Multi-Label Video Classification with QRNN and DenseNet

To Isaac Zachary

ysto@connect.ust.hk

COMP 4971F (Winter 2018), Supervised by Dr. David Rossiter

1 Introduction

This paper is an extension of the paper “Large-Scale Multi-
Label Video Classification Using QRNNs” (To, 2018 [1]).
The paper, part of an Undergraduate Independent Studies
Project explored using Quasi-Recurrent Neural Networks as
a method to predict relevant labels to any given video. A
Quasi-Recurrent Neural Network (Bradbury & Merity et al.,
2016 [2]) is a type of Neural Network that alternate between
Convolutional layers and Pooling layers. This type of Neural
Network was chosen due to the architecture being inherently
smaller in file size, as well as requiring less computational
resources for training.

In this paper, we will introduce a variant of the Quasi-
Recurrent Neural Networks introduced in the last paper to
predict the relevant labels to any given video. As this prob-
lem is a type of sequence classification, meaning that a pre-
diction is made based on a sequence of inputs, we can look
into methods that are used in typical sequence classification
problems. One of the largest flaws of the previous paper is
that the focus was emphasized on the fact that videos are
sequences, however, the features of videos and frames were
not fully assessed per se, hence a QRNN by itself was not
able to achieve a high accuracy.

In this paper, we will combine Densely Connected Convo-

lutional Networks (DenseNet) and QRNNs in an attempt

to improve the accuracy of QRNNs. ’Dense Convolution’,

(Huang, Liu, Maaten, and Weinberger, 2016 [5]) a technique

used in Convolutional Networks, introduces skip-connections
between QRNN layers. This method is useful in Convolu-

tional Networks as in layers close to the input and the output,

shorter connections between said layers are observed to im-

prove accuracy and are more efficient to train.

The experiment presented in this paper is based on the "The
2nd YouTube-8M Video Understanding Challenge” (here-
inafter “CHALLENGE”) held on Kaggle in 2018 [6], fol-
lows the same protocols for evaluation, and compares to the
winners of the presented challenge as a benchmark.

The priorities in the selection the model architecture for this
task is having one ’light-weight’ model with an acceptable
accuracy compared to that of other teams on the CHAL-
LENGE. A ’light-weight’ model means the model is small
in file size and requires minimal computational resources for
training and deployment. In the CHALLENGE most teams
use multiple models and take a weighted average from the
output. This can cause some issues to arise during training
and deployment. Hence we would like to keep the model
proposed in this paper as simplistic as possible.

2 Technical Methodology
2.1 Dataset

We will use the Youtube-8M dataset [3] for experimenta-
tion. The Youtube-8M dataset is the largest publicly avail-
able multi-label video classification dataset, with approxi-
mately 8 Million videos annotated with 3862 classes of la-
bels [3]. The videos within the dataset averages 3.01 labels
per video, where the number of labels per video ranges from
1 to 23. As this dataset covers over 500,000 hours of video,
2.6 billion audio and visual features have been extracted and
pre-processed in advance by the Google Research Team as it
would be infeasible for research teams to train hundreds of
Terabytes worth of video for their model. The next section
of this paper will outline the feature extraction process of the
Youtube-8M dataset.

2.2 Youtube-8M Feature Extraction

A deep model, namely an Inception network[3], trained on
Imagenet was used to pre-process the videos and extract
frame-level features. An Inception Network is like a Convo-
lutional Neural Network except it has been heavily modified
to boost results and performance. The following points are
the procedures and specifications of the feature extraction
process of this dataset:

e Each video was decoded at 1 frame-per-second up to
the first 360 seconds (6 minutes). This cap was imple-
mented for storage and computation reasons

e Decoded frames are fed into the Inception Network

e The Rectified Linear Unit (ReLLU) activation function
of the last hidden layer before the classification layer
is fetched

o The feature vector is 2048-dimensional per second of
video

e Principal Component Analysis (PCA) along with whiten-

ing was applied to scale down the feature dimensions
to 1024, followed by quantization (1 byte per coeffi-
cient)

e PCA and Quantization downsamples the size of the
data by the factor of 8

e The mean vector and covariancce matrix for PCA was
computed on all frames from the training partition

e Each 32-bit float was quantized into 256 distinct val-
ues (8 bits) using optimally computed (non-uniform)
quantization bin boundaries

o The dataset is then broken into 3844 shards each for
the training, validation, and testing partitions

e The dataset is separated into the Frame-level features
dataset, which is approximately 1.53 Terabytes, and

2.3.3 Precision at equal recall rate (PERR)

For Precision at equal recall rate (PERR), we retrieve the
same number of labels per video as there are in the ground-
truth to measure the video-level annotation precision. With

the Video-level features dataset, which is approximately o <0 notation as Hit@k, PERR can be represented as:

31 Gigabytes

The features extracted were also split into two types and two
different datasets. Namely frame-level features and video-
level representations. For frame-level features, 20 random

frames are randomly sampled from each video, then the ground

truth labels are associated with each frame. Video-level rep-
resentations are simply fixed-length video features being ex-
tracted using the above procedures.

2.3 Evaluation

In order to prevent bias in the evaluation process, the evalu-
ation protocol [3] provided by Google will be used to calcu-
late the accuracy of a given model. (Note: It was simplified
to enable faster calculations of important metrics) The three
protocols that are used to evaluate the accuracy of the model
are Global Average Precision (GAP), Hit @ k, where k = 1,
and Precision at equal recall rate (PERR).

2.3.1 Global Average Precision (GAP)

Global Average Precision (GAP) at k, where k = 20 is the
primary evaluation metric [3]. A list of the top 20 pre-
dicted labels for each video and their corresponding con-
fidence scores are generated after testing. The evaluation
treats each predicted label and the confidence score as an
individual data point to compute the GAP across all the pre-
dictions and videos. If there are N predictions sorted by de-
creasing confidence scores, the Global Average Precision is
computed by

GAP =YV p(i) Ar(i)

where N is the number of final predictions made, p(i) is the
precision and r(i) is the recall.

2.3.2 Hit @ k

This is the percentage of test samples that contain at least
one correct label in the top k predictions made by the model.
In this case we will be using k = 1 to evaluate the accuracy
of the model. Where rankv. is the rank of entity e on video
v, where the label with the highest confidence score is rank
1. Gvis the set of ground-truth labels for v, Hit@K can be
represented as:

1
7|V| E Veea, I(ranky e < k),
veEV

where V is logical OR

> I(ranky,e < |Gul)| -

ecGy

1 1
Ve 2 |Gl

vEV:|Gy >0

3 Model Architecture

3.1 Architecture of QRNN

In the previous work [1], a Quasi-Recurrent Neural Network
(QRNN) [2] was chosen to tackle the task at hand. QRNNSs
alternates between convolution layers and pooling layers.
Where the convolutional layer computes and maps current
representations, and the pooling layers are used to handle
sequential dependencies. This architecture is represented in
Figure 1.

QRNN
v v
Convolution
fo-Pool — — — — — — >
Convoluton SR
fo-Pool — — — — — — >
] v v

Figure 1: The QRNN Architecture

3.2 Architecture of DenseNet

In typical Convolutional Neural Networks (CNNs), the out-
put of the n' layer is connected to the (n + 1) layer as its
input. This is represented in Figure 2.

CNN

Convolution

Max-Pool | |

Convolution

Max-Pool | |

Figure 2: Typical CNN Architecture

For DenseNet [5], instead of each layer only having a con-
volutional connection to one other layer, each layer is con-
nected to all its following layers. In terms of n, instead of the
output of the n'" layer being only connected to the input of
the (n + 1) layer, the n™ layer receives feature-maps from
all its preceding layers, xg, ...x,,—1 as input. We refer to this
architecture as Dense Blocks. This is denoted as follows:

Xp = Hn([XO7X17 -~-7Xn71])

where

x denotes a single fixed vector input

X, denotes the output of the n'" layer

H,, denotes a composite function of operations

Figure 3: Architecture of DenseNet [5]

H,, is defined as a composite function consisting of three
consecutive operations: batch normalization, rectified linear
unit (ReLU), and a convolution, in that order. The inputs of
H,, is concatenated into a single tensor.

In any case where the concatenation operation in the above
equation is not viable, down-sampling layers by changing
the size of feature maps. In order to facilitate this operation,
Dense Blocks are used. Between Dense Blocks we insert
transition layers. Typically these layers consists of a Batch
Normalization layer, a ReLU layer, a convolutional layer, a
pooling layer, and is then regularized with a technique called
dropout. Dropout omits hidden and visible units (neurons)
in a neural network during training. This technique is used
to prevent overfitting. In the last layer we insert a sigmoid
function, this is for us to generate the confidence score for
each prediction made by the model.

In the function H,,, it produces k feature-maps. The number
of input feature-maps that the n'" layer has is denoted by:

k0+k*(n—1)

where
ko denotes the number of channels in the input layer

The hyperparameter k regulates the amount of new informa-
tion that is contributed to the global state by each layer. The
global state of the network is the feature maps present within
the DenseNet. One of the strengths of DenseNet is that the
global state can be accessed by any layer of the network, in-
stead of having to replicate it layer by layer like traditional
neural networks.

3.3 Densely-Connected QRNN

The next step was to implement the dense convolution tech-
niques to the QRNN architecture. It was suggested in Brad-
bury & Merity et al., 2016 [2] that connecting each QRNN
layer’s output to the following layers as outputs, is the equiv-
alent to including connections between the input embeddings,
every QRNN layer and every pair of QRNN layers. This is
true as the global state of the network is still present within
the QRNN and accessible by any layer of the network.

The architecture of the Densely-Connected QRNN (dcQRNN)
is similar to that of DenseNet. dcQRNN blocks were cre-
ated and connected, and between the blocks, transition lay-
ers were inserted. However, the transition layers of dcQRNN
only consisted of a Batch Normalization layer, a ReLU layer,
and a dropout “layer”. A sigmoid function was inserted at
the output of the dcQRNN as well.

4 Experiments

4.1 Training

The models were trained on a Macbook Pro with a 2.8 GHz
Intel Core i5 CPU and 8 GB 1600 MHz DDR3 memory with
all shards of the Youtube-8M dataset. The models were built
on Keras, an open-sourced Python Neural Network library
on top of Tensorflow. Tensorflow, another open-sourced
framework was used to train and test the models. The mod-
els were exclusively trained on the CPU of the device. All
models were trained on 5 epochs to shorten the training time
required. All models were built using the console Sublime
Text 3.1.1 and trained on the Terminal provided by macOS
High Sierra Version 10.13.

s0
| Hitel: 8.71 PERR: 0.57 GAP: 0.52
s8

43
| Hitel: .73 PERR: 0.57 GAP: 0.55
15

INFO: tensorflow: training step 86 | Loss: 1258.04 Examples/sec: 1557.33
INFO: tensorflow: training step 87 | Loss: 1217.94 Examples/sec: 1669.11
INFO: tensorflow: training step 88 | Loss: 1221.36 Examples/sec: 1779.51
INFO: tensorflow: training step 89 | Loss: 1219.14 Examples/sec: 1911.08
INFO: tensorflow: training step 99 | Loss: 1195.06 Exanples/sec: 2017.13 | Hitel: 0.73 PERR: 0.58 GAP: 0.54
INFO: tensorflow: training step 91 | Loss: 1217.20 Examples/sec: 1926.67
INFO: tensorflow training step 92 | Loss: 1192.87 Examples/sec: 2037.14
INFO: tensorflow: training step 93 | Loss: 1160.90 Exanples/sec: 1281.00
training step 94 | Loss: 1175.71 Exanples/sec: 1470.64
INFO: tensorflow: training step 95 | Loss: 1148.46 Examples/sec: 1140.72
INFO: tensorflow: training step 96 | Loss: 1151.08 Examples/sec: 1549.12
INFO: tensorflow: training step 97 | Loss: 1118.98 Examples/sec: 1712.57
INFO: tensorflow: training step 98 | Loss: 1123.10 Exanples/sec: 1709.68
INFO: tensorflow: training step 99 | Loss: 1123.46 Examples/sec: 1574.43
INFO: tensorflow: training step 100 | Loss: 1103.81 Exanples/sec: 1694.76 | Hitel: 0.72 PERR: 0.58 GAP: 0.55
INFO: tensorflow: training step 101 | Loss: 1096.86 Exanples/sec: 1696.74
INFO: tensorflow: training step 102 | Loss: 1093.03 Exanples/sec: 1872.51

Figure 4: An illustration of the training in progress

4.2 Results

As aforementioned to prevent bias in the evaluation process,
Google’s evaluation protocol was used to evaluate the accu-
racy of the model.

The results yielded:
Level Model GAP
Video | DenseNet (This Study) | 86.7
Video | dcQRNN (This Study) | 85.1
Video | QRNN (Previous Study) | 80.8

4.3 Comparison of results

The results from the models was compared to the winners of
the Google Cloud YouTube-8M Video Understanding Chal-
lenge 2017 as well as the winners of the 2nd YouTube-8M
Video Understanding Challenge. They include teams from
Samsung, Baidu and Tsinghua University.

Year | Rank Model GAP
2018 1 Ensemble of 13 models [15] 88.987
2018 2 Ensemble of 16 models [14] 88.729
2018 3 Ensemble of 3 models [13] 88.722
2019 n/a DenseNet (This Study) 86.7
2019 | n/a dcQRNN (This Study) 85.1
2017 1 Ensemble of 25 models [9] 84.966
2017 Weighted 74 models [10] 84.589
2017 3 Ensemble of of 57 models [11] | 84.541
2018 n/a QRNN (Previous Study) [1] 80.8

Where “Rank” represents the ranking that model gained in
the challenge.

As evident from the Global Average Prediction scores, the
QRNN falls shy against the results achieved by the winners
from 2017. This may be because the winners selected to
use multiple models instead of one model, whereas an en-
semble method can be explored in the future. The DenseNet
performs quite close to the winners from 2018, while the dc-
QRNN exceeds the winners from 2017 but yet it performs
rather unremarkably when compared to the winners from
2018.

5 Implications

Observing the results obtained from this study and compar-
ing it against the previous study [1], it is evident that the ap-
proach of using QRNNSs may be inferior to other approaches,
specifically DenseNets. While the QRNN and dcQRNN per-
formed at an average performance, the DenseNet outper-
formed both models. This could be because in a task such
as making predictions based on certain videos, the emphasis
on feature mapping from fixed vector inputs is higher than
the sequential aspect of it.

From the results, it is also evident that introducing connec-
tions between the input embeddings, every QRNN layer and
every pair of QRNN layers, and thus writing a global state
accessible by all of the layers increases the accuracy of the
predictions made.

6 Further Exploration

6.1 Expanding upon the model

In the future I would like to test how the results of an ensem-
ble of models would differ from the result from one model,
as evidently one single model may not be able to compete
with the results of an ensemble of models. However, an is-
sue to deal with when working with an ensemble of models
is the weighting of certain models.

Another way to potentially increase accuracy is to pre-process
the data and to ’clean’ the noise present within the dataset.
Certain techniques such as training the models on soft labels
could be helpful to increasing the accuracy of the models.
There are also multiple regularization techniques applicable
to neural networks, it would be helpful to experiment with
different types of regularization techniques and their effect
on the overall accuracy of the models. Last but not least,
the frame-level dataset has not been explored in this study
yet. Whether both datasets can complement each other is a
question worth exploring in the future.

References

(1]

(5]

(6]

[7]

(8]

[9]

(10]

(11]

[12]

[13]

[14]

Isaac Zachary To. Large-Scale Multi-Label Video
Classification Using QRNNs. 2018. Re-trieved from
http://www.cse.ust.hk/ ~ rossiter/independent_studies_
projects/video_classification_qrnn/video_classification
_qrnn_report.pdf

James Bradbury, Stephen Merity, Caiming Xiong,
and Richard Socher. Quasi-recurrent neural networks.
CoRR, abs/1611.01576, 2016.

Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee,
Paul Natsev, George Toderici, Balakrishnan Varadara-
jan, and Sudheendra Vijayanarasimhan. Youtube-
8m:A large-scale video classification benchmark.
CoRR, abs/1609.08675, 2016.

YouTube-8M: A Large and Diverse Labeled Video
Dataset for Video Understanding Research. (n.d.). Re-
trieved from https://research.google.com/youtube8m/

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely Connected Convolu-
tional Networks. CoRR, abs/1608.06993, 2016.

The 2nd YouTube-8M Video Understand-
ing Challenge. (n.d.). Retrieved from
https://www.kaggle.com/c/youtube8m-2018/

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learn-
ing long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2),
157-166.

Under-
from

Google Cloud YouTube-8M Video
standing Challenge. (n.d.). Retrieved
https://www.kaggle.com/c/youtube8mevaluation

Antoine Miech, Ivan Laptev, and Josef Sivic. Learn-
able pooling with context gating for video classifica-
tion. CoRR, abs/1706.06905, 2017.

He-Da Wang, Teng Zhang, and Ji Wu. The monkey-
typing solution to the youtube-8m video understanding
challenge. CoRR, abs/1706.05150, 2017.

Fu Li, Chuang Gan, Xiao Liu, Yunlong Bian, Xi-
ang Long, Yandong Li, Zhichao Li, Jie Zhou,
and Shilei Wen. Temporal modeling approaches for
large-scale youtube-8m video understanding. CoRR,
abs/1707.04555, 2017.

M. L. Jordan. Hierarchical mixtures of experts and the
em algorithm. Neural Computation, 6, 1994.

Rongcheng Lin, Jing Xiao, and lJianping Fan.
NeXtVLAD: An Efficient Neural Network to Aggre-
gate Frame-level Features for Large-scale Video Clas-
sification. CoRR, abs/1811.05014, 2018.

Pavel Ostyakov, Elizaveta Logacheva, Roman Su-
vorov, Vladimir Aliev, Gleb Sterkin, Oleg Khomenko,
and Sergey I. Nikolenko. Label Denoising with Large
Ensembles of Heterogeneous Neural Networks. CoRR,
abs/1809.04403, 2018.

[15] Skalic, M., Austin, D. (2019). Building A Size Con-

strained Predictive Models for Video Classification.
Lecture Notes in Computer Science Computer Vision
— ECCYV 2018 Workshops, 297-305. doi:10.1007/978-
3-030-11018-5_27

	Introduction
	Technical Methodology
	Dataset
	Youtube-8M Feature Extraction
	Evaluation

	Model Architecture
	Architecture of QRNN
	Architecture of DenseNet
	Densely-Connected QRNN

	Experiments
	Training
	Results
	Comparison of results

	Implications
	Further Exploration
	Expanding upon the model

