16

Fall

Software Development Life

Cycle
Yan Ting Wong Tiky

The Hong Kong University of Science and Technology

Software Development Life Cycle 2

Table of Contents

L N T O AU C T O N e e 4
2. BACKGIrOUNd 5
3. Whatis Software Development Life Cycle (SDLC)2 7
Stage T Plan . 8
St E 2. DS N e 8
STAGE 3 DVl O D i e 8
ST G 4 TS e e 1%
StAGE 5 D POy e %
4. Why do we need Software Development Life Cycle? 10
Reason 1: Quality Assurance and Quality Control 10
Reason 2: Easier implementation control 11

Reason 3: Fulfill user requirements or even exceeding their

EXPE CTAT O NS 11
S R OIS 12
Project MaNOger ..o 12
Business Analyst / System Analyst 12
Programmer |/ Solution Developer ..o, 12
6. Software Development Life Cycle Models 13
Model T: Waterfall .o e 13
Model 2: [1eratiVe o e 17
Model 3: AGile . 21
Model 4: Rapid Application Development (RAD) 25
7. CompPaArisSON StUAIES i 29

Case 1: Quantity Surveying Application (Waterfall) vs Mobile
AppPlication ([AGile) oo e 29

Software Development Life Cycle 3

Case 2: Website Development (RAD) vs Enterprise Financial

Application (1terative) oo 33
B S UMM I O Y e 39
Deliverables of SDLC .. e 39
Phases Of SD L C . . e 39
Guideline to choose SDLC for Projects ..., 39
9. Meeting MIiNUTes . e 40
Meeting Minutes of 2374 September, 2016 ..., 40
Meeting Minutes of 21st November, 2016.........cccoiiiiiiiii... 41
Meeting Minutes of 1st December, 2016coviiiiiiiiiiiiean. 42

Meeting Minutes of 10th December, 2016ccooiiiiiiia... 43

Software Development Life Cycle

1.Introduction

Software Development Life Cycle (in short SDLC) is a workflow
process which defines the core stages and activities of
development cycles. It can be used by system analysts, designers
and developers to plan and implement the applications and
deliver the systems or products on time and within budget. With
numerous of development methodologies, it is never an easy ftask
fo choose an appropriate strategy that sometimes even it is
inevitable to mix-and-match multiple methodologies to fit in a

single project.

Software Development Life Cycle 5

2. Background

Per Ellioft & Strachan & Radford (2004), The initial concepts of
SDLC were originated in the 1960s to develop large scale
functional business systems in an age of large scale business
conglomerates. In the earliest days of computfer programming,
the only models that were used to develop complex things like
that were in consfruction and manufacturing industries. Thus, it
made a lot of sense that the structured approaches used in those
industries should be applied on developing computer systems as
well. For instance, in the consfruction fields, the business analysts
would first understand the client’s requirement. The steps follow
by architects designing solutions and engineers to develop and
build the buildings, bridges or roads. Coming to the last step,
test, refine and sign the certificate for the products.
Consequently, in the 1970s, a large groups of business analysts of
construction and manufacturing industries had got into the field
of computing to analyze the business requirement for the new
systems. A significant number of engineers had also entered the

field of computing as programmers.

It is a very fraditional development process which goes in a
sequential manner from start fo finish. Some overlapping
procedures are inevitable such as testing and refining.
Nevertheless, crossing between major phases are not common. In
the old days, the programming fechniques were very complex and
programming languages were not easy to learn and manipulate.
Thus, computer system development followed the structured and

sequential approaches made a lot of sense.

Over the past 50 years, computer systems have been taking
important roles in the corporations. From sending mails with
postmen to sending email via internet, from filling paper
applications to electfronic applications, from auditing financial
logbooks to the spreadsheets stored in the enterprise systems,
every aspect is closely related with information fechnology.
Hence, numerous companies take it very serious and spend
considerable money, resources and effort on information

fechnology security and governance.

Software Development Life Cycle 6

Within 5 decades, soffware development concepts evolved and
new perceptions and designs have emerged on customer-oriented
applications and solutions. Each approach has its pros and cons,
strengths and weaknesses. It is a realistic fact that one single
solution can no longer fit in millions of organizations due to
different backgrounds, structures, responsibilities, desires and
goals. Yet, shared aims on each software development stage can
be found. There should not have much variations on how the
works are described, organized and managed with different
organization backgrounds and requirements. Therefore, the
modern soffware development life cycles are adequately flexible
to be used across different types of business, products and

services.

Not [imited to the listed models below, there are various models

used in the soffware development life cycle process.

e Waterfall

e |terative

e Agile

e Rapid Application Development (RAD)

Before going intfo details of the software development life cycle
models, firstly should understand what software development life

cycle is.

Software Development Life Cycle

3.What is Software Development Life Cycle (SDLC)?

Software Development Life Cycle consists of details steps and
activities which describes how to design, develop, maintain,

replace, alter, enhance, test or even launch a software.

The activities can be broken down into a very detail level but at
the same tfime they can be grouped into five (5) core categories:

Plan, Design, Develop, Test and Deploy.

Below is a graphic represenfatfion which displays a typical

Software Development Life Cycle.

Plan

a N

Test Develop

é_/

Figure 1 - Software Development Cycle

Software Development Life Cycle 8

Stage 1: Plan

Planning usually happens after there is an innovation or initiation
that come up from a group of business end-users or a sponsor
whom identify a need or an opportunity. Within the planning
stage, scope or boundary of concepts are defined. Product
feasibility study in financial, operational and technical areas will
be conducted by the senior members of the team with the inpuft
from the business users. Quality Assurance and Risk management
plan are also prepared at planning stage to minimize any
unpredictable risks. Business Case Documentation (BSD) should be
ready at this stage to summarize all the ideas and have holistic

view of the full plan.

Stage 2: Design

Product design is started with a clear definition of requirements.
Software Requirement Specification (SRS) document which

consists of all the details of the product requirements should be
approved by the clients or the customers before product design

begins.

With SRS in hands, more than one design of the product
architecture will be proposed based on the requirements in SRS.
They will be documented in a Design Document Specification
(DDS) by the junior members of the team and passed to the senior
members, project stakeholders for review. DDS will be evaluated
based on various criteria but not limited to budget, time, user-

friendliness, risk, infegration, efc.

Stage 3: Develop

After the best or the most appropriate design has been selected,
implementation startfs immediately. Programmers should develop
the soffware according to the DDS and atf the same time follow
the coding standards defined by the company’'s closely.
Programming tools should be limited fo those provided by the
company as well to ensure all programmers can align their works.
Functional Specification (FS) should be written by programmers to

record all the functions that are provided at a fechnical level.

Software Development Life Cycle 9

Stage 4: Test

Software testing should be conducted at all stages as a sub-
stage. Nonetheless, two (2) major ones should be done by
programmers, end-users and quality assurance experts. The reason
is that programmers know the best of how the program works and
therefore they can identify the most vulnerable areas of the
sofftware. End-users would pay more attentions to their routine
tfasks which can help to ensure the software can fulfill the
requirements. Last but not least, quality control experts examine
the soffware as whole from various perspectives such as
architecture, security, infegration with other systems, etc. As a
result, a few different types of test plans should be prepared for

the three groups of testers to conduct aft the test stage.

Stage 5: Deploy

First thing to do aft deployment stage is to verify all the test cases
were run to ensure successful software execution,

comprehensiveness and correctness.

Final decision should be made if the software should be deployed
fo the production environment and therefore approval should be
seeking from management in this stage. Deployment Plan (DP)
should be well-defined and approved to carry out any changes
that is going to make. Guideline documentations should also be
prepared such as Installation guide, administration guide and
user guide. Supportf team members should be ready to answer all
sort of questions regarding to the soffware. Finally, Confingency
Plans (CP) should be created according to the finalized software.
For newly implemented software, a common solution is postposing
the software launch day to redo and retest. For a running
software, very likely rolling back to the previous version or
postposing the launch day to fix the defects would be the

choices.

Software Development Life Cycle 10

4. Why do we need Software Development Life
Cycle?

There is always a huge temptation to implement a software
without planning or designing especially for a small or medium
size project. Programmers tend fo argue that the fime that is
spent on planning is already good enough for them to do the
programming work and deliver the product. Managements also
fend to focus on efficiency and making use of the least amount of

resources to get the “same” result.

However, there are certain reasons to explain why we need

Software Development Life Cycle.

Reason 1: Quality Assurance and Quality Control

The definition of Quality Assurance is a set of activities for
ensuring quality in the process of the product development.
Meanwhile, the definitfion of Quality Control is a set of activities
for ensuring quality of the developed product. While QA aims on
preventing defects by focusing the process of the product
development, QC aims of identifying the defects by examining
the finished product. The goal of QA is fo eliminate as much
defect as it can to improve the QC processes. The goal of QC is
to identify any defect that is missed in QS processes. Thus, with
QA as a proactive quality process and QC as reactive quality
process, these two procedures help to ensure the product that is
delivered is up to high standard without coming with some

unreasonable issues.

Software Development Life Cycle 11

Reason 2: Easier implementation control

Within the five (5) core stages in SDLC, multiple documentations
should be prepared to give guidelines and insfructions for the
programmers and testers to follow and for the managements and
approvers to be acknowledged and approve on the activities and
action taken. Business Case, Software Requirement Specification
(SRS), Design Document Specification (DDS), Functional
Specification, Test Plan, Deployment Plan, etc. are all well-
defined at each stage. With all the documentations, not much
surprises or free-style works can be found in the unexpected areas
which implies requirements can be fulfilled and project schedule

can be met as planned.

Reason 3: Fulfill user requirements or even exceeding their

expectations

As mentfioned earlier, Quality Assurance (QA) and Quality Control
(QC) help to ensure the product delivering as user required with
zero to limited number of defects in good quality. Nevertheless,
very high chances that users would like to further enhance the
delivered product due to business change and technical upgrade
is necessary due to fechnology improvements. Hence, in the
design stage, designers not only give resolutions for the
requirements but also take considerations of integration with peer
systems, flexibility and availability of enhancements, maximum
system load due to increasing of users, etc. These “hidden”
requirements are usually not stated in the user requirements but

they are expected to be well-thought-out in every product.

Software Development Life Cycle 12

5.Roles

To effectively implement a software with the above mentioned
five core stages, three (3) key members should always involve in
the projects whom take up more than 95% of the activities in
SDLC. The take up different roles in each stage to cross check
and monitor each other’'s work to ensure each decision made in

the SDLC is valid and necessary.

Project Manager

e Define project scope and goals

e Budget control

e Resource allocation

e Business documentations

e Coordinate high-level management aspects of project

e Rollout approval

Business Analyst / System Analyst

e Interact with end-user during implementation

e Business & System Documentations

e Evaluate business requirements

e Design system architecture, business flow and user interfaces

e Ensure business needs are properly analyzed and correctly
implemented in the solution

e Facilitate relationship between business and technical roles

e Quality Assurance and Control

Programmer / Solution Developer

e Interpretf business requirements and translate them into a
deployable solution

e Technical study

e Resolve Product defects

e Prepare functional specifications

e Perform festing in accordance with agreed strategy

Software Development Life Cycle 13

6. Software Development Life Cycle Models

There are various software development life cycle models defined
which are designed for different types of project. Each model
follows a series of unique steps that best fit to its project type to
ensure success process of software development. Waterfall,
Iterative, Agile & Scum and Rapid Application Development (RAD)
are identified as the most popular models being used in the
indusfry and they will be infroduced one by one in detfails as

follows:

Model 1: Waterfall

Waterfall model is the earliest, best-known and most commonly
used methodology. If is a sequential life cycle that is simple fo
understand and use. Each phase has to be completely finished
before another start which means no overlapping is allowed. The

oufput of each phase serves as the input for the next stage.

A pictorial illustration of Waterfall Model can be found below:

Requirement

Implementation

Deployment

Maintenance

—_—

Figure 2 - Waterfall Approach

Software Development Life Cycle 14

6 Phases of Waterfall Model

1. Requirement

Requirement Phase mainly focuses on communicating with
business users to gather and analyze requirements. Project
managers fry their best to understand and analyze the
business, capture all the details of user’'s needs, define the
scope and arrange resources in the Business Case
Documentation.

2. Design

With the Business Case Documentatfion in hand prepared in
Requirement Phase, Business Analysts evaluate and start on the
logical design the software by making use of the information
and requirements that are collected by the Project Managers.
Based on the high-level design which has fulfilled all the user
requirements, System Analysts fransform the high-level design
fo the physical design which put hardware and software
technology into consideration. System architecture is defined
af Design Phase as well.

3. Implementation

Implementation Phase is where the actual code is written.
Programmers develop the soffware according to the
instructions recorded on the documents prepared in
Requirement and Design phases. Their output is the Functional
Specification which files all the details of the functions that
are implemented.

4. Testing

With the inputfs from the Implementation Phase, testers in
Testing Phase will draft the Test Plans based of the Functional
Specification. Programmers prepare the Test Plan in a check
list to examine if every function are executable as expected.
Business Analysts prepare the Test Plan for the users which
focuses on meeting the user requirements. Finally, Quality
Control (QC) experts gather all the documentations from all
previous phases and do an overall test on every aspect on a
deeper level that are documented including system

architecture, tfechnology used, efc.

Software Development Life Cycle 15

5. Deployment

After receiving a “"PASS” from the Testing Phase, the product is
said to be ready to release. Software or Application will either
be deployed to production servers or release for users to install
on their own machine.

6. Maintenance

In reality, it is inevitable there are some defects or issues come
up. In addition, the world keeps changing every day and as a
result enhancements are necessary from time to time.
Maintenance Phase is for catering such sifuafion and deliver
changes to the users again. Within Maintenance Phase, a
subset of SDLC Waterfall Model is involved.

Inputs and Outputs of each phase are summarized and illustrated

as below:

1. Requirement

¢ Business Case Documentation

2. Design

» Software Requirement Specification
» Design Documentation Specification

3. Implementation

* Functional Specification

4. Testing

e Test Plans

5. Deployment

* Deployment Plan
» Contingency Plan

Figure 3 - Documentations for Waterfall Approach

Software Development Life Cycle

16

Applications of model

Appropriate situations for using Waterfall Model in the SDLC:

Limited amount of ambiguous or unconfirmed
requirements

A software that needs well-documented documentations
Use of mature technologies and not dynamic
Management can provide enough resources and experts
tfo pick up the role at each phase

Simple and small project

Advantages and Disadvantages

Advantages

Easier to manage as there is clear schedule for each
stage that gives clear milestones

Easier to contfrol with limited external factors as no
overlapping development phase

Provide extensive documentations

More disciplined and provide distinct actions for the
project to move forward as the development move from
concept, design, implementation, testing,

tfroubleshooting, running and then maintenance.

Disadvantages

Cannot have scope change or requirement change
Cannot preview the product until the deployment phase
Not flexible to handle unexpected risks

Limited communication with users as bounded to be done
at the beginning and the end of the project

More resources are needed and some of the feammates
might be idle for a long duration

Poor model for long or ongoing projects as the projects
will probably never come to the end and reach the last

phase

Software Development Life Cycle 17

Model 2: Iterative

Iferaftive Model works on the simplified requirements which are
the subset of the software or application requirements. The
“product” is iteratively enhanced and evolved to the final
product for deployment. It is called as a “build” for each
iteration. So at each build, design amendments and new
functionalities are added to the product. With iterative model,

the soffware is implemented by small portions at a time.

A pictorial illustration of Iterative Model is demonstrated below:

Requirements

Deployment

Maintenance

Figure 4 - lterative Approach

Software Development Life Cycle 18

6 Phases of Iterative Model

1.

Requirement
Same as Waterfall Model, Requirement Phase focuses on
communicating with business users and prepare the Business

Case Documentation.

. Design

Similar to Water Model, Business Analysts and System
Analysts work on the logical and physical designs
respectively to prepare the Software Requirement
Specification and Design Specification Document. However,
there is design which holistically recorded how the software
is going to be implemented and there are several subset of
designs for programmers to go through the implementation
and testing which is isolated from other subset of designs. In
addition, the subset of designs can be modified after every
round of build. Therefore, the subset of designs is not

finalized until reaching the Deployment Phase.

. Implementation

Programmers develop the software according to the subset
of design passed from Design Phase. Functional
Specification will be prepared for each subset of

implementation.

. Testing

Programmers, business users and QC experts will all be
involved for each subset of testing. However, business users
will only focus on the limited scope that is covered in the
currently build but programmer and QC experts have to
cover all the implemented functions every time. In addition,
for the last build before going to the Deployment Phase, the
three parties not only have to do the subset of testing, they

have to conduct the testing as a full system test as well.

. Deployment

With no difference from Waterfall Model, everything should

be ready by this phase and a Deployment Plan for release.

Software Development Life Cycle 19

6. Maintenance
Again, like Waterfall Model, it is inevitable that every
software needs to be maintenance. Therefore, a subset of
SDLC Iterative Model is going to take part in Maintenance

Phase.

Inputs and Outputs of each phase are summarized and illustrated

as below:

1. Requirement

e Business Case Documentation

2. Design

» Software Requirement Specification
» Design Documentation Specification

3. Implementation

e Functional Specification

4. Testing

¢ Test Plans

5. Deployment

* Deployment Plan
* Contingency Plan

Figure 5 - Documentations for Iterative Approach

After every subset of testing, it loops back to the Design Phase

and starts on the next design until it comes to the very last one.

Software Development Life Cycle 20

Applications of model
Appropriate situations for using Iterative Model in the SDLC:

e Major requirements are defined but the minor details might
evolve when time goes

e New fechnologies are being used and there is a learning curve
for the programmers to learn

e Resources are limited to do a huge project as if a small project
or tfeammates are in confract rather than permeant

e Very high risk as the goal of the project might change from

time to time

Advantages and Disadvantages
Advantages

e Easier to start on a complex project

e Preview the project periodically

e Parallel implementation is allowed

e Project can still be managed like waterfall Model with
clear schedule and milestones

e FEasier testing and froubleshooting at each build

e Support and less costly for scope or requirement change

e Suitable for huge and core projects

e Befter communication with business users as feedbacks

can be gather at each build
Disadvantages

e High risk due to system architecture and designs keep
changing

e Issues might occur for integration of each build

e More management work to do to ensure each build can
meet the standard

e Overlapping implementation could be chaotic

e Need more involvement of business users

e FEasier but more time is needed for each testing as each

testing have to cover all the previous works

Software Development Life Cycle 21

Model 3: Agile

Agile Model extends the advantages of Iterative Model and aims
on user satisfaction and product adaptability by rapid delivering
of product. From Requirement phase to Deployment Phase, Agile
Model breaks the product intfo small builds. Instead of going back
to Design Phase like Iterative Model after each subset of testing,
Agile Model goes to Deployment Phase and release the product.
Thus, each build contains of some new features and for the very

last build it contains all the required features of the software.

A pictorial illustration of Agile Model is demonsftrated below:

Requirement

Deployment

Testing Implementation

Testing Implementation

Figure 6 - Agile Approach

Software Development Life Cycle 22

5 Phases of Agile Model

1.

Requirement

As requirements cannot be gathered completely at the
beginning, close relation with business users is necessary to
gather feedbacks after every release. However, a Business
Case Documentation is still needed at the startup of the
project to briefly describe the scope and goal of the
project. Resources might have to evaluate and rearrange at
each build.

. Design

Very limited amount of fime will be put on designing the
sofftware as a whole due to the uncertainty. Designers mainly
focus on the build that is working on but the goal of all the
builds will still follow the scope that is defined in the
Business Case Documentation. Soffware Requirement
Specification and Design Specification Documentation are
expected to be short and simple listing out what is covered

in the current build.

. Implementation

Programmers fend to have more “freedom” in Agile Model
implementation due to the brief documentations provided.
However, they are still required to follow strictly on the
coding standard. Functional Specification usually covers the

core functions and skipping the details.

. Testing

A very high responsibility falls on the testers due fo limited
information found in the documentations especially for the
QC experts. Business users fend to test on a very high level

or not even includes business users in the Testing Phase.

. Deployment

Usually product release to users two - three (2-3) weeks
aftfer the requirements have been placed. Deployment Plan
fends to focus on how to deliver the product but with limited
information of the conftfingency plan because another build

will be coming up tightly and the issue can be fixed there.

Software Development Life Cycle 23

6. Maintenance (Not necessary)
Not necessary for Agile Model as the next build is coming up

and can be done in the next build.

Inputs and Qufputs of each phase are summarized and illustrated
as below:

1. Requirement

e Business Case Documentation

2. Design

» Software Requirement Specification
» Design Documentation Specification

3. Implementation

* Functional Specification

4, Testing

¢ Test Plans

5. Deployment

* Deployment Plan
* Contingency Plan

Figure 7 - Documentations for Agile Approach

Agile Model doesn't pay too much atftention on the
documentation as Waterfall and Iterative Models. Although the
same seft of documentations are expected to be ready at each
phase, the information that can be found in each documentatfion

is very limited.

Software Development Life Cycle 24

Applications of model

e No detail information is provided from business users
e Features driven project

e Product requirements change dynamically

e Have resources on testing

e Close collaboration within the team

e Close relationship with business users

Advantages and Disadvantages
Advantages

e Realistic approach - what you need the most, implement
first; what is less important, implement last

e Functionalities can be developed and delivered promptly

e Less resources are required due to the by build approach

e Deliver the project periodically with new functions

e More freedom and flexibility at each phase especially for
programmers

e Less documentations and rules to follow
Disadvantages

e Very high risks for maintenance and extendibility

e Noft suitability for complex and core projects

e Project Managers have to follow closely at all time to
check if the builds still following the scope that is defined

¢ Depends heavily on business users’ feedback which could
delay the projects and deliver wrong product if business
users are not sure what they actually want

¢ Too much individual dependency as not much
documentation to follow

e Transfer of knowledge to new joiners could be hard due to

laock of documentations

Software Development Life Cycle 25

Model 4: Rapid Application Development (RAD)

Rapid Application Development (RAD) focuses on gathering user
requirements through workshops, test on the pre-released
prototypes conducted by users and then reuse the profotypes fto
further develop the product. A prototype is a working model that
is functionally equivalent to part of the releasing product.
Minimal or no specific planning is involved at all which can make
the team to cope with the changes in the development process
and favors faster product delivery. RAD Model is basically
assembling the working parts together to generate the product in
limited of time for business users to quickly provide feedback
regarding the requirements.

A pictorial illustration of RAD Model can be found below:

Prototype 1

Prototype 2

Prototype 3

Final
Releasing
Product

Figure 8 - Rapid Application Development Approach

Software Development Life Cycle

26

5 Phases of RAD Model

1.

Business Modeling

The information flow and the information distribution are
identified between different business channels. A Business
Analysis Report is prepared to find out the essentfial
information for the business such as how it can be acquired,
how it can be processed and what are the elements driving

the information flow and distribution.

. Data Modeling

With the inpufs of Business Modeling Phase, all the necessary
information should have been identified. At Data Modeling
Phase, the identified information is transformed to certfain
data setfs or data objects which will be further evaluated
and defined their relationships in relevance to the Business
Model.

. Process Modeling

The defined data set passed from Data Modeling Phase will
be further processed by adding business information flow fo
achieve the business objectives that are identified at
Business Modeling Phase. Any changes or enhancements on
the data sets will be done at Process Modeling Phase.
Operation of create, refrieve, update or delete (CRUD) of a

data object should be defined at this phase as well.

. Application Generation

Automated tools will be used to convert all the Process
Models into program code and pull them together as a

prototype.

. Testing & Turnover

The newly generated prototype will be independently tested
at this phase without taking consideration of the functions
that are implemented in other prototypes. However, the

integration between prototypes should be tested thoroughly.

Software Development Life Cycle 27

A pictorial illustration of the inputs and outputs for each

prototype is shown:

Business Modeling
* Business Analysis Report

Data Modeling
* Data Sets / Data Objects

Process Modeling
* Data Sets / Data Obejcts with functionalities

Application Generation
* Program / Codes

Testing & Turnover
* Profotype

Figure 9 - Documentations for Rapid Application Development
Approach

Application of model

e Business users tend to change their requirements from time
fo time due to the dynamic business environment

e Software that is feasible to be modularized

e Soffware that is acceptable to be delivered part by part

e Designers who have the business knowledge and know the
relationship between prototypes

o For companies that have enough budget to own automated

code generator

Software Development Life Cycle

Advantages and Disadvantages

Advantages

Can tolerate frequent requirement change

Measurable progress

High integration as it is designed to integrate with other
prototypes at all tfime

More communication with business users which can be
done affer each prototype release

Preview and Review the product periodically

Less programmer dependent with automated code
generator

Shorter SDLC RAD time

Disadvantages

Depending too much on the automated code generating
tools

Could have performance or technically issues with
automation

Costly automation tools

Required skillful designers who have the business
knowledge and the technical skills

Limited to modularization available software

Too much dependency on business users’' feedback and
they have to be involved at the whole SDLC RAD process
Requirements could be tfoo dynamic

Not much documentations

Highly depends on the Business Analysis Report

28

Software Development Life Cycle 29

7.Comparison Studies

A total of two (2) cases which demonstrate the characteristics of

the four (4) different models that have introduced above.

Case 1: Quantity Surveying Application (Waterfall) vs Mobile
Application (Agile)

In this case study, two applications will be focused on - Quantity
Surveying Application and Mobile Approval Applicafion. Quantity
Surveying Application will demonstrate with the waterfall
approach while Mobile Approval Applicatfion will make use of

Agile approach.

Background of Quantity Surveying Application (QS system)

Quantity Surveyors are mainly responsible for preparing tender
and confract documents, undertaking cost analysis, performing
risk, value management and cost control. Thus, a helpful QS
system should at least provide full features of tendering and cost
control to assist the Quantity Surveyors on their daily tasks. In
addition, the features that are provided have to be precise.
Otherwise, even the system is equipped with lots of feaftures are

freated as useless.

Background of Mobile Approval Application (Approval app)

Approvers are aufthorities with power to approve or reject on a
task. It could be an application for Human Resource such as
Annual Leave Approval App. It could also be an application for
project team to digitally signing the documents. Thus, a mobile
app which can offer functionalities for approving and rejecting
tasks have already served the purpose. Topping up the mobile
app with security, user-friendly user interface, instant

notifications will be some pluses.

Software Development Life Cycle 30

Project Variables

Before going into details, first looking af the project variables of
the two applications. The diagram shown below gives us a brief
understanding of what is negotiable for the two applications.
Those friangles in blue are the fixed deliverables while the grey

areas are the negotiable variables.

Features Quatity

Quality Features

Figure 10 - Project Variables for Waterfall Approach (left) & Agile
Approach (right)

Waterfall Approach

Features and Quality are some fixed deliverables for the waterfall
approach. In QS System, the full set of fendering functions should
be provided as a workable system. Even only 5% of the functions
are not implemented, the other 95% of the implemented functions
are treated as useless work. Consequently, Time and Cost have a
much big chance to be varied in order to fulfill the requirements
of Features and Quality. It would be more appropriate to follow
the six (6) phases of waterfall approach to ensure all features and
quality to be delivered because the feam cannot move forward
fo the next phase until the current phase is done. For example,
the programmers cannof swap or skip to the next phase until they
have finished all the implementations. Likewise, testers cannot
proceed to deployment unless all the tests are passed. With
waterfall approach, it can help ensuring QS System to provide full

features at launch. Nevertheless, the application might not be

Software Development Life Cycle 31

able to be delivered at the schedule time or within budget if any

of the phases postponed.

Agile Approach

In reverse, Time and Cost are the fixed deliverables for agile
approach. The team is given a fixed time to implement the
application with quality. The tradeoff will be the only left variable
— Featfures. The most important feature of the Approval App is the
approval function — be able to approve or reject the tasks. Other
features are necessary but can be missed out for the application
to work. Hence, in order to deliver on time with limited cost
together with certain quality, giving up the number of features is

the only choice.

Can we swap the approaches for the two applications?

Assume we swap the approaches for QS System to use Agile
approach and Approval App to use Waterfall approach. To recap,
Agile Approach targets to deliver the application in small builds
and each build implements within a 2 - 4 weeks timebox.
However, it is quite impossible to deliver a huge application like
QS System by small builds as the subcontract tendering should be
a completed workflow to be treated as useable. Even though
programmers can rush for the coding, there is not enough time for
the testers to fully examining the applicafion which could lead to
money loss. Besides, lacking detail documentations of the
application implementation might not be able to fulfill the
auditory standards and requirements especially for a monetary

related application.

How about Approval App using Waterfall approach?2 To recap,
Waterfall Approach requires to implement the application step-
by-step without any parallel work or partial work. That means,
“must-do”, “should-do” and “could-do” tasks are implemented all
tfogether before the delivery. Not only it would prolong the
application rollout fime but increase the risk for a dynamic
application. By the time of delivery, some of the features might
no longer necessary or the design might not be the best fit due fto

the user requirements have changed affter previewing the

Software Development Life Cycle 32

product. Thus, the time that are used for planning, implementing
and testing could end up to be wasted and the "high-quality”

features are treated as useless.

Software Development Life Cycle 33

Case 2: Website Development (RAD) vs Enterprise Financial

Application (lterative)

This case study will drill into the SDLC of another two applications
— Ecommerce Website and Enterprise Financial Application. RAD
approach will be chosen to implement the Ecommerce Website
and Enterprise Financial Application will make use of Iterative

approach.

Background of Ecommerce Website

The ecommerce website provides a channel for the buyers fo get
the basic product information such available colors, sizes, price,
etc. Besides, it is an excellent portal for the sellers to put as
much product details as they can and to advertise to the buyers
who are interested to their product. On the other hand, buyers
can spend as much time as they can to go through all the
specifications of the product and they can make up their decision

to get the product anytime 24/7.

Background of Enterprise Financial Application

An Enterprise Financial Application is a combination of Account
Payable, Account Receivable, General Ledger, etc. which helps
finance department to record all the monetary fransactions of a
company and lower the risks associated with human errors. With
all the fransactions, not only it assists the management team fo
analyze the productive gains but also monitors the performance
of the company. Hence, the fundamental principles of an

enterprise financial application have to be precise and reliable.

Project Variables

Let’'s check out the project variables of the two applications
before going further. The diagram shown below gives us a brief
idea of what is negotiable for the two applications. Those
tfriangles in blue are the fixed deliverables while the grey areas

are the negotfiable variables.

Software Development Life Cycle 34

Quatity Features

Features Quality

Figure 11 - Project Variables for RAD Approach (left) & lterative
Approach (right)

Rapid Application Development (RAD)

Time and Cost are the fixed deliverables in RAD approach. It best
fits for the applications or software that have to be released
while the need for it is hot and be there when a market is for if.
Users can tolerate if there are not many choices in the market
and they are willing to wait for the fixings and enhancements of

the application. As a result, Quality and Features are negotiable.

Hence, the first prototype of the ecommerce website can simply
just provide a platform that can present all the product
informatfion and the second profotype can offer a channel for the
buyers to make order. The design of the user interface of website
doesn’'t have to look extraordinary beautiful in the starf-up
prototypes. After being tested by the pilot buyers for a certain
period of time and gathered most of the functionalities and
enhancements from multiple prototypes, user interface and user
friendliness can be enhanced in the last phase and deliver as a
stable and mature application when there are more competitors

in the market.

Software Development Life Cycle 35

Iferative Approach

To implement a huge application like that, it is very important to
have detailed requirement specification to state clearly what
features have to be included before implementation starts.
Furthermore, enterprise financial applicafion has to be
exanimated completely before delivering to ensure the
preciseness and reliability. Thus, Feature and Quality are the fixed
deliverables which has no flexibility at all. To fulfill Feature and
Quality, logically Time and Cost should be adjusted accordingly
fo satisfy such requirement. The six (6) phases of Iterative
approach should be followed closely to safeguard the correctness
of the implementation. Since the application can be modularized
(i.e. account payable is a module and account receivable is
another module), it means that more than one team can go
through the six phases for each module and seal the module while
another team is working on some other modules. Not only it can
help simplify the implementation complexity of a huge
application, parallel implementation can be done in different
teams to fulfill the fixed Time deliverable. It can also give a clear
milestone for the team to go back and forth when debugging the
application or across the modules so that no need to drill down to

the ground whenever there is an issue found.

Can we swap the approaches for the two applications?

Let's say, the enterprise financial application is being developed
in a short period without much testing and release the prototype
for use. First, it is not feasible at all for an enterprise financial
application to adopt RAD approach simply because it is not
acceptable for anyone to give up Quality by risking the monetary
fransactions without testing the application out thoroughly.
Furthermore, it is quite impossible for the development team fo
implement such a huge application or even just one of the
module within the limited Time. In addition, Feafures are not
sacrificial that an enterprise finance application is not useable if
there is only account payable but no account receivable.
Likewise, lacking documentation for a huge monetary application

cannot fulfill the auditory standards as well.

Software Development Life Cycle 36

What about adopting Iterative approach in e-commerce website?
Features should be set at the early stage which might still be an
unknown to the team as there is not much information in the
market. All the implemented functions are fully tested and in high
Quality which is always considered as a good gesture if the
resource is sufficient. However, very likely the implemented
functions are considered as not necessary affter being put info the
market which would have wasted much of the time and resources
on something that is uncertain. From the shareholders’ point of
view, uncertainty tends to be risky and non-profitable which leads
to low budget application implementation. Situation can only get
better when the market share in the industry gets higher.
Shareholders can evaluate the performance and revise or adjust
the Cost from time to time. Unfortfunately, iterative approach can
only provide flexibility fo adjust Cost but do not have the luxury
fo negotiate for Feafures, Quality or Time. Thus, for e-commerce
website implementation, the project can still come to the end as
a usable product. However, it cannot help the business to
generate the most value with the lowest Cost when the project is
achievable to do so. In short, using iterative approach in e-
commerce websitfe implementation is wasting the business
resources and cannot maximize the value that the project can

generate.

Software Development Life Cycle 37

Can we swap lterative with Waterfall, RAD with Agile?

If it is not workable for QS System to go with Agile approach,
what about a similar approach like Iterative? Like Waterfall
approach, Features and Quality are fixed deliverables in Iterative
approach. They can help to ensure all the necessary parfs to be
included in the application and are in good shape without many
buggy problems. Iterative approach also spends reasonable
amount of time on documenting the application which helps fto
fulfill the auditory standards for monetary systems. The only
difference is that Waterfall approach does not modularize the
project from design stage to testing stage but limited to the
implementation stage. Nevertheless, it wouldn't be a complicated
fask fo expand the modularization further and there shouldn't be
any critical side effects caused by the modularization. In reverse,
it would even benefit the project by spofting out the issues at the
early stage and prevent bringing the problems along with the
project to run into another iteration. Additionally, multiple teams
can take part in the different iterations to speed up the

development cycle.

What about Enterprise Finance Application go with Waterfall
approach instead of Iterative?¢ Since Iterative approach is an
enhanced Waterfall approach, it would not be surprised that it is
applicable to the Enterprise Finance Application. The main
different would be as stated above, the modularization will shrink
from spanning from design stage fto festing state back to limited
fo implementation stage. The means a full design should be
finalized before getting into the implementation stage. The
development of account payable, account receivable should all
be done before starting the testing stage. Such approach should
have no side effect to the ultimate product as Features and
Quality are reminded fixed but it would use up more Time and
Cost than adopting Iterative approach due to extensive design

and festing will be involved.

Can Approval app get along with RAD then? Likewise, RAD shares
the similarities of Agile which both have Time and Cost as fixed

deliverables. Yet, RAD has a more flexible perspective on Quality

Software Development Life Cycle 38

as RAD deliver the product at the beginning stage as prototype
rather than an officially tested product. Thus, it might cause some
hiccups at the launch such as not able to do a simple task like
approving a payment which might disappoint the users. Therefore,
it is suggested that the beginning stage should get only a small
group of pilot users who are in good relationship with the
development team. Not only the users can report the problems
promptly and directly, the level of tolerance would be higher

whenever they hit on any issues.

Can E-commerce Website Implementation go with Agile
approach? Supposing Agile approach can deliver a higher
standard product than RAD given that Qualify is one of the fixed
deliverables. Thus, the website is implemented with more testing
than RAD. As a tradeoff, less features will be provided given that
the fixed Time cannot be extended and part of it has been used
for extensive ftesting. Although Agile is one of the speedy
approach that can deliver the website fo come with some nice
and functional pages with detail product information, it does not
provide any channel for the buyers to place order. Thus, the
market share cannot be as wide as expected due to lack of some
core e-commerce features and the shareholders might be still not

willing to invest more for the website or application.

Software Development Life Cycle

8.Summary

Deliverables of SDLC

39

Waterfall lterative
Features Fixed Fixed
Quality Fixed Fixed
Cost Negotiable Negotiable
Time Negoftiable Fixed

Phases of SDLC

Agile
Negotiable
Fixed
Fixed

Fixed

RAD

Negotiable

Negoftiable

Fixed

Fixed

Waterfall

Iterative

Agile

RAD

Important Important

Less Important

Less Important

Important Important

Less Important Less Important

Important Important

Develop

Important Important

Maintain Important Important

Less Important
Important
Less Important

Important

Less Important

Less Important

Important

Less Important

Important

Less Important

Guideline to choose SDLC for Projects

Agile

RAD

Waterfall Iterative
Monetary Project NUlife]e][} NUlife]e](c}
Incremental Suitable
Project
High User Suitable
Involvement
Project

Trial Project

Suitable

Suitable

Suitable

Suitable

Suitable

Suitable

Software Development Life Cycle 40

9. Meeting Minutes

Meeting Minutes of 23rd September, 2016

Date
Time
Place
Present

Discussion

Follow up

Next
Meeting

23rd September, 2016

13:45 - 14:05

Room 3512

Dr. David Rossiter

Yan Ting Tiky Wong
e Confirm the scope and objectives of the project
e Set schedule for each section of the project

Draftfed report will be attached in the email and sent
to Dr. David Rossiter to update the progress before
the next meeting

Proposed date: 16th October, 2016
29th October, 2016

16:45

Room 3512

Cancelled

21st November, 2016
08:15
Coffee Shop (Lift 25-26, Ground Floor)

Software Development Life Cycle 41

Meeting Minutes of 21st November, 2016

Date
Time
Place
Present

Discussion

Follow up

Next
Meeting

21st November, 2016
08:15 - 08:45
Coffee Shop (Lift 25-26, Ground Floor)
Dr. David Rossiter
Yan Ting Tiky Wong
e To check on the progress of the project
e To confirm if more roles should be added and
explain further
e To discuss if the case studies are on frack
e To come up with what should be included in the
summary
e To schedule for the next meeting

Finish up the case studies, summary and roles
sections

1st December, 2016

08:15
Coffee Shop (Lift 25-26, Ground Floor)

Software Development Life Cycle

Meeting Minutes of 1st December, 2016

Date
Time
Place
Present

Discussion

Follow up

Next
Meeting

1st December, 2016

08:15 - 08:45

Coffee Shop (Lift 25-26, Ground Floor)

Dr. David Rossiter

Yan Ting Tiky Wong
e To check on the progress of the project
e Toreview the summary
e To schedule for the next meeting

Refine the summary, figures and roles sections

10th December, 2016

08:15
Coffee Shop (Lift 25-26, Ground Floor)

42

Software Development Life Cycle

Meeting Minutes of 10th December, 2016

Date
Time
Place
Present

Discussion

Follow up

Next
Meeting

10th December, 2016
08:15 - 08:45
Coffee Shop (Lift 25-26, Ground Floor)
Dr. David Rossiter
Yan Ting Tiky Wong
e Toreview the whole report

Final review and send out the final report

N/A

43

