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Abstract

This project focus on creating a visualization application written in Processing, which takes
in MIDI signals from the controllers of a DJ set, turns them into certain visual patterns and
is shown to the audience via a projector. A DJ can, through this application, be able to mix
audio and produce visual effects simultaneously during a live performance. The project aims
to produce visualizations that dynamically resembles the audio that is being played, while at
the same time is aesthetically pleasing to watch. This report covers the devices and software
used in visual generation, the ideas and actual implementation of the visual application, as
well as a demonstration of the result of this project via a video.
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1. Overview

Visual performances are a popular addition to DJ performances, found in concerts and clubs.
Traditionally, the DJ is responsible for mixing the audio together from existing songs, music
works, or small clips of music; then certain visual effects are manipulated and put together in
synchronization with the music. The latter job is separately handled by a VJ (video jockey).

This project aims to combine the two into one, by designing a visual application that would
react to MIDI signals produced from a DJ set. The visuals are produced in real-time using
Processing 3, a programming language-IDE combination based on Java that are primarily
designed for artists to create visual works. The visualizing application should be able to react
to incoming signals, provide an appropriate visualization, which is projected onto a surface.
In other words, the DJ is capable of mixing music and producing visual effects at the same
time, of which both are controlled by the same set of controls.

Ideally speaking, the visualization tool should be able to match the sounds that are being
played. This project explores one such visualization scheme as well as the related calculations
required to produce it.

2. Methodology
2.1 Structure

The whole setup includes two computers: the DJ-side computer and the visual-side computer.
The visual-side computer is responsible for running the main visualization application and
projecting it towards a screen.

The connections between the two computers and various devices / software packages are
shown in Figure 1.

2.2 Workflow

The workflow of the project starts from the music input, which consists of multiple MIDI
devices incoming from the DJ set. These signals are then transmitted to the visual-side
computer via an Ethernet connection.

The visualization program actively intercepts such signals and generates the visualization
graphics accordingly. In this project, the concept of “waves” are explored such that there
are 7 separate waves drawn in a 3D wireframe style. These waves are mapped to 7 set of
controls on the DJ side, such that the waves’s motion (height, color etc.) can be controlled
independently. Since the DJ uses the same set of controls for his own music and audio mixing,
the goal is to achieve a mapping between the “waves” shown and the audio played. To further
add to the visual effect, we further experimented on changing the tone and tempo of the
mixed music by reflecting them in the background objects of the “waves”, as well as changes
in camera angles.
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Figure 1: The structure of different devices and softwares

Lastly, the visualizer exports the output graphics towards the projection software. This is
performed on a regular basis during run-time, in order to be used for live performances. The
projection software sends the graphics received onto a projector via HDMI, producing the
end result.

2.3 DJ-side setup

The DJ-side setup is mostly independent from this project; a regular laptop with DJ software
connected to multiple MIDI controllers will suffice. The only additional requirement is an
Ethernet connection, and software to send the MIDI signals to the other side.

In this project, we used the CopperLan networking framework, which allow creating “virtual
MIDI cables” via Ethernet connections. We connected two MIDI controllers into the VMIDI
3 virutal input port of the visual-side computer.

The controllers used are:

« Novation Launch Control XL (abreviated as LCXL hereafter)
« MIDI Fighter 3D (MF3D)

The DJ-side computer is a Macbook Pro connected to the above controllers. Serato DJ is
used for producing and mixing audio.

Figure 2 shows the two controllers used in this project. In the LCXL, there are 8 columns of
sliders and buttons; each of the first to seventh column is used to control a specific “wave”
whereas the eighth column is for controlling movement of the overall visual. 6 out of the



8 knobs in the second-topmost row are also mapped. These are covered in more depth in
sections 2.5 and 2.6.
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Figure 2: Controllers used in this project

2.4 Receiving input

The visual-side computer also requires CopperLan to be installed to receive the MIDI signals
sent over. The visualizer application is programmed in Processing, where I used the MidiBus
library so that an input signal from VMIDI 3 will trigger handler methods in the program, as
shown below:

void noteOn(int channel, int pitch, int velocity);
void controllerChange(int channel, int number, int value);

The MIDI protocol is able to identify two types of input controls: buttons and faders.
Pressing down a button will trigger the noteOn handler, where channel and pitch gives a
unique combination for each button.

The fader, on the other hand, represents an analog input and triggers the controllerChange
handler. This is either a knob or a slider on the LCXL. channel and number again identifies
the fader that is changed, whereas value represents the value of the fader from 0 to 127.

2.5 Waves visualization

The visualization is based on a large triangular “mesh”, which is 125 triangles wide and 60
triangles long. Each vertex on this mesh has various properties associated with it, most



importantly the height. By changing the height of individual vertices, the “waves” can be
visualized.

There are 7 waves controlled by the left seven buttons at the 2nd bottom row of the LCXL.
The waves will appear at defined positions on the mesh, forming a hexagon pattern. Pressing
the button once will cause the visualizer to create a wave in the corresponding position every
4 seconds; at the same time, the DJ software will also produce a note at the same interval.
Thus, the DJ can initiate a pattern of audio notes and visual waves by pressing the buttons
at the correct time. This pattern can be changed as the performance progresses. Pressing
the button for a second time will turn off the corresponding wave.

The height of a given wave is calculated by a sine curve with exponential decay:

r i
h(z,t) = Ae ™ sin(27(= — -))
f v
This is a function of x, the Cartesian distance of the vertex with the center of the wave; and
t, the time elapsed after a wave is triggered, so that the wave will spread out as time passes.

Figure 3: h(z,t) at three values for ¢

A is the amplitude of the wave, denoting its highest point. This is controlled by the sliders
above the buttons; each slider corresponds to the height of a wave. The same slider also
changes the color of the tip of the wave.



The other parameters are fixed and do not change according to MIDI input. They are A, the
extent of decay in height as the wave spreads out; f, the frequency of the wave; and v, how
fast the wave moves out. Lastly, we only visualize one cycle of a wave or else the visualizer
would look like a ripple tank. This is done by substituting h(x,t) with 0 if the distance x is
outside its correct range.

Figure 3 shows the general shape of the h(x,t) function for three points in time. The y-axis
(x = 0) is the center of the wave, and since z is the absolute distance, values for = < 0 are
not shown. As time progresses the curve is translated to the right, and the wave spreads out.
Note that in the visualizer, all parts of this curve except for one wavelength-long of wave is
trimmed, so there will be at most one peak and trough at each given time.

In the DJ software, there is also a fader that adds an echo effect to the sounds produced,
as well as changing its tone to a deeper sound. In the visualizer, I decided that this will
make the waves drop to a deeper level, so that it now resembles rocks dropped into water,
attempting to match the sounds played. This is done by multiplying h(z,t) by a multiplier p
when h(x,t) < 0, i.e. the vertex is pulled down. The value of p can range from 1 to 2 based
on the fader value.
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Figure 4: Waves without (left) and with (right) being drawn deeper

2.6 Other visualizations

We also attempted other visualizations that affect the overall presentation.

One can notice that there are 8 sets of sliders and buttons in LCXL. While the 7 sets to the
left are used for controlling the timing of waves and their height, the rightmost set is used to
control the movement of the whole triangular mesh. To give the mesh a randomized, organic
feeling, the heights of the individual points are randomized. However, pure randomization
with make the mesh look spiked and eccentric. Hence, I used the noise(x, y) native method
found in Processing, which generates Perlin noise such that adjacent points will not differ in
height significantly. This gives the feeling of natural landscape / terrain.
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Furthermore, noise() always return the same value when x and y is fixed. With this in
mind, I have added an offset value to y (the front-back axis). This offset can be increased as
time progresses, giving the illusion of the terrain moving forwards.

The mesh is stationary when the visualizer is initialized. When the 8th button is pressed,
the mesh moves forward, increasing the feeling of a flying terrain with waves superimposed
onto it. The 8th slider then controls the speed that the terrain moving (i.e. how much the
offset in y is increased per animation frame). When the 8th button is pressed for a second
time, the terrain stops moving again.

Other visualizations include:

o The main camera angle, from looking at the waves from the side to a birds-eye view of
the waves.

o Tilts in camera angle, using buttons in MF3D

e The lighting of the whole mesh.

o An overlay pattern onto the mesh, which gives the illusion of the mesh forming into a
3D cube pattern.

e The background color. It changes to bright red to match with the change of tone in
audio.

2.7 Projection

The projection is done using Resolume Arena 5. To transfer the Processing visualization into
Arena, Spout, a real-time video sharing framework, is used. In the visualizer, the Spout library
for Processing is imported and each frame is sent out. The Spout plugin in Arena is setup
to receive these frames, and project them using the projector connected to the visual-side
computer’s HDMI port.

3. Demonstration

The following demo video shows the various functionalities implemented in the visualization
application. The screen to the right shows Allan playing the music in real-time using the
LCXL and MF3D controllers; the screen to the left is the visualization projected onto a wall
in the Off Limits Studio.

https://www.youtube.com/watch?v=thf3bprqSQY
This demonstration can be separated into 3 stages:

o The first part starts from a side view, with a basic pattern of waves and notes played
repeatedly. The height of the “terrain” is gradually increased, which after some time
starts to flow and advance towards the viewer’s direction. This culminates in violent
shaking of the camera angle (by quickly alternating buttons on the MF3D side), which
is matched with a rattling sound. The agitated motion continues for a while and dies
down to the original simpler pattern.



o The second part begins with a change in wave looping pattern, followed by the deepening
of the tone of notes. The waves can be seen as dropping significantly deeper below the
surface compared with before. The background is turned to bright red, contrasting with
the monotonic white waves. The camera raises to view the waves at an angle above.

o The last stage is indicated by the edges turning dark and a cube pattern takes over the
mesh. This is followed by a new pattern, pressing the 7 wave buttons at the same time
such that the waves appear together forming a hexagonal pattern. The background
returns to black and the camera-rattling effect is shown again in the ending.

4. Conclusion

This project focuses on combining visual effects with a DJ live performance, by taking in
MIDI signals from the controllers and drawing with Processing in real time. The result is a
visualization tool based on the concept of superimposed waves and organic flow meshes, which
changes in shape and color through various calculations over time, which can be projected
onto a flat surface via a projector.

The biggest limitation comes from the large amount of vertices in this visualization model.
Originally it was planned to introduce multiple layers of the mesh stacked on top of each
layer, but doing so gives a reduction in fps and overall response. This is possibly caused by
the continuous exporting of video data to the projection software.

A future possible area of improvement is to map the projection over a 3D object. It is
known that Resolume Arena allows slicing the video output into separate parts, which can
be distorted and mapped towards the sides of real 3D objects. There are numerous existing
examples of ready-made visual performances projected on building services, so it would be a
truly interesting idea to do the same to DJ real-time performances as well.
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