
	 	 COMP4971C	
	

	 1	

COMP4971C – Independent Studies Report

A Smart Display System – Meta Display Implementation

Student:

Wicaksana, Jeffry

Advisor:
Prof. David Rossiter

	 	 COMP4971C	
	

	 2	

Table of Contents

1. Introduction .. 3
1.1 Overview .. 3

1.2 Project Outline ... 3

1.3 Goals and Impact .. 5

2. Implementation and Result .. 7
2.1 Meta Display .. 7

2.2 Implementation .. 8

3. Limitations and Improvements .. 11
3.1 Limitations ... 2

3.2 Improvements ... 2

4. References ... 12

5. Appendix .. 13

List of Figures:
Image 1.2.1 Example of one usage in our project ... 4

Image 2.1 2 Different orientation of tablet for the Globe example 7
Image 2.1 1 Globe example .. 7

Image 2.1 3 Eye examples with different smart devices orientation – Starting
Position .. 8

Image 2.1 4 Eye examples with different smart devices orientation – When doing
rotation ... 8

	 	 COMP4971C	
	

	 3	

1. Introduction

1.1 Overview

A substantial percentage of people in the world have a modern smart phone and/or
a tablet. Many people have 2 or 3 such devices. However, there is currently a huge
wasted opportunity for these devices to work together with each other. Why can’t a

group of students put their devices close to each other in a 2*2 arrangement and
watch a YouTube video together, with a quarter of the video being shown on each

device? On a larger scale, a large 80-inch monitor may cost in the region of
HK$80,000 [1]. Yet by using smart devices which are already cheap and in abundance

in conjunction with each other the cost of an equivalent system would be a fraction
of the price and can be used in multiple innovative ways which a flat 2D display

cannot.

1.2 Project Outline

We envisage the following modes for the proposed Smart Display System. It should
be noted that when we refer to ‘display’ both image and audio are included.

Essentially, whatever is being displayed on the source device is transmitted. For
example, this might be a video currently being played by the user, a game, a browser

being used to read email or a web site such as Facebook, and anything else an
individual device is typically used to display.

1. Simple display broadcast. In this mode the display of 1 individual device is

shown on n devices. This are multiple applications where this can be of great

benefit. For example, in a classroom environment a teacher may project the
display of his device directly to the display of all students’ devices, to help with
tutoring. This could have direct cost benefits. For example, a school or

University would not need to purchase a large display device for each
classroom such as a large monitor or projector, as is typically the case now.

2. Multiple device monitoring. In this mode the displays of n devices are shown

on 1 device. To continue the illustration of a training environment, a teacher

	 	 COMP4971C	
	

	 4	

could use this feature to see the activity of any or all students while they work
on a particular project using their own devices, and offer advice accordingly.

Similarly, members of a group project can see exactly what other members
are doing, which is be of great benefit as they work together.

3. Multiple device display in aggregate of one display, in 2D. In this mode the

image from 1 device is displayed on n devices, treating the n devices as ‘virtual

windows’ into part of the display. The result is that the whole display is visible

when all devices are viewed together. A simple illustrative figure is given below,
using a 2D treatment. In our proposed Smart Display System the devices can

be physically organized in any creative and interesting way, making their
usefulness far greater than would be the case if a fixed row of identical devices

was used. This applies to businesses as well as individuals using the system.
For example, an advertising business can use a creative array of varying size

devices in a varying set of angles and distances from each other, but when
viewed together give the appearance of small windows into a single display.

This would be highly innovative, attractive and attention grabbing, not to
mention highly affordable compared to the very high cost of comparable large

screen displays.

Image 1.2. 1 Example of one usage in our project

	 	 COMP4971C	
	

	 5	

4. Multiple device display in aggregate of one display, in 3D. This mode

extends the previously described 2D display mode by dynamically altering the
image shown on any of the output devices being used in aggregate such that,

simply speaking, the angle of the device in the third dimension is used to
appropriately transform the image displayed on the device. The result is that a
viewer at a specific position perceives each individual device as correctly

contributing to the display in aggregate, regardless of the 3D orientation of any
device. This means that the Smart Display System can be used for even more

creative output displays than those provided by the 2D mode alone. For
example, some or all of the display devices being used in aggregate can be

rotated in 3D in a shop display system for an even more remarkable result.

In this report, writer will mainly focus on implementing the third capability of Smart
Display and work on the smart display called by meta display, to provide users with

similar experience from multiple angles and point of views without having to worry
about the location of their tablets and devices. Mostly implementation of Meta-

Display can be shown for commercial use.

A database will need to be compiled containing the relevant details for a range of
different electronic gadgets. Noted attributes will include the speed of the devices

and the screen size. This data is needed for accurate display by each individual
device as part of the set. Devices will communicate via any appropriate channel, such

as Wi-Fi or high speed Internet.

1.3 Goals and Impact

Our project aims to transform the way people use their gadgets from individual smart
device usage to multiple units working together, supporting a huge range of

applications, and with no additional hardware cost. This idea will be of benefit to
many millions of individuals and companies around the world which use display

devices.

	 	 COMP4971C	
	

	 6	

Our Smart Display System will also potentially give a new lease of life for older smart
devices which would otherwise lie unused or be dumped, as these devices can be

used as part of the multiple display system. In this way our system significantly
benefits the environment by extending the life of smart devices.

There are multiple opportunities for collaboration. For example, a target customer

base is large advertising companies in need of creative, novel and affordable
advertising mechanisms.

	 	 COMP4971C	
	

	 7	

2. Implementation and Result

2.1 Meta Display

Meta display is one of the feature of Smart Display system where object shown or
displayed from a smart device will always be seen in the same size and same

orientation no matter where the viewer’s eyes are located. For instance, the whatever
the orientation of the tablet below is, it should still be showing image of globes of

picture facing toward the same way. Instead of being rotated accordingly to the
tablet.

Besides that, multiple devices can synchronize altogether to show something, for

example pair of eye that can always be seen ‘the same’ no matter how the smart
devices in being oriented. For this case, size of the image will change accordingly to

compensate humans’ eye weaknesses while analyzing and seeing object. In the
example below, I tried to keep the size of the eyeball to be the same from humans’

perspective of viewing the display.

Image	2.1	1	Globe	example Image	2.1	2	Different	orientation	of	tablet	for	the	Globe	
example

	 	 COMP4971C	
	

	 8	

Image 2.1 3 Eye examples with different smart devices orientation – Starting Position

Image 2.1 4 Eye examples with different smart devices orientation – When doing rotation

2.2 Implementation

In order to implement this system, android app programming need to be done and in
this project I am using well-known library for game developing called as LibGDX since

with this library I do not have to change the code completely to implement the same
thing in the IOS. Flow-chart for creating the code for creating the meta-display system

can be seen below:

	 	 COMP4971C	
	

	 9	

2.2.1 Mathematical Approach

First of all, I will explain about the mathematical Approach. In order to keep the image

transformation, correct I have to process the pitch, yaw, and roll [2] data of the phone
in three dimensional aspects. Besides that, current position of the phone needs to be

considered as well since the rotation in either x, y, z axis will be different if the phone
lies on different plane, for instance XY and YZ plane. In order to determine the

transformation matrix and value, trial and error method is used for this project.
Circular interpolation also has to be done to compensate the noise generated by the

sensor inside the smart devices. Moreover, the image has to be resized according
with the orientation of the phone as well in order to ensure that it is perceptually

correct. In order to do so, I label the starting position with scaling factor 1 and the
scaling factor on that axis value will increase to X value linearly, in this app I use 5,

when the phone is rotated, with 180 degrees as the max value increment.

2.2.2 Programming the App

After analyzing the whole mathematical transformation, the app for devices are made

and installed. Java is the main compiler for the app and android is the smart devices

Human	Testing

Verify	the	system	through	trial	and	error	 Make	sure	the	viewer can	see	that	the	
image	transform	is	done	correctly

Program the	app

Use	Java	to	make the		android	App Install the	APK	to	android

Mathematical Approach

Calculations on	how	to	transform	the	
object	

Calculations	on	how	to	resize	the	object	
according	to	the	phone position

	 	 COMP4971C	
	

	 10	

being used. However, the main problem is different phone will subject the app to
work differently so in that sense, human testing will be the major factor in determining

the scale, value and rotation matrix.

2.2.3 Human Testing

Throughout each iteration and installation process, human testing needs to be done

so that I can see whether the transform is not only mathematically correct but also
perceptually correct. After doing the human testing, revision for the mathematical

approach will be done again if it is not perceptually correct. This process keeps on
looping until it finally seems alright and acceptable.

	 	 COMP4971C	
	

	 11	

3. Limitations and Improvements
3.1 Limitations

Several limitations I faced in these project can be described as following:
1. Every smart device used has low tolerance against noise so the data reading

of yaw, pitch, and roll may not be accurate.
2. Transformation matrix required a bit more complex mathematical approach

but it is still not implemented yet.
3. For the human testing, constant rotation needs to be tested while rotating the

smart devices in order to actually judge whether or not the view is perceptually
correct but I do not have that in house.

3.2 Improvements

For the future development of this project, several things can be done:

1. Either buying new smart devices that has higher resistance toward noise to
make sure the reading is correct or by implementing some kind of data filtering,

such as Kalman Filter to keep the reading stable.
2. Implementing higher level mathematical transformation calculation to make

sure that the image will be perceptually correct seen from different point and
angles.

	 	 COMP4971C	
	

	 12	

4. Reference
[1]"Electronics - Televisions | HK Free Classifieds | AsiaXPAT.com",
Hongkong.asiaxpat.com, 2016. [Online]. Available:

http://hongkong.asiaxpat.com/classifieds/televisions/. [Accessed: 13- May- 2016].

[2]"Inertial measurement unit", Wikipedia, 2016. [Online]. Available:

https://en.wikipedia.org/wiki/Inertial_measurement_unit. [Accessed: 13- May- 2016].

	 	 COMP4971C	
	

	 13	

5. Appendix

public class MyGdxGame extends ApplicationAdapter {
 DecalBatch batch;

 SpriteBatch spriteBatch;
 Decal img;
 Decal img2;

 Decal img3;
 Decal img_temp;

 private BitmapFont font;
 public PerspectiveCamera cam;

 // New
 private Stage stage;

 private Table table;
 // New

 Vector3 target = Vector3.Zero;

 float deltaAngleX = 1.1f;

 float deltaAngleY = 1.9f;

 float current_x = 0f;

 float current_y = 0f;
 float z_callibration = 0f;

 float y_callibration = 0f;
 float x_callibration = 0f;

 float current_z = 0f;
 private OrthographicCamera chumbucket;

 int count =0;
 int count_img =0;

 Button resetbutton;

 @Override
 public void create() {

 Gdx.gl.glEnable(GL20.GL_DEPTH_TEST);
 Gdx.gl.glDepthFunc(GL20.GL_LESS);

 cam = new PerspectiveCamera(45, Gdx.graphics.getWidth(),Gdx.graphics.getHeight());
 cam.position.set(0, 0, 5);

 cam.near = 1;
 cam.far = 300f;

 chumbucket = new OrthographicCamera();

 img = Decal.newDecal(3, 3, new TextureRegion(new Texture("bird1.png")));

 img.setPosition(0, 0, 0);
 img.transformationOffset = new Vector2(0, 0);

 img2 = Decal.newDecal(3, 3, new TextureRegion(new Texture("bird2.png")));

 img2.setPosition(0, 0, 0);
 img2.transformationOffset = new Vector2(0, 0);

 img3 = Decal.newDecal(3, 3, new TextureRegion(new Texture("bird3.png")));
 img3.setPosition(0, 0, 0);

 img3.transformationOffset = new Vector2(0, 0);

 batch = new DecalBatch(new CameraGroupStrategy(cam));
 spriteBatch = new SpriteBatch();

	 	 COMP4971C	
	

	 14	

 img_temp = img;
 z_callibration = Gdx.input.getAzimuth();

 y_callibration = Gdx.input.getRoll();
 x_callibration = Gdx.input.getPitch();

 // New Stuff
 stage = new Stage(new FitViewport(800, 480));

 Gdx.input.setInputProcessor(stage);

 Skin skin = new Skin(Gdx.files.internal("uiskin.json"));

 TextButton btn = new TextButton("Restart", skin);
 btn.addListener(new ClickListener() {

 @Override
 public void clicked(InputEvent event, float x, float y) {

 current_x = Gdx.input.getPitch();
 current_y = Gdx.input.getRoll();

 current_z = Gdx.input.getAzimuth();
 //cam.rotate(45, current_x, current_y, current_z);

 }

 });

 table = new Table();

 table.left().add(btn).fillX();

 table.setFillParent(true);
 stage.addActor(table);

 //end
 // Definition of Camera

 }

 // New
 public void resize (int width, int height) {

 stage.getViewport().update(width, height, true);
 }

 public void dispose() {
 stage.dispose();

 }
 // new
 Vector2 lastRotXY = new Vector2(0, 0);

 Vector2 lastRotYZ = new Vector2(0, 0);
 Vector2 lastRotZX = new Vector2(0, 0);

 Vector3 lastRotXYZ = new Vector3(0,0,0);
 float a = 0;

 float lastRotZ = 0;

 float totalRotZ = 0;

 boolean currentDir = false;

 @Override
 public void render() {

 Gdx.gl.glClearColor(1, 1, 1, 1);

	 	 COMP4971C	
	

	 15	

 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT | GL20.GL_DEPTH_BUFFER_BIT);
 Gdx.gl.glEnable(GL20.GL_DEPTH_TEST);

 if(count <5){
 z_callibration = Gdx.input.getAzimuth();

 y_callibration = Gdx.input.getRoll();
 x_callibration = Gdx.input.getPitch();

 count++;
 }

 cam.update();
 if(count_img == 48){

 count_img = 0;
 }

 if((count_img %48)/16 == 0) img_temp = img;
 if((count_img %48)/16 == 1) img_temp = img2;

 if((count_img %48)/16 == 2) img_temp = img3;
 batch.add(img_temp);
 count_img++;

 Vector3 currentRotXYZ= new Vector3(Gdx.input.getPitch(),Gdx.input.getRoll(),Gdx.input.getAzimuth());
 currentRotXYZ = Math.abs(lastRotXYZ.x - currentRotXYZ.x) >= 320 || Math.abs(lastRotXYZ.y - currentRotXYZ.y) >=320 ||

Math.abs(lastRotXYZ.z- currentRotXYZ.z) >=320 ? currentRotXYZ: currentRotXYZ.interpolate(lastRotXYZ, 0.7f, Interpolation.circle);
 if((y_callibration-10f < current_y) && (current_y < y_callibration+10f)){

 img.setRotation(currentRotXYZ.x-current_x, currentRotXYZ.y-current_y, currentRotXYZ.z-current_z);
 img2.setRotation(currentRotXYZ.x-current_x, currentRotXYZ.y-current_y, currentRotXYZ.z-current_z);

 img3.setRotation(currentRotXYZ.x-current_x, currentRotXYZ.y-current_y, currentRotXYZ.z-current_z);
 }

 else if((x_callibration-10f < current_x) && (current_x < x_callibration+10f)){
 //float rot = currentRotXYZ.z - current_z;

 //rot = MathUtils.atan2(MathUtils.sin(rot * MathUtils.degRad), MathUtils.cos(rot * MathUtils.degRad
 //)) / MathUtils.PI * 70f / 4f;

 //System.out.println(rot);

 img.setRotation(currentRotXYZ.z-current_z,currentRotXYZ.y-current_y,-currentRotXYZ.x+current_x);

 img2.setRotation(currentRotXYZ.z-current_z,currentRotXYZ.y-current_y,-currentRotXYZ.x+current_x);
 img3.setRotation(currentRotXYZ.z-current_z,currentRotXYZ.y-current_y,-currentRotXYZ.x+current_x);

 lastRotZ = currentRotXYZ.z - current_z;

 //float scale = MathUtils.clamp(Math.abs(rot/MathUtils.PI*4)+1, 1f, 2.2f);
 float scale = Math.abs((currentRotXYZ.z-current_z)/180*4)+1;

 img.setScaleX(scale);
 img2.setScaleX(scale);

 img3.setScaleX(scale);
 }

 else{
 img.setRotation(currentRotXYZ.x-current_x, currentRotXYZ.y-current_y, currentRotXYZ.z-current_z);

 img2.setRotation(currentRotXYZ.x-current_x, currentRotXYZ.y-current_y, currentRotXYZ.z-current_z);
 img3.setRotation(currentRotXYZ.x-current_x, currentRotXYZ.y-current_y, currentRotXYZ.z-current_z);
 }

 lastRotXYZ.set(currentRotXYZ.x, currentRotXYZ.y, currentRotXYZ.z);
 batch.flush();

 //New

 stage.act(Gdx.graphics.getDeltaTime());
 stage.draw();

 }
}

