objectives

3 Evaluation

Equity Models
FX Models
Discussion

4 Conclusion

Technical Accomplishments

Design – Scope of Securities

Equity Market

S&P Dow Jones Indices

A Division of S&PGlobal

S&P500 (SPY)

Amazon.com, Inc. (AMZN)

Foreign Exchange (FX) Market

EUR/USD

USD/CAD

AUD/USD

USD/CHF

GBP/USD

USD/JPY

CNY/USD

14

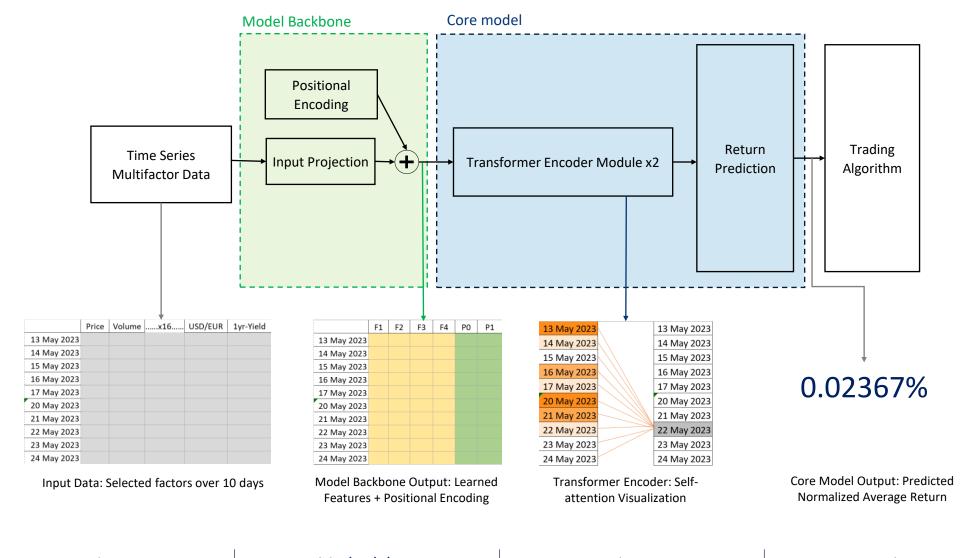
Design – Multifactor Approach

	Factor Pillars	Т	Technical Factors Model	Ε	F
Technical Factors	Price & Trading Data	T+F	Technical + Fundamental Factors Model	E *	
Fundamental Factors	Numbers from Accounting Statements	T+M	Technical + Macroeconomic Factors Model	Ε	
Macro- economic Factors	External Factors that describe prevailing macroeconomic conditions	T+V	Technical + Value Factors Model	E *	
Value Factors	Metrics that describe how under/overvalued the security is.	T+F+ M+V	All Factors Model	E *	I
			E – For A E* - For All Equity Sec	II Equity Securities exc	

Introduction Methodology Evaluation Conclusion 15

F – For All FX Securities

Design – High Level System Architecture



Introduction Methodology Evaluation Conclusion

16

Design – Evaluation Criteria

Definition Why? Desired Value Metric Instead of using overall return, using **Cumulative** calculates the annually **GREATER** CAGR is more objective since the compounded **Annual Growth** than CAGR of Buy & Hold timeframe is standardized into annual equivalent rate of Strategy Rate (CAGR) growth. return over a period. It measures risk-adjusted returns and calculated by dividing **GREATER** shows that the trading strategy can the average returns **Sharpe Ratio** than Sharpe Ratio of Buy & produce higher returns while taking over the standard **Hold Strategy** on less risk. deviation of returns. High maximum drawdown despite measures the maximum **LESSER** Maximum decline (in %) of the high returns indicate that the trading than Maximum Drawdown Drawdown trading balance from its strategy is inconsistent. of Buy & Hold Strategy peak to its trough.

Data Sourcing

1

2

3

Bloomberg

- Technical Data
- Fundamental Data
- Macroeconomic Data

Fundamental Data

- Macroeconomic Data
- Value Data

Security	Start Date	End Date	Number of Trading Day Data Points
AAPL	02-Jan-04	21-Sep-21	4410
AMZN	02-Jan-04	29-Sep-20	4163
MSFT	02-Jan-04	29-Sep-20	4163
SPY	02-Jan-04	17-Feb-23	4766
All FX	17-Sep-03	17-Feb-23	4998

To make accurate comparisons between securities, we standardized the time period for all factors

Due to **limited Fundamental Data**, the dataset within Equities was limited to September 2020

18

Factor Selection

Factors Used Why? **Daily data Opening Price Closing Price** Standard technical Indicators **Technical Highest Price Lowest Price** Daily Trading Volume **Ratios** First three indicate underlying valuation relative to Price to Earnings ratio the firms' earnings and revenue Price to Sales ratio EV to EBITDA ratio Value Put Call Ratio summarizes the stock options trading flow and highlights investor sentiment on value **Put Call ratio**

Factor Selection

Factors Used

Treasury bills/bonds

- 13-week treasury bill
- 10-year treasury bond
- 30-year treasury bond

Crude oil

Macroeconomic

Gold

Currency pairs

- CAD to USD exchange rate
- JPY to USD exchange rate
- EUR to USD exchange rate
- CNY to USD exchange rate

Why?

Treasury bills/bonds represent the overall interest rate conditions

Crude Oil prices reflect all major industries and consumption across US industries

Gold portray broader macroeconomic and business conditions influencing stock price movements.

Currency pairs represent the largest trading partners of the US

Stage 1: Identifying Key Fundamental Factors

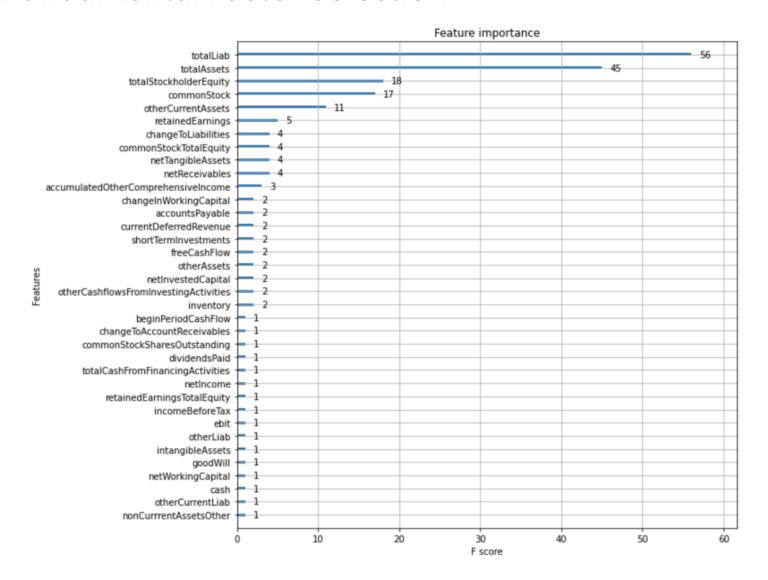
Stage 2: Evaluate Profitability the Factors

XGBoost Regressor + Extratree Regressor

- XGBoost Regressor returned 5 key fundamental factors based on feature importance
- Extratree Regressor returned 16 key fundamental factors based on feature importance
- 3. Selected the **16 key features for evaluation**

Mock Factor Portfolio

- 1. For each key feature, we rank 100+ securities based on the security's respective value
- We create a portfolio for each key feature that longs the top 5 securities and shorts the bottom 5 securities per quarter
- We calculate the profit for each feature and rank the 16 stocks
- **4. Top 5 stocks** from this ranking are the key fundamental features used for the pillar



Key Features:

- Total Liabilities
- Total Assets
- Total Stockholder Equity
- Common Stock
- Other Current Assets

Mock Factor Portfolio

- 1. For each key feature, we rank 100+ securities based on the security's respective value
- 2. We create a portfolio for each key feature that longs the top 5 securities and shorts the bottom 5 securities per quarter
- 3. We calculate the profit for each feature and rank the 16 stocks
- 4. Top 5 stocks from this ranking are the key fundamental features used for the pillar

Fundamental Data

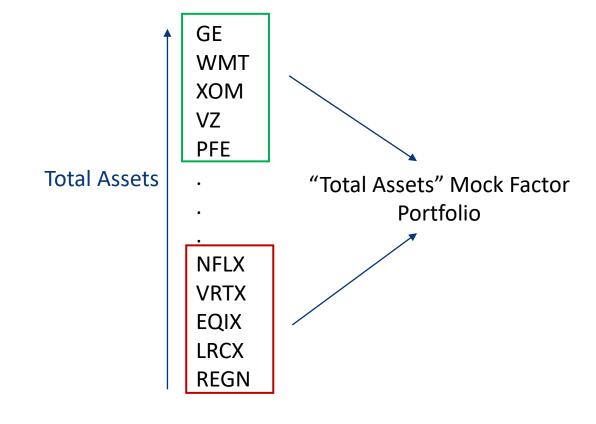
Extract Features per Security

23

Mock Factor Portfolio

- 1. For each key feature, we rank 100+ securities based on the security's respective value
- 2. We create a portfolio for each key feature that longs the top 5 securities and shorts the bottom 5 securities per quarter
- 3. We calculate the profit for each feature and rank the 16 stocks
- 4. Top 5 stocks from this ranking are the key fundamental features used for the pillar

Retrieve Best and Worst 5 Securities



Mock Factor Portfolio

- 1. For each key feature, we rank 100+ securities based on the security's respective value
- 2. We create a portfolio for each key feature that longs the top 5 securities and shorts the bottom 5 securities per quarter
- 3. We calculate the profit for each feature and rank the 16 stocks
- 4. Top 5 stocks from this ranking are the key fundamental features used for the pillar

Retrieve Best and Worst 5 Securities

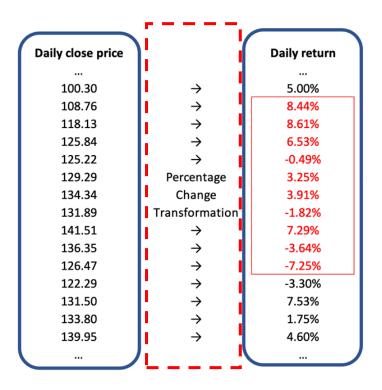
	time	long	short
0	2004-01	[GE, WMT, XOM, VZ, PFE]	[NFLX, VRTX, EQIX, LRCX, REGN]
1	2004-04	[GE, XOM, VZ, WMT, CVX]	[NFLX, LRCX, REGN, EQIX, VRTX]
2	2004-07	[GE, XOM, VZ, CVX, MSFT]	[EQIX, CRM, REGN, VRTX, DHR]
3	2004-10	[CVX, XOM, GE, VZ, JPM]	[LRCX, EQIX, CRM, VRTX, REGN]
4	2005-01	[GE, XOM, VZ, WMT, CVX]	[BLK, EQIX, REGN, CRM, VRTX]
62	2019-07	[T, MSFT, VZ, XOM, WMT]	[AMD, INTU, NOW, REGN, MMC]
63	2019-10	[T, AAPL, VZ, WMT, XOM]	[SLB, REGN, AXP, BSX, FISV]
64	2020-01	[T, AAPL, CVX, AMZN, MSFT]	[REGN, NOW, VRTX, JPM, C]
65	2020-04	[T, VZ, WMT, MSFT, AAPL]	[AMD, NOW, SLB, DHR, USB]
66	2020-07	[T, WMT, AMZN, MSFT, VZ]	[EL, NOW, NVDA, EOG, MS]

Rank	Feature	
1	Total Non-Current Assets	
2	Total Liabilities	
3	Net Debt	
4	Total Assets	
5	Intangible Assets	
6	Other Non Cash Items	
7	Dividends Paid	
8	Other Cashflows From Investing Activities	
9	Gross Profit	
10	Total Stockholder Equity	
11	Net Working Capital	
12	Common Stock	
13	EBITDA	

Key Features:

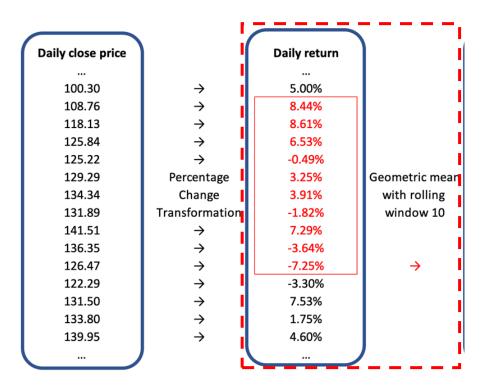
- Total Assets
- Total Liabilities
- Net Debt
- Intangible Assets
- Total non-current Assets.

26



Stationarity

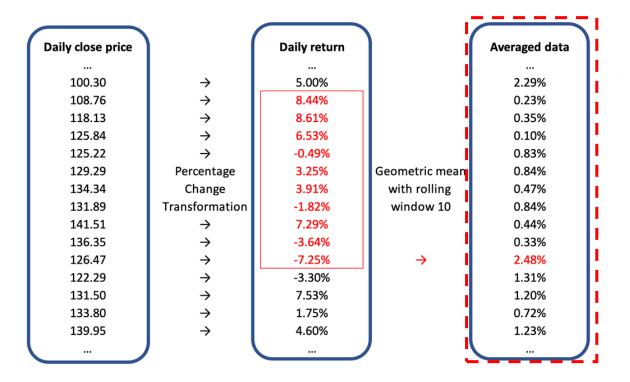
- The condition where the statistical properties of the data remain unchanged over time
- Use percentage change which removes trends and frame the data into rate of change



Transformation

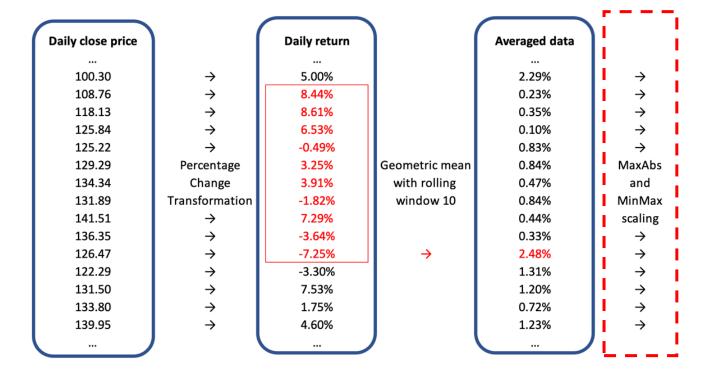
- Rolling geometric mean transformation was used to smooth data and reduce noise
- Rolling mean window is set to 10 to cover an average of two weeks in our daily data.

28



Outlier Selection

Remove data points where the factor values were higher than 10 times the Inter Quartile Range of that factor



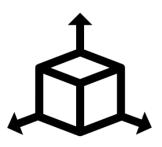
Normalization

- Performed max absolute scaling for features that includes negative values
- Takes the values in each factor and divides it with the maximum absolute value of that feature

Normalization

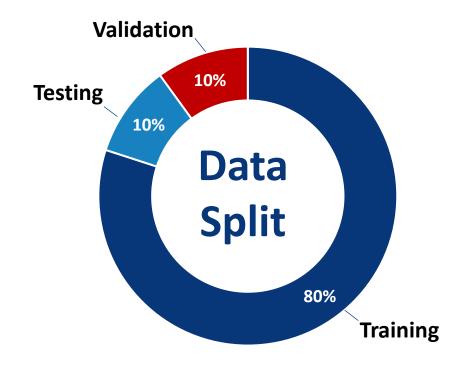
- Performed min-max scaling for that only include positive values
- Takes the minimum and maximum values of the feature and scale the data into the range from 0.0 to 1.0

Principal Component Analysis

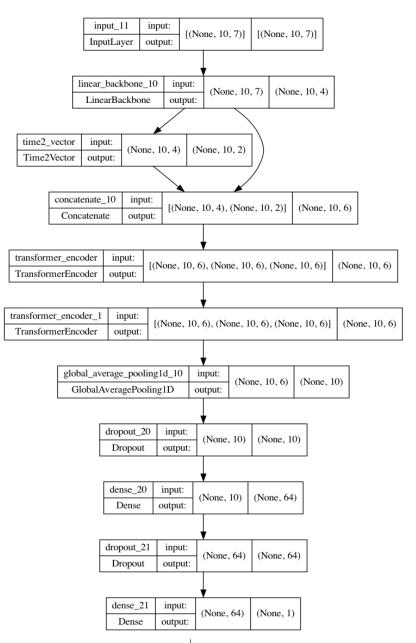


- A dimensionality reduction method that is often used to reduce the dimensionality of large data sets
- Chose the components that cumulatively explained greater than 99% of covariance between the factors

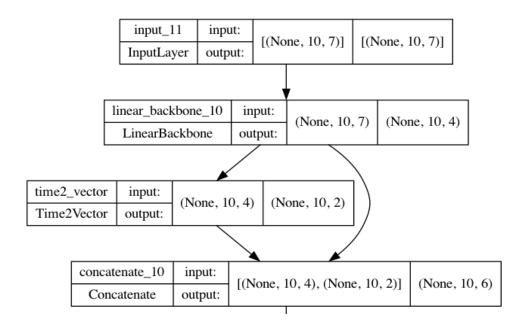
Dataset Split



Model Design and Training



Model Design and Training

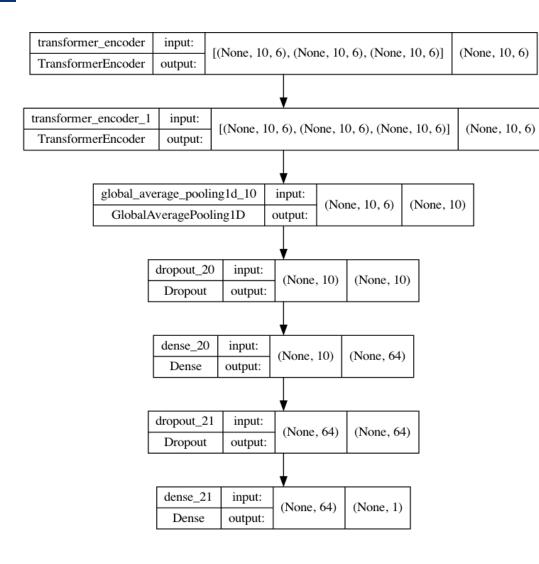


Time2Vec Layer for positional encoding

- Designed to use 10 days of continuous daily data to predict the following day's closing returns
- Utilizes a feedforward layer as the input projection layer
- Use Time2Vec to apply positional encoding on the predicted data

34

Model Design and Training



Introduction

Transformer Encoders

- Data is passed through two consecutive transformer encoder modules
- Data is then followed by global average pooling to turn the data into one dimension
- Two dropout-enabled feedforward layers are used to output a single value

35

Methodology Evaluation Conclusion

Trading strategy

How to generate buy or sell instructions?

Based on target variable: Close Price

36

Pre-processing of Close Price:

i) Daily raw close price

ii) % change in close price (x_i)

iii) Processed labels $(Close_i)$ for Close Price [sample calculation]:

For time t₄

$$Close_4 = [(1 + x_0) \times (1 + x_1) \times (1 + x_2) \times (1 + x_3) \times (1 + x_4)]^{\frac{1}{5}} - 1$$

For time t₅

$$Close_5 = [(1 + x_1) \times (1 + x_2) \times (1 + x_3) \times (1 + x_4) \times (1 + x_5)]^{\frac{1}{5}} - 1$$

Notes on actual implementation:

- 1) 10 day rolling window utilized for geometric mean
- 2) Max absolute normalization after label generation $(Close_i)$ does not impact buy/sell instruction logic

Trading strategy

Processed data labels for two consecutive days

For time t₄

$$Close_4 = [(1+x_0)*(1+x_1)*(1+x_2)*(1+x_3)*(1+x_4)]^{\frac{1}{5}} - 1$$

For time t₅

$$Close_5 = [(1+x_1)*(1+x_2)*(1+x_3)*(1+x_4)*(1+x_5)]^{\frac{1}{5}} - 1$$

What is the difference?

$$(1 + x_0)$$
 vs $(1 + x_5)$

How does the difference help generate trading signals?

Buy Signal

$$Close_5 > Close_4 \rightarrow x_5 > x_0$$

What if $x_5 \& x_0$ are negative?

 \rightarrow Narrowed down buy condition: $Close_5 > Close_4$ and $x_0 > 0 \rightarrow x_5 > 0$

Sell Signal

37

$$Close_5 < Close_4 \rightarrow x_5 < x_0$$

What if $x_5 \& x_0$ are positive?

 \rightarrow Narrowed down sell condition: $Close_5 < Close_4$ and $x_0 < 0 \rightarrow x_5 < 0$

Back-testing

Stop Loss Implementation

i) Tested stop-loss levels on validation set: 0.0001% to 10% at every 10x multiple

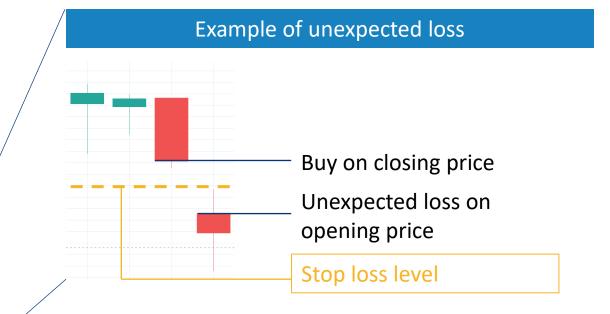
ii) Utilized the optimal on testing data set

iii) Stop-loss trigger mechanism:

→ Measured as % change in daily close price

iv) Limitation on daily frequency data:

→ If %Δ(Open_t - Close_{t-1}) > %Δ(Close_t - Close_{t-1})→ Loss set at Δ(Open_t - Close_{t-1})



Back-testing

Stop Loss Implementation

i) Tested stop-loss levels on validation set: 0.0001% to 10% at every 10x multiple

ii) Utilized the optimal on testing data set

- iii) Stop-loss trigger mechanism:
- → Measured as % change in daily close price
 - iv) Limitation on daily frequency data:
- → If %Δ(Open_t Close_{t-1}) > %Δ(Close_t Close_{t-1})→ Loss set at Δ(Open_t - Close_{t-1})

Trading Simulation

i) Set 10,000 USD initial trading balance

ii) Used Interactive Brokers' rates for commission simulation as one of Hong Kong's largest retail brokers

iii) Rates breakdown:

→ Equities: 0.05 USD/share (min. 1 USD – max. 1% notional)

39

→ FX: 0.2 bps or 0.02% of notional trade

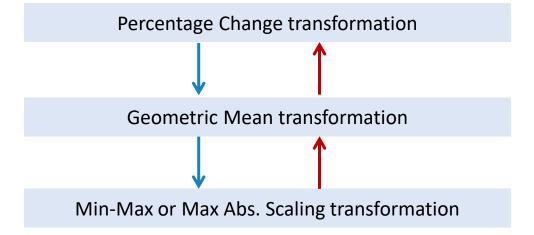
Data and Pre-processing Testing

Data Testing

Cross referencing collected data across multiple sources.

Pre-processing Testing

Inversion of processed data to retrieve pre-processed data in the inverted 3 step process.



Model Testing

To evaluate the learning ability of the transformer model:

Self generated data set 1:

$$\begin{aligned} C_t &= \ 1.001 \times C_{t-1} - \ 1.0009 \times C_{t-2} + \ 1.0008 \times C_{t-3} - \ 1.0007 \times C_{t-4} \\ &+ \ 1.0006 \times C_{t-5} - \ 1.0005 \times C_{t-6} + 1.0004 \times C_{t-7} - 1.0003 \times C_{t-8} \\ &+ 1.0002 \times C_{t-9} - 1.0001 \times C_{t-10} \end{aligned}$$

- i) C_t stands for closing price on day t
- ii) Simulates the relational trend of a stock price with historical context
 - iii) Choice of co-efficient and linear function was arbitrary

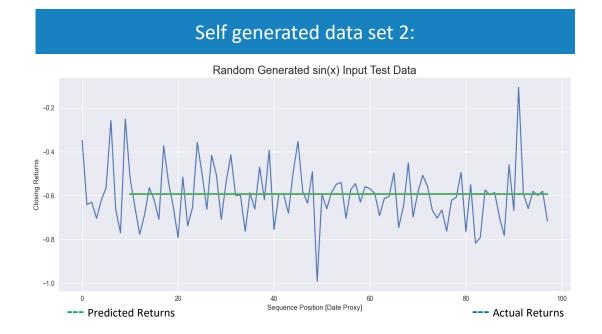
Self generated data set 2:

 $C_t = \sin(x)$, where x is a random generated positive integer

- i) C_t stands for closing price on day t
- ii) Devoid of any relational trends and historical context
 - iii) Creates a random path for closing price

41

To evaluate the learning ability of the transformer model:



Key Takeaway:

- 1) Transformer is able to learn trends and underlying patterns from a sequential and relational data set.
- 2) Transformer does not learn under randomness without relational/sequential trends.

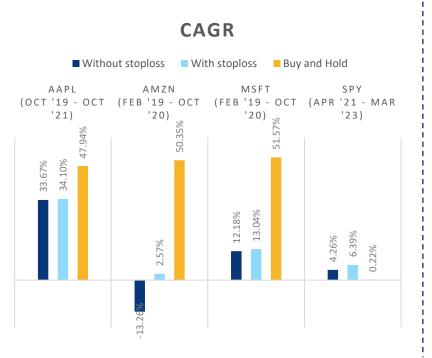
Motivation Lit. Review Objectives

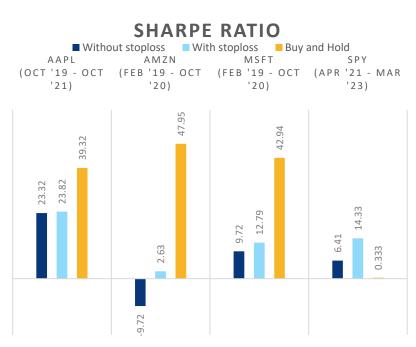
Design Implementation Testing

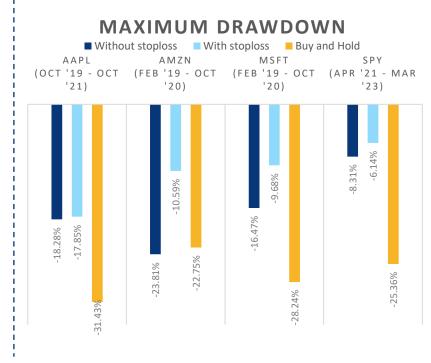
Equity Models
FX Models
Discussion

Technical Accomplishments

Equity: Technical model







Key takeaway

Transformer Model is **profitable but not better** than buy-and-hold strategy

Transformer model has lower risk-adjusted returns

Transformer model was able to **reduce maximum drawdown** by taking less trades, especially losing trades

Equity: Technical model

Introduction

AAPL trading balance

MSFT trading balance

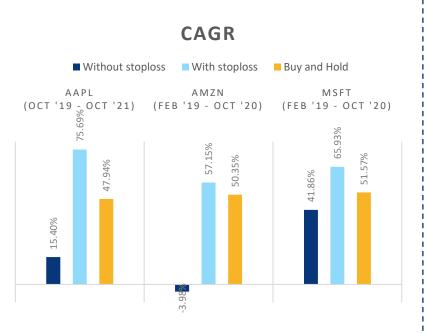
Methodology

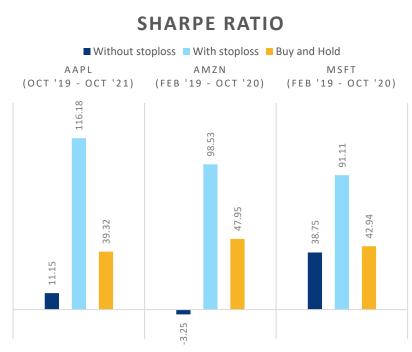
AMZN trading balance

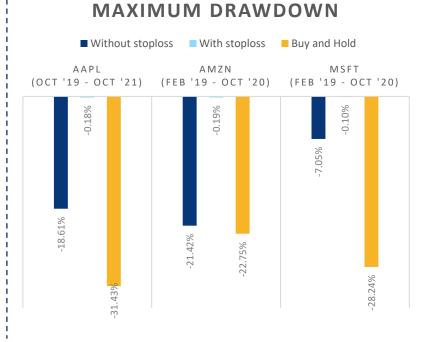
SPY trading balance

Evaluation Conclusion 45

Equity: Technical + Fundamental model







Key takeaway

Transformer model was **able to outperform** buy-and-hold strategy CAGR when using stoploss

Transformer model with stoploss mechanism produce higher risk-adjusted returns

Transformer model has **lower maximum drawdown** than buy-and-hold strategy

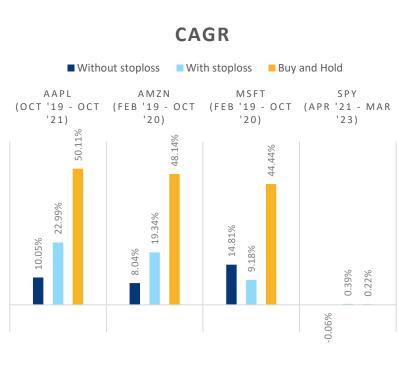
Equity: Technical + Fundamental model

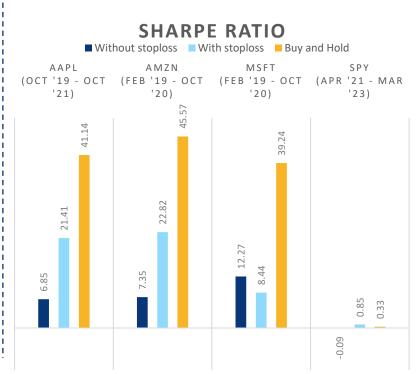
AAPL trading balance

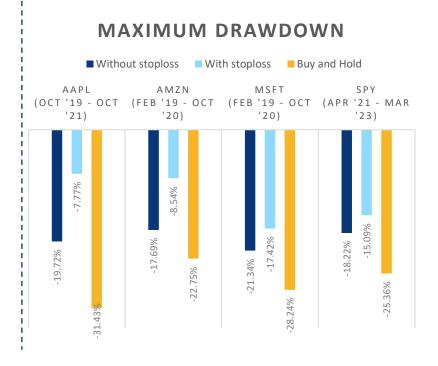
AMZN trading balance

MSFT trading balance

Equity: Technical + Macroeconomic model







Key takeaway

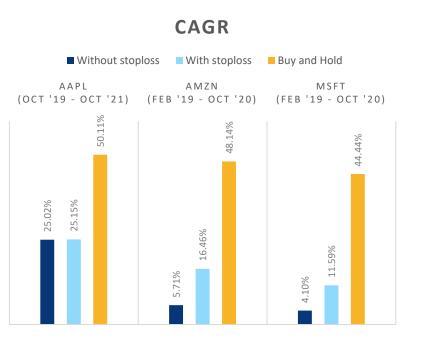
Transformer model was **not** able to outperform buyand-hold strategy CAGR when using stoploss

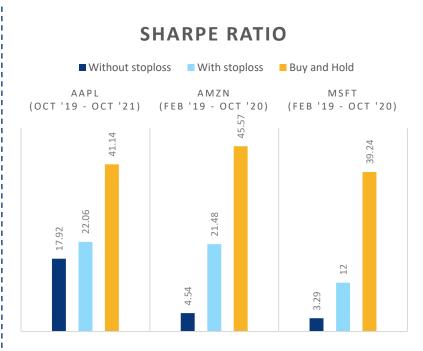
Transformer model with stoploss mechanism produce lower risk-adjusted returns

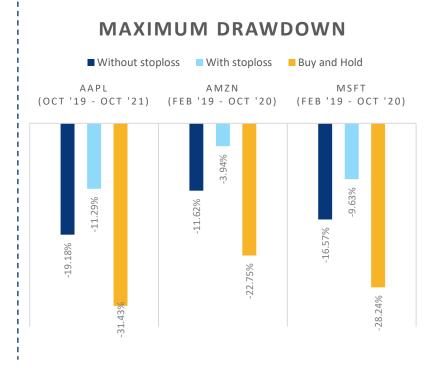
Transformer model has **lower maximum drawdown** than buy-and-hold strategy

Equity: Technical + Macroeconomic model

Equity: Technical + Value model







Key takeaway

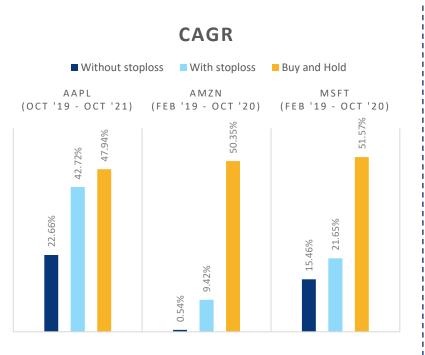
Transformer model was **not** able to outperform buyand-hold strategy CAGR when using stoploss

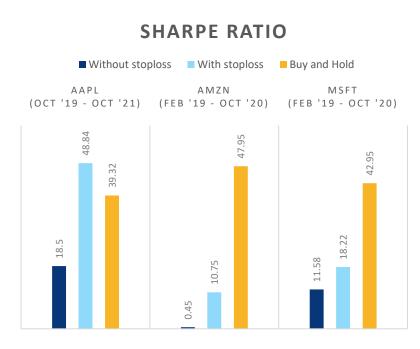
Transformer model with stoploss mechanism produce **lower** risk-adjusted returns

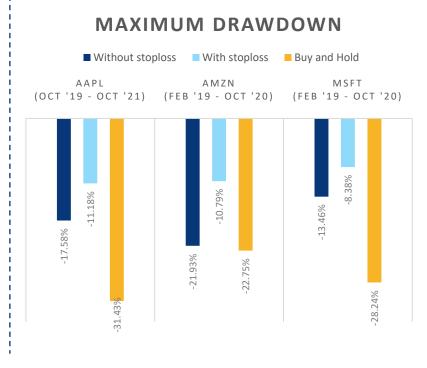
Transformer model has **lower maximum drawdown** than buy-and-hold strategy

Equity: Technical + Value model

Equity: Technical + Fundamental + Macroeconomic + Value model







Key takeaway

Transformer model was **not** able to outperform buyand-hold strategy CAGR when using stoploss

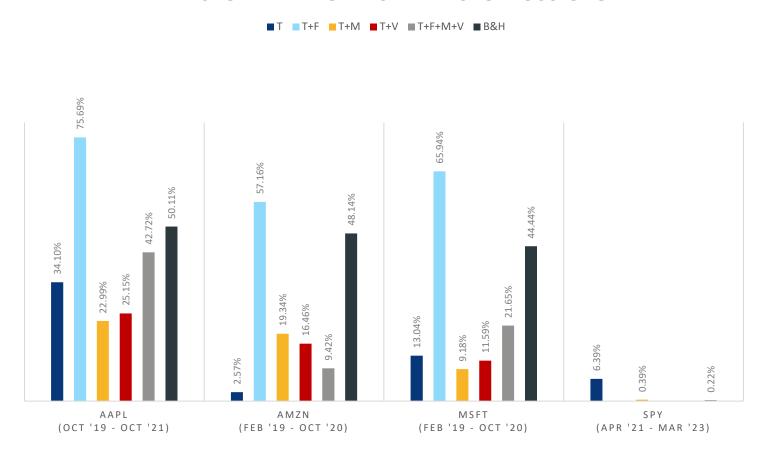
Transformer model with stoploss mechanism produce **higher** risk-adjusted returns for AAPL but are fairly lower for the other equities

Transformer model has **lower maximum drawdown** than buy-and-hold strategy

Equity: Technical + Fundamental + Macroeconomic + Value model

Comparison Between Equity Model Performances

TRANSFORMER MODELS WITH STOPLOSS CAGR



Key takeaway

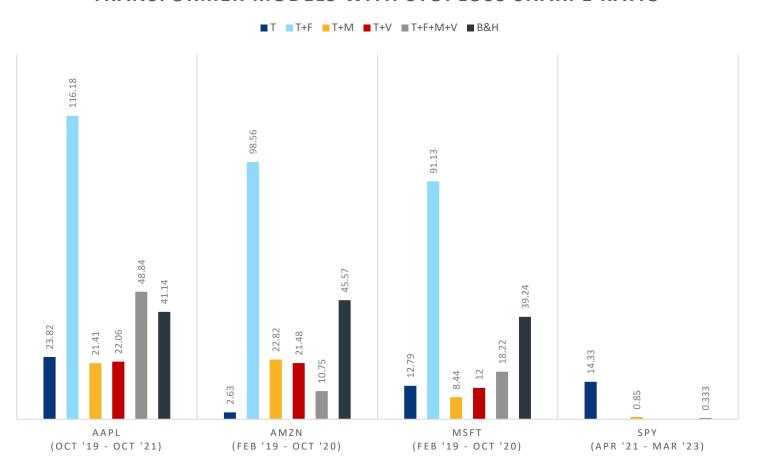
Technical + Fundamental model is the only transformer model that is more profitable than buy-and-hold

Fundamental information introduce company specific intrinsic information that impacts the performance and investors' speculation

All models have lower maximum drawdown compared to the buy-and-hold

Comparison Between Equity Model Performances

TRANSFORMER MODELS WITH STOPLOSS SHARPE RATIO



Key takeaway

Technical + Fundamental model is the only transformer model that is more profitable than buy-and-hold

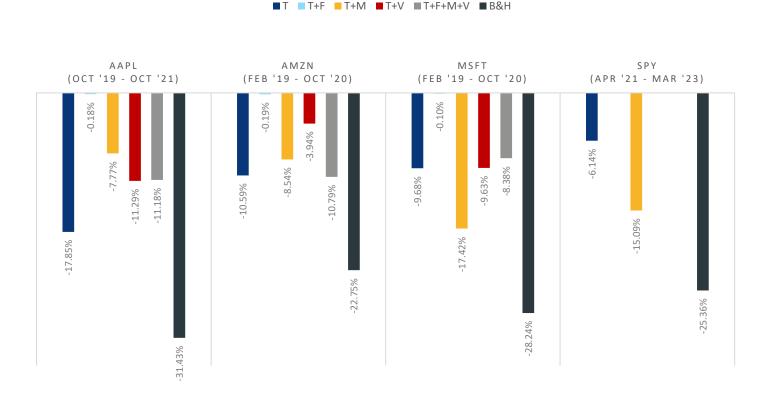
Fundamental information introduce company specific intrinsic information that impacts the performance and investors' speculation

All models have lower maximum drawdown compared to the buy-and-hold

55

Comparison Between Equity Model Performances

TRANSFORMER MODELS WITH STOPLOSS MAXIMUM DRAWDOWN



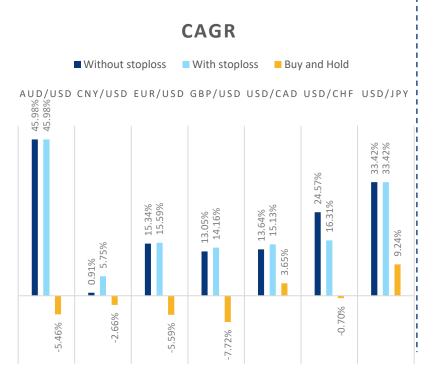
Key takeaway

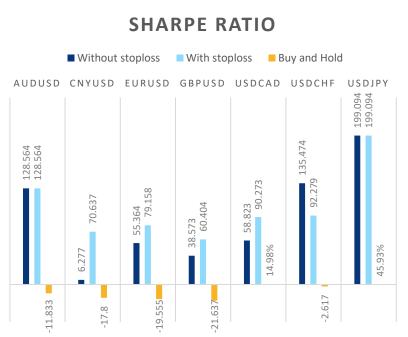
Technical + Fundamental model is the only transformer model that is more profitable than buy-and-hold

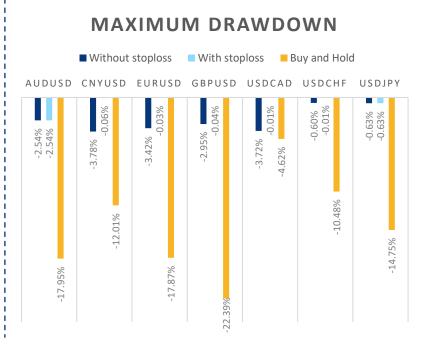
Fundamental information introduce company specific intrinsic information that impacts the performance and investors' speculation

All models have lower maximum drawdown compared to the buy-and-hold

FX: Technical model







Key takeaway

Transformer model **outperformed** buy-and-hold strategy CAGR **even without stoploss**

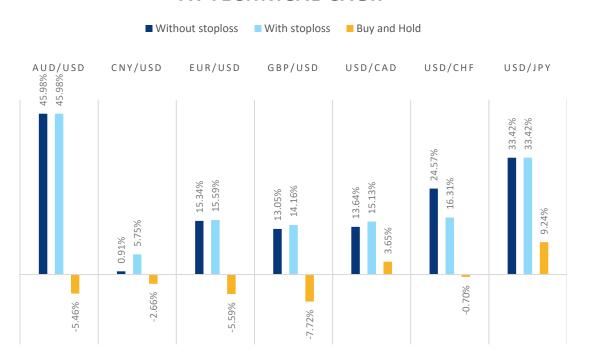
Transformer model was able to **produce higher risk-adjusted returns** across all currency pairs

Transformer model has **lower maximum drawdown** than buy-and-hold strategy across all currency pairs

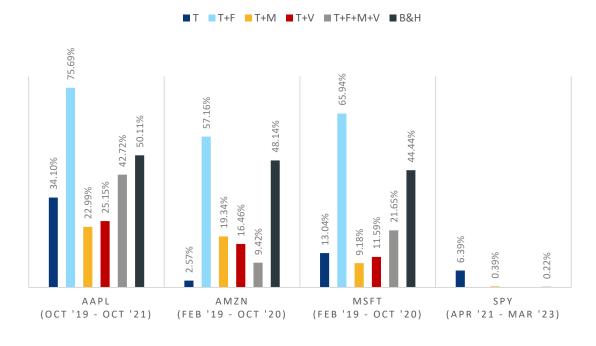
FX: Technical model

Analysis of equities vs FX

FX TECHNICAL CAGR



EQUITY WITH STOPLOSS CAGR



Key question

Why Transformer model on FX performs better than buy-and-hold consistently compared to equities?

Why Transformer model on FX performs better than buy-and-hold consistently compared to equities?

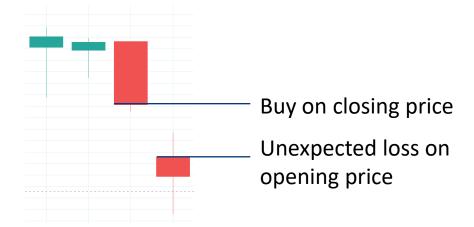
Different trading hours

FX Equity

24 hours 9 am to 4.30 pm

Monday to Friday Monday to Friday

Example of unexpected loss



External company-specific factors

Equity's prices are also subjected to idiosyncratic risk

Management

Supply chain disruption

Lawsuit

Change in regulations

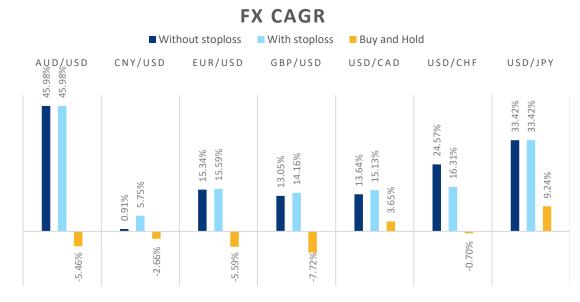
Why Transformer model on FX performs better than buy-and-hold consistently compared to equities?

FX is characterized by stable prices

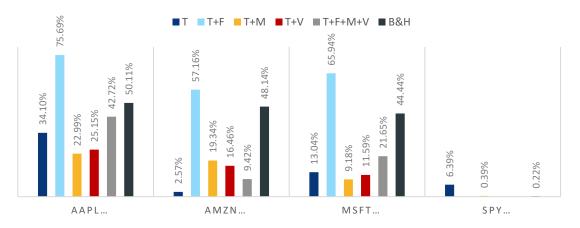
Price movements can induce arbitrage opportunities

FX is also less volatile than Equities. This can be seen from the:

CAGR



EQUITY CAGR



Why Transformer model on FX performs better than buy-and-hold consistently compared to equities?

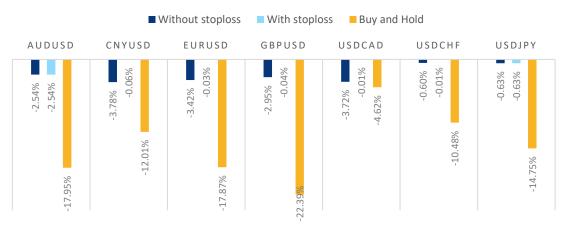
FX is characterized by stable prices

Price movements can induce arbitrage opportunities

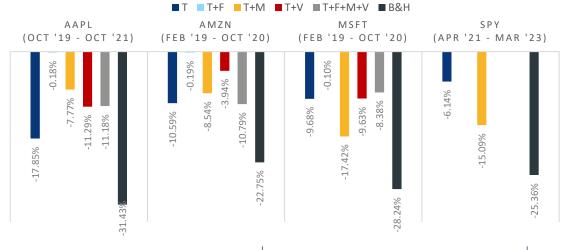
FX is also less volatile than Equities. This can be seen from the:

- CAGR
- Maximum drawdown

FX MAXIMUM DRAWDOWN



EQUITY MAXIMUM DRAWDOWN



2 Methodology 3 Evaluation

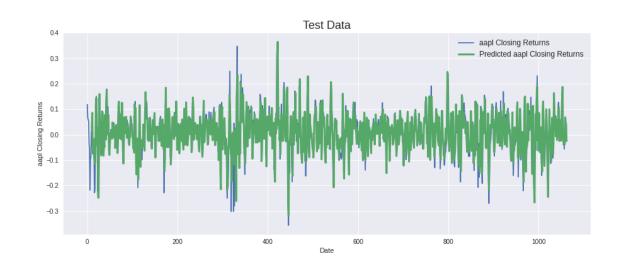
4 Conclusion

Motivation Lit. Review Objectives Design Implementation Testing Equity Models
FX Models
Discussion

Technical Accomplishments

Technical accomplishments

Transformer model for trading



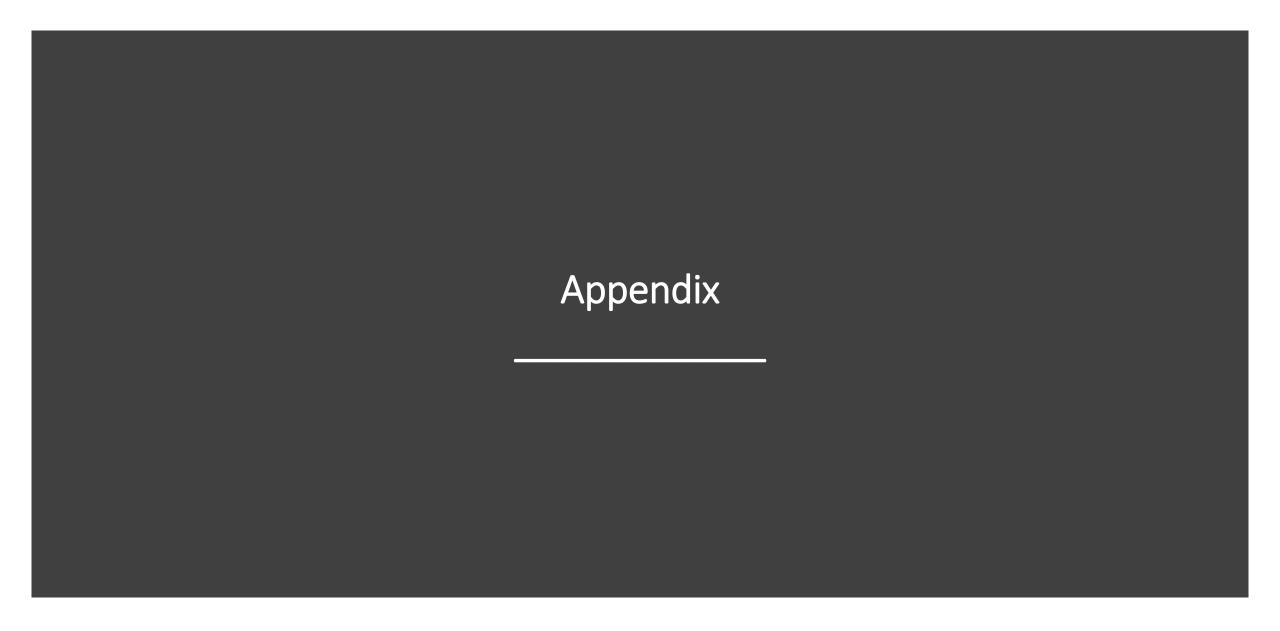
- Successfully developed a transformer model that can follow the return changes
- Formulated a trading strategy based on the model output

Optimizing transformer model for trading

Technical FX model 19.4% in excess from buy-and-hold CAGR

Technical + Fundamental Equity model

16.3% in excess from buyand-hold CAGR



Appendix

References

- [1] A. West, "New research reveals machine learning is maturing in finance," Refinitiv, 28 October 2020. [Online]. Available: https://www.refinitiv.com/perspectives/aidigitalization/machine-learning-new-research-reveals-is-maturing-in-finance/. [Accessed 12 September 2022].
- [2] "scalefocus," July 2022. [Online]. Available: https://www.scalefocus.com/blog/how-financial-institutions-can-leverage-the-power-of-machine-learning. [Accessed 12 September 2022].
- [3] D. Conko, "Neural Networks: Forecasting Profits," Investopedia, 9 May 2022. [Online]. Available: https://www.investopedia.com/articles/trading/06/neuralnetworks.asp#:~:text=Neural%20networks%20do%20not%20make,using%20traditional%20technical%20analysis%20met hods. [Accessed 12 Septmeber 2022].
- [4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser and I. Polosukhin, "Attention Is All You Need," arXiv, 2017.
- [5] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov and S. Zagoruyko, "End-to-End Object Detection with Transformers," CoRR, 2020.
- P. Agrawal, H. O. Bansal, A. R. Gautam, O. P. Mahela and B. Khan, "Transformer-based time series prediction of the maximum power point for solar photovoltaic cells," Energy Science & Engineering, vol. 10, no. 9, pp. 3397-2410, 2022.
- [7] H. Hamoudi and M. A. Elseif, "Stock Market Prediction using CNN and LSTM," Stanford University, 2021.
- [8] Jane Street, "Jane Street Market Prediction | Kaggle," Kaggle, 2021. [Online]. Available: https://www.kaggle.com/competitions/jane-street-market-prediction/overview. [Accessed 12 September 2022].
- [9] Yahoo Finance, [Online]. Available: https://finance.yahoo.com/. [Accessed 12 September 2022].
- [10] "Bloomberg Terminal," [Online]. Available: https://www.bloomberg.com/professional/solution/bloomberg-terminal/. [Accessed 12 September 2022].
- [11] "EODHD APIs," [Online]. Available: https://eodhistoricaldata.com/. [Accessed 27 December 2022].
- [12] Environmental Systems Research Institute, "How Extra trees classification and regression algorithm works," Environmental Systems Research Institute, [Online]. Available: https://pro.arcgis.com/en/pro-app/latest/tool-reference/geoai/how-extra-tree-classification-and-regression-works.htm. [Accessed 18 April 2023].

Appendix

References

- [13] Environmental Systems Research Institute, "How XGBoost algorithm works," Environmental Systems Research Institute, [Online]. Available: https://pro.arcgis.com/en/pro-app/latest/tool-reference/geoai/how-xgboost-works.htm. [Accessed 18 April 2023].
- [14] NumPy, [Online]. Available: https://numpy.org/. [Accessed 12 September 2022].
- [15] Pandas, [Online]. Available: https://pandas.pydata.org/. [Accessed 12 September 2022].
- [16] Seaborn, [Online]. Available: https://seaborn.pydata.org/. [Accessed 12 September 2022].
- [17] matplotlib, [Online]. Available: https://matplotlib.org/. [Accessed 12 September 2022].
- [18] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller and O. Grisel, "{API} design for machine learning software: experiences from the scikit-learn," in *ECML PKDD Workshop:*Languages for Data Mining and Machine Learning, 2013.
- [19] F. Chollet, Keras, 2015.
- [20] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur, S. Wu, C. Smyth, P. Poupart and M. Brubaker, "Time2Vec: Learning a Vector Representation of Time," Ahsanullah University of Science and Technology Dhaka, Bangladesh, 11 July 2019. [Online]. Available: https://arxiv.org/abs/1907.05321. [Accessed 20 January 2023].
- [21] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optmization," 2015. [Online]. Available: https://arxiv.org/pdf/1412.6980.pdf. [Accessed 25 January 2023].
- [22] P. J. Huber, "Robust Estimation of a Location Parameter," *The Annals of Mathematical Statistics*, vol. 35, no. 1, pp. 73-101, 1964.
- [23] Interactive Brokers, "Commissions | Interactive Brokers Hong Kong Limited," [Online]. Available: https://www.interactivebrokers.com.hk/en/index.php?f=1590. [Accessed 15 January 2023].
- [24] Investing.com, [Online]. Available: https://www.investing.com/. [Accessed 2 January 2023].

Appendix

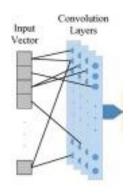
References

- [25] python, [Online]. Available: https://www.python.org/. [Accessed 12 September 2022].
- [26] Visual Studio Code, [Online]. Available: https://code.visualstudio.com/. [Accessed 12 September 2022].
- [27] Microsoft, [Online]. Available: https://www.office.com/. [Accessed 12 September 2022].
- [28] Github, [Online]. Available: github.com. [Accessed 12 September 2022].
- [30] Oracle, "What is Natural Language Processing (NLP)? | Oracle Hong Kong SAR, PRC," Oracle, [Online]. Available: https://www.oracle.com/hk/artificial-intelligence/what-is-natural-language-processing/#:~:text=Natural%20Language%20Processing%3F-,Natural%20Language%20Processing%20(NLP)%20Defined,natural%20language%20text%20or%20voice. [Accessed 12 September 2022].
- [31] S. Goled, "Why Transformers Are Increasingly Becoming As Important As RNN And CNN?," Analytics India Mag, 17 March 2021. [Online]. Available: https://analyticsindiamag.com/why-transformers-are-increasingly-becoming-as-important-as-rnn-and-cnn/. [Accessed 12 September 2022].
- [32] A. Lu, A. Parulekar and H. Xu, "Cluster-Based Statistical Arbitrage Strategy," 10 June 2018.
- [33] J. Fernando and C. Potters, "Relative Strength Index (RSI) Indicator Explained With Formula," Investopedia, [Online]. Available: https://www.investopedia.com/terms/r/rsi.asp. [Accessed 25 January 2023].
- [34] "Companies Market Cap," [Online]. Available: https://companiesmarketcap.com/usa/largest-companies-in-the-usa-by-market-cap/. [Accessed 10 February 2023].
- [35] G. Siddhad, A. Gupta, D. P. Dogra and P. P. Roy, "Efficacy of Transformer Netwroks for Classification of Raw EEG Data," arXiv, 11 February 2022. [Online]. Available: https://arxiv.org/pdf/2202.05170.pdf. [Accessed 31 August 2022].
- [36] B. Dolan, "MACD Indicator Explained, with Formula, Examples, and Limitations," Investopedia, [Online]. Available: https://www.investopedia.com/terms/m/macd.asp. [Accessed 31 August 2022].
- [37] The Hong Kong University of Science and Technology Information Technology Services Centre, "X-GPU CLUSTER," [Online]. Available: https://itsc.hkust.edu.hk/services/academic-teaching-support/high-performance-computing/x-gpu-cluster. [Accessed 27 December 2022].

Future works

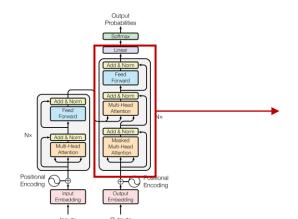
More data

86308 parameters for each encoder
But only,
4000 datapoints for each model



More complex input projection layer

Perform learned durational feature extraction



Adding decoder module

Predict future values for multiple days

Min-Max equation

$$x_{scaled} = \frac{x - x_{min}}{x_{max} - x_{min}} \rightarrow x = \frac{x_{scaled}(x_{max} - x_{min})}{x - x_{min}}$$

Max-abs equation

$$x_{scaled} = \frac{x}{|\max(x)|} \to x = x_{scaled} \times |\max(x)|$$

Rolling geometric mean

$$gmean_0 = [(1+x_0) \times (1+x_{-1}) \times (1+x_{-2}) \times (1+x_{-3}) \times (1+x_{-4})]^{\frac{1}{5}} - 1$$

$$x_0 = \frac{\left[g_{mean} + 1\right]^5}{(1 + x_{-1}) \times (1 + x_{-2}) \times (1 + x_{-3}) \times (1 + x_{-4})} - 1$$

Percentage Change

$$percentage_change_0 = \frac{close_0 - close_{-1}}{close_{-1}}$$

$$close_0 = [percentage_change_0 \times close_{-1}] + close_{-1}$$

73

https://github.com/antonioxav/FYP model

Appendix Time2Vec

Time2Vec: We propose *Time2Vec*, a representation for time which has the three identified properties. For a given scalar notion of time τ , Time2Vec of τ , denoted as $\mathbf{t2v}(\tau)$, is a vector of size k+1 defined as follows:

$$\mathbf{t2v}(\tau)[i] = \begin{cases} \omega_i \tau + \varphi_i, & \text{if } i = 0. \\ \mathcal{F}(\omega_i \tau + \varphi_i), & \text{if } 1 \le i \le k. \end{cases}$$
 (1)

where $\mathbf{t2v}(\tau)[i]$ is the i^{th} element of $\mathbf{t2v}(\tau)$, \mathcal{F} is a periodic activation function, and ω_i s and φ_i s are learnable parameters. Given the prevalence of vector representations for different tasks, a vector representation for time makes it easily consumable by different architectures. We chose \mathcal{F} to be the sine function in our experiments but we do experiments with other periodic activations as well. When $\mathcal{F} = \sin$, for $1 \le i \le k$, ω_i and φ_i are the frequency and the phase-shift of the sine function.

The period of $\sin{(\omega_i \tau + \varphi_i)}$ is $\frac{2\pi}{\omega_i}$, *i.e.* it has the same value for τ and $\tau + \frac{2\pi}{\omega_i}$. Therefore, a sine function helps capture periodic behaviors without the need for feature engineering. For instance, a sine function $\sin{(\omega \tau + \varphi)}$ with $\omega = \frac{2\pi}{7}$ repeats every 7 days (assuming τ indicates days) and can be potentially used to model weekly patterns. Furthermore, unlike other basis functions which may show strange behaviors for extrapolation (see, *e.g.*, [49]), sine functions are expected to work well for extrapolating to future and out of sample data [57]. The linear term represents the progression of time and can be used for capturing non-periodic patterns in the input that depend on time. Proposition 1 establishes the invariance of Time2Vec to time rescaling. The proof is in Appendix D.

Source: https://arxiv.org/pdf/1907.05321.pdf

Equity Technical Model Result

Stock Name	Evaluation Metrics	Without stoploss	With stoploss	Buy and hold
	Win rate	65.38%	65.38%	52.99%
	CAGR	33.67%	34.10%	47.94%
AAPL	Sharpe Ratio	23.32	23.82	39.32
	Max. Drawdown	-18.28%	-17.85%	-31.43%
	Trade turnover	5.69 days	5.69 days	1.46 days
	Win rate	50.49%	25.74%	54.88%
	CAGR	-13.26%	2.57%	50.35%
AMZN	Sharpe Ratio	-9.72	2.63	47.95
	Max. Drawdown	-23.81%	-10.59%	-22.75%
	Trade turnover	5.673 days	5.673 days	1.44 days
	Win rate	50.00%	27.27%	58.58%
	CAGR	12.18%	13.04%	51.57%
MSFT	Sharpe Ratio	9.72	12.79	42.94
	Max. Drawdown	-16.47%	-9.68%	-28.24%
	Trade turnover	5.22 days	5.22 days	1.44 days
	Win rate	53.33%	25.18%	50.213
SPY	CAGR	4.26%	6.39%	0.223%
	Sharpe Ratio	6.41	14.33	0.333
	Max. Drawdown	-8.31%	-6.14%	-25.361%
	Trade turnover	4.837 days	4.837 days	1.46 days

Appendix

76

Equity Technical + Fundamental Model Result

Stock Name	Evaluation Metrics	Without stoploss	With stoploss	Buy and hold
	Win rate	55.32%	34.75%	52.99%
	CAGR	15.40%	75.69%	47.94%
AAPL	Sharpe Ratio	11.15	116.18	39.32
	Max. Drawdown	-18.61%	-0.18%	-31.43%
	Trade turnover	4.37 days	4.37 days	1.46 days
	Win rate	46.59%	23.30%	54.88%
	CAGR	-3.98%	57.16%	50.35%
AMZN	Sharpe Ratio	-3.25	98.56	47.95
	Max. Drawdown	-21.42%	-0.19%	-22.75%
	Trade turnover	3.31 days	3.31 days	1.44 days
	Win rate	61.60%	37.60%	58.58%
	CAGR	41.87%	65.94%	51.57%
MSFT	Sharpe Ratio	38.75	91.13	42.94
	Max. Drawdown	-7.05%	-0.099%	-28.24%
	Trade turnover	4.64 days	4.64 days	1.44 days

Equity Technical + Macroeconomic Model Result

Stock Name	Evaluation Metrics	Without stoploss	With stoploss	Buy and hold
	Win rate	50.70%	29.58%	52.99%
	CAGR	10.05%	22.99%	47.94%
AAPL	Sharpe Ratio	6.85	21.41	39.32
	Max. Drawdown	-19.72%	-7.77%	-31.43%
	Trade turnover	5.69 days	5.69 days	1.46 days
	Win rate	52.89%	30.58%	54.88%
	CAGR	8.04%	19.34%	50.35%
AMZN	Sharpe Ratio	7.35	22.82	47.95
	Max. Drawdown	-17.69%	-8.54%	-22.75%
	Trade turnover	5.673 days	5.673 days	1.44 days
	Win rate	51.20%	21.08%	58.58%
	CAGR	14.81%	9.18%	51.57%
MSFT	Sharpe Ratio	12.27	8.44	42.94
	Max. Drawdown	-21.34%	-17.42%	-28.24%
	Trade turnover	3.86 days	3.86 days	1.44 days
	Win rate	55.28%	23.60%	50.213
	CAGR	-0.06%	0.39%	0.22%
SPY	Sharpe Ratio	-0.09	0.85	0.33
	Max. Drawdown	-18.22%	-15.09%	-25.36%
	Trade turnover	4.08 days	4.08 days	1.46 days

Equity Technical + Value Model Result

Stock Name	Evaluation Metrics	Without stoploss	With stoploss	Buy and hold
	Win rate	55.13%	30.77%	52.99%
	CAGR	25.02%	25.15%	47.94%
AAPL	Sharpe Ratio	17.92	22.06	39.32
	Max. Drawdown	-19.18%	-11.29%	-31.43%
	Trade turnover	3.95 days	3.95 days	1.46 days
	Win rate	50.00%	23.00%	54.88%
	CAGR	5.71%	16.46%	50.35%
AMZN	Sharpe Ratio	4.54	21.48	47.95
	Max. Drawdown	-11.62%	-3.94%	-22.75%
	Trade turnover	5.67 days	5.67 days	1.44 days
	Win rate	52.69%	33.33%	58.58%
	CAGR	4.11%	11.59%	51.57%
MSFT	Sharpe Ratio	3.29	12	42.94
	Max. Drawdown	-16.57%	-9.63%	-28.24%
	Trade turnover	6.14 days	6.14 days	1.44 days

Equity Technical + Fundamental + Macroeconomic + Value Model Result

Stock Name	Evaluation Metrics	Without stoploss	With stoploss	Buy and hold
	Win rate	56.21%	34.91%	52.99%
	CAGR	22.66%	42.72%	47.94%
AAPL	Sharpe Ratio	18.50	48.84	39.32
	Max. Drawdown	-17.58%	-11.18%	-31.43%
	Trade turnover	3.81 days	3.81 days	1.46 days
	Win rate	50.00%	28.76%	54.88%
	CAGR	0.54%	9.42%	50.35%
AMZN	Sharpe Ratio	0.45	10.75	47.95
	Max. Drawdown	-21.93%	-10.79%	-22.75%
	Trade turnover	4.10 days	4.10 days	1.44 days
	Win rate	55.37%	32.23%	58.58%
MSFT	CAGR	15.46%	21.65%	51.57%
	Sharpe Ratio	11.58	18.22	42.94
	Max. Drawdown	-13.46%	-8.38%	-28.24%
	Trade turnover	4.88 days	4.88 days	1.44 days

Foreign Exchange Technical Model Training Result

Currency pair name	Evaluation metrics	Without stoploss	With stoploss	Buy and hold
	Win rate	77.612%	77.612%	48.471%
	CAGR	45.979%	45.979%	-5.457%
AUDUSD	Sharpe Ratio	128.564	128.564	-11.833
	Max. Drawdown	-2.537%	-2.537%	-17.952%
	Trade turnover	4.291	4.291	1.398
	Win rate	53.896%	31.169%	50.487%
	CAGR	0.913%	5.753%	-2.658%
CNYUSD	Sharpe Ratio	6.277	70.637	-17.800
	Max. Drawdown	-3.781%	-0.055%	-12.011%
	Trade turnover	4.773	4.773	1.410
	Win rate	70.161%	42.742%	47.942%
	CAGR	15.341%	15.592%	-5.590%
EURUSD	Sharpe Ratio	55.364	79.158	-19.555
	Max. Drawdown	-3.424%	-0.030%	-17.866%
	Trade turnover	5.355	5.355	1.395
	Win rate	65.812%	32.479%	47.541%
	CAGR	13.049%	14.161%	-7.716%
GBPUSD	Sharpe Ratio	38.573	60.404	-21.637
	Max. Drawdown	-2.952%	-0.035%	-22.394%
	Trade turnover	5.701	5.701	1.395

Appendix

81

Foreign Exchange Technical Model Training Result

Currency pair name	Evaluation metrics	Without stoploss	With stoploss	Buy and hold
	Win rate	64.748%	35.971%	50.405%
	CAGR	13.640%	15.125%	3.654%
USDCAD	Sharpe Ratio	58.823	90.273	14.982%
	Max. Drawdown	-3.718%	-0.011%	-4.618%
	Trade turnover	4.892	4.892	1.395
	Win rate	85.714%	49.107%	51.822%
	CAGR	24.565%	16.306%	-0.704%
USDCHF	Sharpe Ratio	135.474	92.279	-2.617
	Max. Drawdown	-0.595%	-0.008%	-10.475%
	Trade turnover	6.018	6.018	1.395
	Win rate	85.106%	85.106%	54.627%
	CAGR	33.420%	33.420%	9.238%
USDJPY	Sharpe Ratio	199.094	199.094	45.929%
	Max. Drawdown	-0.631 %	-0.631%	-14.749%
	Trade turnover	4.888	4.888	1.398