

Hong Kong University of Science & Technology

DisPlay: Mitigating Heavy-duty Networking
Latency and Error through Cross-platform
Multithreaded Channel Coding and Media
Compression
25th Anniversary Project Supervised by Dr. David Rossiter

IWASAKI, Kenta
5-12-2016

1

1 TABLE OF CONTENTS

2 Introduction .. 2

3 Breath of Development .. 2

4 Threading Management .. 4

5 Computer Networking .. 5

6 Frame Grabbing Techniques .. 7

7 Image Stream Compression ... 7

8 Limitations & Improvements ... 8

9 References .. 9

2

2 INTRODUCTION

A substantial percentage of people in the world have a modern smart phone and/or a tablet.
Many people have 2 or 3 such devices. However, there is currently a huge wasted opportunity
for these devices to work together with each other. For example, why can't a group of students
put their devices close to each other in a two by two arrangement and watch a YouTube video
together, with a quarter of the video being shown on each device? On a larger scale, an 80 inch
monitor may cost in the region of HK$80,000. Yet by using smart devices in conjunction with
each other the cost of an equivalent system would be a fraction of the price and can be used in
multiple innovative ways which a flat 2D display cannot.

As a result, we would like to introduce the system DisPlay which would provide such a function
to its users to simplify the interconnectivity of multiple device’s screens for the sake of
convenience.

3 BREATH OF DEVELOPMENT

For the length of this project creation and implementation, the prime goal for the project was to
complete the one-to-N implementation for DisPlay as denoted below and in Figure 1:

“In this mode the display of 1 individual device is shown on devices. There are multiple
applications where this can be of great benefit. For example, in a classroom environment a
teacher may project the display of his device directly to the display of all students' devices, to
help with tutoring. This could have direct cost benefits. For example, a school or University
would not need to purchase a large display device for each classroom such as a large monitor
or projector, as is typically the case now.”

Figure 1: A demonstration of the one-to-N mode where multiple students are capable of
seeing the screen of the teacher on their own device.

3

The one-to-N implementation is to be capable of providing a frame of reference of one device
and transmit it to N amount of devices through a series of computer networking, operating
system, and graphics techniques.

For the sake of this implementation, Java and the cross-platform OpenGL-based framework
LibGDX was used primarily because of its capabilities in accessing device-centric sensors such
as the accelerometer and gyroscope [4]. With the incorporation of these sensors, the project is
capable of providing a sleeker human experience given that angle & position of the device’s
viewport is incorporated when it comes towards screen frame projection calculations.

Although the combination of these sensors alongside other sensors may yield greater accuracy
in the system’s display attunements, it comes at the cost of lack of cross-compatibility which is
why we chose the most commonly incorporated sensors within a smart phone/tablet device
nowadays being the accelerometer and gyroscope.

The network implementation for the entire project was done with LibGDX’s cross-platform TCP
sockets as well, with the majority of image streaming/buffer operations done through LibGDX’s
thread-safe data structure implementations [4] as shown in Figure 2.

4

Figure 2: Implementation for the screen image data buffer receiver and handler through a
TCP network socket.

4 THREADING MANAGEMENT

Networking and GUI handling on each client node is done in separate threads as shown in
Figure 3, and a synchronized thread lock is used to pass data between intermittent threads. As
for the image processing server medium, each TCP client is socket is managed under one
emulated thread instance.

This is done to ensure that lag or any blocking of the networking thread does not affect the
user’s performance in any way when it comes towards viewing a projected device screen buffer
[2]. If the networking were to be done within the same thread context as the GUI rendering, any
latencies due to overloading on the network buffer in real-time would cause the GUI’s OpenGL
context to potentially lag, or even crash given that OpenGL is native and directly holding access
to an operating system’s display drivers.

Figure 3: Creation of separate threads for the networking and graphics rendering of
DisPlay.

The networking for both server and client node is processed through a buffered input stream
which decodes all received bytes through the UTF-8 character set due to its cross-compatibility
with many modern-day device operating systems as shown in Figure 4. Without the buffering of
the network I/O streams, data that has not been processed fast enough would be discarded by
the operating system’s native network buffer as soon as new data is sent/received. Given the
fact that the system is expected to run with no visible latency in real-time, such performance
would be unacceptable and hence why multi-threading is used.

5

Figure 4: Implementation of Buffered I/O Network Streams.

5 COMPUTER NETWORKING

In order to transmit the frame of reference of one device, each frame is compressed as a PNG
and is transmitted through a TCP protocol encoded with variable length number of parity bits [1]
for the sake of ensured information integrity [3]. The entire network comprises of a series of
client nodes, which connects to a server medium hosted on HKUSTs clusters that manages the
image processing and encoding of frames from either sides of the nodes. Client nodes which
broadcast images/frames accordingly both display and enable other client nodes to receive and
display frames of the respective client node’s device through the function shown in Figure 5.

Figure 5: Implementation of the packet transmitter for multiple client nodes of screen
buffer image data.

Hence, all client nodes are capable of being run as either a master or slave when it comes
towards reference frames transmission, display, and sharing, though only the first client node
shall have priority in terms of screen/device sharing.

6

The reason for choosing such a network architecture is due to two main necessities of the
system:

1. An user receiving network data can at any time choose to be the host of the system
which is the person that presents their screens to a number of users, and

2. The loss of connection of one node can be compensated through the receiving of screen
buffer data from another node.

Through the implementation of such a system, P2P network integrity can be reinforced and thus
users can ensure that they will have a display of the screen with the smallest latency possible
[3].

In order to manage a minimal screen buffer size for each client node, a Ping-Pong-based packet
infrastructure3 is implemented which contains information of each client node device’s screen
size alongside possible inset sizes for the sake of proper rendering of a device’s referenced
screen buffer frame as shown in Figure 6. Having a Ping-Pong-based packet infrastructure also
allows the system to identify potentially dead/disconnected nodes within the network system.

7

Figure 6: Network Packet Handler for client-nodes within the system.

6 FRAME GRABBING TECHNIQUES

To account for multiple operating systems and devices, the entire program was done in Java as
it contains standard libraries for cross-platform device screen frame grabbing in a multitude of
image formats. Java’s AWT Robot was used for frame grabbing, and is thereafter sent to the
image processing server for quality control and compression of the entire image stream for the
entire network of clients.

In order to implement screen grabbing operations on mobile devices, interface proxies were
created so that a wide scope of operating systems may have their own screen buffer collector
implementations [4]. For the scope of this project, an Android and Desktop proxy
implementation was done for demonstration purposes as shown in Figure 7. Providing interface
proxies also allows for other programmers to incorporate DisPlay as an alternative display
medium for their own hardware-based systems running on a variety of firmwares.

All proxy implementations provide a byte buffer consisting of the image bytes encoded as 16-bit
RGB integers, which is thereafter sent to the mediating image processing server.

Figure 7: Desktop proxy implementation for screen buffer image capture.

7 IMAGE STREAM COMPRESSION

In order to minimize the amount of bits sent throughout the stream to minimize bandwidth usage,
the image processing server medium which is programmed in Java manually handles a
screenshot image buffer for each client which keeps track of broadcasted image bytes [2]. A
simple yet timely XOR operation is applied per image pixel throughout every server tick
encoded as 16-bit RGB integers to determine necessary image sectors to update on every
client node’s display for the sake of mitigating latency after the receiving of the initial screen
buffer image frame.

8

Inclusion of image compression methods from the Java standard library toolkit is done [3] when
a given image buffer’s size is deemed far too large after base image protocol compression as
shown in Figure 8. The compression method works through the nearest-neighbors method and
reduces the amount of bits taken by a given image to minimalize the size of each screen buffer
image. Reduction of the resolution of the screen image is also done to minimize bandwidth
consumage.

Figure 8: JPEG Stream Compression for Received Image Buffer Data

This approach was taken to reduce a typical 1920x1080 laptop/Android smartphone screen
buffer data with a pixel density of 32-bits ranging approximately ~1.86mb to ~1.26mb. After the
reduction of image resolution from 1920x1080 to 640x480 which is suitable on a number of
devices, the data reduced to a size of ~148kb which is suitable for many consumers network
bandwidth usage.

8 LIMITATIONS & IMPROVEMENTS

Although the majority of the one-to-N implementation has been completed, several more work
needs to be done in terms of reducing the amount of bandwidth consumed per image
transmitted. The inclusion of better methods to approximately determine changed pixel regions
as done in commercial screen sharing software can be incorporated to improve the project’s
present bandwidth consumption which spans to approximately 56kb per screenshot as of now.

Better implementations of screen frame buffer grabbing would also speed up performance by a
lot and keep it up to optimal commercial performance, which will require more native-centric
implementations of screen buffer grabbing straight from the operating system’s set of kernel

9

commands themselves. An alternative approach to the XOR Gate for the determination of
screen buffer image regions which need to be updated can be taken in order to improve user
experience through mitigating latency.

Cross-platform proxy implementations of the screen buffer grabber need to be implemented on
several other operating systems given that the system is only implemented on the Desktop and
Android at the moment.

9 REFERENCES

[1] Boutell, Thomas. "PNG (Portable Network Graphics) Specification Version 1.0." (1997).

[2] Kay, Jonathan, and Joseph Pasquale. "The importance of non-data touching processing overheads in
TCP/IP." ACM SIGCOMM Computer Communication Review. Vol. 23. No. 4. ACM, 1993.

[3] Jolitz, William Frederick, Matthew Todd Lawson, and Lynne Greer Jolitz. "TCP/IP network accelerator
system and method which identifies classes of packet traffic for predictable protocols." U.S. Patent No.
6,173,333. 9 Jan. 2001.

[4] Zechner, M. "LibGDX documentation initiative." Online]. Tillgänglig pa: http://www. badlogicgames.
com/wordpress (2012).

