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1.  Background 
Usually there are many advertisements in 
television. This is not efficient for video 
recording as the advertisement part takes a 
lot of extra space for storage. It is very good 
if all the advertisements can be removed in 
televisions video recording and storage 
automatically. Therefore, it is good for us to 
design a method to identify the 
advertisement parts in TV streams. 
 
 
2. Types of video clip 
We classify video segments into the 
following three types. 
 
Movies: These usually last for 
approximately 15 minutes each time, 4 times 
per hour. We should minimize the number 
of news/movies that wrongly detected as 
advertisements. 
 
Connections: There are typically several 
seconds of video connecting the 
advertisement part and news/movies part. 
This part is very useful and will be expanded 
further in the following sections. 
 
Advertisements: These usually last for 3-4 
minutes each time, 4 times per hour. We 
should maximize the number of extracted 
advertisements. 
 
3. Repetition of advertisement 
Here we use movie data from observations 
of “Hong Kong free-to-air TV”. It is not rare 
to see an advertisement appearing more than 
one time during the course of a movie, but 
there are few movie segments that appear 
exactly the same. Hence we can detect 
advertisements that have repetition 
throughout hours of videos. Here we divide 
advertisement into two subtypes: 
advertisements that have repetition in a 

video, naming repetitive advertisements, 
and advertisements that have no repetition in 
a video, naming non-repetitive 
advertisements. In this project, we devised 
our algorithm for fast frame search and 
detection of advertisements and connections. 
 
 
4. Practical advertisement detection 
 
4.1. Detection of repetitive advertisements 
and connections 
 
For a video, usually there are about 25 
frames per second. Although movies with 
different fps exist, it would not affect the 
basic idea of our algorithm. For 3 hours of 
video, the number of frames rapidly become 
25 x 60 x 60 x 3 = 270,000. Searching two 
similar frames by brute-force would cost 
73,000,000,000 frames comparisons which 
is totally unacceptable. To eliminate the 
number of computation, we hash every 
frame into the hash table. 

 
 
The way we devise the hash value of one 
frame is: we select four different regions 
with fixed positions and sizes, computing 
the gray level of each region. Then we 
normalize each gray level into �0,
�������	 
 1�. Here we choose levelmax = 
32 = 2�, using 5 bits of space to store one 
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Figure 1, hashing the whole video 



gray level.  Combining 4 gray levels we 
finally get a hash value.  

��������� � �����������0� � 15 �
� �����������1� � 10�
� �����������2� � 5�
� ����������3� 

 
 
After doing hashing, similar frames appear 
in the same hash values. 

 
 
Although similar frames will have the same 
hash value, it is not guarantee that any two 
frames in the same hash slot will be similar. 
Hash value can only reduce the 
computational complexity but how far we 
can improve our performance by using 
frame hashing totally depends on how good 
we devise our hash function. The best hash 
function should uniformly distribute all 
frames into different hash values. 
 

For every two frames with the same hash 
value at time t0, t1 respectively, naming 
frame(t0), frame(t1), we aim to find the two 
similar video intervals that contain t0 and t1 
respectively. To detect whether two frames 
are similar or not, we have devised the 
following frame similarity calculation 
method: 
 
1). Divide the bitmap of the frame at time t 
into sub blocks. The more sub blocks we 
divide into, the more accuracy of image 
comparison we get, but also the more 
computational time and disk storage are 
required. To compromise time complexity 
are accuracy, we use 12 x 9 sub blocks to 
represent a frame, as most advertisements 
are at ratio of 4:3. Then we calculate 
average red, green, blue color of each block 
respectively; Denote them as red(t,i), 
green(t,i), blue(t,i) where t stands for the 
time of the frame and i is for block index. 
 
2).For two frames at time t1 and t2, 
similarity is defined as follow: 
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!, +, - are weights of red, green, blue 
respectively, which satisfy ! * + * - � 1; 
values of red, green, blue range from 0 to 
255. 
 
 
Finding two similar video intervals via 
similarity calculation: 
 
We set a threshold of determining whether 
two frames are similar: 
 

- If Similarity(t1,t2) >= 
similarity_threshold, frame(t1) and 
frame(t2) are similar. 
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- If Similarity(t1,t2) < 
similarity_threshold, frame(t1) and 
frame(t2) are not similar 

 
In practice, we set similarity_threshold = 
0.999 
 
We start comparing frames t0 and t1, then 
t0+1 and t1+1 , then t0+2 and t1+2,…, 
until two frames are no longer similar. Then 
we get a pair of similar segments / 0 ,  0 *
∆ 12345�, / 1 ,  1 * ∆ 123456. 
 
Again, we compare frames t0-1 and t1-1, 
then t0-2 and t1-2 until two frames are no 
longer similar. / 0 
 ∆ 742854 ,  06, / 1 

∆ 742854 ,  1�. 
 
Combining the former results we have a pair 
of similar segments / 0 
 ∆ 742854 ,  0 *
∆ 12345�, / 1 
 ∆ 742854 ,  1 * ∆ 123456. 
 
The following graph illustrates our 
calculation. 
 

 
 
Once we have the two similar video 
segments  
 / 0 
 ∆ 742854 ,  0 * ∆ 123456, / 1 

∆ 742854 ,  1 * ∆ 12345�, we have find one 

pair of video repetition of length ∆ 742854 *
∆ 12345 starting at time  0 
 ∆ 742854, 
 1 
 ∆ 742854 respectively. To further 
deduce what type these two video segments 
belong to, we use the following criteria: 
 

- If ∆ 742854 * ∆ 12345 9
:�,����_ ���_<=_><,,�> �<,, 
they belong to nothing, ignore them 

- If ∆ 742854 * ∆ 12345 ?
:�,����_ ���_<=_><,,�> �<,, 
they belong to advertisements or 
connections 

 
In this project, we set the value of 
:�,����_ ���_<=_><,,�> �<, to be 6 
sec.  
 
 
4.2. Detection of non-repetitive 
advertisements 
 
Advertisements that have no repetition will 
be more difficult to detect. Only ignore 
those advertisements will let the result 
accuracy drop dramatically. To detect this 
type of advertisement, we use the everyday 
knowledge that, each advertisement section 
in a video will last for 3-4 minutes inside 
which are all advertisements. Further more, 
if two advertisements have been detected 
using previous repetition searching methods, 
and if those two advertisements happen 
within a 3-4 minute time slot, we can 
conclude that all video frames between those 
two advertisements should also belong to 
advertisement part. (Illustrated in the 
following graph) 

 
Figure 5, Detection of non-repetitive advertisements 
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We set a threshold ��	_�$�_ ���, 
representing the maximum time interval of 
consecutive advertisements. We conclude a 
time interval to be a non-repetitive 
advertisement time interval if: 
 

- Length of interval < 
��	_�$�_ ��� 

- There is a repetitive 
advertisement/connection right 
before the interval 

- There is a repetitive 
advertisement/connection right after 
the interval. 

  
In practice, we set ��	_�$�_ ���to be 200 
seconds. 
 
 
 
5. Tests and Results 
 
Movie A 
Source: Pearl Channel, TVB, HK 
Length: 3 hours 45 minutes 
 
Test Setup: 
Test 1 First 45 minutes of movie A 
Test 2 First 1 hour of movie A 
Test 3 First 1 hour 45 minutes of movie A 
Test 4 First 2 hours 35 minutes of movie A 
Test 5 The whole movie A 
 
System Configuration: 
Windows XP SP2; 
AMD Athlon64x2 TK-57 at 2300MHz 
Integrated Geforce 7150 / nForce 630M 
1G RAM 
120G Hard disk. 
 
Test Results 
 Test 

1 
Test 
2 

Test 
3 

Test 
4 

Test 
5 

Length 
of 
detected 
ads. 

0  4 
mins 
45 
secs  

17 
mins 
10 
secs 

29 
mins 
44 
secs 

46 
mins 
13 
secs 

Length 
of actual 
ads. 

10 
mins 
32 
secs 

14 
mins 
2 
secs 

26 
mins 
37 
secs 

37 
mins 
57 
secs 

54 
mins 
24 
secs 

Length 
of false 
detection 

0 0 0 0 0 

Precision ## 100% 100% 100% 100% 
Recall 0% 34% 64% 78% 85% 

 

 
 
 
6. Conclusions 
 
This method works in the situation that 
advertisement repetition exists. Non-
repetitive advertisements can be estimated in 
the knowledge of detected repetitive 
advertisements. If more videos are analyzed, 
the number of repetitive advertisement will 
increase, while the number of non-repetitive 
advertisements will reduce, resulting in a 
higher success rate we can archive. 
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8. Appendix

Our software for advertisement detection is implemented in Visual C++ 2008 with Microsoft 
Foundation Classes (MFC) and DirectShow API. 
 
Screenshot of software 

 
 
System requirement (recommend) 
CPU: Intel Core 2 Series or AMD Athlon64 Series or above; 
Windows XP SP2 or above, with 512MB memory; 
 
Supported Input format 
AVI, WMV 
 
Using the software 
Step 1, click “Select Input File” and select a video file; 
Step 2, click “Start Hashing”. It will take about several minutes hashing all the frames, depending 
on the length of the corresponding video. Click “Stop” for terminating the hashing process. 



Step 3, click “Start Detect”. Detection will soon start and be finished in about several seconds to 
several minutes. 
 
Resulting detected advertisements (including repetitive and non-repetitive) will appear in the 
upper right list once detection has finished, containing start time, duration and other attributes of 
each detected advertisement. 
 
By double clicking one advertisement in the list box, the corresponding advertisement will be 
played in the preview windows.  
 


