
 1

Academic Building Electronic Map (ABEM)
Zhao, xianrong (xzhao@ust.hk)

1. Background
Academic Building Electronic Map (ABEM) is a program I developed as my independent
project, for the MSc (IT) at HKUST, which was under supervision of Professor David
Rossiter.
ABEM is a web-based system for people to get more information about the academic
building. Compared with the old Academic building map, I make some improvement on it
and help people know more about HKUST. Via this map you can:

 Have better user experience
 Search the room and the nearest lift
 Look through the academic building
 Get more information of the Lift, office and theater

2. Structure

2.1 Overview
ABEM is a web-based system. Client side consists of .net widget, Google map and
canvas. Especially Google map and Canvas are major of the user page. In order to
provide better user experience, the user page load data from the server side by AJAX via
JSON format.
On the other hand, Server side is based on .net 3.0, which controls the data management,
access validation and Exception catch by C#. I use Access as my database. Details are
shown below (Figure 1):

Figure 1

DB
(Access)

Google Map 3D map

Access
Validation

.Net widgetClient Side

Server Side

Load Data by AJAX Load by html

Data
Managemen

Exception

catch

 2

2.1 Google Map
2.1.1 Component introduction
Google map plays an important role in the system. It shows us the outline of the academic
building. It mainly has four components, there are Marker, information window, path and
overlay area.

Name Class/Function Image Use

A. Marker GMarkers
Location of the lift,

theater, office and so on.

B.

Information

window

GInfoWindow

Show information of lift,

theater, office and so on.

C. Polyline GPolyline

A series of straight

segments on the map.

(path)

D. Overlay

area

GPolygons/

GGroundOverlay

Make the map look more

realistic

2.1.2 Improvement for path
The polyline object within a Google map denotes a line as a series of points, making it
easy to use but not necessarily compact. Long and complicated lines require a fair
amount of memory, and often may take longer to draw.
As result, I use encoded polylines, which specify a series of points using a compressed
format of ASCII characters. It makes our path draw much more efficiently. The algorithm is
shown below:

Figure 2

Initial value
174

Multiply by 1e5,
if have decimal value

Break the binary value out into 5-bit chunks
101 01110 (start from right)

Convert the decimal value to binary.
10101110

OR each value with 0x20
if another bit chunk follows

101110 00101

Convert to decimal
46 5

Add 63 to each
109 68

reverse order
01110 101

Convert to ASCII
mD

 3

By the help of path code algorithm, I build a path code generator for create path for lift.
Details will be introduced in User guide section.

2.2 3D Map
2.2.1 Introduction
3D Map is a pseudo-3D scene that helps us look through the academic building. It base
on canvas which is element of HTML5.
In the coming paragraph, I'll deconstruct the 3D map and go through the details of how to
create pseudo-3D map. I say pseudo-3D because what we're essentially creating is a 2D
map that we can make appear 3D by as long as we restrict how the player is able to view
the world.
2.2.2 The map and Control
The first thing we need is a map format. One easy way to store this data is in an array of
arrays. (Basically, 1 for wall and 0 for road) The wall type will be used later to determine
which texture to render. (Figure 3)
Meanwhile, we need to bind the arrow keys to control the movement and detect the
collision of wall (map[newx][newy]==1).
switch (window.event){
 case 65:case 37: break; // left
 case 87: case 38: break; // up
 case 68: case 39: break; // right
 case 83: case 40: break;// down
 }

Figure 3

 4

2.2.3 The Ray-Casting Algorithm
Now we can begin moving to 3D. Ray-Casting algorithm is the key part of it. In order to
make the calculation simple, I set some default value in my system.

 field of view is 60 degrees
 the play is half of the wall height
 walls are always at 90 angles with the floor

To understand Ray-Casting, imagine rays being shot or "cast" out from the viewer in all
directions within their field of view. When the ray hits a block (by intersecting one of its
walls), we know which block/wall on the map should be displayed in that direction. For
example, ray-casting transforms something like A into B in Figure 4 below.

Figure 4

The tricky part here is how to find the corner of the wall and we need to use this precious
data to build the 3D map.

First of all, to find out all such corner, we can simply trace several rays starting from left
to right. This can be done in a loop.

Then, we begin to detect each rays, steps of calculation is below: (Figure 5)
 Find coordinate of the first

intersection (point A in this example)
 Increase the line PA and check the

end point. If there is a wall, stop and
calculate the distance. If there is no
wall, extend to the next point until
there is a wall.

 Calculate newDy =PD.sinA
(because the previous wall is
Horizontal, if the previous wall is
vertical then we calculate the
newDx)

 If newDy != oldDy, then it means
that we meet an corner and we write
down the data, esle we increase the
angle and go back to step1.

Figure 5

Finally, after we calculate all the rays, we get a series of data about the wall (start point,

 5

start point height, end point, end point height). As result, we can build the 3D map
easily by this data as Figure 6 below.

Figure 6

2.2.4 Add something interest
The general step of 3D map has been completed. Because the canvas is a native element
of html5, it can be control by JavaScript easily. We can something interest, such as a
moving person, reminder of location and so on. (Figure 7)

Figure 7

2.2.5 Texture
In 2.2.3 we use ray-casting algorithm to build the wall,
but we only draw the wall by fill with gradient color. We
can fill the wall with images to make it look more
realistic.
The idea is similar with 2.2.3, we use ray-casting
algorithm to get view field data, but we don’t write
down the corner only, we need to write down all rays.
Assume that our view field is 400 pixels and we divide
it into 200 pieces, each piece is one Image and it is

 6

calculate from the rays by ray-casting algorithm. (Figure 8) Figure 8
We should notice that the image must tileable in x axis. Result is below. (Figure 9) It
shows the Lift texture (A) and the door texture (B).

Figure 9

2.3 Ajax
In order to provide better user experience, I add AJAX technology in the home page. It
includes two parts:
1. Auto complete

It provides the front-end logic for text-entry suggestion and completion functionality.
We can see the example in Figure 8.A.

2. Load room data.
By the help of Firebug, we can see the remote data from server after we press the
search button. (Figure 8.B) Then we can get the room information without refresh
the page.

A B

Figure 8

A B

 7

3 User Guide

3.1 Overview
The figure below shows the outline of Academic Building Electronic Map. There are two
pages (the user page and the data management page) now. The structures of these two
pages are similar. They include the header, Google map and the control panel.

Figure 9

Name illustrate

Header
It includes the title of the system and the tab page. When your
mouse moves over the tab page, it kindly turns red to indicate you
that you can click it and you will reach the other page.

Google map
We can get the outline of the academic building. It shows your
current position, Lift/Theater position, Lift path, Lift coordinate and
helps us create new item of the academic building.

Control panel
It is quite different between these two pages. I’ll go through these
two pages.

3.2 The home page
3.2.1 Show Lift Information
In the home page, there are several lift buttons at the top of control panel. After you click
one (Figure 10.A), the details information of the lift will show of the Google map, including
name, path and others. (Figure 10.B)

Figure10

 8

3.2.2 Search room
Below the lift buttons, there is the Search panel. It provides the front-end logic for
text-entry suggestion and completion functionality. (Figure 11.A) After we press the search
button, the loading logo will show to remind us the data is loading. Immediately, the data
come from the server, the information board shows the nearest lift and the Google map
shows the path. If there is enough data, we can see the 3D map. (Figure 11.B)

Figure 11

3.2.3 3D map
3D map (Figure 11.C) is at the bottom of the control panel. It helps us to go to the room
easily. At the right side, we can see the start point and destination. Off course, we can
control the player by arrow keys and the information board shows our status.

3.3 The data management page

 9

Figure 12

3.3.1 Lift Data Table
Lift Data table (Figure 12.A) is at the top of the control panel. It shows all data of the lifts
and kindly corresponds with the mouse movement. After we click one row of the data, this
lift data will show in the data editor for your operation.
3.3.1 Lift Data Editor
This editor (Figure 12.B) helps us to management the data by new, edit, delete operation.
By the help of the Google map and path code generator, we can change the coordinate
and the path code easily.
3.3.2 Path Code generator
Path code generator (Figure 12.C) turns the points into ASCII immediately. What we need
to do is click the points of the path and add them into the points list. (Figure 13)

 Choose a point in the Google map, the latitude and longitude show on Figure
13.A

 We can press “change” button to update the lift position or press “AddPath”
button to add it to the point list. (Generate path code immediately)

 The point list add the current point by default, we can delete a point by double
click it. After we choose the point, we can press “AddEndPoint” button to add the
lift coordinate to finish the path. The figure below shows the process.

Figure 13

 10

4. Reference
1. Ray-Casting Tutorial, F.Permadi, link, 2005
2. Google map API link

5. Appendix
Academic Building Electronic Map is implemented in Visual C++ 2008 (asp.net 3.0) and
Access database.
It’s strongly Recommend that you run the 3D canvas map in Chrome, Opera and Firefox.
You may have bad experience in IE.

