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Abstract

Let M be an m-dimensional smooth compact manifold embedded in Rd, where m is a
constant known to us. Suppose that a dense set of points are sampled from M according
to a Poisson process with an unknown parameter. Let p be any sample point, let % be the
local feature size at p, and let %ε be the distance from p to the (n + 1)th nearest sample
point for some n between

(
m+1
2

)
+ 1 and

(
d+1
2

)
. Using the n sample points nearest to p,

we can estimate the tangent space at p and it holds with probability 1 − O(n−1/3) that
the angular error is O(ε2). The running time is bounded by the time to compute the thin
SVD of an n×

(
d+1
2

)
matrix and the full SVD of an n× d matrix, which is usually O(d2n2)

in practice. We implemented the algorithm and experimentally verified its effectiveness on
both noiseless and noisy data.
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1 Introduction

Data points corresponding to experimental observations commonly reside in Rd for some large
d, but it is often postulated that the data points live on an unknown manifoldM of much lower
dimension. Indeed, manifold learning has been applied in various problems such as network
anomaly detection, image segmentation, and object tracking in video [6, 29]. The goal is to learn
the manifold structure from sample points, including the intrinsic dimension, tangent spaces,
and ultimately a faithful reconstruction. Theoretical algorithms have been developed to obtain
faithful reconstructions [3, 4, 9], but their practical performance is unclear. We reexamine the
key tasks in the problem to put our result in context.

The first task is to detect the manifold dimension. Many effective methods have already
been developed in machine learning (e.g. [21, 22, 25, 27, 33]) and computational geometry [8,
10, 11, 15].

The second task is to estimate the tangent space at the sample points. Approximate tangent
spaces at the sample points are needed in [9] to compute the cocone complex, which becomes a
faithful reconstruction after removing slivers. Approximate tangent spaces at the sample points
are also needed in [3] in order to form the tangential Delaunay complex, from which a faithful
reconstruction is extracted after sliver removal. Tangent space estimation also finds application
in clustering data points from multiple manifolds that may intersect each other [14, 18]. The
tangent space estimation at a sample point p has been explicitly or implicitly performed in
many previous work by fitting an affine subspace to the sample points in a neighborhood of
p [1, 2, 10, 15, 26, 30, 31, 33]. An alternative method is based on analyzing the Voronoi
cell of p [11]. The error measure for tangent space estimation is the angular error, which is
the maximum angle between a vector in the true tangent space at p and the projection of
that vector in the estimated tangent space. Bounds on the angular error have been proved
(explicitly or implicitly) for the methods in [2, 10, 11, 15, 26], and the emphasis is on how these
bounds depend on the sampling density. The radii of the neighborhoods used by the methods
in [2, 10, 11, 15] for tangent estimation decrease as the sampling density increases, and their
angular error bounds are linear in the ratio of the neighborhood radius to the local feature size
at p.

Let m be the dimension of the unknown manifold M. We present a method to estimate
the tangent space at a sample point p using the sample points in a local neighborhood. Let %
be the local feature size ofM at p. Let r be the neighborhood radius so that all sample points
at distance less than r from p are used in the tangent space estimation. Our method gives an
angular error bound of O((r/%)2) radians with high probability, provided thatM is smooth and
compact, the sample points are drawn fromM according to a Poisson process with an unknown
parameter, and the manifold dimension m is a constant known to us.1 Within a neighborhood of
radius r from p, the tangent space can rotate by at most O(r/%) radians [9], where % is the local
feature size at p, and the turning angle may sometimes be Ω(r/%); for example, whenM is the
unit sphere Sm. An angular error bound linear in r/% is thus asymptotically as good as taking
the tangent space at an arbitrary sample point in the neighborhood as the approximation. We
do better as our angular error bound is O((r/%)2). We elaborate on our result and compare it
with previous works that provide angular error bounds in Section 1.2.

1Since our method reduces to solving an eigenvalue problem, an appropriate thresholding of the eigenvalues
should determine m. We do not pursue automatic dimension detection in this article in order to focus on the
tangent estimation. We comment on the determination of m further in the conclusion.
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1.1 Notation

An uppercase letter in mathsf font denotes a matrix and the corresponding italic lowercase
letter with subscripts denotes the matrix elements. For example, Z denotes a matrix; zij
denotes the (i, j) entry of Z; zi∗ and z∗j denote the ith row vector and the jth column vector of
Z, respectively. Similarly, v denotes a vector and vi denotes the ith coordinate of v. Zt and vt

denote the transposes. We use Ij to denote a j× j identity matrix, 0i,j an i× j zero matrix, and
diagj(σ1, σ2, . . . , σj) a j × j diagonal matrix with entries σ1, . . . , σj in this order. We reserve 0

to denote the origin of Rd.
The 2-norms of v and Z are ‖v‖ =

(∑
i v

2
i

)1/2
and ‖Z‖ = max { ‖Zv‖ : ‖v‖ = 1 }. If Z

is symmetric, ‖Z‖ also equals max
{
|vtZv| : ‖v‖ = 1

}
. The Frobenius norm of Z is ‖Z‖F =(∑

i

∑
j z2ij

)1/2
. It is known that ‖Z‖ ≤ ‖Z‖F ≤

√
k ‖Z‖, where k is the number of rows or

columns in Z, whichever is smaller [17].
Given a square matrix Z , a vector v is an eigenvector of Z if and only if Zv = λv for some

λ ∈ R, and λ is known as an eigenvalue of Z. If Z has dimension k, then Z has at most k real
eigenvalues. If Z is symmetric as well, it has k real eigenvalues.

The thin singular value decomposition (thin SVD) of a k × l matrix Z, k ≤ l, is a product
LDRt, where L is a k × k matrix consisting of unit eigenvectors of ZZt, D is a k × k diagonal
matrix consisting of the singular values of Z (i.e., square roots of the eigenvalues of ZZt), and
R is an l× k matrix formed by k of the unit eigenvectors of ZtZ corresponding to the k largest
eigenvalues. We assume that the singular values of Z are in descending order on the diagonal
of D. The full SVD of the same matrix Z is L (D 0k,l−k) R̄t, where R̄ is an l × l matrix formed
by the l unit eigenvectors of ZtZ and R is the leftmost l × k submatrix of R̄.

Given a diagonal square matrix D, its pseudoinverse D† is obtained by replacing each non-
zero entry by its reciprocal and leaving the zero entries in place. The pseudoinverse of a general
matrix Z with thin SVD LDRt and full SVD L (D 0k,l−k) R̄t is Z† = RD†Lt = R̄ (D† 0k,l−k)

t Lt.
When Z is square and invertible, Z† is just Z−1.

The largest singular value of Z is equal to ‖Z‖. The positive singular values of Z† are the
reciprocals of the positive singular values of Z. Therefore, ‖Z†‖ is the reciprocal of the smallest
positive singular value of Z.

Let x1, x2, . . . , xd be a fixed set of orthogonal axes throughout this paper, forming the default
coordinate system of Rd. The coordinates of the input sample points are expressed with respect
to this coordinate system.

We are given a set of sample points drawn from M according to a Poisson process with an
unknown parameter λ: (i) for any compact subset B of M, the probability that there are k

points in B is λk vol(B)k

k! e−λ vol(B), and (ii) for any disjoint compact subsets B1, . . . , Bj of M,

the probability that there are ki points in Bi for i ∈ [1, j] is
∏j
i=1

λki vol(Bi)
ki

(ki)!
e−λ vol(Bi). Given

such a Poisson process and on the condition that there are k sample points in a compact subset
B ⊂M, these k sample points are uniformly distributed in B [5].

By translation, we assume without loss of generality that the origin is a sample point. Let
T denote the tangent space of M at the origin, which is an m-dimensional vector space in Rd.
Every vector in T has d coordinates although T has dimension m. The medial axis ofM is the
closure of the set of points in Rd that have two or more closest points in M. The local feature
size of a point in M is the distance from that point to the medial axis. Let % denote the local
feature size of M at the origin. Let {ap : p ∈ [1, n]} denote the n sample points nearest to the
origin. Let %ε denote the distance from the origin to the (n+ 1)-th nearest sample point, where
ε ∈ (0, 1) and ε decreases as the sampling density increases.

The manifold dimension m is treated as a constant. So we often absorb a function of m
into the hidden constants in the big-Oh, big-Theta and big-Omega notation. We keep these
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hidden constants scale independent; for example, the dependence on % is explicitly stated. The
ambient space dimension d is not a constant because one can embed M in an Euclidean space
of arbitrarily high dimension.

1.2 Main result and comparison with previous work

The intuition behind our strategy is to compute a smooth approximation of M locally around
the origin. Let γ1, . . . , γd be any d orthogonal coordinate axes of Rd such that γ1, . . . , γm span
T . Let ψ be an (unknown) orthonormal transformation such that for every point y ∈M, ψ(y)
are the coordinates of y with respect to the coordinate system (γ1, . . . , γd). By the implicit
function theorem, for every point y ∈M close enough to the origin and every ` ∈ [m+1, d], the
`-th coordinate of ψ(y) can be expressed as a function f` : Rm → R in the first m coordinates
of ψ(y). We call {f` : ` ∈ [m + 1, d]} the coordinate functions of M at the origin with respect
to (γ1, . . . , γd).

We will approximate f` by an “almost quadratic” function F̂` : Rd → R via solving an
eigenvalue problem. There is not enough data to define the F̂`’s unambiguously because there
are only n ≤

(
d+1
2

)
sample points. A popular approach is to add a penalty function, but

a penalty function usually involves some parameter(s) and it is unclear how to tune them
to obtain guarantees on the angular error. This parameter tuning phase may also be time-
consuming. We also use a penalty function that involves a positive parameter. Our innovation
is pushing this parameter to zero in the limit and obtain a modified eigenvalue problem. Hence,
no parameter needs to be tuned and no training is required in the end. Solving this modified
eigenvalue problem is equivalent to minimizing a measure of “curviness” of the fitting solution,
which implies a theoretical guarantee on the angular error.

Our main result is stated in the following theorem. Let Ttsvd(i, j) and Tfsvd(i, j) denote the
time to construct the thin and full singular value decompositions of an i×j matrix, respectively.

Theorem 1.1 Suppose that M is a smooth compact m-dimensional manifold in Rd, where m
is a constant known to us, and that points are sampled from M according to a Poisson process
with an unknown parameter. Assume that the origin is a sample point and its nearest n sample
points are given, where

(
m+1
2

)
+ 1 ≤ n ≤

(
d+1
2

)
. Let %ε be the distance from the origin to the

(n+ 1)-th nearest sample point, where % is the local feature size of M at the origin and ε is a
value in (0, 1). We can compute in O

(
Ttsvd

(
n,
(
d+1
2

))
+ Tfsvd(n, d) + d2n

)
time m orthogonal

coordinate axes that span the approximate tangent space at the origin. If ε is sufficiently small,
then with probability 1−O

(
n−1/3

)
, the angular error is O(ε2).

The running time O(Ttsvd
(
n,
(
d+1
2

))
+Tfsvd(n, d) +d2n) of our tangent estimation algorithm

is O(d2n2) in practice [7, 16, 17]. The worst-case running time is asymptotically bounded by
the worst-case running time of multiplying an n × nr matrix with an nr × n matrix for some
r. The exact bound has a sophisticated expression depending on r [24]. As two examples in
our case, if d = O(n), the time bound is O(n3.256689), and if d = O(n2), the time bound is
O(n5.180715). In general, the worst-case running time is slightly better than O(d2n2). Although
the local feature size % at the origin is used to obtain ε for expressing the angular error bound,
our algorithm does not need to know %.

In addition to developing an algorithm for the tangent estimation problem, we also develop
some useful results along the way that may be of independent interests. Taubin gave a method
for converting the curve reconstruction problem to an eigenvalue problem when there are enough
sample points. We generalize this method for manifold reconstruction in high dimensions when
there are insufficient sample points (Section 4). We also derive some concentration bounds on
sums of powers of the coordinates of the sample points, which may be useful for other statistical
analysis (Section 5).
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Consider the condition
(
m+1
2

)
+ 1 ≤ n ≤

(
d+1
2

)
in Theorem 1.1. The formulation of our

approach in Section 2 requires that n ≥
(
m+1
2

)
+1. Notice that

(
m+1
2

)
+1 <

(
d+1
2

)
for m ≤ d−1.

Our techniques are not designed for the case of n >
(
d+1
2

)
. In a manifold learning context, it is

predominantly the case that d is large. Therefore, the requirement of n ≤
(
d+1
2

)
is not an issue

because it is very likely that there are fewer than
(
d+1
2

)
sample points nearby, and even if there

are so many sample points nearby, it is computationally less efficient to use them all. If d is
not large and n >

(
d+1
2

)
, our result can still be applied by increasing d and padding zeros to

the coordinates of the sample points. Increasing d keeps a zero fitting error which allows our
approach to minimize the “curviness”.

Our theoretical result should hold when each sample point is perturbed in a random direction
in Rd by a distance O(%ε3), but we have not pursued the analysis as O(%ε3) is rather small. We
experimented with a fair amount of noise and the estimates are satisfactory. Refer to Section 3
for details.

How does our result compare with those in the literature? In [10, 11, 15], the sample points
are required to satisfy two conditions: (i) for every point y ∈ M, the distance between y and
the nearest sample point is at most the local feature size at y times µ for some sufficiently small
µ ∈ (0, 1), and (ii) for every pair of sample points p and q, the distance between p and q is at
least the local feature size at p times δ for some δ ∈ (0, µ). To estimate the tangent space at a
sample point p, the methods in [10, 15] use the sample points no farther from p than the local
feature size at p times cµ for some c ≥ 2. It follows that at least am sample points are needed
for some constant a > 1 depending on M. The method in [11] uses the Voronoi cell of p for
tangent space estimation. Using local information only, it is impossible to obtain the Voronoi
cell of p, and it is unclear to obtain an appropriate approximate Voronoi cell. In the worst
case, p can have at least am Voronoi neighbors for some constant a > 1 depending on M. The
angular error bounds given in [10, 11, 15] are O(µ). The running times are O(d2O(m7 logm))
in [15], O(d2O(m)) in [10], and O(N d(d+1)/2e) in [11], where N is the total number of sample
points. In [2], the sampling is required to satisfy the condition that for every point y ∈ M,
the distance between y and the nearest sample point is at most µ for some sufficiently small
µ ∈ (0, 1). The tangent space at a sample point p is estimated using the sample points within a
distance r from p, where r can be any value in [10µ, 1/2). Thus, at least am sample points are
needed for some constant a > 1 depending on M. The angular error is O(r/%). The running
time is O(dnO(m6 logm)), where n is the number of sample points in the neighborhood. The
work by Little et al. [26] is a multiscale analysis of the local covariance matrix. Noise is allowed
and only roughly O(m logm) points in a local neighborhood are required for computation.

In our case, although n can be as small as
(
m+1
2

)
+ 1 for the algorithm to be applied, the

probability bound 1 − O(n−1/3) is only meaningful for larger values of n because the hidden
constant in the probability bound is a polynomial in m. Nevertheless, a polynomial in m is
asymptotically smaller than am for any constant a > 1. This makes our neighborhood radius
smaller than those in [2, 10, 11, 15] for large m, but we require more sample points than
the approach in [26]. The angular error bounds in [2, 10, 11, 15] are O(r/%). (Note that
r/% < 1.) Roughly speaking, the angular error bound in [26] is linear in r, but the bound has a
sophisticated expression and the reader is referred to [26] for details. Our angular error bound
is O(ε2) = O((r/%)2). The hidden constant in our angular error bound depends on M and a
polynomial in m.

The probability bound 1−O(n−1/3) appears in many places in our analysis, where it is also
implicitly assumed that n is greater than or equal to some appropriate polynomial in m. In
practice, we suggest setting n ≥

(
m+1
2

)
+ m because our approach is based on locally fitting

a quadratic function, and the minimum number of variables in such a quadratic function is(
m+1
2

)
+m when d = m+ 1. In our experiments (Section 3), setting n =

(
m+1
2

)
+m+ 30 gives
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good results in both the noiseless and noisy cases.

2 Problem formulation, algorithm and overview

2.1 Modeling

We discuss in this section how to model the local neighborhood of the origin using some implicit
functions F`, ` ∈ [m + 1, d], with domain Rd. Recall that { ap : p ∈ [1, n] } are the n sample
points nearest to the origin (which is also a sample point). The functions F` are constructed so
that F`(ap) = 0 for every p ∈ [1, n] and every ` ∈ [m+ 1, d]. The goal is to obtain the compact
representation of

(
F`(a1) · · · F`(an)

)
in (2.3) below.

Let γ1, . . . , γd be any d orthogonal coordinate axes of Rd (with the same origin) such that
γ1, . . . , γm span T .

First, we apply an (unknown) orthonormal transformation ψ so that the coordinates of each
point ψ(ap) is expressed with respect to the coordinate system (γ1, . . . , γd). Recall that the `-th
coordinate of ψ(ap), ` ∈ [m + 1, d], is the value of the coordinate function f` on the first m
coordinates of ψ(ap). Figure 1(a) shows an example of a manifold and the coordinate system
before applying the transformation ψ. Figure 1(b) shows the corresponding f2 and f3 after
applying ψ.

For every positive integer k, let Dkf`|0 denote the k-th derivative of f` at the origin, which
is a map that sends k vectors from Rm to a real number. The domain of Dkf`|0 consists of k
copies of Rm spanned by (γ1, . . . , γm). When k = 2, one can view D2f`|0 as an m×m matrix,
and then D2f`|0(v, v) is equal to vt · D2f`|0 · v for every vector v ∈ Rm. The matrix D2f`|0 is
known as the Hessian matrix.

For every vector v ∈ Rm with a small enough ‖v‖, the Taylor expansion of f`(v) is

f`(v) =
1

2
D2f`|0(v, v) +

1

6
D3f`|0(v, v, v) + · · · .

There is no constant term in the Taylor expansion above becauseM passes through the origin.
There is no linear term because (γ1, · · · , γm) span T and so Df`|0 vanishes. We extend the
domain of f` from Rm to Rd by ignoring the last d−m coordinates of the input vector. That is,
the vector v can be paired with any vector w ∈ Rd−m to yield the following extended expansion:

1

2
(vt wt)

(
D2f`|0 0m,d−m
0d−m,m 0d−m,d−m

)(
v
w

)
+ · · · .

Transforming this extended expansion back to the coordinate system (x1, . . . , xd) gives the
following function F` : Rd → R whose zero-set contains the origin and ap for p ∈ [1, n].

∀ ` ∈ [m+ 1, d], F`(y) = ytg` + 1
2ytQ` y + · · · , such that

g` = −P (01,`−1 1 01,d−`)
t,

Q` = P

(
D2f`|0 0m,d−m
0d−m,m 0d−m,d−m

)
Pt.

(2.1)

The matrix Pt is the unknown d × d orthonormal matrix that realizes the transformation ψ.
The vector (01,`−1 1 01,d−`)

t is the “vertical direction” for f` at the origin with respect to the
coordinate system (γ1 · · · γd). It means that g` is the gradient of F` and also a normal vector
to M at the origin. Q` is a d× d matrix.
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y

x1 x2

x3

g1 = −Pe1

g2 = −Pe2

g3 = −Pe3

M

(a)

e2 = (0 1 0)t

e1 = (1 0 0)t

e3 = (0 0 1)t

x
M

γ1

γ2

γ3

‖v‖

f3(v)

f2(v)

(b)

Figure 1: The manifoldM is a curve shown in bold in (a) and (b). The coordinate system in (a)
is (x1, x2, x3), whereas (γ1, γ2, γ3) is the coordinate system in (b). The right figure in (b) shows
an orthonormal basis (e1, e2, e3) of the coordinate system (γ1, γ2, γ3). The left figure in (a) is
mapped by the orthonormal transformation ψ to the left figure in (b). The transformation
ψ is realized by the orthonormal matrix Pt. Therefore, x = Pty. Each basis vector ei with
respect to the coordinate system (γ1, γ2, γ3) is mapped to the vector gi = −Pei with respect to
the coordinate system (x1, x2, x3). The tangent space T of M at the origin is spanned by the
vector g1 with respect to the coordinate system (x1, x2, x3) in (a), or equivalently, the vector
e1 with respect to the coordinate system (γ1, γ2, γ3) in (b).
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Let q`,ij denote the (i, j) entry of Q`. Since Q` is symmetric, q`,ij and q`,ji are equal.
Expanding the terms atpg` and 1

2atpQ`ap in F`(ap) gives:

F`(ap) =
(
ap1 ap2 · · · apd

)
· g` +(

1√
2
a2p1 ap1ap2 · · · ap1apd

1√
2
a2p2 ap2ap3 · · · ap2apd · · · 1√

2
a2pd

)
·(

1√
2
q`,11 q`,12 · · · q`,1d

1√
2
q`,22 q`,23 · · · q`,2d · · · 1√

2
q`,dd

)t
+ · · ·

This motivates us to define:

c`
def
=

(
1√
2
q`,11 q`,12 · · · q`,1d

1√
2
q`,22 q`,23 · · · q`,2d · · · 1√

2
q`,dd

)t
A

def
=

a11 · · · a1d
...

. . .
...

an1 · · · and



B
def
=


1√
2
a211 a11a12 · · · a11a1d

1√
2
a212 a12a13 · · · 1√

2
a21d

...
...

. . .
...

...
...

. . .
...

1√
2
a2n1 an1an2 · · · an1and

1√
2
a2n2 an2an3 · · · 1√

2
a2nd


(2.2)

A is an n×d matrix, B is an n×
(
d+1
2

)
matrix, and c` is a

(
d+1
2

)
-dimensional vector. They yield:F`(a1)

...
F`(an)

 = (A B) ·
(

g`
c`

)
+ · · · . (2.3)

The coefficient 1/
√

2 of a2pi in the definition of B is needed so that the eigenvalues of BtB

are independent of rotations in Rd that keep the origin fixed. We will establish this fact in
Lemma 6.2. The vectors g` and c` are unknowns in (2.3), and c` is a linearization of the matrix
Q`. Since F−1` (0) contains ap for p ∈ [1, n], the left hand side of (2.3) is a zero vector.

To approximate the F`’s using quadratic functions, the first attempt is to retain just (A B) ·
(gt` ct`)

t in the right hand side of (2.3) because this keeps only the linear and quadratic terms.
The subsequent analysis in Section 7 demands ‖B†‖ to be comparable to the reciprocal of the((
m+1
2

)
+ 1
)
-th largest singular value of B. Unfortunately, ‖B†‖ is determined by the possibly

much larger reciprocal of the smallest singular value of B. As a result, we modify B by changing
its n −

(
m+1
2

)
smallest singular values as follows. Recall that

(
m+1
2

)
+ 1 ≤ n ≤

(
d+1
2

)
by

assumption. Define:

m0
def
=

(
m+1
2

)
LΛRt

def
= thin SVD of B, where Λ = diagn(λ1, λ2, · · · , λn) and

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

Λ̂
def
= diagn

(
λ1, λ2, · · · , λm0 , λm0+1, · · · , λm0+1︸ ︷︷ ︸

n−m0 copies

)
B̂

def
= LΛ̂Rt

L is an n × n matrix, Λ and Λ̂ are n × n diagonal matrices, and R is a
(
d+1
2

)
× n matrix. B̂ is

the replacement of B.
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Lemma 2.1 below shows that the case of λm0+1 = 0 can be dealt with separately in the
algorithm. (The proof of Lemma 2.1 is given in Section 8.) Thus, we can assume that λm0+1 is
positive. For ease of presentation, we also assume that λn > 0; otherwise, for each λi = 0 (such
an i can range from m0 + 2 to n), we set the corresponding diagonal entry of Λ̂ to zero. The
proof of Lemma 7.5 requires that if a diagonal entry of Λ is zero, the corresponding entry in Λ̂
is also zero.

Lemma 2.1 There exists a constant c that is a polynomial in m such that if n ≥ c, ε is
sufficiently small, and λm0+1 = 0, then with probability 1 − O(n−1/3), T is equal to the space
spanned by the eigenvectors corresponding to the m largest eigenvalues of AtA.

By keeping only (A B) · (gt` ct`)
t in the right hand side of (2.3) and replacing B by B̂, we

allude to some nonlinear functions F̂` : Rd → R, ` ∈ [m+ 1, d], that approximate the F`’s and
satisfy the following system:

∀ ` ∈ [m+ 1, d],

F̂`(a1)
...

F̂`(an)

 = (A B̂)

(
ĝ`
ĉ`

)
, (2.4)

where ĝ` and ĉ` are the new unknowns. The vector ĝ` is the unknown gradient of F̂`. Since
the unknown gradients are supposed to span the approximate normal space at the origin, we
require them to satisfy the following constraints:

∀ ` ∈ [m+ 1, d], ‖ĝ`‖ = 1
∀ `1 6= `2, ĝ`1 ⊥ ĝ`2

(2.5)

2.2 Algorithm and overview

Our algorithm solves an eigenvalue problem derived from B̂. Define the following matrix:

H = (B̂†A)t.

We find the eigenvectors corresponding to the m largest eigenvalues of the following matrix:

HHt = At(B̂†)t · B̂†A = AtLΛ̂†Λ̂†LtA.

These m eigenvectors span the approximate tangent space. We compute the full SVD of the
n× d matrix Λ̂†LtA to obtain the eigenvectors of HHt. The pseudocode is given below.

Tangent(A)

1. Compute the thin SVD LΛRt of B.

2. If λm0+1 = 0, then return the eigenvectors corresponding to the m largest
eigenvalues of AtA as an orthonormal basis of the estimated tangent space.

3. Compute Λ̂† and the full SVD CDEt of Λ̂†LtA. Assume that the diagonal entries
of D are in descending order and that E = (ĝ1, . . . , ĝd), where ĝ` corresponds
to the `th largest diagonal entry in D.

4. Return (ĝ1, . . . , ĝm) as an orthonormal basis of the approximate tangent space.

The running time isO
(
Ttsvd

(
n,
(
d+1
2

))
+Tfsvd(n, d)+d2n

)
, which isO(d2n2) in practice [7, 16, 17].

Section 3 describes our experiments that demonstrate the accuracy of our tangent estimation
in both noiseless and noisy cases.
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Results on derivatives of f`

Section 5

Eigenvalues of BtB
Section 6

Eigenvalues of HHt and its submatrices

Section 7

Results on sums of powers of
sample point coordinates

Proof of Theorem 1.1Proof of Lemma 2.1
Section 8

Lemma 5.4 Lemma 5.1

Columns of AT

Lemma 7.6 Lemmas 7.5, 7.9 and 7.10

Section 9

Angle between spaces
Lemmas 7.7 and 7.8

and its submatrices

Figure 2: Proof overview.

Section 4 turns (2.4) and (2.5) into an eigenvalue problem. The solution minimizes the
quantity 1

n

∑d
`=m+1

∑n
p=1 F̂`(ap)

2 +
∑d

`=m+1 α‖ĉ`‖2, that is, the sum of squared interpolation

error with the “curviness” penalized by the term
∑d

`=m+1 α‖ĉ`‖2. Tuning the parameter α is
time-consuming though. We push α to zero in the limit to derive the eigenvalue problem for
HHt.

Sections 5–9 contain the analysis that leads to an O(ε2) bound on the angular error. Fig-
ure 2 shows the dependence of results in different sections. Assume that the coordinate axes
x1, . . . , xm span the tangent space of M at the origin. So the coordinate axes xm+1, . . . , xd
span the normal space at the origin.

Section 5 presents several results on the derivatives of the coordinate functions and on the
sums of powers of sample point coordinates. These results may be of independent interest.
Lemma 5.1(i) shows that

∥∥( D2fm+1|0(u, u) · · · D2fd|0(u, u) )
∥∥ = O(1/%) for any unit vector

u ∈ Rm, independent of the dimension and other factors. Similarly, Lemma 5.1(ii) shows
that (fm+1(v), . . . , fd(v)) is approximated well by (12D2fm+1|0(v, v), . . . , 12D2fd|0(v, v)) for any
v ∈ Rm such that ‖v‖ ≤ %ε, that is,

∥∥(fm+1(v)− 1
2D2fm+1|0(v, v), . . . , fd(v)− 1

2D2fd|0(v, v))
∥∥ =

O(%ε3). Lemma 5.4 gives concentration bounds for
∣∣∣∑n

p=1 apiapjapkapl

∣∣∣, ∣∣∣∑n
p=1 apiapjapk

∣∣∣, and∣∣∣∑n
p=1 apiapj

∣∣∣ for i, j, k, l ∈ [1,m].

Since the approximate tangent space is spanned by some eigenvectors of HHt, we need to
analyze the eigenvalues of HHt = At(B̂†)t · B̂†A, which requires us to bound the eigenvalues
of B̂†. These results are presented in Section 6. Rearrange the columns of B so that B =
(BTT BTN BNN ), where BTT consists of columns in apiapj for possibly non-distinct i, j ∈ [1,m],
BTN consists of columns in apiapj for i ∈ [1,m] and j ∈ [m+1, d], and BNN consists of columns
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in apiapj for possibly non-distinct i, j ∈ [m+ 1, d]. We divide BtB into blocks as follows.

BtB =

 BtTTBTT BtTTBTN BtTTBNN
BtTNBTT BtTNBTN BtTNBNN
BtNNBTT BtNNBTN BtNNBNN


We apply the concentration bounds in Lemma 5.4. Then, the Gershgorin Circle Theorem [13, 17]
says that the eigenvalues of BtTTBTT are dominated by the diagonal entries which are Θ(n%4ε4)

(Lemma 6.3). Using known bounds on
∑m

i=1 a
2
pi and

∑d
i=m+1 a

2
pi, one can easily show that

‖BTN‖ = O(
√
n%2ε3) and ‖BNN‖ = O(

√
n%2ε4) (Lemma 6.4). Then, applying the Gershgorin

Circle Theorem to the division of BtB above shows that the m0 largest eigenvalues of BtB are
dominated by those of BtTTBTT and hence are Θ(n%4ε4) (Lemma 6.5). A finer analysis then
shows that the (m0 + 1)-th largest eigenvalue λ2m0+1 of BtB is O(n%4ε6) (Lemma 6.6). Note

that ‖B̂†‖ = 1/λm0+1.
We write A = (AT AN ), where AT consists of the columns (a1i, . . . , ani)

t for i ∈ [1,m] and
AN consists of the columns (a1i, . . . , ani)

t for i ∈ [m+ 1, d]. Since H = (B̂†A)t, we can write

HT = (B̂†AT )t, HN = (B̂†AN )t, H =

(
HT

HN

)
, HHt =

(
HTHt

T HTHt
N

HNHt
T HNHt

N

)
.

Note that HT is an m×
(
d+1
2

)
submatrix and HN is a (d−m)×

(
d+1
2

)
submatrix. In Section 7, we

prove that ‖HN‖ = O(
√
n%ε3/λm0+1) and every singular value of HT is Θ(

√
n%ε/λm0+1). Then,

the Gershgorin Circle Theorem implies that the m largest eigenvalues of HHt are dominated by
those of HTHt

T and hence they are Θ(n%2ε2/λ2m0+1), and the d−m smallest eigenvalues of HHt

are at most ‖HN‖2 + ‖HT ‖‖HN‖ = O(n%2ε4/λ2m0+1) (Lemma 7.10).

In the analysis of Ht
N = B̂†AN (Lemma 7.5), our definition of B̂ gives ‖B̂†AN‖ ≤ ‖B†AN‖.

Notice that B(B†AN ) = AN . By the Taylor expansion, we can approximate each entry ap` in
AN by 1

2(ap1 · · · apm) · D2f`|0 · (ap1 · · · apm)t. The definition of B allows us to write these

Taylor expansions as BZ ≈ AN , where Z is a
(
d+1
2

)
× (d−m) matrix such that the (`−m)-th

column is (
1√
2
q`,11 q`,12 · · · q`,1d

1√
2
q`,22 q`,23 · · · q`,2d · · · 1√

2
q`,dd

)t
,

where q`,ij is the (i, j) entry of the Hessian matrix D2f`|0 if i, j ∈ [1,m], and q`,ij = 0 otherwise.
Then, Lemma 5.1(i) allows us to conclude that ‖Z‖ = O(1/%), and by the property of pseu-
doinverse, ‖B†AN‖ . ‖Z‖ = O(1/%) = O(

√
n%ε3/λm0+1) as λm0+1 = O(

√
n%2ε3) by the result

in Section 6.
The analysis of HT makes use of the thin SVD LΛ̂Rt of B̂ (Lemma 7.9). Recall that the

m0 largest singular values of B̂ are those of B. The other n −m0 singular values are equal to
λm0+1. If we group the largest m0 singular values in an m0 ×m0 diagonal submatrix Λ̂0, then
we can write Λ̂, L, and R as follows.

Λ̂ =

(
Λ̂0 0m0,n−m0

0n−m0,m0 λm0+1In−m0

)
, L =

(
L0︸︷︷︸

m0 columns

L1︸︷︷︸
n−m0 columns

)
, R =

(
R0︸︷︷︸

m0 columns

R1︸︷︷︸
n−m0 columns

)
.

Combining the above with the relation Ht
T = B̂†AT , we obtain

HTHt
T = AtTL0

(
Λ̂†0

)2
Lt0AT + 1

λ2m0+1
AtTL1Lt1AT .

Thus, the maximum eigenvalue of HTHt
T is at most ‖AtTL0

(
Λ̂†0
)2

Lt0AT ‖ + 1
λ2m0+1

‖AtTL1Lt1AT ‖,
which can be verified to be O(n%2ε2/λ2m0+1) using the facts that ‖L0‖ = ‖L1‖ = 1, ‖AT ‖ =
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O(
√
n%ε) as ‖ap‖ = O(%ε), ‖Λ̂†0‖ = Θ(1/(

√
n%2ε2)), and λm0+1 = O(

√
n%2ε3). The minimum

eigenvalue of HTHt
T is at least the minimum eigenvalue of 1

λ2m0+1
AtTL1Lt1AT . Using the concen-

tration bounds in Lemma 5.4, we can show that every column vector (a1i, . . . , ani)
t in AT has

a 2-norm of Θ(
√
n%ε), and that the angle between two distinct column vectors (a1i, . . . , ani)

t

and (a1j , . . . , anj)
t in AT is large (Lemma 7.6). Then, we show that every column vector

in AT makes a small angle with the column space of L1 (Lemmas 7.7–7.8). It follows that
AtTL1Lt1AT ≈ ‖AT ‖2 =

√
m · Ω(n%2ε2), and so the minimum eigenvalue of HTHt

T is at least
1

λ2m0+1
AtTL1Lt1AT = Ω(n%2ε2/λ2m0+1) as desired.

We analyze the angular error (Theorem 1.1) in Section 9 using the bounds on the singular
values of HT and ‖HN‖. We take an arbitrary unit eigenvector e corresponding to any of the
m largest eigenvalues of HHt, say σ. Let v be the vector consisting of the first m coordinates
of e. Let w be the vector consisting of the other d −m coordinates of e. We check the angle
that e makes the true tangent space spanned by the coordinate axes x1, . . . , xm. This is done
by examining the equation:

HHte = HHt

(
v
w

)
=

(
HTHt

T HTHt
N

HNHt
T HNHt

N

)(
v
w

)
= σ

(
v
w

)
.

Then, w =
(
σId−m − HNHt

N

)−1
HNHt

T v. Therefore, the angle between e and the true tangent

space is arctan(‖w‖/‖v‖) ≤ ‖
(
σId−m − HNHt

N

)−1 ‖ · ‖HN‖ · ‖Ht
T ‖. Since σ = Θ(‖HT ‖2) =

Θ(n%2ε2/λ2m0+1) and ‖HN‖ = O(
√
n%ε3/λm0+1) by the results in Section 7, we conclude that

arctan(‖w‖/‖v‖) = O(ε2). It follows that the space spanned by the eigenvectors correspond-
ing to the m largest eigenvalues of HHt makes an O(ε2) angle with the true tangent space,
completing the analysis of the angular error.

3 Experimental results

We carried out some experiments to estimate tangent spaces using sample points drawn from
different manifolds, including spheres, manifolds with saddles, and sinusoidal curves in high
dimensions. Since our algorithm works locally, sample points are only needed in a local neigh-
borhood. We do not know how to locally sample a manifold uniformly or according to a Poisson
distribution in general, so some adhoc heuristics are used for each class of manifolds. We will
describe the sampling heuristics in each case. For each manifold tested, we fix a point p in
the manifold and generate point samples in its neighborhood. Since we know the true tangent
space, we can compute the angular error for each trial, which allows us to report the mean
angular error over all trials. We conducted 25 trials for every manifold, every value of n, and
every neighborhood radius. The smallest value of n is

(
m+1
2

)
+ m + 30 and we increase n by

adding multiples of 20.

3.1 Sphere

We tried unit spheres Sm for 3 ≤ m ≤ 9 in R200. We choose p to be the north pole and put
an m-ball D of radius r tangent to Sm at p. We generate n sample points in D uniformly at
random and then project them towards the origin onto Sm.

The projection of D towards the origin onto Sm is the spherical cap that sample points may
occupy. Projecting this spherical cap orthogonally onto D gives a concentric, smaller m-ball
D′. We can view D′ as part of the domain of the coordinate functions fm+1, · · · , fd, which
map a point in D′ to a point on Sm. Therefore, maxz∈D′ ‖fm+1(z), · · · , fd(z)‖ is the maximum
distance between a point in D′ and Sm. By elementary trigonometry, this maximum distance
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(a) S3: noiseless (b) S3: noisy

  

(c) S6: noiseless (d) S6: noisy

  

(e) S9: noiseless (f) S9: noisy

Figure 3: Plots of mean angular error for S3, S6 and S9. The vertical axes measure the mean
angular errors. The horizontal axes measure r2. The maximum noise level is at least 16%.

is r2/(1 + r2 +
√

1 + r2). We vary r between 0 and 1, so r2/(1 + r2 +
√

1 + r2) lies between
r2/(2 +

√
2) and r2/2. Although the neighborhood radius is not exactly r, it is roughly cr for

some constant c.
We plot the mean angular error against r2 for S3 in Figure 3(a). A mean angular error of

1.8◦ can be achieved with n = 40 even when r is as large as 1. We experimented with noisy
data by adding random noise. We perturb each sample point by a random displacement chosen
from [0, 0.08r2] in a random direction in Rd. Therefore, the maximum noise level is at least 16%
of maxz∈D′ ‖fm+1(z), · · · , fd(z)‖. We plot the mean angular error against r2 for S3 in the noisy
case in Figure 3(b). A mean angular error of roughly 3.5◦ can still be achieved with n = 40
even when r is as large as 1. Both plots in the noiseless and noisy cases demonstrate that the
angular error is roughly proportional to r2. Figures 3(c)–(f) show the plots of the mean angular
errors for S6 and S9 in the noiseless and noisy cases.

3.2 Manifold with saddles

Let Sm−1 be the (m − 1)-sphere centered at the origin with radius 4 in the subspace spanned
by the x1, . . . , xm axes. For each point q ∈ Sm−1, construct the circle centered at q with radius
2 embedded in the plane spanned by the vector q and the xm+1-axis. The union of all such
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(a) S2 × C: noiseless (b) S2 × C: noisy

  

(c) S5 × C: noiseless (d) S5 × C: noisy

  

(e) S8 × C: noiseless (f) S8 × C: noisy

Figure 4: Plots of mean angular error for S2×C, S5×C and S8×C. The vertical axes measure
the mean angular errors. The horizontal axes measure r2. The maximum noise level is at least
16%.

circles is an m-dimensional manifold, which we denote by Sm−1×C. We choose the point p on
the x1-axis at distance 2 from the origin, which is a saddle of Sm−1 × C. We sample n points
in an m-ball D of radius r and tangent at p. Then, we lift the points orthogonally away from
D and onto Sm−1 × C.

Since we lift sampled points in D orthogonally onto Sm−1 × C, D is part of the domain
of the coordinate functions fm+1, · · · , fd. The maximum distance between D and Sm−1 × C
is maxz∈D ‖fm+1(z), · · · , fd(z)‖, which by elementary trigonometry is r2/(2 +

√
4− r2). We

vary r between 0 and 1.6, so r2/(2 +
√

4− r2) lies between 0.25r2 and 0.3125r2. Although the
neighborhood radius is not exactly r, it is roughly cr for some constant c.

We plot the mean angular error against r2 for S2×C in Figure 4(a). Random noise is added
in the same way as before. We perturb each sample point by a random displacement chosen
from [0, 0.05r2] in a random direction in Rd. Therefore, the maximum noise level is at least 16%
of maxz∈D ‖fm+1(z), · · · , fd(z)‖. Figure 4(b) shows the plot of the mean angular error against
r2 for S2 × C in the noisy case. Figures 4(c)–(f) show the plots for S5 × C and S8 × C.

3.3 Curve

We experimented with the curve ϕ : [0, π] → Rd such that ϕ(θ) = (θ, sin θ, . . . , sin θ) for d =
20, 60 and 100. We pick the point p = (π/2, 1, . . . , 1), where the curve twists a lot. We vary
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(a) R20: noiseless (b) R20: noisy

 
 

(c) R60: noiseless (d) R60: noisy

 
 

(a) R100: noiseless (b) R100: noisy

Figure 5: Plots of mean angular error for the sinusoidal curve in R20, R60 and R100. The vertical
axes measure the mean angular error. The horizontal axes measure r2/d. The maximum noise
level is roughly 16%.

r between 0 and π/2. For each r, the sample points are generated by sampling n values of θ

from
[
π/2−r/

√
d, π/2+r/

√
d
]
. The minimum value of sin θ over

[
π/2−r/

√
d, π/2+r/

√
d
]

is

equal to cos(r/
√
d) ≈ 1− r2/(2d). Therefore, the neighborhood radius is roughly (r2/d+ (d−

1)r4/(4d2))1/2 ≈ r/
√
d. We plot the mean angular error against r2/20 for R20 in Figure 5(a).

Random noise is added by perturbing each sample point by a random displacement chosen
from [0, 0.08r2/

√
d] in a random direction in Rd. As explained before, the minimum value of

sin θ over [π/2− r/
√
d, π/2 + r/

√
d] is roughly 1− r2/(2d). For every ` ∈ [2, d], the coordinate

function f`(θ) is 1 − sin θ ≈ r2/(2d). So the maximum value of ‖f2(θ), · · · , fd(θ)‖ is roughly√
(d− 1)r4/(4d2) ≈ r2/(2

√
d). It follows that the maximum noise magnitude of 0.08r2/

√
d is

roughly 16% of the maximum value of ‖f2(θ), · · · , fd(θ)‖. Figure 5(b) shows the plot for the
noisy cases in R20. Figures 5(c)–(f) show the plots for R60 and R100.

4 Transformation to an eigenvalue problem

In this section, we show how to reduce our tangent estimation problem to finding the eigenvalues
of the matrix HHt as described in Section 2.2.

For every d-dimensional vector ĝ` that satisfies (2.5) and every
(
d+1
2

)
-dimensional vector ĉ`,
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we can apply (2.4) to evaluate the corresponding F̂` at ap for p ∈ [1, n]. Since F`(ap) = 0 and

F̂` is supposed to approximate F`, we should choose ĝ` and ĉ` to minimize some fitting error.
Lemma 4.1 below shows that solving the eigenvalue problem for the matrix HHt gives the best,
less “curvy” fit.

Since F`(ap) = 0, the mean squared error 1
n

∑d
`=m+1

∑n
p=1 F̂`(ap)

2 is a natural error mea-

sure. However, since n ≤
(
d+1
2

)
, the system is under-determined and F̂`(ap) can be made

zero for all p ∈ [1, n] for many choices of ĝ` and ĉ`. We change the objective function to
1
n

∑d
`=m+1

∑n
p=1 F̂`(ap)

2 +
∑d

`=m+1 α‖ĉ`‖2 for some positive parameter α. Intuitively, ĉ` is

an “approximation” of the linearization c` of Q`, so the penalty
∑d

`=m+1 α‖ĉ`‖2 favors a less
“curvy” fit. We convert this optimization problem to a matrix problem as follows. Define:

d0
def
=

(
d+1
2

)
Uα

def
= 1

n B̂tB̂ + αId0

Hα
def
= 1

nAtB̂U−1α

Wα
def
= 1

nAtA− HαUαHt
α

(4.1)

Uα is a d0 × d0 matrix, Hα is an d × d0 matrix, and Wα is a d × d matrix. Uα and Wα are
square and symmetric, and Uα is invertible because α > 0. Lemma 4.1(i) below shows that
the minimization of 1

n

∑d
`=m+1

∑n
p=1 F̂`(ap)

2 +
∑d

`=m+1 α‖ĉ`‖2 subject to (2.5) is equivalent to
finding the smallest d−m eigenvalues of Wα. Lemma 4.1(i) also gives the optimal setting of ĉ`.

A typical experimental approach is to solve the above optimization problem on some training
data in order to tune the parameter α. It may thus be time-consuming to set α appropriately.
For a small enough α, the quantity 1

n

∑d
`=m+1

∑n
p=1 F̂`(ap)

2 will be made zero as the system is

under-determined, which means that the objective function value is effectively
∑d

`=m+1 α‖ĉ`‖2.
Thus, a curvy fit is penalized no matter how small α is. This motivates us to push α to zero
in the limit. Lemma 4.1(ii) and (iii) show that limα→0

1
αWα gives another eigenvalue problem

that does not require any parameter, which is the problem solved by our tangent estimation
algorithm in Section 2.2.

Lemma 4.1

(i) For all α > 0 and for all mutually orthogonal unit vectors ĝm+1, . . . , ĝd, the value of
1
n

∑d
`=m+1

∑n
p=1 F̂`(ap)

2+
∑d

`=m+1 α‖ĉ`‖2 is minimized with respect to α and ĝm+1, . . . , ĝd

when ĉ` = −Ht
α ĝ` for every ` ∈ [m+1, d], and this minimum is equal to

∑d
`=m+1 ĝt` Wα ĝ`.

(ii) 1
αWα = AtLΣαLtA, where Σα = diagn

(
1

αn+λ21
, . . . , 1

αn+λ2m0

, 1
αn+λ2m0+1

, . . . , 1
αn+λ2m0+1

)
.

(iii) Let H = limα→0 Hα. Let Σ = limα→0 Σα. Then, H = (B̂†A)t and AtLΣLtA = HHt. For
every ` ∈ [m+ 1, d], if we set ĝ` to be the unit eigenvector corresponding to the `th largest
eigenvalue of AtLΣLtA and set ĉ` = −Htĝ`, then F̂`(ap) = 0 for every p ∈ [1, n].

Proof. We follow the argument of Taubin who proved a result similar to (i) for reconstructing
algebraic curves [32] in the presence of enough sample points so that the system is not under-
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determined and the penalty
∑d

`=m+1 α‖ĉ`‖2 is not needed. By (2.4),

1

n

n∑
p=1

F̂`(ap)
2 =

1

n

(
ĝt` ĉt`

)(At

B̂t

) (
A B̂

)(ĝ`
ĉ`

)

=
(
ĝt` ĉt`

)  1
nAtA 1

nAtB̂

1
n B̂tA 1

n B̂tB̂

 (
ĝ`
ĉ`

)
.

Also, α‖ĉ`‖2 =
(
ĝt` ĉt`

)( 0d,d 0d,d0
0d0,d αId0

)(
ĝ`
ĉ`

)
. Adding it to the above gives:

1

n

n∑
p=1

F̂`(ap)
2 + α‖ĉ`‖2 =

(
ĝt` ĉt`

)
Z

(
ĝ`
ĉ`

)
,

where

Z =

 1
nAtA 1

nAtB̂

1
n B̂tA 1

n B̂tB̂ + αId0

 =

Wα + HαUαHt
α HαUα

UαHt
α Uα

 .

We use the fact that Uα is symmetric in deriving UαHt
α in the lower left quadrant of Z. We

write Z as the product of three matrices:

Z =

(
Id Hα

0d0,d Id0

) (
Wα 0d,d0
0d0,d Uα

) (
Id 0d,d0
Ht
α Id0

)
.

Then,

(
ĝt` ĉt`

)
Z

(
ĝ`
ĉ`

)
=

(
ĝt` ĉt`

) ( Id Hα

0d0,d Id0

) (
Wα 0d,d0
0d0,d Uα

) (
Id 0d,d0
Ht
α Id0

)(
ĝ`
ĉ`

)
=

(
ĝt` ĉt` + ĝt` Hα

)( Wα 0d,d0
0d0,d Uα

) (
ĝ`

ĉ` + Ht
α ĝ`

)
= ĝt` Wα ĝ` +

(
ĉ` + Ht

αĝ`
)t

Uα
(
ĉ` + Ht

α ĝ`
)
.

Observe that Uα is positive semidefinite. It implies that
(
ĉ` + Ht

αĝ`
)t

Uα
(
ĉ` + Ht

α ĝ`
)
≥ 0. The

minimum value of 1
n

∑d
`=m+1

∑n
p=1 F̂`(ap)

2+
∑d

`=m+1 α‖ĉ`‖2 is thus achieved when ĉ` = −Ht
α ĝ`

for every ` ∈ [m+ 1, d], and this minimum equals
∑d

`=m+1 ĝt` Wα ĝ`.

Consider (ii). Plugging the definition Hα = 1
nAtB̂U−1α into the definition of Wα gives:

Wα = 1
nAtA− HαUαHt

α

= 1
nAtA− 1

nAtB̂Ht
α

= 1
nAtA− 1

n2 AtB̂
(
U−1α

)t
B̂tA

= 1
nAt
(

In − 1
n B̂
(
U−1α

)t
B̂t
)

A. (4.2)

Recall that m0 < n ≤ d0 by assumption and LΛ̂Rt is the thin SVD of B̂. Let L
(
Λ̂ 0n,d0−n

)
R̄t

be the full SVD of B̂. So L is an n×n orthogonal matrix and R̄ is a d0× d0 orthogonal matrix,
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which means Lt = L−1 and R̄t = R̄−1. Moreover, R is the leftmost d0 × n submatrix of R̄.

Uα = 1
n B̂tB̂ + αId0

= 1
n R̄
(

Λ̂ 0n,d0−n

)t (
Λ̂ 0n,d0−n

)
R̄t + αId0

= R̄ · diagd0

(
λ21
n , · · · ,

λ2m0
n ,

λ2m0+1

n , · · · , λ
2
m0+1

n , 0, · · · , 0︸ ︷︷ ︸
d0−n copies

)
· R̄t + R̄(αId0)R̄t

= R̄ · diagd0

(
αn+λ21
n , · · · , αn+λ

2
m0

n ,
αn+λ2m0+1

n , · · · , αn+λ
2
m0+1

n , α, · · · , α︸ ︷︷ ︸
d0−n copies

)
· R̄t.

It implies that

U−1α = R̄ · diagd0

(
n

αn+λ21
, · · · , n

αn+λ2m0

, n
αn+λ2m0+1

, · · · , n
αn+λ2m0+1

, 1α , · · · , 1α
)
· R̄t. (4.3)

Therefore,

1
n B̂
(
U−1α

)t
B̂t = L

(
Λ̂ 0n,d0−n

)
·

diagd0

(
1

αn+λ21
, · · · , 1

αn+λ2m0

, 1
αn+λ2m0+1

, · · · , 1
αn+λ2m0+1

, 1
αn , · · · , 1

αn

)
·(

Λ̂ 0n,d0−n

)t
Lt

= L · diagn

(
λ21

αn+λ21
, · · · , λ2m0

αn+λ2m0

,
λ2m0+1

αn+λ2m0+1
, · · · , λ2m0+1

αn+λ2m0+1

)
· Lt.

Plugging this into (4.2) gives:

Wα = 1
nAtL

(
In − diagn

(
λ21

αn+λ21
, · · · , λ2m0

αn+λ2m0

,
λ2m0+1

αn+λ2m0+1
, · · · , λ2m0+1

αn+λ2m0+1

))
LtA

= 1
nAtL · diagn

(
αn

αn+λ21
, · · · , αn

αn+λ2m0

, αn
αn+λ2m0+1

, · · · , αn
αn+λ2m0+1

)
· LtA

= αAtLΣαLtA.

Consider (iii). Using the definition of Hα, (4.3), and the full SVD of B̂, we obtain

Hα = 1
nAtB̂U−1α

= AtL
(
Λ̂ 0n,d0−n

)
· diagd0

(
1

αn+λ21
, · · · , 1

αn+λ2m0

, 1
αn+λ2m0+1

, · · · , 1
αn+λ2m0+1

, 1
αn , · · · , 1

αn

)
· R̄t

= AtL · diagn

(
λ1

αn+λ21
, · · · , λm0

αn+λ2m0

,
λm0+1

αn+λ2m0+1
, · · · , λm0+1

αn+λ2m0+1

)
· Rt.

In the last step, we use the property that R is the leftmost d0 × n submatrix of R̄. Define
H = limα→0 Hα and Σ = limα→0 Σα. As a result,

H = lim
α→0

Hα = AtL · diagn

(
1
λ1
, · · · , 1

λm0
, 1
λm0+1

, · · · , 1
λm0+1

)
· Rt.

Observe that B̂† = R · diagn( 1
λ1
, · · · , 1

λm0
, 1
λm0+1

, · · · , 1
λm0+1

) · Lt. Therefore, H = (B̂†A)t and

HHt = AtL · diagn( 1
λ21
, · · · , 1

λ2m0

, 1
λ2m0+1

, · · · 1
λ2m0+1

) · LtA = AtLΣLtA.

Take any ` ∈ [m + 1, d]. Let eα be the unit eigenvector corresponding to the `th largest
eigenvalue of AtLΣαLtA for a positive but arbitrarily small α. By (i), ĉ` should be set to
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−Ht
αeα to minimize the fitting error, which makes etαWαeα = 1

n

∑n
p=1 F̂`(ap)

2 + α‖ĉ`‖2 =
1
n

∑n
p=1 F̂`(ap)

2 + αetα(HαHt
α)eα. By (ii),

etα(AtLΣαLtA)eα = etα( 1
αWα)eα =

1

αn

n∑
p=1

F̂`(ap)
2 + etα(HαHt

α)eα.

As α→ 0, the left hand side and the second term on the right hand side converge to the same
value. Therefore, if we set ĝ` = eα and ĉ` = −Ht

αĝ`, then limα→0
1
αn

∑n
p=1 F̂`(ap)

2 = 0, which

makes limα→0 F̂`(ap) = 0 for every p ∈ [1, n]. This proves (iii).

Remark: The condition n ≤
(
d+1
2

)
is needed for the proofs of Lemma 4.1(ii) and the identity

AtLΣLtA = HHt in Lemma 4.1(iii) to go through. The subsequent error analysis studies the
eigenvalues of HHt and use the identity AtLΣLtA = HHt to bound the angular error.

5 Derivatives and Sums

5.1 Derivatives of coordinate functions

We derive two results in this subsection. Lemma 5.1(i) puts an upper bound on the 2-norm of the
second derivatives of the coordinate functions. Lemma 5.1(ii) bounds the error of approximating
the coordinate functions using their second derivatives. We use Taylor expansions [23] heavily
in the proofs. Given a smooth function h : X → R, where X is an open subset of Rk for some
k ≥ 1, if two points a, x ∈ X are connected by a segment in X , then for every integer j ≥ 1,
there exists a point z in the interior of the segment connecting a and x such that

h(x) = h(a) + Dh|a(x− a) + · · ·+ 1

(j − 1)!
Dj−1h|a(x− a, . . . , x− a) +

1

j!
Djh|z(x− a, . . . , x− a).

If we let u be the unit vector (x− a)/‖x− a‖ and let ε = ‖x− a‖, then

h(x) = h(a) + εDh|a(u) + · · ·+ εj−1

(j − 1)!
Dj−1h|a(u, . . . , u) +

εj

j!
Djh|z(u, . . . , u).

As ε = ‖x− a‖ approaches zero, the magnitude of the remainder εj

j! D
jh|z(u, . . . , u) approaches

zero faster than the magnitude of every preceding term in the expansion. In our case, we
will use the Taylor expansion of a coordinate function f` around the origin, and there are no
constant and linear term in the expansion.

Lemma 5.1 There exists a value ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0] and every unit
vector u ∈ Rm, the following properties hold.

(i)
∥∥( D2fm+1|0(u, u) · · · D2fd|0(u, u) )

∥∥ = O(1/%).

(ii) Let v = %εu.
∥∥( fm+1(v)− 1

2D2fm+1|0(v, v) · · · fd(v)− 1
2D2fd|0(v, v) )

∥∥ = O(%ε3).

Proof. Rotate space such that the coordinate axes x1, . . . , xm span T and the coordinate axes
xm+1, . . . , xd span the normal space of M at the origin. Let v = %εu.

Consider (i). Take any ` ∈ [m+ 1, d]. We claim that if ε0 is sufficiently small, then |f`(v)| ≥
1
4%

2ε2
∣∣D2f`|0(u, u)

∣∣ for all ε ∈ (0, ε0]. If D2f`|0(u, u) = 0, our claim is trivially true. Assume that
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D2f`|0(u, u) 6= 0. The Taylor expansion of f`(v) is 1
2D2f`|0(v, v) + · · · = 1

2%
2ε2D2f`|0(u, u) + · · · .

As ε0 approaches 0, the remainder approaches zero faster than 1
2D2f`|0(v, v) does. Therefore,

there exists ε0 > 0 such that for every ε ∈ (0, ε0] and v = %εu,∣∣∣∣f`(v)− 1

2
D2f`|0(v, v)

∣∣∣∣ ≤ 1

4

∣∣D2f`|0(v, v)
∣∣ =

1

4
%2ε2

∣∣D2f`|0(u, u)
∣∣ .

Thus, |f`(v)| ≥ 1
4%

2ε2
∣∣D2f`|0(u, u)

∣∣, proving our claim.
Any point in M within a distance %ε from the origin is at distance O(%ε2) from T [15,

Lemma 6], which implies that ‖
(
fm+1(v) · · · fd(v)

)
‖ = O(%ε2). Therefore, by our claim,

1

4
%2ε2

∥∥(D2fm+1|0(u, u) · · · D2fd|0(u, u)
)∥∥ ≤ ∥∥(fm+1(v) · · · fd(v)

)∥∥ = O(%ε2).

Dividing both sides by %2ε2/4 gives
∥∥(D2fm+1|0(u, u) · · · D2fd|0(u, u)

)∥∥ = O(1/%), establish-
ing the correctness of (i).

Consider (ii). Let Bε denote the d-ball centered at the origin with radius %ε. Take any
` ∈ [m+1, d]. Define the plane L = {au+z : a ∈ R ∧ z is a vector parallel to the x` axis}. Since
u is a vector in the tangent space ofM at the origin, for a sufficiently small ε0,M∩Bε∩L is a
one-dimensional curve in the plane L and D2f`|0(u, u) is the rate of change of the `-th coordinate
of the unit tangent along M∩Bε ∩ L at the origin [28, Chapter 5]. That is, D2f`|0(u, u) is the
reciprocal of the radius of curvature of M∩Bε ∩ L at the origin.

If we scale down the unit length linearly, all lengths increase linearly; in particular, the
radius of curvature of M∩ Bε ∩ L at the origin, the local feature size % at the origin, and the
value |f`(v)|. The linear increase in the radius of curvature means that

∣∣D2f`|0(u, u)
∣∣ decreases

linearly, which implies that D2f`|0(v, v) = %2ε2D2f`|0(u, u) increases linearly.
A Taylor expansion of f`(v) is 1

2D2f`|0(v, v) + 1
6D3f`|p`,u,ε(v, v, v), where 1

6D3f`|p`,u,ε(v, v, v) is
the remainder and p`,u,ε = %ω`,u,εu for some ω`,u,ε ∈ (0, ε). Notice that p`,u,ε and ω`,u,ε depend
on ε and u. The remainder can be rewritten as:

f`(v)− 1

2
D2f`|0(v, v) =

1

6
D3f`|p`,u,ε(v, v, v) = %ε3 · 1

6
%2D3f`|p`,u,ε(u, u, u) (5.1)

Either f`(v) − 1
2D2f`|0(v, v) is zero or it changes linearly when we scale down the unit length

because f`(v) and 1
2D2f`|0(v, v) do. The leading factor ρε3 on the right hand side of (5.1) changes

linearly too as we scale down the unit length. Thus, 1
6%

2D3f`|p`,u,ε(u, u, u) is scale independent.
We have the following equation:∥∥∥∥∥∥∥

fm+1(v)− 1
2D2fm+1|0(v, v)

...
fd(v)− 1

2D2fd|0(v, v)


∥∥∥∥∥∥∥ = %ε3 ·

∥∥∥∥∥∥∥


1
6%

2D3fm+1|pm+1,u,ε(u, u, u)
...

1
6%

2D3fd|pd,u,ε(u, u, u)


∥∥∥∥∥∥∥ (5.2)

We maximize the norm of the vector on the right hand side of (5.2) by going over all possible
unit vectors u in the tangent space at the origin, but v on the left hand side of (5.2) is kept
fixed independent of the variation of u. For every u, we also vary p`,u,ε by varying ε over (0, ε0]
to maximize the norm of the vector on the right hand side of (5.2). Therefore,∥∥∥∥∥∥∥

fm+1(v)− 1
2D2fm+1|0(v, v)

...
fd(v)− 1

2D2fd|0(v, v)


∥∥∥∥∥∥∥ ≤ %ε3 · sup

‖u‖=1
ε∈ (0,ε0]

∥∥∥∥∥∥∥


1
6%

2D3fm+1|pm+1,u,ε(u, u, u)
...

1
6%

2D3fd|pd,u,ε(u, u, u)


∥∥∥∥∥∥∥ .

In the inequality above, the rightmost factor on the right hand side is a constant that depends
on M but not on scale. This establishes the correctness of (ii).
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5.2 Sums of powers of coordinates

The main result in this subsection is Lemma 5.4 which bounds certain sums of powers of sample
point coordinates. These bounds are proved using integration, the Chebyshev’s inequality, and
the technical result stated in Lemma 5.3 below. We need some notation. Let p and q denote
two non-negative integers.

β(q)
def
=


π(q − 1)(q − 3) · · · 1

q(q − 2) · · · 2 , if q is even and positive,

2(q − 1)(q − 3) · · · 2
q(q − 2) · · · 1 , if q is odd.

Vq
def
= volume of a unit q-ball.

Note that β(1) = 2 and V0 = 1. It can be verified that β and Vq satisfy the following recurrences:

∀ q ≥ 2, β(q − 1)β(q + 2) = 2π(q + 1)/(q(q + 2)) (5.3)

∀ q ≥ 1, Vq = β(q)Vq−1 (5.4)

∀ q ≥ 2, Vq = 2πVq−2/q (5.5)

We will need the following two technical results. The Chebyshev’s inequality bounds the prob-
ability of a random variable deviating from the mean by a multiple of the standard deviation.

Lemma 5.2 (Chebyshev’s Inequality) Let Y be a random variable with finite expected value
µ and finite positive variance σ2. For any positive real number a, Pr(|Y − µ| ≥ aσ) ≤ 1/a2.

The next result gives the value of a particular integral that will be used often in the proof
of Lemma 5.4.

Lemma 5.3 Let p and q be two non-negative integers. Let ri, xi and ri+1 be three variables
such that xi ∈ [−ri, ri] and r2i+1 = r2i − x2i . If p is non-negative and even, then∫ ri

−ri
xpi r

q
i+1 dxi =

(p− 1)(p− 3) · · · 1
(p+ q + 1)(p+ q − 1) · · · (q + 3)

· β(q + 1) · rp+q+1
i ,

where
(p− 1)(p− 3) · · · 1

(p+ q + 1)(p+ q − 1) · · · (q + 3)
is interpreted as 1 when p = 0.

Proof. Perform a change of variables: xi = ri sin θ and ri+1 = ri cos θ and we obtain∫
xpi r

q
i+1 dxi = rp+q+1

i

∫
sinp θ cosq+1 θ dθ.

The limits of the integrals also change: [−ri, ri] becomes [−π/2, π/2]. The following two recur-
sive formulae are from [19]:

∀ p ≥ 2, q ≥ 0,

∫
sinp θ cosq+1 θ dθ =

−sinp−1 θ cosq+2 θ

p+ q + 1
+

p− 1

p+ q + 1
·
∫

sinp−2 θ cosq+1 θ dθ (5.6)

∀ p ≥ 0, q ≥ 1,

∫
sinp θ cosq+1 θ dθ =

sinp+1 θ cosq θ

p+ q + 1
+

q

p+ q + 1
·
∫

sinp θ cosq−1 θ dθ. (5.7)
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In our case, since the limits of the integrals are [−π/2, π/2], the leading additive terms in both
(5.6) and (5.7) vanish. Then, we first repeatedly apply (5.6) to decrease the exponent p. Since
p is even, it will eventually become zero and we then repeatedly apply (5.7) to decrease the
exponent q. One can then verify that we obtain the result stated in the lemma.

Lemma 5.4 below gives upper and lower bounds on certain sums of powers of sample point
coordinates. These upper and lower bounds are obtained by calculating the expected values
and variances of the sums of powers. Then, the Chebyshev’s inequality is applied to obtain
the high probability bound. Recall that the sample points in M are generated by a Poisson
process and the neighborhood of the origin being examined contains exactly n sample points
(excluding the origin). It follows that these n sample points are uniformly distributed in that
neighborhood [5]. As a result, the probability of a sample point falling into a region within
the neighborhood is the ratio of the volume of that region to the neighborhood volume. This
observation allows us to calculate the expected values and variances of the sums of powers by
integration and applying Lemma 5.3.

Lemma 5.4 Assume that the coordinate axes x1, . . . , xm span the tangent space T ofM at the
origin. Let i, j, k, and l be four distinct integers from [1,m]. If ε is sufficiently small, then for
every constant c > 0, the following properties hold simultaneously with probability 1−O(n−1/3),
where the hidden constant in the probability bound depends on c.

(i)
∣∣∣∑n

p=1 a
4
pi − 3

(m+2)(m+4)n%
4ε4
∣∣∣ < cn2/3%4ε4 +O(n%4ε6).

(ii)
∣∣∣∑n

p=1 a
2
pia

2
pj − 1

(m+2)(m+4)n%
4ε4
∣∣∣ < cn2/3%4ε4 +O(n%4ε6).

(iii)
∣∣∣∑n

p=1 a
2
pi − 1

m+2n%
2ε2
∣∣∣ < cn2/3%2ε2 +O(n%2ε4).

(iv)
∣∣∣∑n

p=1 a
3
piapj

∣∣∣, ∣∣∣∑n
p=1 a

2
piapjapk

∣∣∣ and
∣∣∣∑n

p=1 apiapjapkapl

∣∣∣ are less than cn2/3%4ε4+O(n%4ε6).

(v)
∣∣∣∑n

p=1 a
3
pi

∣∣∣, ∣∣∣∑n
p=1 a

2
piapj

∣∣∣ and
∣∣∣∑n

p=1 apiapjapk

∣∣∣ are less than cn2/3%3ε3 +O(n%3ε5).

(vi)
∣∣∣∑n

p=1 apiapj

∣∣∣ < cn2/3%2ε2 +O(n%2ε4).

Proof. Let Bε be the d-ball centered at the origin with radius %ε. Since %ε is defined to be the
distance from the origin to the (n+1)-th sample point, there are exactly n sample points in the
interior of Bε, excluding the origin. As the sample points are generated by a Poisson process,
these n sample points are uniformly distributed in the interior of M∩Bε.

Consider an m-dimensional triangulated hyperrectangle R in T ∩Bε with infinitesimal side
lengths dx1, . . ., dxm. Suppose that R lies well inside Bε so that its 2m vertices are the
orthogonal projections of 2m points in M∩Bε onto T . Connect these 2m points in M∩Bε as
in the triangulation of R to produce some m-simplices. The union of these m-simplices is an
infinitesimal volume U which is a deformed version of R. Let dV denote the volume of U . Since
U projects orthogonally onto R, the volume of U is at least the volume of R, and therefore,
dV ≥ dx1 · · · dxm. For every segment s′ in an m-simplex in U , it projects to a segment s in an
m-simplex in the triangulation of R such that length(s′) = sec θ · length(s), where θ is the acute
angle between the support lines of s′ and s. The angle θ is no more than the angle between T
and the tangent space at an endpoint of s′, which is known to be O(ε) [9, Lemma 15]. Therefore,
dV ≤ (1 +O(ε2))m dx1 · · · dxm = (1 +O(ε2)) dx1 · · · dxm. In the last step, we use the fact that
m is a constant, so m ·O(ε2) +

(
m
2

)
·O(ε4) + · · · = O(ε2). It follows that:

dx1 . . . dxm ≤ dV ≤ (1 +O(ε2)) · dx1 . . . dxm (5.8)
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Define the following symbols:

r0
def
= %ε

r1
def
= κr0 for some parameter κ to be specified later

r2i+1
def
= r2i − x2i , for every i ∈ [1,m− 1]

Since the tangent space at any point inM∩Bε makes an O(ε) angle with T [9], the projection of
M∩Bε onto T covers an m-ball centered at the origin with radius r0 cos(O(ε)) = (1−O(ε2))r0.
The volume of this m-ball is thus (1−O(ε2))mVmr

m
0 ≥ (1−O(ε2))Vmr

m
0 . Combining with (5.8),

we obtain:
(1−O(ε2))Vmr

m
0 ≤ vol(M∩Bε) ≤ (1 +O(ε2))Vmr

m
0 . (5.9)

We will prove that each of (i)–(vi) holds with probability 1 − O(n−1/3). Therefore, they
hold simultaneously with probability at least 1 − 6 · O(n−1/3) = 1 − O(n−1/3) as well. In the
following, z = (z1, z2, . . . , zd)

t denotes a random point in M∩Bε.

Analysis of (i): The variance of
∑n

p=1 a
4
pi equals nE[z8i ]−n

(
E[z4i ]

)2 ≤ nE[z8i ] ≤ n%8ε8 because

|zi| ≤ %ε. Lemma 5.2 implies that
∣∣∣∑n

p=1 a
4
pi − E

[∑n
p=1 a

4
pi

]∣∣∣ < cn2/3%4ε4 with probability

1− c−2n−1/3. It remains to bound E
[∑n

p=1 a
4
pi

]
.

Since E[
∑n

p=1 a
4
pi] = n

vol(M∩Bε)

∫
M∩Bε

z4i dV , it follows from (5.9) that:

(1−O(ε2))n

Vmrm0

∫
M∩Bε

z4i dV ≤ E

 n∑
p=1

a4pi

 ≤ (1 +O(ε2))n

Vmrm0

∫
M∩Bε

z4i dV (5.10)

We first calculate n
Vmr

m
0

∫
D x

4
i dxm · · · dx1, where D is the m-ball in T centered at the

origin with radius r1. Consider an (m − i + 1)-ball with radius ri centered at the origin.
Its volume, which is Vm−i+1r

m−i+1
i , can also be written as the integration of the volume of

its (m − i)-dimensional cross-section—an (m − i)-ball—that is perpendicular to the xi axis
and at distance xi from the origin as the value xi varies from −ri to ri. Figure 6 gives an

illustration. The radius of the (m− i)-dimensional cross-section is ri+1 =
√
r2i − x2i . Therefore,

Vm−i+1r
m−i+1
i =

∫ ri
−ri Vm−ir

m−i
i+1 dxi, where Vm−1r

m−i
i+1 denotes the volume function of an (m−i)-

ball with radius ri+1. Inductively, we obtain

Vm−i+1r
m−i+1
i =

∫ ri

−ri

∫ ri+1

−ri+1

· · ·
∫ rm

−rm
dxm · · · dxi.

We now return to calculating n
Vmr

m
0

∫
D x

4
i dxm · · · dx1. By symmetry, we can assume that i = 1.

n

Vmr
m
0

∫
D
x4i dxm · · · dx1 =

n

Vmr
m
0

∫ r1

−r1
· · ·
∫ rm

−rm
x41 dxm . . . dx1

=
nVm−1
Vmr

m
0

∫ r1

−r1
x41r

m−1
2 dx1

=
nVm−1
Vmr

m
0

· 3β(m)rm+4
1

(m+ 2)(m+ 4)
(∵ Lemma 5.3)

=
3nrm+4

1

(m+ 2)(m+ 4)rm0
(∵ (5.4))
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xi

ri
ri+1

Figure 6: The circle represents an (m − i + 1)-ball centered at the origin with radius ri. The
bold segment represents an (m − i)-dimensional cross-section of the (m − i + 1)-ball, and its

radius ri+1 is equal to
√
r2i − x2i .

The orthogonal projection of M∩Bε onto T is contained in the m-ball centered at the origin
with radius r0. By (5.8), if we set r1 = r0, then

n

Vmr
m
0

∫
M∩Bε

z4i dV ≤ (1 +O(ε2)) · n

Vmr
m
0

∫
D
x4i dxm · · · dx1

= (1 +O(ε2)) · 3nr40
(m+ 2)(m+ 4)

=
3n%4ε4

(m+ 2)(m+ 4)
+O(n%4ε6).

The orthogonal projection ofM∩Bε onto T covers an m-ball centered at the origin with radius
(1−O(ε2))r0. Thus, if we set r1 to be this radius, then

n

Vmr
m
0

∫
M∩Bε

z4i dV ≥ n

Vmr
m
0

∫
D
x4i dxm · · · dx1

= (1−O(ε2))m+4 · 3nr40
(m+ 2)(m+ 4)

≥ (1−O(ε2)) · 3nr40
(m+ 2)(m+ 4)

=
3n%4ε4

(m+ 2)(m+ 4)
−O(n%4ε6).

Then, it follows from (5.10) that
∣∣∣E [∑n

p=1 a
4
pi

]
− 3

(m+2)(m+4)n%
4ε4
∣∣∣ = O(n%4ε6), establishing

the correctness of (i).

Analysis of (ii): The variance of
∑n

p=1 a
2
pia

2
pj equals nE[z4i z

4
j ] − n(E[z2i z

2
j ])2 ≤ nE[z4i z

4
j ] ≤

n%8ε8 because |zi| ≤ %ε. Lemma 5.2 implies that
∣∣∣∑n

p=1 a
2
pia

2
pj − E

[∑n
p=1 a

2
pia

2
pj

]∣∣∣ < cn2/3%4ε4

with probability 1− c−2n−1/3. It remains to bound E
[∑n

p=1 a
2
pia

2
pj

]
.

Since E
[∑n

p=1 a
2
pia

2
pj

]
= n

vol(M∩Bε)

∫
M∩Bε

z2i z
2
j dV , we can derive as in (i) the relation

(1−O(ε2))n
Vmrm0

∫
M∩Bε

z2i z
2
j dV ≤ E

[∑n
p=1 a

2
pia

2
pj

]
≤ (1+O(ε2))n

Vmrm0

∫
M∩Bε

z2i z
2
j dV . Let D be

the m-ball in T centered at the origin with radius r1. By symmetry, we can assume that i = 1
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and j = 2.

n

Vmrm0

∫
D
x2ix

2
j dxm · · · dx1 =

nVm−2
Vmrm0

∫ r1

−r1

∫ r2

−r2
x21x

2
2r
m−2
3 dx2dx1

=
nβ(m− 1)β(m+ 2)Vm−2r

m+4
1

(m+ 1)(m+ 4)Vmrm0
(∵ Lemma 5.3)

=
nrm+4

1

(m+ 2)(m+ 4)rm0
(∵ (5.3) & (5.5))

As in (i), if we set r1 = r0, then

n

Vmrm0

∫
M∩Bε

z2i z
2
j dV ≤ (1 +O(ε2)) · n

Vmrm0

∫
D
x2ix

2
j dxm · · · dx1

= (1 +O(ε2)) · nr40
(m+ 2)(m+ 4)

=
n%4ε4

(m+ 2)(m+ 4)
+O(n%4ε6).

The orthogonal projection ofM∩Bε onto T covers an m-ball centered at the origin with radius
(1−O(ε2))r0. Thus, if we set r1 to be this radius, then

n

Vmrm0

∫
M∩Bε

z2i z
2
j dV ≥ n

Vmrm0

∫
D
x2ix

2
j dxm · · · dx1

= (1−O(ε2))m+4 · nr40
(m+ 2)(m+ 4)

≥ (1−O(ε2)) · nr40
(m+ 2)(m+ 4)

=
n%4ε4

(m+ 2)(m+ 4)
−O(n%4ε6).

Therefore,
∣∣∣E[∑n

p=1 a
2
pia

2
pj

]
− n%4ε4

(m+2)(m+4)

∣∣∣ = O(n%4ε6), establishing the correctness of (ii).

Analysis of (iii): The variance of
∑n

p=1 a
2
pi is at most nE

[
z4i
]
≤ n%4ε4. Lemma 5.2 implies

that
∣∣∣∑n

p=1 a
2
pi − E

[∑n
p=1 a

2
pi

]∣∣∣ < cn2/3%2ε2 with probability 1− c−2n−1/3. It remains to bound

E
[∑n

p=1 a
2
pi

]
. Since E

[∑n
p=1 a

2
pi

]
= n

vol(M∩Bε)

∫
M∩Bε

z2i dV , by (5.9), E
[∑n

p=1 a
2
pi

]
lies between

(1 − O(ε2)) · n
Vmrm0

∫
M∩Bε

z2i dV and (1 + O(ε2)) · n
Vmrm0

∫
M∩Bε

z2i dV . Let D be the m-ball in

T centered at the origin with radius r1.

n

Vmrm0

∫
D
x2i dxm · · · dx1 =

n

Vmrm0

∫ r1

−r1
· · ·
∫ rm

−rm
x21 dxm . . . dx1

=
nVm−1
Vmrm0

∫ r1

−r1
x21r

m−1
2 dx1

=
nrm+2

1

(m+ 2)rm0
(∵ Lemma 5.3 and (5.4))

If we set r1 = r0, then E
[∑n

p=1 a
2
pi

]
≤ (1 + O(ε2)) · n

Vmrm0

∫
M∩Bε

z2i dV ≤ (1 + O(ε2))2 ·
n

Vmrm0

∫
D x

2
i dxm · · · dx1 = 1+O(ε2)

m+2 · nr20 = 1
m+2 · n%2ε2 + O(n%2ε4). The orthogonal projection
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of M∩ Bε onto T covers an m-ball centered at the origin with radius (1 − O(ε2))r0. Thus,

if we set r1 to be this radius, then E
[∑n

p=1 a
2
pi

]
≥ (1 − O(ε2)) · n

Vmrm0

∫
M∩Bε

z2i dV ≥ (1 −
O(ε2)) · n

Vmrm0

∫
D x

2
i dxm · · · dx1 = (1−O(ε2))m+3

m+2 · nr20 = 1
m+2 · n%2ε2 − O(n%2ε4). Therefore,∣∣∣E[∑n

p=1 a
2
pi

]
− 1

m+2n%
2ε2
∣∣∣ = O(n%2ε4). This establishes the correctness of (iii).

Analysis of (iv), (v) and (vi): We prove a more general statement. Consider
∑n

p=1

∏k
j=0 a

ej
pij

,

where k ≥ 1, ij ∈ [1,m] for every j ∈ [0, k], e0 is an even (possibly zero) integer, and ej is an

odd integer for every j ∈ [1, k]. We show that
∣∣∣∑n

p=1

∏k
j=0 a

ej
pij

∣∣∣ < cn2/3%eεe +O(n%eεe+2) with

probability 1− c−2n−1/3, where e =
∑k

j=0 ej .

The variance of
∑n

p=1

∏k
j=0 a

ej
pij

is at most nE
[∏k

j=0 z
2ej
ij

]
≤ n%2eε2e because zi ≤ %ε. By

Lemma 5.2, it holds with probability 1−c−2n−1/3 that
∣∣∣∑n

p=1

∏k
j=0 a

ej
pij

∣∣∣ < ∣∣∣E[∑n
p=1

∏k
j=0 a

ej
pij

]∣∣∣+
cn2/3%eεe. Thus, it suffices to bound

∣∣∣E[∑n
p=1

∏k
j=0 a

ej
pij

]∣∣∣.
Let D be the m-ball in T centered at the origin with radius r1 = (1−O(ε2))r0 covered by

the orthogonal projection of M∩ Bε onto T . Let M be the portion of M∩ Bε that projects
onto D. We deal with M and (M∩Bε) \M separately.

Divide Rd into 2k subsets so that for every subset and every j ∈ [1, k], the sign of z
ej
ij

does not flip within the subset. (Note that ze0i0 ≥ 0 as e0 is even.) Consider two such subsets

H+
k = {x ∈ Rd : xekik ≥ 0 ∧ ∀ j ∈ [1, k − 1], x

ej
ij
≥ 0} and H−k = {x ∈ Rd : xekik ≤ 0 ∧ ∀ j ∈

[1, k − 1], x
ej
ij
≥ 0}. By (5.8),

∫
M∩H+

k

k∏
j=0

z
ej
ij

dV ≤ (1 +O(ε2)) ·
∫
D∩H+

k

k∏
j=0

x
ej
ij

dxm · · · dx1.

Since zekik ≤ 0 in H−k and
∫
M∩H−k

|zekik | ·
∏k−1
j=0 z

ej
ij

dV ≥
∫
D∩H−k

|xekik | ·
∏k−1
j=0 x

ej
ij

dxm · · · dx1, we

get
∫
M∩H−k

∏k
j=0 z

ej
ij

dV = −
∫
M∩H−k

|zekik | ·
∏k−1
j=0 z

ej
ij

dV ≤ −
∫
D∩H−k

|xekik | ·
∏k−1
j=0 x

ej
ij

dxm · · · dx1.
By symmetry,

∫
D∩H−k

|xekik | ·
∏k−1
j=0 x

ej
ij

dxm · · · dx1 =
∫
D∩H+

k

∏k
j=0 x

ej
ij

dxm · · · dx1. Therefore,

∫
M∩H−k

k∏
j=0

z
ej
ij

dV ≤ −
∫
D∩H+

k

k∏
j=0

x
ej
ij

dxm · · · dx1.

Let H = {x ∈ Rd : ∀ j ∈ [1, k − 1], x
ej
ij
≥ 0}. It follows that

∫
M∩H

k∏
j=0

z
ej
ij

dV =

∫
M∩H+

k

k∏
j=0

z
ej
ij

dV +

∫
M∩H−k

k∏
j=0

z
ej
ij

dV

≤ O(ε2) ·
∫
D∩H+

k

k∏
j=0

x
ej
ij

dxm · · · dx1

≤ O(ε2) · Vmrm+e
1 /2k (∵ xij ≤ r1)

≤ O(ε2) · Vmrm+e
0 /2k (∵ r1 ≤ r0)

Conversely,
∫
M∩H+

k

∏k
j=0 z

ej
ij

dV ≥
∫
D∩H+

k

∏k
j=0 x

ej
ij

dxm · · · dx1 and
∫
M∩H−k

∏k
j=0 z

ej
ij

dV =

−
∫
M∩H−k

|zekik | ·
∏k−1
j=0 z

ej
ij

dV ≥ −(1 +O(ε)2) ·
∫
D∩H−k

|xekik | ·
∏k−1
j=0 x

ej
ij

dxm · · · dx1, which is equal
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to −(1 +O(ε)2) ·
∫
D∩H+

k

∏k
j=0 x

ej
ij

dxm · · · dx1, Therefore,

∫
M∩H

k∏
j=0

z
ej
ij

dV ≥ −O(ε2) ·
∫
D∩H+

k

k∏
j=0

x
ej
ij

dxm · · · dx1 ≥ −O(ε2) · Vmrm+e
0 /2k.

As a result,
∣∣∣∫M∩H∏k

j=0 z
ej
ij

dV
∣∣∣ ≤ O(ε2) · Vmrm+e

0 /2k.

There are 2k−1−1 other combinations of signs of z
ej
ij

for j ∈ [1, k−1]. Each combination gives

rise to a subset G of Rd and one can derive as in the above that
∣∣∣∫M∩G∏k

j=0 z
ej
ij

dV
∣∣∣ ≤ O(ε2) ·

Vmr
m+e
0 /2k. Consequently,

∣∣∣∫M ∏k
j=0 z

ej
ij

dV
∣∣∣ ≤ 2k−1 ·O(ε2) · Vmrm+e

0 /2k = O(ε2) · Vmrm+e
0 .

Let D0 be the m-ball in T centered at the origin with radius r0. Since
∣∣∣∏k

j=0 z
ej
ij

∣∣∣ ≤ re0, by

(5.8),
∣∣∣∫(M∩Bε)\M

∏k
j=0 z

ej
ij

dV
∣∣∣ ≤ (1 +O(ε2)) ·

∫
D0\D r

e
0 dxm · · · dx1 = (1 +O(ε2)) · Vmre0(rm0 −

rm1 ) = O(ε2) · Vmrm+e
0 .

We conclude that
∣∣∣∫M∩Bε

∏k
j=0 z

ej
ij

dV
∣∣∣ ≤ ∣∣∣∫M ∏k

j=0 z
ej
ij

dV
∣∣∣ +
∣∣∣∫(M∩Bε)\M

∏k
j=0 z

ej
ij

dV
∣∣∣ =

O(ε2) · Vmrm+e
0 . Then,∣∣∣∣∣∣E

 n∑
p=1

k∏
j=0

a
ej
pij

∣∣∣∣∣∣ ≤ n

vol(M∩Bε)

∣∣∣∣∣∣
∫
M∩Bε

k∏
j=0

z
ej
ij

dV

∣∣∣∣∣∣
≤ n

vol(D)
·O(ε2) · Vmrm+e

0

= O(n%eεe+2).

This establishes the correctness of (iv), (v) and (vi).

6 Eigenvalues of BtB

We show in this section that the largest m0 eigenvalues of BtB are Θ(n%4ε4) and the largest
(m0+1)-th eigenvalue of BtB is O(n%4ε6). The bounds on the eigenvalues of BtB are obtained by
proving a series of lemmas using the Gershgorin Circle Theorem [17] and its generalization [13].

6.1 Preliminaries

Let C be a square matrix. The Gershgorin Circle Theorem states that for each eigenvalue σ of
C, there exists a row i of C such that |σ − cii| ≤

∑
j 6=i |cij |. It follows that |cii| −

∑
j 6=i |cij | ≤

σ ≤ ∑j |cij |. By applying the Gershgorin Circle Theorem to Ct, there also exists a column j
of C such that |σ − cjj | ≤

∑
i 6=j |cij |, which implies that |cjj | −

∑
i 6=j |cij | ≤ σ ≤∑i |cij |. This

result has been generalized to the case when C is partitioned into blocks [13]. Consider the
following partition of C: C11 · · · C1r

...
. . .

...
Cr1 · · · Crr

 (6.1)

That is, there exist integers ni such that Cij is an ni×nj matrix. Note that the matrices Cii’s are
square, but the other Cij ’s may not be square. Each row of blocks

(
Ci1 · · · Cii · · · Cir

)
defines a generalized gershgorin set Gi which contains all real numbers µ such that ‖(Cii −
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µIni)
−1‖−1 ≤∑j 6=i ‖Cij‖. The eigenvalues of Cii are in Gi by a continuity argument [13]. The

definition of Gi implies that:

min{µ ∈ Gi} ≥ smallest eigenvalue of Cii −
∑
i 6=j
‖Cij‖ (6.2)

max{µ ∈ Gi} ≤ largest eigenvalue of Cii +
∑
i 6=j
‖Cij‖ (6.3)

Equations (6.2) and (6.3) help to bound the eigenvalues of C because Gi contains some eigen-
values of C under certain conditions as stated in the following result.

Lemma 6.1 ([13]) Consider any partition of a square matrix C into blocks as in (6.1). Ev-
ery eigenvalue of C lies in some generalized gershgorin set Gi with respect to this partition.
Moreover, if a generalized gershgorin set Gi is disjoint from the union of the other generalized
gershgorin sets, then Gi contains exactly ni eigenvalues of C, where ni is the dimension of Cii.

In addition to the Gershgorin Circle Theorem, there are also some easy bounds on the
2-norm and eigenvalues of a matrix [17]. For any r × k matrix U,

‖U‖ = ‖Ut‖ and ‖UtU‖ = ‖U‖2.

Moreover,
max

e∈Rk,‖e‖=1
etUtUe = σ2max and min

e∈Rk,‖e‖=1
etUtUe = σ2min,

where σmax and σmin are the largest and smallest singular values of U. Since ‖ · ‖ satisfies
triangle inequality, if U = V + W, then

‖U‖ ≤ ‖V‖+ ‖W‖.

If U = (V W), where the row dimension of U is r and the column dimensions of V and W are i
and j, respectively, then since we can write U = (V 0r,j) + (0r,i W), we get

‖U‖ ≤ ‖V‖+ ‖W‖.

If U = V W, then
‖U‖ ≤ ‖V‖ · ‖W‖.

Suppose that the row dimension of U is r. Then, ‖U‖ ≤ ‖U‖F ≤
√
r ‖U‖. Note that ‖U‖F =

(
∑

ij u
2
ij)

1/2 =
(∑r

i=1 ‖ui∗‖2
)1/2

. Therefore,

‖U‖ ≤ √r max
i∈[1,r]

‖ui∗‖.

Suppose that U = V + W and all three matrices U, V and W are symmetric (of dimension k)
and positive semi-definite. In this case, the minimum eigenvalue of U is mine∈Rk, ‖e‖=1 etUe =
mine∈Rk, ‖e‖=1 etVe + etWe, which is greater than or equal to both mine∈Rk, ‖e‖=1 etVe and
mine∈Rk, ‖e‖=1 etWe. Therefore, if U = V + W for some symmetric and positive semi-definite
matrices U, V and W, then

min. eigenvalue of U ≥ max {min. eigenvalue of V, min. eigenvalue of W} .

To facilitate the analysis of the eigenvalues of BtB, it is convenient to assume that the
coordinate axes x1, . . . , xm span the tangent space T of M at the origin. That is, for every
p ∈ [1, n] and every i ∈ [1,m], api is the coordinate of ap on the xi-axis. The following result
shows that the eigenvalues of BtB are preserved by rotations in Rd that keep the origin fixed.
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Lemma 6.2 The eigenvalues of BtB are preserved by rotations in Rd that keep the origin fixed.

Proof. Recall that d0 =
(
d+1
2

)
. Each row of B is a vector in Rd0 and it is the image of the

function h :
(
y1 · · · yd

)t 7→ (
1√
2
y21 y1y2 · · · y1yd

1√
2
y22 y2y3 · · · 1√

2
y2d

)t
. The linear

space spanned by h(Rd) is Rd0 . To see this, consider the vectors eij , where i ∈ [1, d] and
j ∈ [i, d], such that the i-th and j-th entries of eij are ones and all other entries of eij are zeros.
There are d0 such eij ’s and the vectors h(eij)’s are linearly independent because for any k < l,
h(ekl) contains a 1 in the position of ykyl and no other h(eij)’s do.

Take any rotation R in Rd that keeps the origin fixed. Define the transformation ϕ : h(v) 7→
h◦R(v). For every pair of vectors u, v ∈ Rd, h(u)t ·h(v) = 1

2

∑d
i=1 u

2
i v

2
i +
∑d

i=1

∑d
j=i+1 uiujvivj =

1
2(
∑d

i=1 uivi)
2 = 1

2(ut · v)2. Since R preserves distances and angles in Rd, ut · v = R(u)t · R(v),
which implies that (ϕ ◦h(u))t ·ϕ ◦h(v) = h(u)t ·h(v). That is, ϕ preserves distances and angles
in h(Rd).

Since the h(eij)’s form a basis of Rd0 , we can define a linear transformation ψ in Rd0 such
that ψ ◦ h(eij) = ϕ ◦ h(eij) for every i ∈ [1, d] and every j ∈ [i, d]. For any i, k ∈ [1, d], any
j ∈ [i, d] and any l ∈ [k, d], (ψ ◦ h(eij))

t · ψ ◦ h(ekl) = (ϕ ◦ h(eij))
t · ϕ ◦ h(ekl) = h(eij)

t · h(ekl),
which implies that ψ preserves distances and angles in Rd0 and hence ψ is an isometry in Rd0 .
Since ψ and ϕ agree on the h(eij)’s by definition and both ψ and ϕ preserve distances in h(Rd),
ψ(z) must be equal to ϕ(z) for every vector z ∈ h(Rd).

We conclude that the effect on h(Rd) caused by the rotation R in Rd is produced by the
isometry ψ in Rd0 . Since the eigenvalues of BtB are invariant under isometries in Rd0 , they are
not changed by the rotation R.

6.2 Analysis

Suppose that the coordinate axes x1, . . . , xm span T . There are two kinds of columns in B,

namely, the “double” columns
(

1√
2
a21i · · · 1√

2
a2ni

)t
for i ∈ [1, d] and the “cross” columns(

a1ia1j · · · anianj
)t

for i ∈ [1, d] and j ∈ [i + 1, d]. Rearranging the columns in B does
not change the eigenvalues of BtB. For convenience, we rearrange the columns of B so that
B = (BTT BTN BNN ), where BTT consists of the “double” columns for i ∈ [1,m] and the
“cross” columns for i ∈ [1,m] and j ∈ [i + 1,m], BTN consists of the “cross” columns for
i ∈ [1,m] and j ∈ [m + 1, d], and BNN consists of the “double” columns for i ∈ [m + 1, d] and
the “cross” columns for i ∈ [m+ 1, d] and j ∈ [i+ 1, d].

Recall that d0 =
(
d+1
2

)
and m0 =

(
m+1
2

)
. BTT has m0 columns, BTN has m(d−m) columns,

and BNN contains d0 −m0 −md+m2 columns. The matrix BtB can be divided into blocks as
follows.

BtB =

 BtTTBTT BtTTBTN BtTTBNN
BtTNBTT BtTNBTN BtTNBNN
BtNNBTT BtNNBTN BtNNBNN

 (6.4)

We first analyze the eigenvalues of BtTTBTT and the singular values of BTN and BNN .

Lemma 6.3 Assume that the coordinate axes x1, . . . , xm span T . If ε is sufficiently small,
then with probability 1 − O(n−1/3), the eigenvalues of BtTTBTT are Θ(n%4ε4) and so ‖BTT ‖ =
Θ(
√
n%2ε2).

Proof. For every p ∈ [1, n] and every i ∈ [1,m], |api| ≤ %ε. Thus, for every p ∈ [1, n] and every
quadruple of possibly non-distinct i, j, k, l ∈ [1,m],

∑n
p=1 |apiapjapkapl| ≤ n%4ε4. It follows that
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the maximum absolute row sum of BtTTBTT is at most m0n%
4ε4 = O(n%4ε4), which is an upper

bound on the largest eigenvalue by the Gershgorin Circle Theorem.
To prove the lower bound, rearrange the columns of BTT such that its leftmost n × m

submatrix is


1√
2
a211 · · · 1√

2
a21m

...
. . .

...
1√
2
a2n1 · · · 1√

2
a2nm

. This rearrangement does not change the eigenvalues of

BtTTBTT . Let V be the trailing (m0 −m)× (m0 −m) submatrix of BtTTBTT . Then,

BtTTBTT =



1
2

∑n
p=1 a

4
p1

1
2

∑n
p=1 a

2
p1a

2
p2 · · · 1

2

∑n
p=1 a

2
p1a

2
pm ∗

1
2

∑n
p=1 a

2
p1a

2
p2

1
2

∑n
p=1 a

4
p2 · · · 1

2

∑n
p=1 a

2
p2a

2
pm ∗

...
...

. . .
...

...
1
2

∑n
p=1 a

2
p1a

2
pm

1
2

∑n
p=1 a

2
p2a

2
pm · · · 1

2

∑n
p=1 a

4
pm ∗

∗ ∗ · · · ∗ V


(6.5)

Define an m × m matrix W whose entries are identical and equal to 1
2(m+2)(m+4)n%

4ε4. De-

fine another m × m matrix U such that uij is equal to the (i, j) entry of BtTTBTT minus
1

2(m+2)(m+4)n%
4ε4. We split BtTTBTT into the following sum of matrices.

BtTTBTT =

(
U ∗
∗ V

)
+

(
W 0m,m0−m
0m0−m,m 0m0−m,m0−m

)
(6.6)

All matrices in (6.6) are symmetric, and BtTTBTT is clearly positive semi-definite. We show that
the two matrices on the right hand side of (6.6) are also positive semi-definite by bounding their
eigenvalues from below. Then, we can conclude that the minimum eigenvalue of BtTTBTT is at
least the maximum of the minimum eigenvalues of the two matrices on the right hand side of

(6.6). Since the entries of W are identical, the matrix

(
W 0m,m0−m
0m0−m,m 0m0−m,m0−m

)
has rank one.

One can verify that
(
1/
√
m · · · 1/

√
m 0m0−m

)t
is a unit eigenvector and the only non-zero

eigenvalue is m
2(m+2)(m+4)n%

4ε4. So the minimum eigenvalue of

(
W 0m,m0−m
0m0−m,m 0m0−m,m0−m

)
is

zero. It remains to bound the minimum eigenvalue of

(
U ∗
∗ V

)
from below.

Apply Lemma 5.4(i) with the constant c = 2
3(m+2)(m+4) . Then, it follows from (6.5) that,

with probability 1 − O(n−1/3), for every i ∈ [1,m], the (i, i) entry of BtTTBTT is at least
3

2(m+2)(m+4)n%
4ε4 − 1

3(m+2)(m+4)n
2/3%4ε4 −O(n%4ε6), which implies that

|uii| ≥
3n%4ε4

2(m+ 2)(m+ 4)
− n%4ε4

2(m+ 2)(m+ 4)
− n2/3%4ε4

3(m+ 2)(m+ 4)
−O(n%4ε6)

=
n%4ε4

(m+ 2)(m+ 4)
− n2/3%4ε4

3(m+ 2)(m+ 4)
−O(n%4ε6). (6.7)

Apply Lemma 5.4(ii) with the constant c = 2
3m0(m+2)(m+4) . Then, it follows from (6.5) that,

with probability 1−O(n−1/3), for every pair of distinct i, j ∈ [1,m], the (i, j) entry of BtTTBTT
is at most 1

2(m+2)(m+4)n%
4ε4 + 1

3m0(m+2)(m+4)n
2/3%4ε4 +O(n%4ε6), which implies that

|uij | ≤
n%4ε4

2(m+ 2)(m+ 4)
− n%4ε4

2(m+ 2)(m+ 4)
+

n2/3%4ε4

3m0(m+ 2)(m+ 4)
+O(n%4ε6)

=
n2/3%4ε4

3m0(m+ 2)(m+ 4)
+O(n%4ε6). (6.8)
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By the Gershgorin Circle Theorem, every eigenvalue of

(
U ∗
∗ V

)
is at least the absolute

value of the diagonal entry minus the absolute values of the off-diagonal entries in the same
row for some row.

Consider a row that contains the entry uii of U for some i ∈ [1,m]. By (6.8), the absolute
value of each off-diagonal entry in U is at most 1

3m0(m+2)(m+4)n
2/3%4ε4 + O(n%4ε6). The other

off-diagonal entries are 1√
2

∑n
p=1 a

3
piapj and 1√

2

∑n
p=1 a

2
piapjapk for some distinct i, j, k ∈ [1,m].

Apply Lemma 5.4(iv) with the constant c =
√
2

3m0(m+2)(m+4) . It implies that
∣∣∣ 1√

2

∑n
p=1 a

3
piapj

∣∣∣
and

∣∣∣ 1√
2

∑n
p=1 a

2
piapjapk

∣∣∣ are at most 1
3m0(m+2)(m+4)n

2/3%4ε4 + O(n%4ε6) with probability 1 −
O(n−1/3). By (6.7), |uii| minus the absolute values of the off-diagonal entries in the ith row is
greater than 1

(m+2)(m+4)n%
4ε4 − 2

3(m+2)(m+4)n
2/3%4ε4 −O(n%4ε6), which is Ω(n%4ε4).

Consider a row that contains a diagonal entry of V. This diagonal entry of V is
∑n

p=1 a
2
pia

2
pj

for some distinct i, j ∈ [1,m]. Apply Lemma 5.4(ii) with the constant c = 1
3(m+2)(m+4) . It

implies that
∑n

p=1 a
2
pia

2
pj ≥ 1

(m+2)(m+4)n%
4ε4 − 1

3(m+2)(m+4)n
2/3%4ε4 − O(n%4ε6) with prob-

ability 1 − O(n−1/3). The off-diagonal entries are 1√
2

∑n
p=1 a

3
piapj ,

1√
2

∑n
p=1 a

2
piapjapk and∑n

p=1 apiapjapkapl for some distinct i, j, k, l ∈ [1,m]. A similar analysis as in the previous para-

graph shows that
∑n

p=1 a
2
pia

2
pj minus the off-diagonal entries in the same row is Ω(n%4ε4).

Lemma 6.4 Assume that the coordinate axes x1, . . . , xm span T . ‖BTN‖ = O(
√
n%2ε3) and

‖BNN‖ = O(
√
n%2ε4).

Proof. For every p ∈ [1, n],
(∑m

i=1 a
2
pi

)1/2 ≤ ‖ap‖ ≤ %ε. The 2-norm of a row of BTN is(∑m
i=1 a

2
pi

∑d
j=m+1 a

2
pj

)1/2
=
(∑m

i=1 a
2
pi

)1/2 · (∑d
j=m+1 a

2
pj

)1/2
. The distance from ap to T is

known to be O(%ε2) [15, Lemma 6], so
(∑d

j=m+1 a
2
pj

)1/2
= O(%ε2). It follows that the 2-norm

of a row of BTN is O(%2ε3). There are n rows in BTN , implying that ‖BTN‖ = O(
√
n%2ε3). The

2-norm of a row of BNN is no more than
(∑d

i=m+1 a
2
pi

∑d
j=i a

2
pj

)1/2 ≤∑d
j=m+1 a

2
pj = O(%2ε4).

Summing over the n rows in BNN shows that ‖BNN‖ = O(
√
n%2ε4).

We are now ready to give bounds on the eigenvalues of BtB. The bound on the d0 −m0

smallest eigenvalues is not the best possible yet. We boostrap a better bound from it later.

Lemma 6.5 If ε is sufficiently small, then with probability 1−O(n−1/3), the m0 largest eigen-
values of BtB are Θ(n%4ε4) and the d0 −m0 smallest eigenvalues of BtB are O(n%4ε5).

Proof. By Lemma 6.2, we can rotate Rd so that the coordinate axes x1, . . . , xm span T because
the eigenvalues of BtB are not affected. Then, we can partition BtB as shown in (6.4). We
define three generalized gershgorin sets [13] as follows.

The first set G1 is for the row of blocks
(
BtTTBTT BtTTBTN BtTTBNN

)
. By (6.2) and (6.3),

the real numbers in G1 are at least the minimum eigenvalue of BtTTBTT minus ‖BtTTBTN‖ +
‖BtTTBNN‖ and at most the maximum eigenvalue of BtTTBTT plus ‖BtTTBTN‖+‖BtTTBNN‖. By
Lemma 6.3, with probability 1 − O(n−1/3), ‖BtTTBTT ‖ = Θ(n%4ε4) and ‖BTT ‖ = Θ(

√
n%2ε2).

Then, it follows from Lemma 6.4 that, with probability 1 − O(n−1/3), ‖BtTTBTN‖ ≤ ‖BTT ‖ ·
‖BTN‖ = O(n%4ε5) and ‖BtTTBNN‖ ≤ ‖BTT ‖ · ‖BNN‖ = O(n%4ε6). Thus, the numbers in G1

are Θ(n%4ε4) with probability 1−O(n−1/3).
The second set G2 is for the row of blocks

(
BtTNBTT BtTNBTN BtTNBNN

)
. By (6.3),

the real numbers in G2 are at most the maximum eigenvalue of BtTNBTN plus ‖BtTNBTT ‖ +
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‖BtTNBNN‖. By Lemmas 6.3 and 6.4, with probability 1−O(n−1/3), ‖BtTNBTN‖ = ‖BTN‖2 =
O(n%4ε6) and ‖BtTNBTT ‖+ ‖BtTNBNN‖ ≤ ‖BTN‖ · ‖BTT ‖+ ‖BTN‖ · ‖BNN‖ = O(n%4ε5). Thus,
the numbers in G2 are O(n%4ε5) with probability 1−O(n−1/3).

The third set G3 is for the row of blocks (BtNNBTT BtNNBTN BtNNBNN ). By (6.3), the real
numbers in G3 are at most the maximum eigenvalue of BtNNBNN plus ‖BtNNBTT ‖+‖BtNNBTN‖.
By Lemmas 6.3 and 6.4, with probability 1−O(n−1/3), ‖BtNNBNN‖ = ‖BNN‖2 = O(n%4ε8) and
‖BtNNBTT ‖+ ‖BtNNBTN‖ ≤ ‖BNN‖ · ‖BTT ‖+ ‖BNN‖ · ‖BTN‖ = O(n%4ε6). Thus, the numbers
in G3 are O(n%4ε6) with probability 1−O(n−1/3).

If ε is sufficiently small, the numbers in G1 are much bigger than those in G2 and G3, im-
plying that G1∩(G2∪G3) is empty. By Lemma 6.1, the disjointness of G1 from G2∪G3 implies
that G1 and G2∪G3 contain exactly m0 and d0−m0 eigenvalues of BtB, respectively. Hence, G1

contains the m0 largest eigenvalues and G2∪G3 contains the d0−m0 smallest eigenvalues.

Lemma 6.5 allows us to show a tighter bound O(n%4ε6) on the (m0+1)-th largest eigenvalue
of BtB. It will be important later that this bound is smaller than the bound on the m0 largest
eigenvalues by a factor ε2.

Lemma 6.6 If ε is sufficiently small, then with probability 1−O(n−1/3), the (m0+1)-th largest
eigenvalue of BtB is O(n%4ε6).

Proof. By Lemma 6.2, we can rotate Rd so that the coordinate axes x1, . . . , xm span T and
then partition BtB as shown in (6.4). Let σ be an eigenvalue of BtB among the d0−m0 smallest
ones. By Lemma 6.5, σ is O(n%4ε5) with probability 1 − O(n−1/3). Let e be an eigenvector

of BtB corresponding to σ. Divide e into two parts
(
vt wt

)t
, where v consists of the first m0

coordinates of e and w consists of the last d0 −m0 coordinates of e.
We claim that w 6= 0d0−m0,1 with probability 1 − O(n−1/3). If w = 0d0−m0,1, then the

following relation holds as e is an eigenvector of BtB.

BtB · e =

(
BtTTBTT · v

∗

)
= σe =

(
σv

0d0−m0,1

)
.

This implies that σ is an eigenvalue of BtTTBTT . Then, either σ is not O(n%4ε5) which occurs
with probability O(n−1/3) by Lemma 6.5, or σ = O(n%4ε5) is an eigenvalue of BtTTBTT which
occurs with probability O(n−1/3) by Lemma 6.3. This proves our claim.

From now on, assume that w 6= 0d0−m0,1 and e is scaled such that ‖w‖ = 1.
Next, we show that ‖v‖ = O(ε). Refer to the partition of BtB in (6.4). Expanding the

equation BtB · e = σe gives the equation BtTTBTT ·v +
(
BtTTBTN BtTTBNN

)
·w = σv. It implies

that v = −(BtTTBTT − σIm0)−1 ·
(
BtTTBTN BtTTBNN

)
· w. Therefore,

‖v‖ ≤
∥∥(BtTTBTT − σIm0)−1

∥∥ · ∥∥(BtTTBTN BtTTBNN
)∥∥ . (6.9)

Note that
∥∥(BtTTBTN BtTTBNN

)∥∥ ≤ ‖BtTTBTN‖ + ‖BtTTBNN‖ ≤ ‖BTT ‖ · ‖BTN‖ + ‖BTT ‖ ·
‖BNN‖. Then, Lemmas 6.3 and 6.4 imply that

∥∥(BtTTBTN BtTTBNN
)∥∥ = O(n%4ε5) with

probability 1−O(n−1/3). By Lemmas 6.3 and 6.5, with probability 1−O(n−1/3), the eigenvalues
of BtTTBTT −σIm0 are Θ(n%4ε4)−O(n%4ε5) = Θ(n%4ε4), implying that ‖(BtTTBTT −σIm0)−1‖ =
Θ(1/(n%4ε4)). Plugging the bounds on ‖

(
BtTTBTN BtTTBNN

)
‖ and ‖(BtTTBTT − σIm0)−1‖

into (6.9) gives ‖v‖ = O(ε).
By the definition of eigenvalues, if we project each row vector of B onto the support line of

e, the sum of the squared lengths of the projections is σ. We show that this sum is O(n%4ε6)
as follows.
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Take the pth row bp∗ of B. Divide bp∗ into two parts
(
b̄p∗ b̃p∗

)
, where b̄p∗ consists

of the first m0 entries and b̃p∗ consists of the last d0 − m0 entries. Note that ‖b̄p∗‖ =√
1
2

∑m
i=1 a

4
pi +

∑m
i=1

∑m
j=i+1 a

2
i a

2
j =

√
1
2

(∑m
i=1 a

2
pi

)2
< ‖ap‖2 ≤ %2ε2. Therefore,

vt · b̄p∗ ≤ ‖v‖ · ‖b̄p∗‖ ≤ O(ε) · %2ε2 = O(%2ε3).

By grouping terms in ‖b̃p∗‖2, we get

‖b̃p∗‖2 =

m∑
i=1

d∑
j=m+1

a2pia
2
pj +

d∑
i=m+1

1

2
a4pi +

d∑
i=m+1

d∑
j=i+1

a2pia
2
pj

=

(
m∑
i=1

a2pi

) d∑
j=m+1

a2pj

+
1

2

 d∑
j=m+1

a2pj

2

.

The distance from ap to T is O(%ε2) [15, Lemma 6], so
∑d

j=m+1 a
2
pj = O(%2ε4). It follows that

‖b̃p∗‖ ≤
√
%2ε2 ·O(%2ε4) +O(%4ε8) = O(%2ε3). Since ‖w‖ = 1,

wt · b̃p∗ ≤ ‖w‖ · ‖b̃p∗‖ = O(%2ε3).

The squared length of the projection of bp∗ onto the support line of e is

(
et · bp∗
‖e‖

)2

=

(
vt · b̄p∗ + wt · b̃p∗√
‖v‖2 + ‖w‖2

)2

=

(
O(%2ε3)√
1 +O(ε2)

)2

= O(%4ε6).

Summing this bound over the n rows of B gives O(n%4ε6), which is an upper bound of σ.

7 Eigenvalues of HHt

7.1 Preliminaries

Given a k × l matrix U, what happens to ‖U‖ if we multiply each row ui∗ by a factor which is
less than or equal to one? Let V be the matrix obtained after changing U. Then

‖V‖ =

(
max

e∈Rl,‖e‖=1
etVtVe

)1/2

=

(
max

e∈Rl,‖e‖=1

k∑
i=1

(vi∗e)2
)1/2

≤
(

max
e∈Rl,‖e‖=1

k∑
i=1

(ui∗e)2
)1/2

=

(
max

e∈Rl,‖e‖=1
etUtUe

)1/2

= ‖U‖.

Also, for every orthonormal k × k matrix R, RtR = Ik, and therefore,

‖RU‖ =

(
max

e∈Rk,‖e‖=1
et(RU)t(RU)e

)1/2

=

(
max

e∈Rk,‖e‖=1
etUtUe

)1/2

= ‖U‖.

We need three more technical results concerning the angles between vectors and spaces. The
first one is from [12]. The other two are folklore and we include their proofs for completeness.
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Lemma 7.1 ([12, Lemma 1.1]) Let M be an s × s real symmetric matrix with eigenvalues
µ1, . . . , µs in an arbitrary order. Let vi denote a unit eigenvector of M corresponding to µi. If
M + M′ is a real symmetric matrix, µ′ is an eigenvalue of M + M′, and z is a unit eigenvector
of M + M′ corresponding to µ′, then for every r ∈ [1, s − 1], the angle between z and the space

spanned by {v1, . . . , vr} is at most arcsin

( ‖M′‖
mini∈[r+1,s] |µi − µ′|

)
.

Lemma 7.2 Let
(
U V

)
be an s × s orthonormal matrix such that U is s × (s − r) and V is

s × r for some r ∈ [1, s − 1]. Let Z =
(
z∗1 · · · z∗r

)
be an s × r orthonormal matrix. The

angle between the column spaces of V and Z is arcsin
(
‖UtZ‖

)
≤ arcsin

(√
rmaxi∈[1,r] ‖Utz∗i‖

)
.

Proof. Let θ denote the angle between the column spaces of V and Z. For every unit vector
z in the column space of Z, the sine of the angle between z and the column space of V is∥∥Utz

∥∥/‖z‖ =
∥∥Utz

∥∥. Each such vector z is a linear combination of the columns of Z, i.e., z = Ze
for some r × 1 unit vector e. It follows that sin θ = max‖e‖=1

∥∥UtZe
∥∥ =

∥∥UtZ
∥∥. Moreover,∥∥UtZ

∥∥ ≤ ∥∥UtZ
∥∥
F

=
√∑r

i=1

∥∥Utz∗i
∥∥2 ≤ √r ·maxi∈[1,r]

∥∥Utz∗i
∥∥.

Lemma 7.3 Let v be a r-dimensional vector. Let {ei : 1 ≤ i ≤ k} be an orthonormal basis of
the column space of a r× l matrix U. If θi denotes the acute angle between the support lines of v
and ei, then the acute angle between v and the column space of U is at least arccos(

∑k
i=1 cos θi) =

arccos( 1
‖v‖
∑k

i=1 |vtei|), provided that 1
‖v‖
∑k

i=1 |vtei| ≤ 1.

Proof. Take the projection of v onto the column space of U, and normalize the projection to a
unit vector w. So w =

∑k
i=1 αiei for some αi ∈ [−1, 1]. The cosine of the angle between v and

w is equal to 1
‖v‖vtw = 1

‖v‖
∑k

i=1 αiv
tei ≤ 1

‖v‖
∑k

i=1 |αi| |vtei| ≤ 1
‖v‖
∑k

i=1 |vtei|.

The main result of this section is Lemma 7.10 which gives bounds on the eigenvalues of
HHt. The proof of Lemma 7.10 will be facilitated by a rotation of Rd so that the coordinate
axes x1, . . . , xm span T . We prove below that such a rotation does not change the eigenvalues
of HHt.

Lemma 7.4 If we apply a rotation to Rd that keeps the origin fixed, the eigenvalues of HHt

are preserved and the eigenvectors of HHt are rotated correspondingly.

Proof. Recall that LΛRt denotes the thin SVD of B and that HHt = AtLΣLtA by Lemma 4.1(iii).
Let M be a d× d rotation matrix. The proof of Lemma 6.2 reveals that the effect of applying
M is produced by an isometry in Rd0 . It follows that the application of M only changes the
matrix R but not L or Λ in the thin SVD of B. Therefore, when we apply M, the middle part
LΣLt of HHt remains fixed and A is changed to AMt by the rotation. This changes HHt to
MAtLΣLtAMt = MHHtMt. Since M is a rotation matrix, multiplying M on the left and Mt on
the right does not change the eigenvalues of HHt, but it does rotate the eigenvectors of HHt

correspondingly.

7.2 Analysis

Suppose that the coordinate axes x1, . . . , xm span T . Then, A can be divided into two submatri-
ces. Let AT be the leftmost n×m submatrix of A. Let AN be the rightmost n×(d−m) submatrix
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of A. That is, A =
(
AT AN

)
. Lemma 4.1(iii) implies that H = (B̂†A)t =

(
B̂†AT B̂†AN

)t
. We

define two submatrices of H as follows.

H =

(
HT

HN

)
, where HT

def
= (B̂†AT )t and HN

def
= (B̂†AN )t.

Note that HT is an m× d0 matrix and HN is a (d−m)× d0 matrix. Our analysis begins with
bounding ‖HN‖.

Lemma 7.5 Assume that the coordinate axes x1, . . . , xm span T . If ε is sufficiently small, then
with probability 1−O(n−1/3), ‖HN‖ = O(

√
n%ε3/λm0+1).

Proof. Recall that f`, ` ∈ [m+ 1, d], denotes a coordinate function ofM at the origin. Define:

ãp`
def
= 1

2D2f`|0
((
ap1 · · · apm

)t
,
(
ap1 · · · apm

)t)
ÃN

def
=

ã1,m+1 · · · ã1d
...

. . .
...

ãn,m+1 · · · ãnd


H̃N

def
= (B̂†ÃN )t

In the Taylor expansion of f`, there is no constant term or first order term becauseM contains
the origin and the coordinate axes x1, . . . , xm span T . As a result, if ε is sufficiently small, then
ãp` is close to ap`, and therefore, ÃN and H̃N are approximations of AN and HN , respectively.

Substituting AN = ÃN +(AN− ÃN ) into HN = (B̂†AN )t, we obtain HN = H̃N +(B̂†(AN− ÃN ))t.
Therefore,

∥∥HN

∥∥ ≤ ∥∥H̃N

∥∥+
∥∥B̂†(AN − ÃN )

∥∥.

We first bound
∥∥B̂†(AN − ÃN )

∥∥. For every p ∈ [1, n], the pth row of AN − ÃN contains the
third and higher order terms in the Taylor expansions of f`((ap1 · · · apm)t) for ` ∈ [m+ 1, d].
By Lemma 5.1(ii), if ε is small enough, the 2-norm of each row of AN − ÃN is O(%ε3). Thus,∥∥AN − ÃN

∥∥ ≤ ∥∥AN − ÃN
∥∥
F

= O(
√
n%ε3). Since λm0+1 is the smallest singular value of B̂,

‖B̂†‖ = 1/λm0+1. Therefore,
∥∥B̂†(AN − ÃN )

∥∥ ≤ ∥∥B̂†
∥∥ · ∥∥AN − ÃN

∥∥ = O(
√
n%ε3/λm0+1).

It remains to show that
∥∥H̃N

∥∥ = O(
√
n%ε3/λm0+1). Observe that

∥∥H̃N

∥∥ =
∥∥H̃t

N

∥∥ =∥∥B̂†ÃN
∥∥. The smallest singular value of B is smaller than or equal to the smallest singular

value of B̂ by construction. Intuitively, we would expect
∥∥B̂†ÃN

∥∥ ≤ ∥∥B†ÃN
∥∥. Therefore, we

can bound
∥∥B̂†ÃN

∥∥ if we can bound
∥∥B†ÃN

∥∥.
Recall that D2f`|0 can be viewed as the m×m symmetric matrix

(
∂2f`/∂xi∂xj

)
i,j∈[1,m]

with

every entry evaluated at the origin. Let q`,ij denote the (i, j) entry of D2f`|0. By definition,
ãp` = 1

2(ap1 · · · apm) ·D2f`|0 · (ap1 · · · apm)t. Expanding this equation gives:

ãp` =
m∑
i=1

m∑
j=1

1

2
q`,ijapiapj =

m∑
i=1

1

2
q`,iia

2
pi +

m∑
i=1

m∑
j=i+1

q`,ijapiapj .

We extend the range of i and j in q`,ij to [1, d] by letting q`,ij = 0 whenever i ∈ [m + 1, d] or
j ∈ [m+ 1, d]. Then, define Z to be the d0 × (d−m) matrix

(
z∗1 · · · z∗d−m

)
, where

z∗`−m =
(

1√
2
q`,11 q`,12 · · · q`,1d

1√
2
q`,22 q`,23 · · · q`,2d · · · 1√

2
q`,dd

)t
.

The definition of z∗`−m is crafted so that Bz∗`−m equals
(
ã1` · · · ãn`

)t
. Therefore,

BZ = ÃN . (7.1)
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Consider the square matrix obtained by appending d0 − d + m zero columns to the right of
Z. Then, ‖Z‖ is equal to the 2-norm of this square matrix, which by the Gershgorin Circle
Theorem is at most maxj∈[1,d−m]

∑d0
i=1 |zij |. Among the entries in z∗j , m0 entries are from

the upper triangular portion of D2fj+m|0 and the other d0 − m0 entries are zeros by defini-

tion. Thus,
∑d0

i=1 |zij | ≤
√
m0 · ‖z∗j‖. By Lemma 5.1(i),

∥∥D2fj+m|0
∥∥ = O(1/%) and therefore,

‖z∗j‖ ≤
∥∥D2fj+m|0

∥∥
F
≤ √m ·

∥∥D2fj+m|0
∥∥ = O(1/%). By the Gershgorin Circle Theorem,

‖Z‖ ≤ maxj∈[1,d−m]

∑d0
i=1 |zij | ≤ maxj∈[1,d−m]

√
m0 · ‖z∗j‖ = O(1/%). Since d0 −m0 rows of Z

contain only zeros by construction, ‖Z‖F ≤
√
m0 · ‖Z‖ = O(1/%).

B†ÃN also satisfies (7.1), i.e., B(B†ÃN ) = ÃN . By the property of pseudoinverse,
∥∥B†ÃN

∥∥
F

is no more than ‖Z‖F or the Frobenius norm of any matrix that satisfies (7.1). As a result,∥∥B†ÃN
∥∥ ≤ ∥∥B†ÃN

∥∥
F
≤ ‖Z‖F = O(1/%). (7.2)

We relate
∥∥B̂†ÃN

∥∥ to
∥∥B†ÃN

∥∥ as follows. Recall that LΛRt and LΛ̂Rt are the thin SVDs of

B and B̂, respectively, and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are the singular values of B. Let σi and σ̂i
denote the diagonal entries of Λ† and Λ̂†, respectively. By Lemmas 6.5 and 6.6, it holds with
probability 1−O(n−1/3) that λm0 = Θ(

√
n%2ε2) and λm0+1 = O(

√
n%2ε3). Therefore,

∀ i ∈ [1,m0], σ̂i = σi = 1/λi,

∀ i ∈ [m0 + 1, n], σ̂i = 1
λm0+1

≤ 1
λi

= σi.

(For simplicity, we assume that the smallest singular value λn of Λ is positive, and therefore, Λ̂
has n positive diagonal entries. Otherwise, if λi = 0, both σi and σ̂i are zero by our definition
of Λ̂.)

The full SVD of B is L (Λ 0n,d0−n) R̄t, where R̄ consists of the d0 unit eigenvectors of BtB

and R is the leftmost d0 × n submatrix of R̄. It follows that L (Λ̂ 0n,d0−n) R̄t is the full SVD of

B̂, and therefore, B† = R̄ (Λ† 0n,d0−n)t Lt and B̂† = R̄ (Λ̂† 0n,d0−n)t Lt. Observe that:

• For i ∈ [1, n], the ith row in R̄tB̂†ÃN equals the ith row in R̄tB†ÃN multiplied by σ̂i/σi.

• The bottom d0 − n rows in both R̄tB̂†ÃN and R̄tB†ÃN contain only zeros.

Therefore,
∥∥R̄tB̂†ÃN

∥∥ ≤ ∥∥R̄tB†ÃN
∥∥ as σ̂i ≤ σi for i ∈ [1, n].

Multiplying H̃t
N, B̂†ÃN and B†ÃN on the left by R̄t does not change their 2-norms. Therefore,∥∥H̃N

∥∥ =
∥∥H̃t

N

∥∥ =
∥∥R̄tB̂†ÃN

∥∥ ≤ ∥∥R̄tB†ÃN
∥∥ =

∥∥B†ÃN
∥∥ (7.2)

= O(1/%).

Thus,
∥∥H̃N

∥∥ = O(
√
n%ε3/λm0+1) because λm0+1 = O(

√
n%2ε3) by Lemma 6.6.

Before we analyze the singular values of HT , we prove two technical results about the column
vectors of AT and the column space of BTT . First, we show that the acute angle between the
support lines of any two distinct columns of AT is large and AT has rank m.

Lemma 7.6 Assume that the coordinate axes x1, . . . , xm span T . If ε is sufficiently small,
then with probability 1 − O(n−1/3), for every distinct i, j ∈ [1,m], the acute angle between the
support lines of a∗i and a∗j is at least arccos

(
1
9m
−1n−1/3

)
, and AT has rank m.

Proof. Take an arbitrary pair of distinct columns a∗i and a∗j of AT . By Lemma 5.4(iii),
it holds with probability 1 − O(n−1/3) that ‖a∗i‖ and ‖a∗j‖ are at least c1

√
n%ε for some

constant c1 > 0. The inner product at∗i · a∗j equals
∑n

p=1 apiapj . Apply Lemma 5.4(vi) with the
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constant c = 1
18c

2
1m
−1. It implies that if ε is small enough, then with probability 1−O(n−1/3),∣∣at∗i ·a∗j∣∣ ≤ cn2/3%2ε2+O(n%2ε4) ≤ 2cn2/3%2ε2 =

c21
9 m
−1n2/3%2ε2. Thus,

∣∣at∗i ·a∗j∣∣/(‖a∗i‖‖a∗j‖) ≤
1
9m
−1n−1/3, which implies that the acute angle between the support lines of a∗i and a∗j is at

least arccos
(
1
9m
−1n−1/3

)
.

We prove that AT has rank m by bounding the minimum eigenvalue of AtTAT away from
zero. Observe that:

AtTAT =


∑n

p=1 a
2
p1

∑n
p=1 ap1ap2 · · · ∑n

p=1 ap1apm∑n
p=1 ap2ap1

∑n
p=1 a

2
p2 · · · ∑n

p=1 ap2apm
...

...
. . .

...∑n
p=1 apmap1

∑n
p=1 apmap2 · · · ∑n

p=1 a
2
pm


By the Gershgorin Circle Theorem, the minimum eigenvalue of AtTAT is greater than or equal

to mini∈[1,m]

{∑n
p=1 a

2
pi −

∑
j∈[1,m]\{i}

∣∣∑n
p=1 apiapj

∣∣}. Apply Lemma 5.4(iii) with c = 1
3(m+2) to

obtain
∑n

p=1 a
2
pi ≥ 1

m+2n%
2ε2− 1

3(m+2)n
2/3%2ε2−O(n%2ε4) with probability 1−O(n−1/3). Apply

Lemma 5.4(vi) with c = 1
3(m−1)(m+2) to obtain

∑
j∈[1,m]\{i}

∣∣∑n
p=1 apiapj

∣∣ ≤ 1
3(m+2)n

2/3%2ε2 +

O(n%2ε4) with probability 1 − O(n−1/3). Then, with probability 1 − O(n−1/3), the minimum
eigenvalue of AtTAT is at least 1

3(m+2)n%
2ε2 − O(n%2ε4), which is positive when ε is small

enough.

Next, we show a lower bound on the angle between any column vector of AT and the column
space of BTT .

Lemma 7.7 Assume that the coordinate axes x1, . . . , xm span T . If ε is sufficiently small, then
with probability 1 − O(n−1/3), every column vector of AT makes an angle arccos

(
1
9m
−1n−1/3

)
or more with the column space of BTT .

Proof. We first introduce three constants c1, c2 and c3. It holds with probability 1 −
O(n−1/3) that all eigenvalues of BtTTBTT are greater than c1n%

4ε4 for some constant c1 > 0
(Lemma 6.3), the 2-norm of each column of BTT is greater than c2

√
n%2ε2 for some constant

c2 > 0 (Lemma 5.4(i) and (ii)), and the 2-norm of every column of AT is greater than c3
√
n%ε

for some constant c3 > 0 (Lemma 5.4(iii)).
Let e1, . . . , em0 be m0 unit eigenvectors corresponding to the eigenvalues of BTTBtTT . Let

b∗1, b∗2, . . . , b∗m0 denote the columns of BTT .
We first show that for every j ∈ [1,m0], ej =

∑m0
i=1 βijb∗i/‖b∗i‖ for some coefficients

βij ’s such that |βij | ≤ 1/
√
c1. By Lemma 6.3, BTTBtTT has rank m0, implying that ej =∑m0

i=1 βijb∗i/‖b∗i‖ for some coefficients βij ’s. It remains to bound |βij |. We put the equations
ej =

∑m0
i=1 βijb∗i/‖b∗i‖ in matrix form as follows.

E =
(
e1 · · · em0

)
= BTT


1
‖b∗1‖β11 · · · 1

‖b∗1‖β1m0

...
. . .

...
1

‖b∗m0‖
βm01 · · · 1

‖b∗m0‖
βm0m0

 (7.3)

The thin SVD of BtTT is VDEt, where D is an m0×m0 diagonal matrix whose (j, j) entry is the
square root µj of the j-th largest eigenvalue of BtTTBTT , and V is an m0 ×m0 matrix whose
j-th column v∗j is the unit eigenvector of BtTTBTT corresponding to µ2j . Multiplying both sides
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of (7.3) by VD−1Et gives:

VD−1 =


1
‖b∗1‖β11 · · · 1

‖b∗1‖β1m0

...
. . .

...
1

‖b∗m0‖
βm01 · · · 1

‖b∗m0‖
βm0m0

 .

Comparing the matrices on the two sides term by term shows that βij = ‖b∗i‖vij/µj for i, j ∈
[1,m0]. By assumption, µj ≥

√
c1
√
n%2ε2. Since |apraps| ≤ %2ε2 for r, s ∈ [1, d], ‖b∗i‖ ≤

√
n%2ε2.

Also, |vij | ≤ 1 as v∗j is a unit vector. It follows that |βij | ≤ 1/
√
c1.

We bound at∗k · b∗i for k ∈ [1,m] and i ∈ [1,m0] as follows. The inner product at∗k · b∗i is
equal to

∑n
p=1

1√
2
apka

2
pr or

∑n
p=1 apkapraps for some possibly non-distinct k, r, s ∈ [1,m]. Ap-

ply Lemma 5.4(v) with the constant c =
√
c1c2c3
18 m−1m−20 . It implies that, with probability 1−

O(n−1/3),
∣∣at∗k · b∗i∣∣ ≤ cn2/3%3ε3+O(n%3ε5), which is at most 2cn2/3%3ε3 =

√
c1c2c3
9 m−1m−20 n2/3%3ε3

when ε is sufficiently small.

For k ∈ [1,m] and j ∈ [1,m0],
1
‖a∗k‖

∣∣at∗k · ej∣∣ ≤∑m0
i=1

|βij |
‖a∗k‖ ‖b∗i‖

∣∣at∗k ·b∗i∣∣ ≤∑m0
i=1

1√
c1c2c3n%3ε3

·
√
c1c2c3
9 m−1m−20 n2/3%3ε3 = 1

9m
−1m−10 n−1/3. Therefore, 1

‖a∗k‖
∑m0

j=1

∣∣at∗k · ej
∣∣ ≤ 1

9m
−1n−1/3.

Then, Lemma 7.3 implies that the acute angle between a∗k and the column space of BTT
is arccos

(
1
9m
−1n−1/3

)
or more.

The matrix Λ̂ in the thin SVD LΛ̂Rt of B̂ can be partitioned into blocks to separate the m0

largest singular values of B from the λm0+1’s. The matrices L and R can then be partitioned
correspondingly. Specifically, we obtain

Λ̂ =

(
Λ̂0 0m0,n−m0

0n−m0,m0 λm0+1In−m0

)
,

L =
(

L0︸︷︷︸
m0 columns

L1︸︷︷︸
n−m0 columns

)
,

R =
(

R0︸︷︷︸
m0 columns

R1︸︷︷︸
n−m0 columns

)
.

(7.4)

Note that ‖L0‖ = ‖L1‖ = 1.
Our subsequent analysis of the eigenvalues of HT requires an upper bound on the angle

between the column spaces of L0 and BTT , which is given in the following result.

Lemma 7.8 Assume that the coordinate axes x1, . . . , xm span T . If ε is sufficiently small, then
with probability 1−O(n−1/3), the angle between the column spaces of L0 and BTT is O(ε2).

Proof. Recall that B =
(
BTT BTN BNN

)
. Therefore, BBt = BTTBtTT +BTNBtTN+BNNBtNN .

Let µ1 ≥ µ2 ≥ . . . ≥ µm0 be the m0 largest eigenvalues of BTTBtTT . Let V be an n × m0

matrix whose columns are the unit eigenvectors of BTTBtTT corresponding to µ1, . . . , µm0 . The
diagonalization of BTTBtTT is:

BTTBtTT =
(
V ∗

)
· diagn(µ1, . . . , µm0 , 0, . . . , 0) ·

(
V ∗

)t
. (7.5)

Take any column vector z of L0. Thus, BBtz = µ′z where µ′ is one of the largest m0 eigenvalues
of BBt. We expand BBt to obtain (BTTBtTT + BTNBtTN + BNNBtNN )z = µ′z. We invoke
Lemma 7.1 with M = BTTBtTT and M′ = BTNBtTN + BNNBtNN . Lemma 7.1 and (7.5) imply
that the angle between z and the column space of V is at most arcsin(‖M′‖/|µ′|). By Lemma 6.4,
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‖M′‖ ≤ ‖BTN‖2 + ‖BNN‖2 = O(n%4ε6). Lemma 6.5 implies that the largest m0 eigenvalues of
BBt, including µ′, are Θ(n%4ε4) with probability 1−O(n−1/3). It follows that, with probability
1 − O(n−1/3), for every column z of L0, the angle between z and the column space of V is at
most arcsin(O(ε2)) = O(ε2).

Let U be an n × (n −m0) matrix such that the columns of U and V form an orthonormal
basis of the column space of B. For every column z of L0, since z makes an O(ε2) angle with
the column space of V, the angle between z and the column space of U is π/2 − O(ε2). That
is,
∥∥Utz

∥∥ = cos(π/2 − O(ε2)) = O(ε2). Then, Lemma 7.2 implies that the angle between the
column spaces of L0 and V is arcsin(

√
m0 · O(ε2)) = O(ε2). Since the columns in V form an

orthonormal basis of the column space of BTT , the angle between the column spaces of L0 and
BTT is O(ε2).

We are ready to bound the eigenvalues of HT . The analysis uses the tools that we have just
developed, namely Lemmas 7.6, 7.7, and 7.8.

Lemma 7.9 Assume that the coordinate axes x1, . . . , xm span T . If ε is sufficiently small, then
with probability 1 − O(n−1/3), the singular values of HT are Θ(

√
n%ε/λm0+1) and so ‖HT ‖ =

Θ(
√
n%ε/λm0+1).

Proof. Refer to the partitions of Λ̂, L and R in (7.4). Note that Λ̂0 = diagm0
(λ1, · · · , λm0),

where λ1 ≥ λ2 ≥ . . . ≥ λm0 are the m0 largest singular values of B. Then,

Ht
T = B̂†AT = (R0 R1)

(
Λ̂†0 0m0,n−m0

0n−m0,m0
1

λm0+1
In−m0

)(
Lt0

Lt1

)
AT

= R0Λ̂†0Lt0AT + 1
λm0+1

R1Lt1AT .

Since every column vector of R0 is orthogonal to any column vector of R1 (i.e., Rt0R1 = 0m0,n−m0

and Rt1R0 = 0n−m0,m0), we obtain

HTHt
T =

(
R0Λ̂†0Lt0AT + 1

λm0+1
R1Lt1AT

)t (
R0Λ̂†0Lt0AT + 1

λm0+1
R1Lt1AT

)
=

(
R0Λ̂†0Lt0AT

)t (
R0Λ̂†0Lt0AT

)
+ 1

λ2m0+1

(
R1Lt1AT

)t (
R1Lt1AT

)
= AtTL0

(
Λ̂†0

)2
Lt0AT + 1

λ2m0+1
AtTL1Lt1AT .

The three matrices HTHt
T , AtTL0

(
Λ̂†0
)2

Lt0AT , and 1
λ2m0+1

AtTL1Lt1AT are symmetric and pos-

itive semi-definite. It follows that the maximum eigenvalue of HTHt
T is at most the sum of

the maximum eigenvalues of AtTL0

(
Λ̂†0
)2

Lt0AT and 1
λ2m0+1

AtTL1Lt1AT , and the minimum eigen-

value of HTHt
T is at least the maximum of the minimum eigenvalues of AtTL0

(
Λ̂†0
)2

Lt0AT and
1

λ2m0+1
AtTL1Lt1AT .

For every i ∈ [1,m], ‖a∗i‖ =
√∑n

p=1 a
2
pi ≤

√
n%ε as |api| ≤ %ε. Therefore, ‖AT ‖ ≤

√
mn%ε.

Then,
∥∥∥ 1
λ2m0+1

AtTL1Lt1AT

∥∥∥ ≤ ‖AT ‖2‖L1‖2/λ2m0+1 = ‖AT ‖2/λ2m0+1 = O(n%2ε2/λ2m0+1).

By Lemma 6.5, it holds with probability 1 − O(n−1/3) that the diagonal entries of Λ̂†0
are Θ(1/(

√
n%2ε2)). Thus, it holds with probability 1 − O(n−1/3) that

∥∥AtTL0(Λ̂†0)
2Lt0AT

∥∥ =∥∥Λ̂†0Lt0AT
∥∥2 ≤ ∥∥Λ̂†0

∥∥2‖L0‖2‖AT ‖2 = ‖AT ‖2/Θ(n%4ε4) = O(1/(%2ε2)), which is O(n%2ε4/λ2m0+1)

as λm0+1 = O(
√
n%2ε3) with probability 1−O(n−1/3) by Lemma 6.6.
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We conclude from the previous two paragraphs that
∥∥HTHt

T

∥∥ = O(n%2ε2/λ2m0+1) or, equiv-
alently, ‖HT ‖ = O(

√
n%ε/λm0+1). In the rest of the proof, we show that every eigenvalue of

AtTL1Lt1AT is Ω(n%2ε2). This implies that the minimum eigenvalue of HTHt
T is Ω(n%2ε2/λ2m0+1)

or, equivalently, the minimum singular value of HT is Ω(
√
n%ε/λm0+1).

Lemmas 7.7 and 7.8 imply that, with probability 1− O(n−1/3), every column vector a∗i of
AT makes an angle at least arccos

(
1
9m
−1n−1/3

)
−O(ε2) with the column space of L0. Therefore,

with probability 1−O(n−1/3), every column vector a∗i of AT makes an angle at most O(ε2) +
arcsin

(
1
9m
−1n−1/3

)
with the column space of L1. Let ā∗i denote the projection of a∗i in the

column space of L1.
Take an arbitrary pair of distinct columns a∗i and a∗j of AT . By Lemma 7.6, the acute angle

between the support lines of a∗i and a∗j is at least arccos
(
1
9m
−1n−1/3

)
. We have argued in the

previous paragraph that each of a∗i and a∗j makes an angle at most O(ε2)+arcsin
(
1
9m
−1n−1/3

)
with the column space of L1. Therefore, the acute angle between the support lines of ā∗i and
ā∗j is at least π/2−O(ε2)− 3 arcsin

(
1
9m
−1n−1/3

)
.

For every i ∈ [1,m], ā∗i = L1Lt1a∗i. Thus,
(
ā∗1 · · · ā∗m

)
= L1Lt1AT . It follows that:

AtTL1Lt1AT =
(
L1Lt1AT

)t · (L1Lt1AT
)

=


∑n

p=1 ā
2
p1

∑n
p=1 āp1āp2 · · · ∑n

p=1 āp1āpm∑n
p=1 āp2āp1

∑n
p=1 ā

2
p2 · · · ∑n

p=1 āp2āpm
...

...
. . .

...∑n
p=1 āpmāp1

∑n
p=1 āpmāp2 · · · ∑n

p=1 ā
2
pm


By the Gershgorin Circle Theorem, the minimum eigenvalue of AtTL1Lt1AT is greater than or

equal to mini∈[1,m]

{∑n
p=1 ā

2
pi −

∑
j∈[1,m]\{i}

∣∣∑n
p=1 āpiāpj

∣∣}.

We have shown earlier that ‖ā∗i‖ ≥ ‖a∗i‖ cos
(
O(ε2) + arcsin

(
1
9m
−1n−1/3

))
, which is at

least ‖a∗i‖
(
1− 1

8m
−1n−1/3

)
for a small enough ε. Note that

∑n
p=1 ā

2
pi = ‖ā∗i‖2. We have

also shown that
∣∣āt∗i · ā∗j

∣∣ ≤ ‖ā∗i‖ ‖ā∗j‖ cos
(
π/2−O(ε2)− 3 arcsin

(
1
9m
−1n−1/3

))
, which is

at most ‖ā∗i‖ ‖ā∗j‖ · 12m−1n−1/3 ≤ ‖a∗i‖ ‖a∗j‖ · 12m−1n−1/3 for a small enough ε. Note that∑n
p=1 āpiāpj = āt∗i · ā∗j .
Apply Lemma 5.4(iii) with c = 1

10(m+2) to show that the relation
∣∣∣‖a∗i‖2 − 1

m+2n%
2ε2
∣∣∣ ≤

1
10(m+2)n

2/3%2ε2 + O(n%2ε4) holds with probability 1 − O(n−1/3). Thus,
∑n

p=1 ā
2
pi = ‖ā∗i‖2 ≥

‖a∗i‖2
(
1− 1

4n
−1/3) ≥ 1

m+2n%
2ε2− 1

10(m+2)n
2/3%2ε2− 1

4(m+2)n
2/3%2ε2− 1

40(m+2)n
1/3%2ε2−O(n%2ε4).

Also,
∑

j∈[1,m]\{i}
∣∣∑n

p=1 āpiāpj
∣∣ =

∑
j∈[1,m]\{i}

∣∣at∗i ·a∗j∣∣ ≤∑j∈[1,m]\{i} ‖a∗i‖·‖a∗j‖· 12m−1n−1/3 ≤
(m − 1) ·

(
11

10(m+2)n%
2ε2 +O(n%2ε4)

)
· 12m−1n−1/3 < 11

20(m+2)n
2/3%2ε2 + O(n2/3%2ε4). Hence,

with probability 1−O(n−1/3), the minimum eigenvalue of AtTL1Lt1AT is greater than or equal to
1

m+2n%
2ε2− 1

m+2

(
1
10 + 1

4 + 1
40 + 11

20

)
n%2ε2−O(n%2ε4) = 3

40n%
2ε2−O(n%2ε4) which is Ω(n%2ε2)

for a small enough ε.

We are now ready to bound the eigenvalues of HHt—the main result of this section.

Lemma 7.10 If ε is sufficiently small, then with probability 1−O(n−1/3), the m largest eigen-
values of HHt are Θ(n%2ε2/λ2m0+1) and the d−m smallest eigenvalues of HHt are O(n%2ε4/λ2m0+1).

Proof. By Lemma 7.4, we can rotate Rd so that the coordinate axes x1, . . . , xm span T .
Partition HHt into blocks using HT and HN :

HHt =

(
HTHt

T HTHt
N

HNHt
T HNHt

N

)
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We apply the generalization of the Gershgorin circle theorem [13]. Let G1 be the set of all
real numbers µ such that (‖(HTHt

T − µIm)−1‖)−1 ≤ ‖HTHt
N‖, and let G2 be the set of all real

numbers µ such that (‖(HNHt
N − µId−m)−1‖)−1 ≤ ‖HNHt

T ‖.
By (6.2) and (6.3), the numbers in G1 are at least the minimum eigenvalue value of HTHt

T

minus ‖HTHt
N‖ and at most the maximum eigenvalue value of HTHt

T plus ‖HTHt
N‖. If ε is

small enough, the numbers in G1 are Θ(n%2ε2/λ2m0+1) with probability 1 − O(n−1/3) because

Lemmas 7.5 and 7.9 imply that, with probability 1 − O(n−1/3), the eigenvalues of HTHt
T are

Θ(n%2ε2/λ2m0+1), which dominates ‖HTHt
N‖ ≤ ‖HT ‖ ‖HN‖ = O(n%2ε4/λ2m0+1).

By (6.3), the numbers in G2 are at most the maximum eigenvalue value of HNHt
N plus

‖HNHt
T ‖. If ε is small enough, the numbers in G2 are O(n%2ε4/λ2m0+1) with probability 1 −

O(n−1/3) because Lemmas 7.5 and 7.9 imply that, with probability 1− O(n−1/3), ‖HNHt
N‖ =

‖HN‖2 = O(n%2ε6/λ2m0+1) and ‖HNHt
T ‖ ≤ ‖HN‖ ‖HT ‖ = O(n%2ε4/λ2m0+1).

As a result, if ε is small enough, then with probability 1−O(n−1/3), all numbers in G2 are
smaller than those in G1. By Lemma 6.1, the disjointness of G1 and G2 implies that G1 and
G2 contain exactly m and d−m eigenvalues of HHt, respectively. Hence, the lemma follows.

8 Proof of Lemma 2.1

Let S be a set of sample points in M. Without loss of generality, we assume that the origin is
a sample point in S. We require S to satisfy the condition that the distance between the origin
and its (n+1)-th nearest sample point is at most %ε for some sufficiently small ε ∈ (0, ε0] where
ε0 is the constant in Lemma 5.1. We rotate Rd so that the coordinate axes x1, . . . , xm span the
tangent space T of M at the origin. By Lemma 6.2, this does not change the singular values
of B.

Let E denote the event that λm0+1 = 0 and there exists q ∈ [1, n] such that aq,k 6= 0 for some
k ∈ [m + 1, d]. Our goal is to prove that Pr(E) = O(n−1/3). Then, it holds with probability
1−O(n−1/3) that if λm0+1 = 0, we have ap,i = 0 for all p ∈ [1, n] and for all i ∈ [m+ 1, d], and
so Lemma 2.1 is true.

By Lemma 6.3, it holds with probability 1−O(n−1/3) that the eigenvalues of BtTTBTT are at
least c0n%

4ε4 and at most c1n%
4ε4 for some constants c0 and c1. The proof of Lemma 6.3 reveals

that c0 and c1 are polynomials in m. Let F denote the event that the eigenvalues of BtTTBTT
lie between c0n%

4ε4 and c1n%
4ε4. The probability Pr(E) can be split up into the following sum:

Pr(E|F ) · Pr(F ) + Pr(E|¬F ) · Pr(¬F ).

The second term is O(n−1/3) because Pr(¬F ) = O(n−1/3) by Lemma 6.3. We show that
Pr(E|F ) = 0 below. From now on, we assume that the condition F holds.

When the event E happens, λm0+1 = 0 and there exists index q ∈ [1, n] such that aq,k 6= 0
for some k ∈ [m+ 1, d]. By swapping coordinate axes if necessary, we can further assume that
aq,m+1 6= 0. Let Cq,TT denote the matrix obtained by deleting the row in BTT for aq. Since
n ≥ m0 + 1, there are at least m0 rows in Cq,TT . We claim that Cq,TT has rank m0, provided
that n > c0m0. Otherwise, the smallest eigenvalue of Ctq,TTCq,TT is zero, which implies that
there is a unit direction u ∈ Rm0 that is orthogonal to every row vector of Cq,TT . Since every
coordinate of aq has magnitude at most %ε, the projection of the row for aq in BTT onto u has
a squared length at most m0%

4ε4. Therefore, if we project the row vectors of BTT onto u, the
sum of the squared lengths of the projections is at most m0%

4ε4, which implies that the smallest
eigenvalue of BtTTBTT is at most m0%

4ε4 < c0n%
4ε4, a contradiction to the condition F .

Let Cq denote the matrix obtained from B by removing the row for aq. Since Cq,TT is a
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submatrix of Cq which is in turn a submatrix of B, we have

m0 = rank(Cq,TT ) ≤ rank(Cq) ≤ rank(B).

Since λm0+1 = 0, the rank of B is at most m0, and so rank(B) ≥ rank(Cq,TT ) = m0 implies that
rank(B) = m0. This allows us to conclude that Cq has rank m0.

Since rank(B) = m0, the column space of B has rank m0, which implies that every column
in B is a linear combination of the columns of BTT . Therefore, there exist coefficients gij ’s such
that

∀ p ∈ [1, n],
1√
2
a2p,m+1 =

∑
i≤j∈[1,m]

gijapiapj . (8.1)

Since n ≥ m0 + 1, there are m0 coefficients gij ’s, and Cq has rank m0, the coefficients gij ’s are
completely determined by the following smaller system:

∀ p ∈ [1, n] \ {q}, 1√
2
a2p,m+1 =

∑
i≤j∈[1,m]

gijapiapj . (8.2)

In other words, when E happens under condition F , the coefficients gij ’s are determined
irrespective of the coordinates of aq and yet aq must satisfy (8.1). We can interpret (8.1) as
saying that the sample points ap, p ∈ [1, n], lie in the following hypersurface:

H(x) =
1√
2
x2m+1 −

∑
i≤j∈[1,m]

gijxixj = 0. (8.3)

Both the hypersurface H(x) = 0 andM contain the origin. Let L denote the linear subspace
spanned by axes x1, . . . , xm+1. The intersection of L and the hypersurface H(x) = 0 is a conic
surface, and this can be seen as follows. Recall that the axes x1, . . . , xm span the true tangent
space T of M at the origin. Take any unit vector u ∈ T that makes an angle θi with the axis
xi for i ∈ [1,m]. For any c ∈ R, the xm+1 coordinate of the point in the hypersurface H(x) = 0
that projects to the point cu ∈ T can be written as

x2m+1 =

 ∑
i≤j∈[1,m]

√
2gij cos θi cos θj

 c2

⇒ xm+1 = ±

 ∑
i≤j∈[1,m]

√
2gij cos θi cos θj

1/2

c. (8.4)

Therefore, the cross-section of H(x) = 0 in the plane spanned by u and the axis xm+1 consists
of two lines through the origin with slopes of the same magnitude but opposite signs.

Recall the coordinate function fm+1 : Rm → R forM such that, given a point (x1 . . . xd)
t ∈

M, we have xm+1 = fm+1((x1 . . . xm)t) in a local neighborhood of the origin. We can choose
the constant ε0 in Lemma 5.1 so that %ε0 is at most the radius of this local neighborhood. Also,
recall that the Taylor expansion of fm+1 does not have a constant or a linear term, that is,

∀ u ∈ Rm, ∀ c ∈ R, fm+1(cu) =
c2

2
D2f`|0(u, u) + · · · . (8.5)

We claim that the set of points K = {x ∈ M : xm+1 6= 0 ∧ H(x) = 0} has measure zero.
Suppose not. Then, there exists a unit vector v = (v1 . . . vm)t ∈ T such that the intersection
between K and the plane spanned by v and the coordinate axis xm+1 consists of some curve
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segment(s) of positive length. By the definition of K, fm+1 is not identically zero along the
directions v and −v. Then, since (8.4) is a linear equation, it can only agree with (8.5) at
isolated values of c after we substitute u by v. This is a contradiction to the existence of curve
segment(s) of positive length in the intersection of K and the plane spanned by v and the axis
xm+1. We conclude that K has measure zero. It follows that the probability of drawing the
sample point aq from K is zero, which implies that Pr(E|F ) = 0.

In summary, Pr(E|F ) · Pr(F ) + Pr(E|¬F ) · Pr(¬F ) = O(n−1/3), completing the proof of
Lemma 2.1.

9 Proof of Theorem 1.1

By Lemma 7.4, we can assume that Rd has been rotated so that the coordinate axes x1, . . . , xm

span the tangent space T of M at the origin. Then, we can partition H =

(
HT

HN

)
.

We call Tangent(A). If λm0+1 = 0, then Lemma 2.1 implies that, with probability 1 −
O(n−1/3), the estimated tangent space is equal to T , and therefore, there is no angular error.

Assume that λm0+1 > 0 for the rest of the proof. Then, the estimated tangent space is
spanned by the unit eigenvectors corresponding to the m largest eigenvalues of AtLΣLtA = HHt.
Let e be one of these m unit eigenvectors. Divide e into two parts

(
vt wt

)t
, where v consists

of the first m coordinates and w consists of the last d−m coordinates. Let σ be the eigenvalue
of HHt corresponding to e. Then,

HHte =

(
HTHt

T HTHt
N

HNHt
T HNHt

N

)(
v
w

)
= σ

(
v
w

)
(9.1)

We want to bound arctan(‖w‖/‖v‖), the angle between e and T .
We first show that v 6= 0m,1 with probability 1−O(n−1/3). Suppose that v = 0m,1 . By (9.1),

we get HNHt
Nw = σw, meaning that σ is also an eigenvalue of HNHt

N in addition to being
one of the m largest eigenvalues of HHt. This occurs with probability O(n−1/3) because, with
probability 1−O(n−1/3), the m largest eigenvalues of HHt are Θ(n%2ε2/λ2m0+1) by Lemma 7.10,
but the eigenvalues of HNHt

N are O(n%2ε6/λ2m0+1) by Lemma 7.5.

Assume that v is non-zero. By (9.1), w =
(
σId−m − HNHt

N

)−1
HNHt

T v. By Lemmas 7.5

and 7.9, it holds with probability 1−O(n−1/3) that ‖HNHt
T ‖ ≤ ‖HN‖ ‖HT ‖ = O(n%2ε4/λ2m0+1).

By Lemmas 7.5 and 7.10, it holds with probability 1−O(n−1/3) that the eigenvalues of HNHt
N

are O(n%2ε6/λ2m0+1) and σ = Θ(n%2ε2/λ2m0+1). The smallest eigenvalue of σId−m − HNHt
N

is thus Θ(n%2ε2/λ2m0+1), implying that ‖(σId−m − HNHt
N )−1‖ = O(λ2m0+1/(n%

2ε2)). Hence,
‖w‖ ≤

∥∥(σId−m − HNHt
N )−1

∥∥ · ∥∥HNHt
T

∥∥ · ‖v‖ = O(ε2) · ‖v‖. The angle between e and T is
arctan(‖w‖/‖v‖) = O(ε2).

We conclude that, with probability at least 1−m ·O(n−1/3) = 1−O(n−1/3), all eigenvectors
corresponding to the m largest eigenvalues of HHt make an O(ε2) angle with T . Let

(
U V

)
be

a d× d orthonormal matrix such that the columns of V form an orthonormal basis of T . This
implies that, with probability 1 − O(n−1/3), all eigenvectors corresponding to the m largest
eigenvalues of HHt make an O(ε2) angle with the column space of V and hence an π/2−O(ε2)
angle with the column space of U. Then, Lemma 7.2 implies that

√
m · O(ε2) = O(ε2) is an

upper bound on the angle between T and the space spanned by the eigenvectors corresponding
to the m largest eigenvalues of HHt.
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10 Conclusion

We present an algorithm for estimating tangent spaces from a given set of sample points in
an unknown manifold. The algorithm works locally and uses the n sample points nearest to
p. The distance from p to the (n + 1)-th nearest sample point can be expressed as %ε, where
ε ∈ (0, 1) and % is the local feature size at p. (The algorithm does not need to know % though.)
When we fix n, the value ε decreases as sampling density increases. Assuming that the sample
points are distributed according to a Poisson process with an unknown parameter, our algorithm
guarantees an O(ε2) bound on the angular error with high probability. The quadratic angular
error convergence has been confirmed in our experiments.

The angular error bounds in [2, 10, 11, 15, 26] hold for all sample points. Our O(ε2) angular
error bound applies to the center of a local neighborhood in which the sample points are used
to estimate the tangent space at the center. One should be able to extend our result so that it
applies simultaneously to centers of disjoint neighborhoods by restricting the range of ε further
and estimating the failure probability using the union bound. Further work is needed to see if
our angular error bound can be guaranteed at all sample points.

Our algorithm assumes that the manifold dimension m is known to us. The results in
Section 6 show that the largest

(
m+1
2

)
eigenvalues of BtB are Θ(n%4ε4) and the other eigenvalues

are O(n%4ε6). Therefore, one should be able to determine the manifold dimension automatically
by detecting this Ω(ε2) factor gap in the eigenvalues. This approach of finding gaps in the
spectrum of eigenvalues has been used in several previous work on detecting manifold dimension.

One may wonder what happens if we omit the conversion of B to B̂ in practice. This is

equivalent to defining Σ as diagn

(
1
λ21
, 1
λ22
, . . . , 1

λ2n

)
, where λ1 ≥ λ2 ≥ . . . ≥ λn are the singular

values of B. We experimented with this alternative method. While this method performs
reasonably in the noiseless case, it fails badly in the noisy cases. So the conversion of B
to B̂ makes a real difference. There is also the possibility that λm0+1 is positive but close
to zero. In that case, although the theoretical analysis holds, there will be numerical issues

in forming Σ = diagn

(
1
λ21
, · · · , 1

λ2m0

, 1
λ2m0+1

, · · · , 1
λ2m0+1

)
. Therefore, some thresholding of the

singular values may be necessary for numerical stability.
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