

1

AN ATTEMPT AT LARGE SCALE MULTI-LABEL VIDEO CLASSIFICATION
USING THE QRNN ARCHITECTURE

Ismael Goulani
Isgoulani@gmail.com

The Hong Kong University of Science and Technology

COMP 4971C (Fall 2018), Supervised by Dr. David Rossiter

Abstract. In this study, we present an attempt of using the QRNN architecture for video
classification tasks. Previous usage of QRNN was on language modeling tasks such as
sentiment analysis, next-word prediction and translation. With its massive use of parallel
computation, it’s said to be up to 16 times faster than the old approach Bradbury & Merity et
al, 2016 [1]. Our goal is to show through this study that QRNNs can also be used for video
classification and can produce good performances as other state of the art Network
architecture like LSTMs and GRUs. We first start by making an overview of video
classification tasks, the YouTube-8M video datasets and the Kaggle challenge held in 2018.
We will also present various architecture used for this tasks and also explain the QRNN
architecture.

Keywords: Deep learning, Multi-label classification, QRNN, Video processing

2

1. Introduction

From social networks like Facebook, YouTube or snapchat to traffic surveillance and cameras
security systems, video generation is on the rise.
Paired with the recent advances in Deep learning, specifically on video and audio processing,
it opens the way for a better understanding of videos contents.
However, the designing of the best performing Deep learning algorithms are most of the time
computationally expensive, in terms of speed and memory usage. Hence, putting these models
in production can require a lot of Graphic Process units(GPUs).
In the 2nd edition of the “Google Cloud & YouTube-8M Video Understanding Challenge”
held on Kaggle in 2018, participants were asked to come up with a sized constraints model
that fits within a 1GB file.

1.1. Data

Our experiment will lay on the largest multi-label video classification dataset publicly
available provided by Google, the YouTube-8M dataset [2].
This iteration of the YouTube-8M dataset contains 6.1 million samples which represents over
350000 hours of videos split into 3 partitions as follow :

• 70% for the training set
• 20% for the validation set
• 10% for the test set

The videos in the dataset are labeled with 3862 tags with an average of 3 tags per video. Each
video includes up to 360 frames. Each frame consist of 1024 and 128 visual and audio
features.
The visual features were extracted from the last ReLU activated layer prior to classification in
the Inception-v3 Network trained on ImageNet. The audio features were extracted using a
VGG inspired acoustic model described in Hershey et al [3].
Dimensionality reduction and quantization were applied on Both visual and audio features to
reduce the storage coast.
The total size of the combined features is approximatively 2TB.

1.2.Evaluation

To avoid any bias regarding the evaluation process, we decided to follow the evaluation
methods provided by Google during the 2018 Kaggle competition.
The main evaluation metric for this competition is the Global Average Precision(GAP).

𝐺𝐴𝑃 = 	&𝑝(𝑖)∆𝑟(𝑖)
-

./0

Where N is the number of final predictions, 𝑝(𝑖) is the precision, and 𝑟(𝑖) is the recall.
In the evaluation, 𝑁 = 20 ∗ (𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑣𝑖𝑑𝑒𝑜𝑠) were used.

In addition to the GAP, some additional metrics where also used:

- Mean Average Precision (MAP) :

Knowing that the examples are not uniformly distributed over labels in the dataset, MAP is
used instead of AUC. MAP computes mean-per-class AUC of precision-recall curves.

3

Formally, we have :

𝑀𝐴𝑃 =	
1
𝐸& 𝐴𝑃𝑒

ABC

- Hit@k :

It’s the fraction of test samples that contains at least one of the ground truth labels in the top k
predictions. For this experiment, we use k=1 to evaluate the accuracy of the model.

𝐻𝑖𝑡@𝑘 =
1
|𝑉|&∨ 𝑒 ∈ 𝐺𝑣

L∈M

𝕀(𝑟𝑎𝑛𝑘𝑣, 𝑒 ≤ 𝑘)

- Precision at Equal Recall Rate(PERR):

It’s similar to MAP but instead of using a fixed k=20, we compute the mean precision up to
the number of ground truth labels in each class.

𝑃𝐸𝑅𝑅 = 	 T

|M|
∑ [T

|WL|
∑ 𝕀(𝑟𝑎𝑛𝑘𝑣, 𝑘 ≤ |𝐺𝑣|X∈WL])L∈M 	,

Where 𝐺𝑣 is the set of ground truth labels for video 𝑣 and 𝕀(𝑟𝑎𝑛𝑘𝑣, 𝑘 ≤ |𝐺𝑣|) counts the
number of correct predictions made within the top |𝐺𝑣|.

2. Model architecture

2.1.Background

Before diving into the Architecture, we will first talk about the Classique architecture used for
the classification tasks like Neural Networks, CNNs and LSTMs.

To put it simply, a neural network is a superposition of layers of cells called "neurons"
consisting of an input layer and an output layer.
The lower layers are interconnected to the upper layers through weighted connections, i.e.
each connection of the network has a weight.
The values of the lower layer are multiplied by the different weights of the interconnections,
then transmitted to the next layer to which, each neuron of the layer adds a value called “bias”
and takes a "decision" by applying a function called "activation function" . The results thus
obtained at the end of the decisions will be transmitted to the next layer. The outputs of the
lower layer become the inputs of the upper layer.
The same process is repeated until the output layer makes the final decision.

Convolutional neural networks CNNs [4] are quietly similar to neural networks.
Indeed all the underlying concepts of neural networks like activation functions, loss function
forward/backward propagation etc, also applies to CNNs.
The difference is that CNNS make the assumption that the input is a fixed sized vector like an
image.

4

Figure 1: CNN architecture

Typically, CNN is composed of blocs:

- A convolution block called CONV composed of filters :

The filters are matrices of size smaller than the matrices of the pixels of the input image. They
make it possible to determine particular shapes on the image by sliding over the entire surface
of the image.
Indeed, the shapes are detected after performing some convolutions calculations between the
filters and the matrix of pixel of the image. If the resulting values of the convolution
calculations are high, then it means that the shapes represented by the filters are present on the
image.

- The so-called "Pooling” layer Max-Pool :

 It is responsible for reducing the volume of input data for reasons of speed of learning, both
in height and width.

- The fully connected layer :

Coming after the last Max-Pool layer, this layer is the same as that used in a conventional
neural network. Before entering this layer, the data is concatenated into a 1D size matrix. It
allows to make the classification. Despite CNNs are great for handling task like image
classification, object detection et cetera, CNNs are not suits for handling sequential data
where a fourth dimension has to be take into account , the time dimension. Hence, Recurrent
neural networks RNNs Andrej Karpathy, Justin Johnson, and Fei-Fei Li (2015) [5] were
introduced to handle these kind of data.
RNNs operates over a sequence of vector in the input, the output or both. But the problem is,
RNNs suffer from Long-term dependencies .
Since the RNNs Network tends to be deep if we consider one timestep as a layer, when
performing backpropagation, the weights at the beginning of the network tends to change
slowly and the network stop to learn at these layers: This is the “Vanishing Gradient” problem
Bengio et al. (1994)[6]. RNNs only looks at recent information to perform present task. To
handle this issue, Long Short Term Memory (LSTMs) Hochreiter & Schmidhuber (1997) [7]
are introduced.

5

Figure 2 : LSTM architecture

By maintaining a memory vector via a gating mechanism, LSTM allows past information to
be read, written or reset after a long period of time. Useful information are kept in memory
and that help handle the vanishing gradient problem.

2.2. Architecture

As the title of this study suggest, we choose to use the QRNN architecture to handle this
classification task.

QRNNs are built using three components used in Neural Networks:

- A convolution neural network:
Used to compute intermediate vectors and gating vectors.

- A pooling layer :
It handles sequential dependencies. Applied on the inputs computed by the CNN layer, this
layer computes the hidden states(outputs). The architecture is represented in the figure below.

Figure 3 : QRNN architecture

The combination of the strengths of basic CNNs and LSTMs, made this architecture a good
choice to handle this video classification challenge.

6

Indeed, since each video is a sequence of frame, it’s an evidence that this sequence should be
handle by sequential models like RNNs and LSTMs, this role is played by the pooling layer in
the QRNN architecture.
In addition to that, we know that the frames are essentially images and CNN is the de-facto
choice to handle image data. Which plays the strengths of CNN layers in the architecture.

2.2.1 Convolutional layer

This layer is used by QRNN in the timestep dimension to compute three vectors : a candidate
vector, a forget gate, and an output gate.

When an input sequence of n-dimensional vectors 𝑥T, 𝑥[,… 𝑥\ is given, the convolutional
layer for the candidate vectors with m filters produces a sequence of T m-dimensional output
vectors 𝑧T,	𝑧[,…	𝑧\. The forget gates and the output gates follows the same process. The three
vectors can be represented by these equations:

𝑧^ = tanh(𝑐𝑜𝑛𝑣de(𝑥^, … , 𝑥^gXhT))

𝑓 = σ(𝑐𝑜𝑛𝑣dj(𝑥^, … , 𝑥^gXhT))

𝑧^ = σ(𝑐𝑜𝑛𝑣dk(𝑥^, … , 𝑥^gXhT))

Where 𝑐𝑜𝑛𝑣 represents convolution and 𝑘 is the filter size.

Figure 4 : Applying convolutions to compute intermediate vectors and gating vectors

2.2.2 Pooling layer

Using the output from the convolutional layers, the pooling layers compute the hidden
states(outputs) as follow :

Convolution Layers

𝑓𝑟𝑎𝑚𝑒^

𝑓𝑟𝑎𝑚𝑒^hT

𝑓𝑟𝑎𝑚𝑒^gXhT

𝑧^

𝑓

𝑜^

𝑧^hT

𝑓 hT

𝑜^hT

𝑧\

𝑓\

𝑜\

7

𝑐^ = 𝑓 ⊙ 𝑐^gT + (1 − 𝑓)⊙ 𝑧^

ℎ^ = 𝑜^ ⊙ 𝑐^

Where ⊙ represents element-wise multiplication.

The pooling layer equations seems to be similar as the equations of a LSTM unit, and may
cause some confusion of the role of the role of the pooling layers in QRNNs.
The main difference between them resides in the fact that all the sequential processing occurs
only in the pooling layers. The values computed by the convolution layers 𝑧^, 𝑓 and 𝑜^ do not
depend of previous values in the network.
This is actually where the magic of QRNN occur. All the heavy computation is done in
parallel and the sequential processing is handle by only on component in the network : the
pooling layers.

3. Experiments

3.1. Training details

The model was trained on Google Cloud with an ubuntu virtual machine.
The virtual machine had 1 Tesla K80 GPU, 26 GB of ram memory. The model was built,
train and test using all the shrads of the Youtube-8M dataset with Tensorflow an open source
deep learning framework developed by Google and the python programming language. The
training job was sent to Google cloud using the terminal of a Macbook Pro with 2.6 GHz intel
core i7 CPU and 16GB 2133 MHz DDR3.

Figure 5 : An illustration of the training process

8

3.2.Results

Figure 6 : Evaluation

After running the training, we evaluate the model and the results are :

• Average Hit@1 = 0.792
• Average Precision at equal recall rate = 0.671
• Global average precision = 0.718

3.3.Comparison of results

We decided to compare our results with the benchmark[8] made on the Youtube-8M paper for
Frame level and video level features models which are : The logistic model and the Mixtures
of experts for video level models and the LSTM for frame level models. We noticed that the
QRNN performs better than the LSTM model and the other models. The results are summed
up in the table below.

Level Model PERR Hit@1
Video QRNN(our study) 0.671 0.792
Video Logistic regression 53.0 60.5
Video Mixtures of Experts 55.8 63.3
Frame LSTM 57.3 64.5

9

We also compared QRNN performances to the results of top performers in the 2nd edition of
the Youtube-8M challenge on Kaggle [9] and with the results of a similar study on QRNNs
conducted by To Isaac Zachary [10].
Some teams where from individual PhDs students, other where from big companies like
Samsung. The results are summed up in the table below.

Rank Team Models

in
ensemble

GAP

1 Next top GB model 15 0.88987
2 Samsung AI Center Moscou 115 0.88729
3 PhoenixLin 3 0.88722
n/a To Isaac Zachary 1 0.808
n/a Our study(QRNN) 1 0.718

We can see that, after few epochs and no ensembling performed, the QRNNs performed
relatively well in the challenge with a performance above 50% of GAP and not so far from top
performers of the competition.
The difference can be explained by the fact that we didn’t perform ensemble like most of the
competitors and we also stopped the training after 3 hours due to the VM cloud utilization fees.
Another reason could also be the fact that the QRNN version we used was not an official
version provided by the authors of the model. Indeed we found a Keras implementation of the
QRNN model that was used to compare the QRNN model training speed to the LSTM model
for language understanding tasks, but this Keras version didn’t fit the starter code provided by
Google for the competition which is design for working with TensorFlow.
So, we decided to implement a TensorFlow version of the QRNN in order to use the starter
code. We are persuaded that this TensorFlow implementation can be optimized again.

4. Further exploration

In the future, with more computation resources available, I would like to stack multiple QRNN
network together, ensemble multiple models as the competitors did, train the model for a long
time and make a comparison.

10

References

[1] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent
neural networks. CoRR, abs/1611.01576, 2016.

[2] YouTube-8M: A Large and Diverse Labeled Video Dataset for Video Understanding
Research. (n.d.). Re- trieved from https://research.google.com/youtube8m/

[3] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren Jansen, R.
Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Malcolm Slaney,
Ron J. Weiss, Kevin Wilson. CNN architecture for Large-scale audio classification.

[4] Karpathy, A. (n.d.). Convolutional Neural Net- works (CNNs / ConvNets). Retrieved from
http://cs231n.github.io/convolutional-networks/conv

[5] Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding recurrent
networks. CoRR, abs/1506.02078, 2015.

[6] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learn- ing long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

[7] Sepp Hochreiter and Jürgen Schmidhuber.Long short- term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[8] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadara- jan, and Sudheendra Vijayanarasimhan. Youtube- 8m:A large-scale
video classification benchmark. CoRR, abs/1609.08675, 2016.

[9] J. Lee, A. Natsev, W. Reade, R. Sukthankar, G. Toderici. The 2nd Youtube-8M video
understanding challenge.

[10] To Isaac Zachary, HKUST student, Large-scale multi-label video classification using
QRNNs, summer 2018

