Build an Online Data Analysis Tool to
Explore World Bank Data

Hong Kong University of Science and Technology

2015 Fall MSc(IT) Program

CSIT 6910 Independent Project

Supervisor: Prof. David Rossiter

Student Name: Liu Yufan
Student No.: 29266796
Email: yliude@connect.ust.hk

Content Table

Build an Online Data Analysis Tool to
Explore World Bank Data
1. Background
1) Motivation
2) Expect output
2. Develop Environment
3. Architecture
4. Implementation
1) Get to know the data
2) Database Access Layer Design
i) Design E-R Diagram
i) Prepare Database Access
[ll) Import Data into MySQ
iv) Access the Data
3) Play Framework Design
i) Define Routing Rules
i) Serve Static files (js / css / images)
iii) Handle Request
4) Front-end Web Page Design
5) Render Data
[) Find where to attach the graph
i) Define the size of the graph
(iii) Scale and select the data to meet the graph size
iv) Feed the data
6) Combine front-end and back-end together
5. Result
) Home Page
) Overview Page
3) GDP Page
) GDP Growth Page
) GDP Per Capital Page
6) About Page
6. Conclusion
7. Minutes
8. Appendix

© © 00 O O O 0o 01 O W W W W W a2 —

NCTEDS TN TS T . S S G G G U U U G G §
Ww = -2 O O © © 0o N N o o o o1 o1 o1 O O ©

1. Background
1) Motivation

World bank have designed different indicators to estimate different country’s status. These
indicators includes 248 countries cover years range from 1960 to 2015. As these indicators are
public, everyone can download a copy and do any operation on it.

| would like to learn these indicators, to learn their meaning and their historic trend among different
countries. As world bank has created a tool for users to explore and analysis these data, | could
use it as a prototype to develop my own analysis tool.

Besides, | am curious about the Scala technology. If | use Scala and its related frameworks or
technologies to work on this project, | could have a better understanding of the language and its
ecosystem.

2) Expect output
Create a website where user can do basic analysis on World Bank Data.
Learn some of the indicators, understand them, and their historical trend in different countries.
Learn Scala technology with its ecosystem.
Learn Front-end techniques to create beautiful and interactive web pages.

2. Develop Environment

ITEM NOTE

(O] Mac OS X Yosemite 10.10.5
IDE Idea Intellij 15.0.1

DataBase Mysqgl community server 5.6.25
Default Target Browser Chrome 47.0.2526.73 (64-bit)
Programming Language Scala 2.11.7

Build Tool SBT 0.13.5

Web Server Techniques TypeSafe Activator 1.3.6

Play Framework 2.4.2
Database access library Slick 3.1.0
Front-end Techniques jQuery 1.11.3
Bootstrap v3.3.5

d3js v3.1

3. Architecture

The Project is developed with layered structure. Layered structure can decouple each component.
This will make each component easy to test and implement. Developers can switch any
component without interferer other components. This can make development process easy to
estimate.

Below is the layered structure of this project.

X Data-Driven Documents ‘ play

? —_— Boo|tEs,trap —_— ‘SIICk
&

jauervy

write less, do more.

(O

On the left side is the web browser. In this project, chrome is chosen as the default dev/test/
production browser. In order to make the website compatible with different browsers, especially IE,
| use 3rd party javascript libraries “htmI5shiv.min.js’ and “respond.min.js’ to do the job.

In the middle part, are the front-end techniques used in this project. Beside basic “Html + CSS +

Pure Javascript’ techniques, | use existing 3rd party javascript libraries to speed up development
process. Please check the table for their detailed description.

JS Framework Description

jQuery It makes things like HTML document traversal and manipulation, event
handling, animation, and Ajax much simpler with an easy-to-use API that
works across a multitude of browsers.
It is required by D3js.

Bootstrap It is used to do layout in this project.

D3js It is used to render data points to generate graphs.

On the right side are the back-end techniques. All the code are written in Scala. Please check the
table for their detailed description.

Server Side Technique Description

Play Framework It is a powerful web framework. It provides many built-in functionalities
which can speed up develop process. Play is based on a lightweight,
stateless, web-friendly architecture.

Built on Akka, Play provides predictable and minimal resource
consumption (CPU, memory, threads) for highly-scalable applications.

Slick A functional relational mapping library. This project’s data access
layer is based on Slick. It’s very convenient and easy to use.

Scala The major programing language. In the upper layer, all the code are
written in Scala.

Mysql Store data.

4. Implementation

1) Get to know the data
There are plenty of data published in the World Bank website. In this project, we choose
“Indicators” data. For example, to access the “GDP (current US$)’ indicator data, we can
download them from this page: http://data.worldbank.org/indicator/NY.GDP.MKTP.CD?
display=default. There are three formats: XML, EXCEL, CSV. In this project, we use CSV format.

For each indicator, there are 3 csv files.

File Content

All Countries Include all country meta data.

Indicator Description Describe the indicator.

Indicator values Contains all indicator values for each country from 1960 to 2015. One value for

each country for each year.

* The “All Countries” file is duplicate because all downloaded indicator zip packages will have one
copy. So we only need to store one copy of “All Countries” file.

2) Database Access Layer Design
i) Design E-R Diagram
As we have mentioned above, we have only 3 csv files for each indicator. So the E-R diagram is
pretty simple and straight-forward.

indicator code
country code R

indicator_name
country_name ..
indicator_note

country_region indicator_org

country_income_group

indicator_values

t t .
country_notes id

country code

indicator code

year

value

http://data.worldbank.org/indicator/NY.GDP.MKTP.CD?display=default

We create 3 tables. The “country’ table contains all information about a country. The “indicator’
table contains all information about a indicator. Then the “indicator_values’ table contains each
indicator_value, one for each country for each year. It reference “country’ table and “indicator’

using foreign key “country_code’ and “indicator_code’ separately.

ii) Prepare Database Access
First, we need to create database schema in the MySQL Database.
Then we need to add our database connection information the configuration file, so Slick knows
where to connect to.

mysqldb = {
url = "jdbc:mysql://localhost:3306/wdb_explorer"
driver = "com.mysql.jdbc.Driver"
user = "wdb_explorer"”
password = "wdb_explorer"

threads=10
}

Finally, we need to define the relational mapping from Scala object to Database Schema. Below is
the mapping example for “indicator_values” table.

case class Indicator_Value(country_code: String, indicator_code: String, year: Int, value: Double, id: Option[Int] = None)

class Indicator_Values(tag: Tag)
extends Table[Indicator_Value](tag, "indicator_values") {

/! Thic ic the primarv kev column:
/ IN1S 1S TNe primary Key column:

aéf id: Rep[Int] = column([Int]("id", O0.PrimaryKey, 0.AutoInc)

def country_code: Rep[String] = column[String]("country_code")

def indicator_code: Rep[String] = column[String] ("indicator_code")
def year: Rep[Int] = column[Int]("year")

def value: Rep[Double] = column[Double] ("value")

// Every table needs a *x projection with the same type as the table's type parameter

def * (country_code, indicator_code, year, value, id.?) <> (Indicator_Value.tupled, Indicator_Value.unapply)

def country: ForeignKeyQuery[Countries, Country] =
foreignKey("fk_country_code", country_code, TableQuery[Countries])(_.code)

def indicator: ForeignKeyQuery[Indicators, Indicator] =
foreignKey("fk_indicator_code", indicator_code, TableQuery[Indicators])(_.code)
}

The “Indicator_Values” class is the mapping class for the “indicator_values” table. The rows
fetched are mapped to the “case class Indicator_Value’.

lll) Import Data into MySQ
After the table is created, the connection information is provided and the relational mapping
created, we can import data into MySQL.
Because the “indicator_values” table has foreign key constraints, we need to import “All
Countries’ file and “Indicator’ file first.

To import “All Countries” file, we first read data from “All Countries” csv file. For each row, we
separate the column by colons, then we create a case class to wrap the row. And then we insert
this object into MySQL.

def importCountries(): Unit = {
val countryFilePath = "/Users/patrick/Downloads/ny.gdp.pcap.cd_Indicator_en_csv_v2/Metadata_Country_ny.gdp.pcap.cd_Indicator_en_csv_v2.csv"
val countryFile = Source.fromFile(countryFilePath)
val lines = for (cols <- countryFile.getLines.drop(1).map(l => l.substring(@, l.length - 1).split("\",\"").map(_.replace("\"", "").trim)))
yield Country(cols(1), cols(@), cols(2), cols(3), cols(4))

val db = Database.forConfig("mysqldb")
val countrySql = TableQuery[Countries]

lines.foreach { 1 =>
println(l)
Await.result(db.run {
countrySql += 1
}, 5000 millis)

}
db.close()
countryFile.close()

printin("Total countries imported: " + lines.size)

As the insert operation is asynchronous, so we will wait the object is inserted into the database
then we insert the second.
(* The operation can be optimized by batch insert.)

Then we can insert the “indicator” file. However, for each indicator, the “Indicator’ file will contain
only one line describing this indicator. And as we only need 6 indicators(GDP, GDP growth, GDP
per capital, inflation, import rate, export rate). So we can just insert these indicators in the MySQL
console.

(P
)
)
)
VALUES
(P

)5

Finally, we can insert the “Indicator Values” file. This step is similar to import “All Countries” Data.
After reading data from csv file, we insert the data row by row. For each row, we separate the
content by colons, then for each value range from year 1960 to 2015, we can create the
Indicator_Value case class and then insert the object.

def importIndicatorValues(): Unit = {
val ivFilePath = "/Users/patrick/Downloads/world bank data/inflation/fp.cpi.totl.zg_Indicator_en_csv_v2.csv"
val ivFile = Source.fromFile(ivFilePath)

val db = Database.forConfig("mysqldb")
val ivSql = TableQuery[Indicator_Values]

ivFile.getLines().toSeq.drop(5).foreach { line =>
val split = line.split("\",\"").map(x => x.replace("\"", "")).dropRight(1)
val country_code: String = split(1)
val indicator_code: String = split(3)
val year_indicators = split.splitAt(4)._2.map(x => if (x.nonEmpty) x.toDouble else 0.0)
val year_indi = (@ to year_indicators.length).zip(year_indicators)

println("Indicator: " + indicator_code + ", country: " + country_code + ", Total indicators imported: " + year_indi.size)

// Special case, ignore 'INX' row. The row is not classified.

if (country_code == "INX")
println("INX row encoutered, ignore")
else {

var arr = List[Indicator_Valuel()
year_indi.foreach(x => arr = Indicator_Value(country_code, indicator_code, x._1 + 1960, x._2) :: arr)

Await.result(db.run {
ivSql ++= arr
}, 5000 millis)
}
}
db.close()
ivFile.close()

}

iv) Access the Data
After the data is imported, we can fetch the data we needed.
We create an object MySQLHelper, which is responsible for access the data stored in the
database.

object MySQLHelper {
val db = Database.forConfig("mysqldb”)
val countrySQL = TableQuery[Countries]
val indicatorSQL = TableQuery[Indicators]
val indi_valueSQL = TableQuery[Indicator_Values]

def allCountries() = {
db. run{countrySQL.result)
}

def allIndicators() = {
db.run({indicatorSQL.result)

}

def getIndivValue(indi: String, ctry: String) = {
db.run{indi_valueSQL.filter(iv => iv.indicator_code === indi && iv.country_code === ctry).sorted(iv => iv.year).result)
}
}

(* The code used for testing has been removed, so the final class below contains only the method
used in our project.)

Actually, the most frequent used method is " getindiValue(indi:String, ctry: String)", the indi
parameter defines which indicator we need, and ctry parameter defines which country we are
interested. The result is a Future object contains the specified country’s indicator values from 1960
to 2015. Then the front-end can render the diagram from these data.

3) Play Framework Design
i) Define Routing Rules

Routes

This file defines all application routes (Higher priority routes first)

Anan

Map static resources from the /public folder to the /assets URL path

GET /assets/xfile controllers.Assets.at(path="/public”, file)
Test

GET /test controllers.Application.test

GET /d3test controllers.Application.d3test

GET /db controllers.Application.db

GET /clients/:id controllers.Application.getId(id: Long)

GET /clients/:indi/:ctry controllers.Application.get2Params(indi: String, ctry: String)
GET /tt controllers.Application.tt

GET /indi_tt controllers.Application. indiTest

World bank data explorer

Part 1. Json (Web-service)

GET /country-list controllers.Application.allCountries

GET /indicator-list controllers.Application.allIndicators

GET /indi-value/:indi/:ctry controllers.Application.indivalue(indi: String, ctry: String)

Part 2. Html

GET / controllers.Application. index

GET /about controllers.Application.about

GET /overview controllers.Application.overview

GET /qdp controllers.Application.gdp

GET /gdp-growth controllers.Application.gdpGrowth

GET /qdp-per-capital controllers.Application.gdpPerCapital

Each row is a routing rule, each rule has 3 parts.

The left part is the method, such as GET / POST / PUT, etc.

The middle part is the url path. There are two kinds of url path here. The first kind is the basic path,
for example “/about’, is an explicit request. The second kind is with parameters, for example, “/indi-
value/:indi/:city”, the “indi” and “city” parameters can be extracted from the url path, and send them
to the request handler.

The right part is the handler. Each handler is a function defined in a Scala object. For example, the
“controllers.Application.indiValue(indi: String, city: String)” is the function indiValue(indi: String, city:
String) defined in the object Application in package controllers.

i) Serve Static files (js / css /images)
This is a built-in functionality provided by play framework.
We can simply define a routing rule in the “conf/routes” file, then can we get the static files easily.
The Route rule:

GET /assets/*file controllers.Assets.at(path="/public", file)

The route rule defines that when a url path matches “/assets/*file”, the “file” argument will be
mapped to a file in the “/public” directory.

This is how to access a css file in html:

<link rel="stylesheet" media="screen" href="@routes.Assets.at("stylesheets/main.css")">

We can simply use the @routes.Assets.at(“folder_in_public_foler/file”) to get the target file.

http://routes.Assets.at

iii) Handle Request
Each request will be sent to the target handler if the request path matches the routing rules.
Otherwise, the request is invalid, a 404 page will return.

For example, let’s see how the index page request is handled in play framework.
This is the routing rule:
GET / controllers.Application.index

So when a user input the http://ip-to-our-server, the request will be sent to Application’s index
method. This is how the index method looks like:

// Html Pages
def index = Action {
Ok(views.html.index())

}

We just return the “index” page back to the browser.

Now we have data stored in the database, and a web server in the backend. Next, we will see how
the front-end page is designed.

4) Front-end Web Page Design
We use “Bootstrap” to do layout.
For example, this is the home page for the project. There is a navigation bar on the top, which
contains the “project title’, "overview', "3 Indicator pages and "about’ page. In the middle part are
the content. And there is a footer in the bottom.

[] @) WBD Explorer x Patrick

C [} localhost:9000 Qx| O g =

WBD Explorer

WBD Explorer

(World Bank Data Explorer)
This is a data visualization tool designed for browsing world bank data.

Wrold bank has created different indicators to estimate different aspects of human life in different coutries.
People can use these indicators to get better understanding of the world history and estimate the trend.

Copyright ® | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

http://ip-to-our-server

Basically, the webpage is consists of 4 parts, highlighted below:

div.navbar.navbar-inverse 1312.22px x 52.2222px

iv.container f170px x 450.417px

f170px x 41.1111px Copyright ® | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)
1312.22px x 2@0px

There is a navigation bar on the top, a container containing all the content in the middle, another
container contains a line to separate the content and footer, then finally the footer.

However, the “gdp indicator” page has the similar layout.

.../)wsnaxpiom x\@ Patrick
€« ->C [D localhost:9000/gdp Qﬁf@“ 0O g =
GDP (current US$)
R Yo GDP (current US$) by country
| Countries ~ China
1960 1970 1980 1990 2000 2010

Copyright © | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

If we don’t extract the common parts out side of these webpages, we will have duplicates spread
through the project. It is hard to maintain.

These two pages have same header and footer. We can create a template html file called
“‘common” html, which contains the duplicated parts. And left the differentiate part open. Then we
just need to feed the middle part to generate these different pages. Luckily, this can be
implemented by Play’s template system easily.

For simplification, this is the “common.scala.html”.

@(content: Html)
<!DOCTYPE html>
<html lang="zh-CN">
<head>
. header content ...
</head>
<body>
<div class="navbar navbar-inverse
. navbar content ...
</div>

>

@content

<div class="container">
<hr>
</div>
<footer>
. footer content ...
</footer>
</body>
</html>

(* The @(content: Html) defines a parameter “content’ which is a html element, and this element
will be placed in the middle part of the “common” html file)

Then, in the “indexscala.htmf’ file, we can simply add the “content’ and send it back to browser:

@common {
<div class="container">
<div class="jumbotron">
<h1>WBD Explorer</hl>
<p>(World Bank Data Explorer)</p>
<p>This is a data visualization tool designed for browsing world bank
data.</p>
<p>Wrold bank has created different indicators to estimate different
aspects of human life in different coutries.
People can use these indicators to get better understanding of the
world history and estimate the trend.</p>
<p>Learn
more</p>
</div>
</div>
}
(* The index page called returns a common page, but use the content inside the brace to fill the
@content part)

With more observation, we have found out that the “gdp.scala.html’ page and
“gdp_growth.scala.thmP page have similar layout too.

Indicators ~

Overview

WBD Explorer

GDP (current US$)|by country

Please select country

Countries ~ China

|
2010

Copyright ® | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

Overview

WBD Explorer

GDP growth
(annual %) GDP growth (annual %)lby country
Please select country
Countr China
ountries ~
#’v\\ f/\‘\
AJ \ | \ '
[\] l*, A N / /\
1 il VY | S Wy
| | |
f! ll rJ \ \\/ \ | Y
| | \ /
‘ f’ |\‘ !’ IU
||V
1
| |
I
| |
||
I
|
1\1
! ; : . ;
1960 1970 1980 1990 2000 2010

Copyright © | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

The only different is the title and the data points. So we can create another template html from

these them.

The new template will based on “common” template, but with more common information in the
@content part.

The new template “indi_common.scala.htmFP

@(indicator: String, baseUrl: String)
@common {
<div class="container">
<div class="row">
<div class="col-md-2">
<h4>@indicator</h4>
<h6>Please select country</h6>
<div class="dropdown">
<button class="btn btn-default dropdown-toggle"
type="button" id="dropdownMenul" data-toggle="dropdown" aria-haspopup="true"
aria-expanded="true">
Countries

</button>
<ul id="country-select" class="dropdown-menu" aria-
labelledby="dropdownMenul">
China</1i>
Japan</1li>
Korea</1i>
Brazil</1li>
USA</1i>
Norway</1li>

</div>
</div>
<div id="display" class="col-md-10">
<h2>@indicator by country</h2>
<h3 id="current-country"></h3>
</div>
</div>
</div>

}

The template fills the @content part with a solid structure, left 2 places for the input arguments.
The first argument “indicator’ defines the title of the page, the second argument “baseUr!’ defines
where can indicator’s data can be fetched.

Then we can generate the gdp page with one sentence:
@indi_common("GDP (current US$)", "NY.GDP.MKTP.CD")

And gdp_growth page with another sentence:
@indi_common("GDP growth (annual %)", "NY.GDP.MKTP.KD.ZG")

5)
D3js is

For example, we want to render China’s gdp diagram in the past 55 years.

Render Data
used to render data points.

First we have the data:

#id country_code indicator_code year value

76312’ 'CHN' NY.GDP.MKTP.CD' '2014' '10360105247908.3'
76313’ 'CHN' NY.GDP.MKTP.CD' '2013' '9490602600148.49'
76314’ 'CHN' NY.GDP.MKTP.CD' '2012' '8461623162714.07"
76315’ 'CHN' NY.GDP.MKTP.CD' '2011' '7492432097810.11'

Then we need to do the following to render these data:

) Find where to attach the graph
var svg = d3.select(node).append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.attr("transform", "translate(" + margin.left + "," + margin.top + “)");

ii) Define the size of the graph

var margin = {top: 20, right: 20, bottom: 30, left: 50},
width = full_width - margin.left - margin.right,
height = full_height - margin.top - margin.bottom;

(iii) Scale and select the data to meet the graph size

var x = d3.scale.linear().range([0, width]);
var y = d3.scale.linear().range([height, 0]);

var xAxis = d3.svg.axis()
.scale(x)
.tickFormat(d3.format("d"))
.ticks(5)
.orient("bottom");

var yAxis = d3.svg.axis()
.scale(y)
.orient(“left");

iv) Feed the data

d3.json(url, function(error, data) {
if (error) throw error;

// After data is loaded, can we calculate the domain for xAxis and yAxis.
x.domain(d3.extent(data, function(d) { return d.year; }));
y.domain(d3.extent(data, function(d) { return d.value; }));

svg.append("g")
.attr("class", "x axis")
.attr("transform”, "translate(" + margin.left + "," + height + ")")
.call(xAxis);

svg.append("g")
.attr("class", "y axis")
.call(yAxis)

.append("text")

.attr("transform", "rotate(-90) translate(" + 2*margin.left + "," + @0 + ")")
.attr("y", 6)

Latte("dy", ".71em")

.style("text-anchor"”, "end")

.text("Price ($)");

svg.append("path")
.datum(data)
.attr("class", "line")
.attr("transform", "translate(" + margin.left + "," + @ + ")")
.attr("d", line);
1)

6) Combine front-end and back-end together
Here is the work-flow between browser and server:

- é plCly

1. Request Html Page

2. Return Traget Html Page

3. ajax request for data points

4. return data points JSO N \

You can see the network request sequence in Chrome’s developer console:

= 0O Elements Console Sources [Network | Timeline Profiles Resources Audits

® O B Y | View: i= = Preserve log Disable cache = No throttling v
] 100 ms 200 ms 300 ms 400 ms 500 ms 600 ms 700 ms 800 ms 900 ms
Name Status - Size Time . o
path Method Text Type Initiator Content Latency Timeline - Start Time
gdp 200 8.0KB 5ms
<> Request Html Page Ger s document Other P amsl
-] jquery.min.js 200 e qdp:74 94.0KB 210ms
== /assets/javascripts/jquery-1.1 GET OK SCrpL Parser 93.7KB 39ms &
—| bootstrap.min.js 200 qdp:76 36.2KB 156 ms
=] /assets/javascripts GET; OK SCEiE Parser 36.0KB 43 ms =
-| main.css 200 : adp:77 4798 152 ms
L /assets/stylesheets GET OK stylesheet Parser 2428B 41ms ==
| d3.v3.min.js 200 qdp:79 148 KB 210 ms
=) /assets/javascripts GET} OK ScEpt Parser 148 KB 42 ms ==
—| bootstrap.min.css 200 s qdp:81 120KB 209 ms
==] /assets/stylesheets GET A0OK o = stylesheet Parser 120KB 40ms [
Request Data Points(ajax)
| CHN GET 200 h d3.v3.min.js:1 5.8KB 38ms o
| /indi-value/NY.GDP.MKTP.CD oK xnr Script 5.6KB 36ms

So basically, the browser send a request to the webServer, the server returns the html page. When
the html page is rendered in the browser, the javascript will trigger another ajax request to the web
server to fetch data. These data are returned in JSON format, then the javascript will parse the
data and feed them to d3js to be rendered.

5. Result
1) Home Page

® ® > WBD Explorer x Patrick]

C' [localhost:9000 Qv 0 ¢

WBD Explorer

(World Bank Data Explorer)
This is a data visualization tool designed for browsing world bank data.

Wrold bank has created different indicators to estimate different aspects of human life in different coutries.
People can use these indicators to get better understanding of the world history and estimate the trend.

Copyright © | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

This is the home page for the project. It describe the project “WBD Explorer”(short for World bank
data explorer) and it’s basic background. User can click “Learn more” to go to the “About” page.

The navigation bar is always at the top of the website. User can navigate freely. In the bottom,
there are links link to “HKUST” and “MSc(IT) program” pages. When user clicks the “Patrick Liu”
link, @ mail box will pop-up for them to write email to Patrick.

(* This templates is extracted from the “Leetcode” home page.)

2) Overview Page

© ©®) weExplorer

€ (e} localhost:9000/overview

WBD Explorer

Patrick

Country Indicators Overview use china as example

GDP (current US$)

1960 1970 1980 1990 2000 2010

GDP per capita (current US$)

/

1960 1970 1980 1990 2000 2010

Imports of goods and services
(% of GDP)

N
X N
A\ /
s/

1960 1970 1980 1990 2000 2010

GDP growth (annual %)
N
N

1960 1970 1980 1990 2000 2010

Inflation, consumer prices (annual %)

VAl
1960 1970 1980 1990 2000 2010

Exports of goods and services
(% of GDP)

1960 1970 1980 1990 2000 2010

Copyright © | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

This is the overview page. This page is like a Dashboard. | use China as example. User can see 6
different Indicators. They are GDP (current US$), GDP growth (annual %), GDP per capita (current
US $), Inflation, consumer prices (annual %), Imports of goods and services(% of GDP), Exports of

goods and services(% of GDP).

3) GDP Page

Q%@ @ =

L] ® ') wBD Explorer

€« C' [9 localhost:9000/gdp

Indicators ~

WBD Explorer Ov

GDP (current US$) GDP (current US$) by country

Please select country
Countries ~ China
/

!
2010

Copyright © | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

In this page, user can see a country’s GDP (current US$) indicator values from 1960 to 2015 with a
bigger picture. User can also select countries in the left drop-down menu.

4) GDP Growth Page

Qw0 & =

® O ®) wepExplorer

€« C' [3 localhost:9000/gdp-growth

WBD Explorer

GDP growth
(annual %) GDP growth (annual %) by country
Please select country

China

Countries ~
|
/
\

“’(i B _
'R T A / \\ ~ / / \
{15 | A)
| / V' ol =%
\ / R —
/ v
it
J

/\
| N Ay
\ W EIY (S
| \ A \' f \ ‘v‘ \/

| ! ! |
1970 1980 1990 2000 2010

Copyright ©® | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

This page is similar to GDP page. User can browse different countries’ GDP growth data.

5) GDP Per Capital Page

® = ® /) wep Explorer x Patrick

€« C' | [localhost:9000/gdp-per-capital

GDP per capita

(current USS) GDP per capita (current US$) by country

Please select country

China

Countries ~

1960 1970 1980 1990 2000 2010
Copyright ® | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)
This page is similar to GDP page. User can browse different countries’ GDP per capital data.

6) About Page

® ®) wep Explorer Patrick

€« C' | [localhost:9000/about

About CSIT 6910 Independent Project: WBD Explorer

Why works on Independent Project?

To explore interested areas in Computer Science Field.

What result do you expect to gain from this project?

To get better understanding of the following technics.

Technic Usage
Scala Understand the Functional Programming technics
Slick Understand the FRM(Functional Relational Mapping) technics

Play Understand the reactive platform and play web framework
sbt Understand the build system

bootstrapLearn how to build front-end interface

d3js Learn how to visulize data

What else do you want to learn from this project?

To understand the world economics by combining the world bank indicators with knowledges learnt from books or wikipedia.

To understand why some countries are poor while others are rich, to understand their economic growth with import/expot, population, educati
on and infrastructure, etc.

Copyright © | HKUST | MSc(IT) | Patrick Liu (Student ID. 20296796)

6. Conclusion

After doing this project. | have created a web site from scratch. It is not easy to learn that much
content from zero to one. (jQuery, bootstrap, d3js, Scala, Slick, Play, etc). The whole project has
been through many explores and tests. However, | have learnt a lot from this project.

| have learnt the economical function of World bank by analyzing its website, reading its yearly
report and wikipedia articles. Then | have learnt basic economic trend of some selected countries
by analyzing their indicator values. Meanwhile, | have learnt to use the BootStrap to create a
webpage layout quickly and d3js to do data visualization.

Most importantly, | have learnt how to use Scala more efficiently. Though the Slick library is more
like a black box due to lack of articles or blogs on it, | have explored and write tests to understand
it. And luckily, | have learnt nearly the whole Tyrpesafe Scala ecosystem.

7. Minutes
The 1st meeting minutes:

Item Detail
Date 2015-09-17
Time 11:10 am
Place Room 3512
Attending Prof. Rossiter
Liu Yufan
Absent None
Recorder Liu Yufan

Approval of minutes This is the first formal Meeting, so there were
no minutes to approve.

Report Go though the project proposal, estimate the
project management time table, discuss the
expected output and techniques required, set
milestones.

The 2nd meeting minutes:

Item Detail
Date 2015-10-13
Time 11:10 am
Place Room 3512
Attending Prof. Rossiter
Liu Yufan
Absent None
Recorder Liu Yufan

Approval of minutes Approved

Item

Detail

Report

Demonstrate the project progress with a
keynote slides.
Present and discuss the project architecture.

The 3rd meeting minutes:

Item Detail
Date 2015-10-27
Time 11:10 am
Place Room 3512
Attending Prof. Rossiter
Liu Yufan
Absent None
Recorder Liu Yufan
Approval of minutes Approved

Report

The techniques required in this project have
been explored and tested.

Prototype demonstration. Backend part is
finished, need to focus on front-end
development later on.

The 4th meeting minutes:

Item Detail
Date 2015-11-02
Time 14:20 pm
Place Room 3512
Attending Prof. Rossiter
Liu Yufan
Absent None
Recorder Liu Yufan
Approval of minutes Approved

Report

Demonstrate the front-end together with the
backend. However, they are still in pieces, so |
have to hurry up to combine them together to
become a whole project.

Discuss the implementation details, estimate
workload and decide that 2 advanced features
may not be implemented due to time pressure.

The 5th meeting minutes:

Item Detail
Date 2015-11-19
Time 14:00 pm
Place Room 3512
Attending Prof. Rossiter
Liu Yufan
Absent None
Recorder Liu Yufan

Approval of minutes Approved

Report Final demonstration.
Discuss on the delivery materials(report /
source code / video)

8. Appendix

[1] http://www.scala-lang.org/

[2] http://docs.scala-lang.org/index.html

[3] https://twitter.github.io/scala_school/

[4] https://www.coursera.org/course/progfun
[5] https://www.playframework.com/

[6] http://akka.io/

[7] http://slick.typesafe.com/

[8] http://www.scala-sbt.org/0.13/tutorial/index.html
[9] https://jguery.com/

[10] http://getbootstrap.com/

[11] http://d3js.org/

[12] http://www.worldbank.org/

[13] http://data.worldbank.org/

http://www.scala-lang.org/
http://docs.scala-lang.org/index.html
https://twitter.github.io/scala_school/
https://www.coursera.org/course/progfun
https://www.playframework.com/
http://akka.io/
http://slick.typesafe.com/
http://www.scala-sbt.org/0.13/tutorial/index.html
https://jquery.com/
http://getbootstrap.com/
http://d3js.org/
http://www.worldbank.org/
http://data.worldbank.org/

