
Practical Advertisement Detection in Video

Du,Jiaen (taokayan13@gmail.com)

1. Background
Usually there are many advertisements in
television. This is not efficient for video
recording as the advertisement part takes a
lot of extra space for storage. It is very good
if all the advertisements can be removed in
televisions video recording and storage
automatically. Therefore, it is good for us to
design a method to identify the
advertisement parts in TV streams.

2. Types of video clip
We classify video segments into the
following three types.

Movies: These usually last for
approximately 15 minutes each time, 4 times
per hour. We should minimize the number
of news/movies that wrongly detected as
advertisements.

Connections: There are typically several
seconds of video connecting the
advertisement part and news/movies part.
This part is very useful and will be expanded
further in the following sections.

Advertisements: These usually last for 3-4
minutes each time, 4 times per hour. We
should maximize the number of extracted
advertisements.

3. Repetition of advertisement
Here we use movie data from observations
of “Hong Kong free-to-air TV”. It is not rare
to see an advertisement appearing more than
one time during the course of a movie, but
there are few movie segments that appear
exactly the same. Hence we can detect
advertisements that have repetition
throughout hours of videos. Here we divide
advertisement into two subtypes:
advertisements that have repetition in a

video, naming repetitive advertisements,
and advertisements that have no repetition in
a video, naming non-repetitive
advertisements. In this project, we devised
our algorithm for fast frame search and
detection of advertisements and connections.

4. Practical advertisement detection

4.1. Detection of repetitive advertisements
and connections

For a video, usually there are about 25
frames per second. Although movies with
different fps exist, it would not affect the
basic idea of our algorithm. For 3 hours of
video, the number of frames rapidly become
25 x 60 x 60 x 3 = 270,000. Searching two
similar frames by brute-force would cost
73,000,000,000 frames comparisons which
is totally unacceptable. To eliminate the
number of computation, we hash every
frame into the hash table.

The way we devise the hash value of one
frame is: we select four different regions
with fixed positions and sizes, computing
the gray level of each region. Then we
normalize each gray level into �0,
�������	
 1�. Here we choose levelmax =
32 = 2�, using 5 bits of space to store one

Video Time

Hash Table

Hash Hash Hash

frames in video

Figure 1, hashing the whole video

gray level. Combining 4 gray levels we
finally get a hash value.

��������� � �����������0� � 15 �
� �����������1� � 10�
� �����������2� � 5�
� ����������3�

After doing hashing, similar frames appear
in the same hash values.

Although similar frames will have the same
hash value, it is not guarantee that any two
frames in the same hash slot will be similar.
Hash value can only reduce the
computational complexity but how far we
can improve our performance by using
frame hashing totally depends on how good
we devise our hash function. The best hash
function should uniformly distribute all
frames into different hash values.

For every two frames with the same hash
value at time t0, t1 respectively, naming
frame(t0), frame(t1), we aim to find the two
similar video intervals that contain t0 and t1
respectively. To detect whether two frames
are similar or not, we have devised the
following frame similarity calculation
method:

1). Divide the bitmap of the frame at time t
into sub blocks. The more sub blocks we
divide into, the more accuracy of image
comparison we get, but also the more
computational time and disk storage are
required. To compromise time complexity
are accuracy, we use 12 x 9 sub blocks to
represent a frame, as most advertisements
are at ratio of 4:3. Then we calculate
average red, green, blue color of each block
respectively; Denote them as red(t,i),
green(t,i), blue(t,i) where t stands for the
time of the frame and i is for block index.

2).For two frames at time t1 and t2,
similarity is defined as follow:

�������� �� 1, 2�

� 1
 �!
∑ #��$� 1, ��
 ��$� 2, ��%

&
'

255& (12 (9

* +
∑ #����,� 1, ��
 ����,� 2, ��%

&
'

255& (12 (9

* -
∑ #.���� 1, ��
 .���� 2, ��%

&
'

255& (12 (9
�

!, +, - are weights of red, green, blue
respectively, which satisfy ! * + * - � 1;
values of red, green, blue range from 0 to
255.

Finding two similar video intervals via
similarity calculation:

We set a threshold of determining whether
two frames are similar:

- If Similarity(t1,t2) >=
similarity_threshold, frame(t1) and
frame(t2) are similar.

… HashValue0 HashValue1 …

Hash Table

containing all

frames in a video

Frame(t0)

Frame(t1)

Frame(t2)

Similar frames with same

hash values in time t0, t1,

t2…

Figure 3, Similar Frames in same hash slot

graylevel(0) graylevel(1) graylevel(2) graylevel(3)

5 bits

20-bit hash value

 Screen

Sub Region

Figure 2, hash value of a frame

- If Similarity(t1,t2) <
similarity_threshold, frame(t1) and
frame(t2) are not similar

In practice, we set similarity_threshold =
0.999

We start comparing frames t0 and t1, then
t0+1 and t1+1 , then t0+2 and t1+2,…,
until two frames are no longer similar. Then
we get a pair of similar segments / 0 , 0 *
∆ 12345�, / 1 , 1 * ∆ 123456.

Again, we compare frames t0-1 and t1-1,
then t0-2 and t1-2 until two frames are no
longer similar. / 0
 ∆ 742854 , 06, / 1

∆ 742854 , 1�.

Combining the former results we have a pair
of similar segments / 0
 ∆ 742854 , 0 *
∆ 12345�, / 1
 ∆ 742854 , 1 * ∆ 123456.

The following graph illustrates our
calculation.

Once we have the two similar video
segments
 / 0
 ∆ 742854 , 0 * ∆ 123456, / 1

∆ 742854 , 1 * ∆ 12345�, we have find one

pair of video repetition of length ∆ 742854 *
∆ 12345 starting at time 0
 ∆ 742854,
 1
 ∆ 742854 respectively. To further
deduce what type these two video segments
belong to, we use the following criteria:

- If ∆ 742854 * ∆ 12345 9
:�,����_ ���_<=_><,,�> �<,,
they belong to nothing, ignore them

- If ∆ 742854 * ∆ 12345 ?
:�,����_ ���_<=_><,,�> �<,,
they belong to advertisements or
connections

In this project, we set the value of
:�,����_ ���_<=_><,,�> �<, to be 6
sec.

4.2. Detection of non-repetitive
advertisements

Advertisements that have no repetition will
be more difficult to detect. Only ignore
those advertisements will let the result
accuracy drop dramatically. To detect this
type of advertisement, we use the everyday
knowledge that, each advertisement section
in a video will last for 3-4 minutes inside
which are all advertisements. Further more,
if two advertisements have been detected
using previous repetition searching methods,
and if those two advertisements happen
within a 3-4 minute time slot, we can
conclude that all video frames between those
two advertisements should also belong to
advertisement part. (Illustrated in the
following graph)

Figure 5, Detection of non-repetitive advertisements

Video Time

Detected repetitive advertisements/connections

Concluded non-repetitive Advertisements

Figure 4, Searching Similar video intervals

… HashValue0 HashValue1 …

Frame(t0)

Frame(t1)

 … frame(t0) frame(t0+1) …

 … frame(t1) frame(t1+1) …

Video Time

Similarity

Calculation

Similarity

Calculation

Similarity

Calculation

Similarity

Calculation

…

Hash Table

Video Time

We set a threshold ��	_�$�_ ���,
representing the maximum time interval of
consecutive advertisements. We conclude a
time interval to be a non-repetitive
advertisement time interval if:

- Length of interval <
��	_�$�_ ���

- There is a repetitive
advertisement/connection right
before the interval

- There is a repetitive
advertisement/connection right after
the interval.

In practice, we set ��	_�$�_ ���to be 200
seconds.

5. Tests and Results

Movie A
Source: Pearl Channel, TVB, HK
Length: 3 hours 45 minutes

Test Setup:
Test 1 First 45 minutes of movie A
Test 2 First 1 hour of movie A
Test 3 First 1 hour 45 minutes of movie A
Test 4 First 2 hours 35 minutes of movie A
Test 5 The whole movie A

System Configuration:
Windows XP SP2;
AMD Athlon64x2 TK-57 at 2300MHz
Integrated Geforce 7150 / nForce 630M
1G RAM
120G Hard disk.

Test Results
 Test

1
Test
2

Test
3

Test
4

Test
5

Length
of
detected
ads.

0 4
mins
45
secs

17
mins
10
secs

29
mins
44
secs

46
mins
13
secs

Length
of actual
ads.

10
mins
32
secs

14
mins
2
secs

26
mins
37
secs

37
mins
57
secs

54
mins
24
secs

Length
of false
detection

0 0 0 0 0

Precision ## 100% 100% 100% 100%
Recall 0% 34% 64% 78% 85%

6. Conclusions

This method works in the situation that
advertisement repetition exists. Non-
repetitive advertisements can be estimated in
the knowledge of detected repetitive
advertisements. If more videos are analyzed,
the number of repetitive advertisement will
increase, while the number of non-repetitive
advertisements will reduce, resulting in a
higher success rate we can archive.

7. References

[1]. Advertisement Detection and
Replacement using Acoustic and Visual
repetition, Michele Covell, Shumeet Baluja,
Michael Fink, IEEE Workshop on
Multimedia Signal Processing, Victoria BC,
October 2006.
[2]. Identification of New Commercials
using Repeated Video Sequence Detection,
John M. Gauch, Abhishek Shivadas, Image
Processing, ICIP 2005. IEEE International
Conference, 2005
[3]. Image Similarity, COMP343
Multimedia Computing, David Rossiter,
HKUST

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300

Recall (%)

Precision (%)

Length (mins)

Figure 6, Precision/Recall vs Length

[4]. A comparison of measures for
visualizing image similarity, Kerry Rodden,
Wojciech Basalaj, David Sinclair, Kenneth
Wood, Challenge of Image Retrieval,
Brighton, 2000
[5]. A flexible search-by-similarity
algorithm for content-based image retrieval,
J.Fournier, M.Cord, International
Conference on Computer Vision, Pattern
Recognition and Image Processing (CVPRIP
02) - March 2002
[6]. http://msdn.microsoft.com/en-
us/library/ms783323.aspx, DirectShow,

Microsoft Development Network, MSDN,
2009 Microsoft Corporation
[7].http://www.codeproject.com/KB/audio-
video/framegrabber.aspx, Extracting
bitmaps from movies using DirectShow,
CodeProject, Sep 2001
[8].http://msdn.microsoft.com/en-
us/library/ms783752(VS.85).aspx, Grabbing
a Poster Frame, MSDN, 2009 Microsoft
Corporation

8. Appendix

Our software for advertisement detection is implemented in Visual C++ 2008 with Microsoft
Foundation Classes (MFC) and DirectShow API.

Screenshot of software

System requirement (recommend)
CPU: Intel Core 2 Series or AMD Athlon64 Series or above;
Windows XP SP2 or above, with 512MB memory;

Supported Input format
AVI, WMV

Using the software
Step 1, click “Select Input File” and select a video file;
Step 2, click “Start Hashing”. It will take about several minutes hashing all the frames, depending
on the length of the corresponding video. Click “Stop” for terminating the hashing process.

Step 3, click “Start Detect”. Detection will soon start and be finished in about several seconds to
several minutes.

Resulting detected advertisements (including repetitive and non-repetitive) will appear in the
upper right list once detection has finished, containing start time, duration and other attributes of
each detected advertisement.

By double clicking one advertisement in the list box, the corresponding advertisement will be
played in the preview windows.

