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1 Introduction

Video is one of the most prominent forms of content that we
consume. With multiple video-centric platforms on the rise,
from Snapchat to Twitch, video has become an integral part
of our lives. It is crucial for the proprietors to understand
the content and trends of the video content being curated.
That said, with the huge amount of videos being processed
through these aforementioned platforms, it has become a
task that humans alone cannot keep up.

In this paper, we introduce a method to predict the relevant
labels to any given video based on Quasi-Recurrent Neural
Networks (Bradbury & Merity et al., 2016 [1]) architecture.
Quasi-Recurrent Neural Networks (QRNNs) alternates be-
tween Convolutional layers and Pooling layers. This archi-
tecture is superior in accuracy and speed.

The experiment presented in this paper is based on the "Google

Cloud & YouTube-8M Video Understanding Challenge” held
on Kaggle in 2017 [8], follows the same protocol for evalua-
tion, and compares to the winners of the presented challenge
as a benchmark.

This priorities in the selection the model architecture for this
task is having a light-weight model, meaning the model be-
ing small in file size, as well as require the least possible
computation resources for training and deployment. This is
due to many current models having high accuracies but re-
quire multiple Graphics Processing Units (GPUs) for train-
ing and deployment. This paper aims to provide a model at
a reasonable accuracy that uses a small amount of computa-
tion resources.

2 Technical Methodology

2.1 Dataset

We will use the Youtube-8M dataset [2] for experimenta-
tion. The Youtube-8M dataset is the largest publicly avail-
able multi-label video classification dataset, with approxi-
mately 8 Million videos annotated with 3862 classes of la-
bels [3]. The videos within the dataset averages 3.01 labels
per video, where the number of labels per video ranges from
1 to 23. As this dataset covers over 500,000 hours of video,
2.6 billion audio and visual features have been extracted and
pre-processed in advance by the Google Research Team as it
would be infeasible for research teams to train hundreds of
Terabytes worth of video for their model. The next section
of this paper will outline the feature extraction process of the
Youtube-8M dataset.

2.2  Youtube-8M Feature Extraction

A deep model, namely an Inception network[2], trained on
Imagenet was used to pre-process the videos and extract
frame-level features. An Inception Network is like a Convo-
lutional Neural Network except it has been heavily modified
to boost results and performance. The following points are
the procedures and specifications of the feature extraction
process of this dataset:

e FEach video was decoded at 1 frame-per-second up to
the first 360 seconds (6 minutes). This cap was imple-
mented for storage and computation reasons

e Decoded frames are fed into the Inception Network

e The Rectified Linear Unit (ReLU) activation function
of the last hidden layer before the classification layer
is fetched

e The feature vector is 2048-dimensional per second of
video

o Principal Component Analysis (PCA) along with whiten-
ing was applied to scale down the feature dimensions
to 1024, followed by quantization (1 byte per coeffi-
cient)

e PCA and Quantization downsamples the size of the
data by the factor of 8

e The mean vector and covariancce matrix for PCA was
computed on all frames from the training partition

e Each 32-bit float was quantized into 256 distinct val-
ues (8 bits) using optimally computed (non-uniform)
quantization bin boundaries

e The dataset is then broken into 3844 shards each for
the training, validation, and testing partitions

o The dataset is separated into the Frame-level features
dataset, which is approximately 1.53 Terabytes, and
the Video-level features dataset, which is approximately
31 Gigabytes

The features extracted were also split into two types and two
different datasets. Namely frame-level features and video-
level representations. For frame-level features, 20 random
frames are randomly sampled from each video, then the ground
truth labels are associated with each frame. Video-level rep-
resentations are simply fixed-length video features being ex-
tracted using the above procedures.



2.3 Evaluation

In order to prevent bias in the evaluation process, the evalu-
ation protocol[2] provided by Google will be used to calcu-
late the accuracy of a given model. The two protocols that
are used to evaluate the accuracy of the model are Hit @ k,
where k = 1, and Precision at equal recall rate (PERR).

2.3.1 Hit @ k

This is the percentage of test samples that contain at least
one correct label in the top k predictions made by the model.
In this case we will be using k = 1 to evaluate the accuracy
of the model. Where rankv. is the rank of entity e on video
v, where the label with the highest confidence score is rank
1. Gvis the set of ground-truth labels for v, Hit@K can be
represented as:

1
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where V is logical OR
2.3.2 Precision at equal recall rate (PERR)

For Precision at equal recall rate (PERR), we retrieve the
same number of labels per video as there are in the ground-
truth to measure the video-level annotation precision. With
the same notation as Hit@k, PERR can be represented as:

3 I(ranky,e < |Gul)| -

ecGy

1 1
[V :|Gy| > 0 > |G|

veEV:|Gy|>0

3 Model Architecture
3.1 Background

First, we shall explore the typical architecture of commonly
seen Neural Networks, namely Convolutional Neural Net-
works (CNNs)[4] and Long Short Term Memory Units
(LSTMs) [6].

A Neural Network is neurons arranged in layers. Gener-
ally speaking there are 3 types of layers; input layer, hidden
layers and output layer. The neurons in the input layer are
connected to neurons in the first hidden layer et cetera. Each
neuron has learnable weights and biases. When an input is
received, the neuron computes a dot product and follows up
with non-linearity if necessary.

For Convolution Neural Networks (CNNs) as shown in fig-
ure 1, they are actually quite similar to the typical neural net-
work. For example, most tips and tricks applicable to Neural
Networks still apply, a loss function such as a normalized
exponential function (Softmax Function) or a support vector
machine still exists. The key difference is that CNNs make
an explicit assumption that the input is a fixed sized vector,
like an image.

This assumption made by CNNs is the reason why CNNs are
generally chosen for object detection, text recognition tasks
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Figure 1: Typical CNN Architecture

etc. Regular Neural Networks don’t scale well to full im-
ages as a fully connected architecture would result in waste-
ful results due to a huge number of parameters in the Neural
Network. As CNNs only process fixed sized vectors, we can
encode certain properties into the architecture, which vastly
reduces the amount of parameters in the Neural Network,
handling the overfitting issues that normal Neural Networks
have with images. CNNs generally learn to recognize pat-
terns in a space. For example, recognizing components of
an image like lines and curves, then combining these com-
ponents to recognize larger structures such as objects and
faces.

Only accepting fixed sized vectors as an input and produc-
ing a fixed-sized vector as an output is also the most sub-
stantial limitation of Convolutional Neural Networks. In ad-
dtion, CNNs only perform mapping with a fixed amount of
steps, determined by the number of layers in the CNN. This
bounds the efficiency of CNNs in handling other types of
data. Recurrent Neural Networks (RNNs) [5], on the other
hand, are a more effective architecture in applications relat-
ing to sequential data. RNNs operates over sequences of
vectors: sequences in the input, the output, or in the most
general case both. However, RNNs are not capable of han-
dling long-term dependencies as in most cases, it only looks
at recent information to perform the present task. Hence
Long Short Term Memory (LSTMs), which are units of a
RNN, are introduced.
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Figure 2: Typical LSTM Architecture

Long Short-Term Memory (LSTM) Hochreiter & Schmid-
huber (1997) [6] as shown in figure 2, was originally de-
signed to address the difficulties of training RNNs Bengio



et al (1994) [7]. LSTM units maintains a memory vector,
which allows past information to be read, written or reset af-
ter a long period of time. This is complemented by a gating
mechanism. Generally in an RNN a gradient vanishes or ex-
plodes due to backpropagation dyanamics, hence not being
able to handle past information that is relevant to the events
that are being processed. This is why LSTM units comple-
ments RNNs well, as it handles the long-term dependencies
issues of RNNs. LSTM units are especially useful where
past and present information is very important to the events
being processed by the RNN.

3.2 Architecture

For the architecture of the model chosen, we selected a Quasi-
Recurrent Neural Network (QRNNs)[2]. QRNNs are built
using simple components of Neural Networks: a convolu-
tional layer and a pooling layer. The idea of alternating be-
tween convolution layers and pooling layers is to use the
convolutional layer to compute and map current representa-
tions, then use the pooling layers to handle sequential de-
pendencies. This architecture is represented in Figure 3.
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Figure 3: The QRNN Architecture

This architecture is especially effective for tacking this video
classification task as videos are sequential data, which plays
to the strength of RNNs and LSTMs. On the other hand,
videos themselves are composed of multiple frames which
are essentially images, which plays to the strength of CNNGs.
The QRNN architecture basically combines the strengths of
both cNNs and RNNs (LSTMs) to classify the large amount
of video data being inputted.

3.2.1 Convolutional Layer

QRNNSs use convolutional layers in the timestep dimension
to compute the intermediate vectors and gating vectors. Each
input is computed with 3 vectors: a candidate vector, a forget
gate, and an output gate.

When given an input sequence of n-dimensional vectors

x1, X2, ...x7, the convolution layer for the candidate vectors
with m filters produces a sequence of T m-dimensional out-
put vectors z1, 22, ..., 2. The same process applies to forget
gates and output gates, represented by

z; = tanh(convw, (x4, ..., Tr—g+1))

f; = o(convw, (T4, ..., Ttk 11))

2y = o(convw, (Tt .o, Tt—k41))

where conv represents convolution and k is the filter size.
This convolutional layer is no different from a normal con-
volution with tanh or sigmoid activations. But take note this
is masked convolution which means that the output does not
have a dependency in the form of a future input.

3.2.2 Pooling

The QRNN layer performs input-dependent pooling, then
combines the convolutional features linearly via a gate. As
shown in figure 3. Hence with the inputs from the convolu-
tional layer, the QRNN computes the hidden states using a
forget gate and an output gate as represented by:

c=frOc1+(1—fi) Oz
ht = O¢ @ Ct
where © represents element-wise multiplication.

This equation is denoted as fo-pooling by the authors, as this
function contains a forget gate followed by an output gate.
Other forms may include an independent input followed by
a forget gate, represented by

Ct=[tOc-1+it Oz
ht = O¢ @ Cy
where © represents element-wise multiplication.

The pooling component of the QRNN architecture is similar
to the traditional LSTM unit. The difference is that sequen-
tial processes only occur in the pooling layer and the values
of z;, ft, &o; are independent. Heavy computation is done in
parallel and sequential processing is strictly done in pooling
layers. Other forms of QRNNs were also explored in the pa-
per however it was not tested out. Like conventional Neural
Networks, multiple QRNN layers stacked together can cre-
ate a model that is able to handle more complex functions.

3.3 Why QRNN was chosen

As aforementioned the QRNN architecutre is especially ef-
fective for tacking this video classification task as videos
are sequential data, composed by a series of images. Hence
QRNNSs have an advantage in terms of predictive accuracy
over traditional CNNs, RNNs or LSTMs.

In addition, another reason why QRNNs were chosen to tackle
this task was the computational efficiency. QRNNSs have in-
creased parallelism as sequential data is strictly computed in
the pooling layers, and heavy computation is done via par-
allel methods. Therefore, it trains and tests faster than tra-
ditional Neural Networks. Bradbury & Merity et al. (2016),
claims that QRNNs are up to 16 times faster in both train-
ing and testing time, however, this paper has not explored
the training time and testing time of QRNNSs as there are no
competing models at this stage.



4 Experiments

4.1 Training

The model was trained on a Macbook Pro with a 2.8 GHz
Intel Core i5 CPU and 8 GB 1600 MHz DDR3 memory with
all shrads of the Youtube-8M dataset. The model was built
on Keras, an open-sourced Python Neural Network library
on top of Tensorflow. Tensorflow, another open-sourced
framework was used to train and test the model. The model
was exclusively trained on the CPU of the device. The model
was trained on 5 epochs to shorten the training time required.
The model was built using the console Sublime Text 3.1.1
and trained on the Terminal provided by macOS High Sierra
Version 10.13.

eoe o python train.py --feature.s 1_rgb,mean_audio —feature_sizes=1024,128 ~-train_data_pattern=/L

INFO: tensorflow:training step 25099 | Loss: 4.57 Examples/sec: 2725.19

INFO: tensorflow:training step 25100 | Loss: 4.39 Examples/sec: 2619.11 | Hitel: 0.86 PERR: 0.77 GAP: 0.82
INFO: tensorflow:training step 25101 | Loss: 4.17 Examples/sec: 2576.57

INFO: tensorflow:training step 25102 | Loss: 4.46 Examples/sec: 2681.46

INFO: tensorflow:training step 25103 | Loss: 4.12 Examples/sec: 2549.46

INFO: tensorflow:training step 25104 | Loss: 4.11 Examples/sec: 2462.75

INFO: tensorflow:training step 25105 | Loss: 4.30 Examples/sec: 2546.27

INFO: tensorflow:training step 25106 | Loss: 4.13 Examples/sec: 2740.44

INFO: tensorflow:training step 25107 | Loss: 4.39 Examples/sec: 2569.00

INFO: tensorflow:training step 25108 | Loss: 4.55 Examples/sec: 2600.00

INFO: tensorflow:training step 25109 | Loss: 4.47 Examples/sec: 2646.62

INFO: tensorflow:training step 25110 | Loss: 4.37 Examples/sec: 2632.59 | Hitel: .87 PERR: 0.78 GAP: 0.83
INFO: tensorflow:training step 25111 | Loss: 4.34 Examples/sec: 2633.66

INFO: tensorflow:Recording summary at step 25111.

INFO: tensorflow:training step 25112 | Loss: 4.35 Examples/sec: 1583.78

INFO: tensorflow:training step 25113 | Loss: 4.41 Examples/sec: 2573.17

INFO: tensorflow:training step 25114 | Loss: 4.3 Examples/sec: 2632.52

INFO: tensorflow:training step 25115 | Loss: 4.32 Examples/sec: 2698.76

INFO: tensorflow:training step 25116 | Loss: 3.89 Examples/sec: 2647.94

INFO: tensorflow:training step 25117 | Loss: 4.02 Examples/sec: 2658.08

INFO: tensorflow:training step 25118 | Loss: 4.22 Examples/sec: 2593.33

INFO: tensorflow:training step 25119 | Loss: 4.42 Examples/sec: 2619.27

INFO: tensorflow:training step 25120 | Loss: 4.45 Examples/sec: 2681.67 | Hitel: .87 PERR: 0.78 GAP: 0.83
INFO: tensorflow:training step 25121 | Loss: 4.38 Examples/sec: 2733.50

INFO: tensorflow:training step 25122 | Loss: 4.44 Examples/sec: 2639.92

INFO: tensorflow:training step 25123 | Loss: 4.39 Examples/sec: 2588.63

INFO: tensorflow:training step 25124 | Loss: 4.40 Examples/sec: 2652.31

INFO: tensorflow:training step 25125 | Loss: 4.44 Examples/sec: 2504.44

INFO: tensorflow:training step 25126 | Loss: 4.34 Examples/sec: 2393.64

INFO: tensorflow:training step 25127 | Loss: 4.22 Examples/sec: 2358.86

INFO: tensorflow:training step 25128 | Loss: 4.03 Examples/sec: 2478.07

INFO: tensorflow:training step 25129 | Loss: 4.48 Examples/sec: 2525.02

INFO: tensorflowstraining step 25130 | Loss: 4.41 Examples/sec: 2520.17 | Hitel: .88 PERR: 0.79 GAP: 0.83
INFO:tensorflowstraining step 25131 | Loss: 4.41 Examples/sec: 2574.41

INFO: tensorflowstraining step 25132 | Loss: 4.12 Examples/sec: 2523.68

INFO: tensorflowstraining step 25133 | Loss: 4.37 Examples/sec: 2504.19

INFO: tensorflowtraining step 25134 | Loss: 4.25 Examples/sec: 2471.87

INFO: tensorflowitraining step 25135 | Loss: 4.37 Examples/sec: 2470.96

INFO: tensorflowitraining step 25136 | Loss: 4.25 Examples/seci 2519.74

ENFu‘tensurHuw:tra)nmq Step 25137 | Loss: 4.17 Examples/sec: 2596.67

Figure 4: An illustration of the training in progress

4.2 Results

As aforementioned to prevent bias in the evaluation process,
Google’s evaluation protocol was used to evaluate the accu-
racy of the model.

ece youtube-8m — -bash — 169x32
INFO: tensor flow:exasples_processed: 1100800 | global_step 18010 | Batch Hitel: 0.854 | Batch PERR: 0.765 | Batch Loss: 4.385 | Examples_per_sec: 2579.125
. 1101824 | global step 18010 | Batch Hitel: O.

1102848 | global step 18010 | Batch Hitel: 0.
1103872 | global step 18010 | Batch Hitel
1104896 | global step 18010 | Batch Hitel: 0
1105920 | global step 18010 | Batch Hitel: o
1106944 | global step 18010 | Batch Hitel: 0.
1107968 | global step 18010 | Batch Hitel
1108992 | global step 18010 | Batch Hitel: 0.
1110016 | global step 18010 | Batch Hitel: 0.
1111040 | global step 18010 | Batch Hitel: 0.
1112064 | global step 18010 | Batch Hitel: 0.846 | Batch PERR: 0.745 | Batch Loss: 4,591 | Examples_per_sec:

5 Tsec: 2889.481
ed: 1112356 | global_step 18010 | Batch Hitel: 0,873 | Batch PERR: 0.787 | Batch Loss: 4.277 | Exanples_per_sec: 2625.548

inference. Now calculating global perfornance metrics.
INFO: tensorfLow: epoch/eval nusber 18010 | Avg_Hitel: 0.858 | Avg_PERR: 0.756 | MAP: 0.464 | GAP: 0.808 | Avg_Loss: 4.722550

Figure 5: Evaluation

The results yielded:

o Average Hit@1 =(.854
e Average Precision at equal recall rate = 0.756

e Global Average Precision = 0.808

4.3 Comparison of results

In the technical paper of the Youtube-8M dataset, Frame-
level feature models and video-level features models were
built and tested on the dataset as a benchmark [2]. We com-
pared the results from the QRNN with the results from the
video-level models, namely the Mixture of Experts model
and (proposed by Jacobs and Jordan 1994) [12], the Logistic
Regression model. For frame level features, the results from
the LSTM scored significantly below the QRNN as well.

Model
This Study (QRNN)
Logistic Regression
Mixture of Experts
LSTM

PERR
75.6
53.0
55.8
57.3

Hit@1
85.4
60.5
63.3
64.5

Level
Video
Video
Video
Frame

The results from the QRNN was also compared to the top
3 winners of the Google Cloud YouTube-8M Video Under-
standing Challenge 2017. They include teams from Baidu
and Tsinghua University.

Instead of Hit@k and PERR, Google Cloud YouTube-8M
Video Understanding Challenge 2017 uses Global Average
Precision (GAP) at k, where k = 20 as an evaluation met-
ric [8]. Each submission contains a list of the top 20 pre-
dicted labels for each video and their corresponding confi-
dence scores. The evaluation treats each predicted label and
the confidence score as an individual data point to compute
the GAP across all the predictions and videos. If there are
N predictions sorted by decreasing confidence scores, the
Global Average Precision is computed by

GAP =" p(i) A r(i)

where N is the number of final predictions made, p(i) is the
precision and r(i) is the recall.

Rank Model
1 Ensemble of 25 models [9]
2 Weighted 74 models [10]
3 Ensemble of of 57 models [11]
n/a This Study (QRNN)

GAP
84.966
84.589
84.541

80.8

Where “Rank” represents the ranking that model gained in
the challenge.

As evident from the Global Average Prediction scores, the
QRNN falls shy against the results achieved by the winners
from 2017. This may be because the winners selected to use
multiple models instead of one model, whereas an ensemble
method can be explored in the future.

S Further Exploration
5.1 Expanding upon the model

In the future I would like to test how the results of an ensem-
ble of models would differ from the result from one model,
as evidently one single model may not be able to compete
with the results of an ensemble of models.

5.2 Other Possible Contexts

It is possible to expand this model to cover other social net-
works or platform with a huge set of video data. This can be
applied to improve search algorithms, or to inspire creators
on the copywriting of their content or even on what content
to create next.
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