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Abstract. In this study, we present an attempt of using the QRNN architecture for video 
classification tasks. Previous usage of QRNN was on language modeling tasks such as 
sentiment analysis, next-word prediction and translation. With its massive use of parallel 
computation, it’s said to be up to 16 times faster than the old approach Bradbury & Merity et 
al, 2016 [1]. Our goal is to show through this study that QRNNs can also be used for video 
classification and can produce good performances as other state of the art Network 
architecture like LSTMs and GRUs. We first start by making an overview of video 
classification tasks, the YouTube-8M video datasets and the Kaggle challenge held in 2018. 
We will also present various architecture used for this tasks and also explain the QRNN 
architecture. 
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1. Introduction  

 
From social networks like Facebook, YouTube or snapchat to traffic surveillance and cameras 
security systems, video generation is on the rise. 
Paired with the recent advances in Deep learning, specifically on video and audio processing, 
it opens the way for a better understanding of videos contents.  
However, the designing of the best performing Deep learning algorithms are most of the time 
computationally expensive, in terms of speed and memory usage. Hence, putting these models 
in production can require a lot of Graphic Process units(GPUs). 
In the 2nd edition of the “Google Cloud & YouTube-8M Video Understanding Challenge” 
held on Kaggle in 2018, participants were asked to come up with a sized constraints model 
that fits within a 1GB file. 
 

1.1. Data 
 

Our experiment will lay on the largest multi-label video classification dataset publicly 
available provided by Google, the YouTube-8M dataset [2]. 
This iteration of the YouTube-8M dataset contains 6.1 million  samples which represents over 
350000 hours of videos split into 3 partitions as follow :  
 

• 70% for the training set 
• 20% for the validation set 
• 10% for the test set 

 
The videos in the dataset are labeled with 3862 tags with an average of 3 tags per video. Each 
video includes up to 360 frames. Each frame consist of 1024 and 128 visual and audio 
features.  
The visual features were extracted from the last ReLU activated layer prior to classification in 
the Inception-v3 Network trained on ImageNet. The audio features were extracted using a 
VGG inspired acoustic model described in Hershey et al [3]. 
Dimensionality reduction and quantization were applied on Both visual and audio features to 
reduce the storage coast. 
The total size of the combined features is approximatively 2TB. 
 

1.2.Evaluation 
 

To avoid any bias regarding the evaluation process, we decided to follow the evaluation 
methods provided by Google during the 2018 Kaggle competition.  
The main evaluation metric for this competition is the Global Average Precision(GAP). 

𝐺𝐴𝑃 = 	&𝑝(𝑖)∆𝑟(𝑖)
-

./0

 

Where N is the number of final predictions, 𝑝(𝑖) is the precision, and 𝑟(𝑖) is the recall. 
In the evaluation, 𝑁 = 20 ∗ (𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑣𝑖𝑑𝑒𝑜𝑠) were used. 
 
In addition to the GAP, some additional metrics where also used: 

- Mean Average Precision (MAP) :  
 

Knowing that the examples are not uniformly distributed over labels in the dataset, MAP is 
used instead of AUC. MAP computes mean-per-class AUC of precision-recall curves. 
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Formally, we have :  

𝑀𝐴𝑃 =	
1
𝐸& 𝐴𝑃𝑒

ABC
 

 
- Hit@k : 
 

It’s the fraction of test samples that contains at least one of the ground truth labels in the top k 
predictions. For this experiment, we use k=1 to evaluate the accuracy of the model. 
 

𝐻𝑖𝑡@𝑘 =
1
|𝑉|&∨ 𝑒 ∈ 𝐺𝑣

L∈M

𝕀(𝑟𝑎𝑛𝑘𝑣, 𝑒 ≤ 𝑘) 

 
- Precision at Equal Recall Rate(PERR):  

It’s similar to MAP but instead of using a fixed k=20, we compute the mean precision up to 
the number of ground truth labels in each class. 

 
𝑃𝐸𝑅𝑅 = 	 T

|M|
∑ [ T

|WL|
∑ 𝕀(𝑟𝑎𝑛𝑘𝑣, 𝑘 ≤ |𝐺𝑣|X∈WL ])L∈M 	, 

 
Where 𝐺𝑣 is the set of ground truth labels for video 𝑣 and 𝕀(𝑟𝑎𝑛𝑘𝑣, 𝑘 ≤ |𝐺𝑣|) counts the 
number of correct predictions made within the top |𝐺𝑣|. 

 
2. Model architecture 

 
2.1.Background 

 
Before diving into the Architecture, we will first talk about the Classique architecture used for 
the classification tasks like Neural Networks, CNNs and LSTMs. 
 
To put it simply, a neural network is a superposition of layers of cells called "neurons" 
consisting of an input layer and an output layer. 
The lower layers are interconnected to the upper layers through weighted connections, i.e. 
each connection of the network has a weight. 
The values of the lower layer are multiplied by the different weights of the interconnections, 
then transmitted to the next layer to which, each neuron of the layer adds a value called “bias” 
and takes a "decision" by applying a function called "activation function" . The results thus 
obtained at the end of the decisions will be transmitted to the next layer. The outputs of the 
lower layer become the inputs of the upper layer. 
The same process is repeated until the output layer makes the final decision. 
 
Convolutional neural networks CNNs [4] are quietly similar to neural networks. 
Indeed all the underlying concepts of neural networks like activation functions, loss function 
forward/backward propagation etc, also applies to CNNs. 
The difference is that CNNS make the assumption that the input is a fixed sized vector like an 
image. 



 

4 
 

 
 

Figure 1: CNN architecture 
 
Typically, CNN is composed of blocs:  
 

- A convolution block called CONV composed of filters :  
 

The filters are matrices of size smaller than the matrices of the pixels of the input image. They 
make it possible to determine particular shapes on the image by sliding over the entire surface 
of the image. 
Indeed, the shapes are detected after performing some convolutions calculations between the 
filters and the matrix of pixel of the image. If the resulting values of the convolution 
calculations are high, then it means that the shapes represented by the filters are present on the 
image. 

 
- The so-called "Pooling” layer Max-Pool : 

 
 It is responsible for reducing the volume of input data for reasons of speed of learning, both 
in height and width. 

 
- The fully connected layer : 

 
Coming after the last Max-Pool layer, this layer is the same as that used in a conventional 
neural network. Before entering this layer, the data is concatenated into a 1D size matrix. It 
allows to make the classification. Despite CNNs are great for handling task like image 
classification, object detection et cetera, CNNs are not suits for handling sequential data 
where a fourth dimension has to be take into account , the time dimension. Hence, Recurrent 
neural networks RNNs Andrej Karpathy, Justin Johnson, and Fei-Fei Li (2015) [5] were 
introduced to handle these kind of data.  
RNNs operates over a sequence of vector in the input, the output or both. But the problem is, 
RNNs suffer from Long-term dependencies . 
Since the RNNs Network tends to be deep if we consider one timestep as a layer, when 
performing backpropagation, the weights at the beginning  of the network tends to change 
slowly and the network stop to learn at these layers: This is the “Vanishing Gradient” problem 
Bengio et al. (1994)[6]. RNNs only looks at recent information to perform present task. To 
handle this issue, Long Short Term Memory (LSTMs) Hochreiter & Schmidhuber (1997) [7] 
are introduced. 
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Figure 2 : LSTM architecture 
 
By maintaining a memory vector via a gating mechanism, LSTM allows past information to 
be read, written or reset after a long period of time. Useful information are kept in memory 
and that help handle the vanishing gradient problem. 
 

2.2. Architecture 
 
As the title of this study suggest, we choose to use the QRNN architecture to handle this 
classification task.  
 
QRNNs are built using three components used in Neural Networks:  

- A convolution neural network:  
Used to compute intermediate vectors and gating vectors. 

- A pooling layer :  
It handles sequential dependencies. Applied on the inputs computed by the CNN layer, this  
layer computes the hidden states(outputs). The architecture is represented in the figure below. 
 

 
 

Figure 3 : QRNN architecture 
 

The combination of the strengths of basic CNNs and LSTMs, made this architecture a good 
choice to handle this video classification challenge.  
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Indeed, since each video is a sequence of frame, it’s an evidence that this sequence should be 
handle by sequential models like RNNs and LSTMs, this role is played by the pooling layer in 
the QRNN architecture.  
In addition to that, we know that the frames are essentially images and CNN is the de-facto 
choice to handle image data. Which plays the strengths of CNN layers in the architecture.  
 

2.2.1 Convolutional layer 
 
This layer is used by QRNN in the timestep dimension to compute three vectors : a candidate 
vector, a forget gate, and an output gate.  
 
When an input sequence of n-dimensional vectors 𝑥T, 𝑥[,… 𝑥\  is given, the convolutional 
layer for the candidate vectors with m filters produces a sequence of T m-dimensional output 
vectors 𝑧T,	𝑧[,…	𝑧\. The forget gates and the output gates follows the same process. The three 
vectors can be represented by these equations: 
 

𝑧^ = tanh(𝑐𝑜𝑛𝑣de(𝑥^, … , 𝑥^gXhT)) 
 

𝑓 = σ(𝑐𝑜𝑛𝑣dj(𝑥^, … , 𝑥^gXhT)) 
 

𝑧^ = σ(𝑐𝑜𝑛𝑣dk(𝑥^, … , 𝑥^gXhT)) 
 

Where 𝑐𝑜𝑛𝑣 represents convolution and  𝑘 is the filter size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 : Applying convolutions to compute intermediate vectors and gating vectors 
 

2.2.2 Pooling layer 
 
Using the output from the convolutional layers, the pooling layers compute the hidden 
states(outputs) as follow :  
 
 
 

Convolution Layers 

𝑓𝑟𝑎𝑚𝑒^ 
 

𝑓𝑟𝑎𝑚𝑒^hT 
 

𝑓𝑟𝑎𝑚𝑒^gXhT 
 

𝑧^ 

𝑓  

𝑜^ 

𝑧^hT 

𝑓 hT 

𝑜^hT 
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𝑐^ = 𝑓 ⊙ 𝑐^gT + (1 − 𝑓 )⊙ 𝑧^ 
 

ℎ^ = 𝑜^ ⊙ 𝑐^ 
 
Where ⊙ represents element-wise multiplication. 
 
The pooling layer equations seems to be similar as the equations of a LSTM unit, and may 
cause some confusion of the role of the role of the pooling layers in QRNNs.  
The main difference between them resides in the fact that all the sequential processing occurs 
only in the pooling layers. The values computed by the convolution layers 𝑧^, 𝑓  and 𝑜^ do not 
depend of previous values in the network. 
This is actually where the magic of QRNN occur. All the heavy computation is done in 
parallel and the sequential processing is handle by only on component in the network : the 
pooling layers.  

 
3. Experiments 

 
3.1. Training details  

 
The model was trained on Google Cloud with an ubuntu virtual machine. 
The virtual machine had 1 Tesla K80 GPU, 26 GB of  ram memory. The model was built, 
train and test using all the shrads of the Youtube-8M dataset with Tensorflow an open source 
deep learning framework developed by Google and the python programming language. The 
training job was sent to Google cloud using the terminal of a Macbook Pro with 2.6 GHz intel 
core i7 CPU and 16GB 2133 MHz DDR3. 
 

 
 

Figure 5 : An illustration of the training process 



 

8 
 

3.2.Results 
 

 
 

 
Figure 6 : Evaluation 

 
After running the training, we evaluate the model and the results are : 

 
• Average Hit@1 = 0.792 
• Average Precision at equal recall rate = 0.671 
• Global average precision = 0.718 

 
3.3.Comparison of results 

 
We decided to compare our results with the benchmark[8] made on the Youtube-8M paper for 
Frame level and video level features models which are : The logistic model and the Mixtures 
of experts for video level models and the LSTM for frame level models. We noticed that the 
QRNN performs better than the LSTM model and the other models. The results are summed 
up in the table below. 

 
Level Model PERR Hit@1 
Video QRNN(our study) 0.671 0.792 
Video Logistic regression 53.0 60.5 
Video Mixtures of Experts 55.8 63.3 
Frame LSTM 57.3 64.5 
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We also compared QRNN performances to the results of top performers in the 2nd edition of 
the Youtube-8M challenge on Kaggle [9] and with the results of a similar study on QRNNs 
conducted by To Isaac Zachary [10].  
Some teams where from individual PhDs students, other where from big companies like 
Samsung. The results are summed up in the table below. 

 
Rank Team Models 

in 
ensemble 

GAP 

1 Next top GB model 15 0.88987 
2 Samsung AI Center Moscou 115 0.88729 
3 PhoenixLin 3 0.88722 
n/a To Isaac Zachary 1 0.808 
n/a Our study(QRNN) 1 0.718 

 
We can see that, after few epochs and no ensembling performed, the QRNNs performed  
relatively well in the challenge with a performance above 50% of GAP and not so far from top 
performers of the competition. 
The difference can be explained by the fact that we didn’t perform ensemble like most of the 
competitors and we also stopped the training after 3 hours due to the VM cloud utilization fees. 
Another reason could also be the fact that the QRNN version we used was  not an official 
version provided by the authors of the model. Indeed we found a Keras implementation of the 
QRNN model that was used to compare the QRNN model training speed to the LSTM model 
for language understanding tasks, but this Keras version didn’t fit the starter code provided by 
Google for the competition which is design for working with TensorFlow. 
So, we decided to implement a TensorFlow version of the QRNN in order to use the starter 
code. We are persuaded that this TensorFlow implementation can be optimized again. 

 
 
4. Further exploration 

 
In the future, with more computation resources available, I would like to stack multiple QRNN 
network together, ensemble multiple models  as the competitors did, train the model for a long 
time and make a comparison. 
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