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Abstract

Let M be an m-dimensional smooth compact manifold embedded in R?, where m is a
constant known to us. Suppose that a dense set of points are sampled from M according
to a Poisson process with an unknown parameter. Let p be any sample point, let ¢ be the
local feature size at p, and let ge be the distance from p to the (n + 1)th nearest sample
point for some n between (mg'l) + 1 and (d'gl). Using the n sample points nearest to p,
we can estimate the tangent space at p and it holds with probability 1 — O(n_l/ 3) that
the angular error is O(g2). The running time is bounded by the time to compute the thin
SVD of an n x (*3') matrix and the full SVD of an n x d matrix, which is usually O(d*n?)
in practice. We implemented the algorithm and experimentally verified its effectiveness on

both noiseless and noisy data.
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1 Introduction

Data points corresponding to experimental observations commonly reside in R? for some large
d, but it is often postulated that the data points live on an unknown manifold M of much lower
dimension. Indeed, manifold learning has been applied in various problems such as network
anomaly detection, image segmentation, and object tracking in video [6, 29]. The goal is to learn
the manifold structure from sample points, including the intrinsic dimension, tangent spaces,
and ultimately a faithful reconstruction. Theoretical algorithms have been developed to obtain
faithful reconstructions [3, 4, 9], but their practical performance is unclear. We reexamine the
key tasks in the problem to put our result in context.

The first task is to detect the manifold dimension. Many effective methods have already
been developed in machine learning (e.g. [21, 22, 25, 27, 33]) and computational geometry [8,
10, 11, 15].

The second task is to estimate the tangent space at the sample points. Approximate tangent
spaces at the sample points are needed in [9] to compute the cocone complex, which becomes a
faithful reconstruction after removing slivers. Approximate tangent spaces at the sample points
are also needed in [3] in order to form the tangential Delaunay complex, from which a faithful
reconstruction is extracted after sliver removal. Tangent space estimation also finds application
in clustering data points from multiple manifolds that may intersect each other [14, 18]. The
tangent space estimation at a sample point p has been explicitly or implicitly performed in
many previous work by fitting an affine subspace to the sample points in a neighborhood of
p [1, 2, 10, 15, 26, 30, 31, 33]. An alternative method is based on analyzing the Voronoi
cell of p [11]. The error measure for tangent space estimation is the angular error, which is
the maximum angle between a vector in the true tangent space at p and the projection of
that vector in the estimated tangent space. Bounds on the angular error have been proved
(explicitly or implicitly) for the methods in [2, 10, 11, 15, 26], and the emphasis is on how these
bounds depend on the sampling density. The radii of the neighborhoods used by the methods
in [2, 10, 11, 15] for tangent estimation decrease as the sampling density increases, and their
angular error bounds are linear in the ratio of the neighborhood radius to the local feature size
at p.

Let m be the dimension of the unknown manifold M. We present a method to estimate
the tangent space at a sample point p using the sample points in a local neighborhood. Let p
be the local feature size of M at p. Let r be the neighborhood radius so that all sample points
at distance less than r from p are used in the tangent space estimation. Our method gives an
angular error bound of O((r/)?) radians with high probability, provided that M is smooth and
compact, the sample points are drawn from M according to a Poisson process with an unknown
parameter, and the manifold dimension m is a constant known to us.! Within a neighborhood of
radius r from p, the tangent space can rotate by at most O(r/g) radians [9], where g is the local
feature size at p, and the turning angle may sometimes be (r/p); for example, when M is the
unit sphere S™. An angular error bound linear in r/p is thus asymptotically as good as taking
the tangent space at an arbitrary sample point in the neighborhood as the approximation. We
do better as our angular error bound is O((r/0)?). We elaborate on our result and compare it
with previous works that provide angular error bounds in Section 1.2.

1Since our method reduces to solving an eigenvalue problem, an appropriate thresholding of the eigenvalues
should determine m. We do not pursue automatic dimension detection in this article in order to focus on the
tangent estimation. We comment on the determination of m further in the conclusion.



1.1 Notation

An uppercase letter in mathsf font denotes a matrix and the corresponding italic lowercase
letter with subscripts denotes the matrix elements. For example, Z denotes a matrix; z;;
denotes the (i, 7) entry of Z; z;, and z,; denote the ith row vector and the jth column vector of
Z, respectively. Similarly, v denotes a vector and v; denotes the ith coordinate of v. Z! and v
denote the transposes. We use |; to denote a j x j identity matrix, 0; ; an ¢ X j zero matrix, and
diag;(o1,02,...,05) a j X j diagonal matrix with entries 01,...,0; in this order. We reserve 0
to denote the origin of R

The 2-norms of v and Z are |v|| = (3 v2)1/2 and [|Z|| = max{|Zv|:|v|]=1}. IfZ
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is symmetric, ||Z|| also equals max { [v!Zv|: |v[| =1}. The Frobenius norm of Z is ||Z||p =
>, > zfj)l/Q. It is known that ||Z|| < ||Z||r < vk ||Z]||, where k is the number of rows or
columns in Z, whichever is smaller [17].

Given a square matrix Z , a vector v is an eigenvector of Z if and only if Zv = Av for some
A € R, and A is known as an eigenvalue of Z. If Z has dimension &, then Z has at most k real
eigenvalues. If Z is symmetric as well, it has k real eigenvalues.

The thin singular value decomposition (thin SVD) of a k x [ matrix Z, k <[, is a product
LDR?, where L is a k x k matrix consisting of unit eigenvectors of ZZ¢, D is a k x k diagonal
matrix consisting of the singular values of Z (i.e., square roots of the eigenvalues of ZZ%), and
R is an [ x k£ matrix formed by k of the unit eigenvectors of Z!Z corresponding to the k largest
eigenvalues. We assume that the singular values of Z are in descending order on the diagonal
of D. The full SVD of the same matrix Z is L(D 0x;—x) R?, where R is an [ x [ matrix formed
by the [ unit eigenvectors of Z!Z and R is the leftmost [ x k submatrix of R.

Given a diagonal square matrix D, its pseudoinverse DT is obtained by replacing each non-
zero entry by its reciprocal and leaving the zero entries in place. The pseudoinverse of a general
matrix Z with thin SVD LDR? and full SVD L (D 04, %) R* is Zf = RDL* = R(D 05 1)* L.
When Z is square and invertible, Z1 is just Z~1.

The largest singular value of Z is equal to ||Z||. The positive singular values of Z' are the
reciprocals of the positive singular values of Z. Therefore, ||Z|| is the reciprocal of the smallest
positive singular value of Z.

Let x1, 29, ..., x4 be a fixed set of orthogonal axes throughout this paper, forming the default
coordinate system of R?. The coordinates of the input sample points are expressed with respect
to this coordinate system.

We are given a set of sample points drawn from M according to a Poisson process with an
unknown parameter \: (i) for any compact subset B of M, the probability that there are k

k k
points in B is %e_)‘ml(m, and (ii) for any disjoint compact subsets Bi,..., B; of M,
the probability that there are k; points in B; for i € [1,4] is [[7_, %e_’\ml(&). Given

such a Poisson process and on the condition that there are k sample points in a compact subset
B C M, these k sample points are uniformly distributed in B [5].

By translation, we assume without loss of generality that the origin is a sample point. Let
T denote the tangent space of M at the origin, which is an m-dimensional vector space in R%.
Every vector in 7 has d coordinates although 7 has dimension m. The medial axis of M is the
closure of the set of points in R? that have two or more closest points in M. The local feature
size of a point in M is the distance from that point to the medial axis. Let o denote the local
feature size of M at the origin. Let {a, : p € [1,n]} denote the n sample points nearest to the
origin. Let ge denote the distance from the origin to the (n 4+ 1)-th nearest sample point, where
e € (0,1) and € decreases as the sampling density increases.

The manifold dimension m is treated as a constant. So we often absorb a function of m
into the hidden constants in the big-Oh, big-Theta and big-Omega notation. We keep these



hidden constants scale independent; for example, the dependence on p is explicitly stated. The
ambient space dimension d is not a constant because one can embed M in an Fuclidean space
of arbitrarily high dimension.

1.2 Main result and comparison with previous work

The intuition behind our strategy is to compute a smooth approximation of M locally around
the origin. Let 1, ...,7q be any d orthogonal coordinate axes of R¢ such that i, ..., v, span
7. Let ¢ be an (unknown) orthonormal transformation such that for every point y € M, ¥ (y)
are the coordinates of y with respect to the coordinate system (7i,...,74). By the implicit
function theorem, for every point y € M close enough to the origin and every ¢ € [m+1, d], the
¢-th coordinate of ¥(y) can be expressed as a function fy : R™ — R in the first m coordinates
of P(y). We call {f;: ¢ € [m + 1,d]} the coordinate functions of M at the origin with respect
to (v1,---57a)- .

We will approximate f; by an “almost quadratic” function Fp : R? — R via solving an
eigenvalue problem. There is not enough data to define the Fy’s unambiguously because there
are only n < (d;rl)
a penalty function usually involves some parameter(s) and it is unclear how to tune them
to obtain guarantees on the angular error. This parameter tuning phase may also be time-
consuming. We also use a penalty function that involves a positive parameter. Our innovation
is pushing this parameter to zero in the limit and obtain a modified eigenvalue problem. Hence,
no parameter needs to be tuned and no training is required in the end. Solving this modified
eigenvalue problem is equivalent to minimizing a measure of “curviness” of the fitting solution,
which implies a theoretical guarantee on the angular error.

Our main result is stated in the following theorem. Let Tisyq(i,5) and Tgyq (4, ) denote the
time to construct the thin and full singular value decompositions of an i X j matrix, respectively.

sample points. A popular approach is to add a penalty function, but

Theorem 1.1 Suppose that M is a smooth compact m-dimensional manifold in R?, where m
s a constant known to us, and that points are sampled from M according to a Poisson process
with an unknown parameter. Assume that the origin is a sample point and its nearest n sample
points are given, where (mgl) +1<n< (d-2s—1)' Let pe be the distance from the origin to the
(n + 1)-th nearest sample point, where o is the local feature size of M at the origin and € is a
value in (0,1). We can compute in O(Ttsvd (n, (d;ﬂ)) + Tisva(n, d) + d2n) time m orthogonal
coordinate axes that span the approrimate tangent space at the origin. If € is sufficiently small,

then with probability 1 — O (n_1/3), the angular error is O(e?).

The running time O(Tigyq (n, (d'QH)) + Ttsva(n, d) 4+ d?n) of our tangent estimation algorithm
is O(d?n?) in practice [7, 16, 17]. The worst-case running time is asymptotically bounded by
the worst-case running time of multiplying an n X n” matrix with an n” X n matrix for some
r. The exact bound has a sophisticated expression depending on r [24]. As two examples in
our case, if d = O(n), the time bound is O(n32%9%%9) and if d = O(n?), the time bound is
O(n>180715) " In general, the worst-case running time is slightly better than O(d?n?). Although
the local feature size ¢ at the origin is used to obtain ¢ for expressing the angular error bound,
our algorithm does not need to know p.

In addition to developing an algorithm for the tangent estimation problem, we also develop
some useful results along the way that may be of independent interests. Taubin gave a method
for converting the curve reconstruction problem to an eigenvalue problem when there are enough
sample points. We generalize this method for manifold reconstruction in high dimensions when
there are insufficient sample points (Section 4). We also derive some concentration bounds on
sums of powers of the coordinates of the sample points, which may be useful for other statistical
analysis (Section 5).



Consider the condition (m; 1) +1<n< (d'gl) in Theorem 1.1. The formulation of our

approach in Section 2 requires that n > (m;rl) +1. Notice that (m;rl) +1< (d;rl) form < d—1.

d+1
2

predominantly the case that d is large. Therefore, the requirement of n < (
because it is very likely that there are fewer than (d;rl) sample points nearby, and even if there
are so many sample points nearby, it is computationally less efficient to use them all. If d is
not large and n > (d"gl), our result can still be applied by increasing d and padding zeros to
the coordinates of the sample points. Increasing d keeps a zero fitting error which allows our
approach to minimize the “curviness”.

Our theoretical result should hold when each sample point is perturbed in a random direction
in RY by a distance O(pe?), but we have not pursued the analysis as O(pe?) is rather small. We
experimented with a fair amount of noise and the estimates are satisfactory. Refer to Section 3
for details.

How does our result compare with those in the literature? In [10, 11, 15], the sample points
are required to satisfy two conditions: (i) for every point y € M, the distance between y and
the nearest sample point is at most the local feature size at y times p for some sufficiently small
w € (0,1), and (ii) for every pair of sample points p and q, the distance between p and q is at
least the local feature size at p times 0 for some § € (0, ). To estimate the tangent space at a
sample point p, the methods in [10, 15] use the sample points no farther from p than the local
feature size at p times cu for some ¢ > 2. It follows that at least a™ sample points are needed
for some constant a > 1 depending on M. The method in [11] uses the Voronoi cell of p for
tangent space estimation. Using local information only, it is impossible to obtain the Voronoi
cell of p, and it is unclear to obtain an appropriate approximate Voronoi cell. In the worst
case, p can have at least a" Voronoi neighbors for some constant a > 1 depending on M. The
angular error bounds given in [10, 11, 15] are O(x). The running times are O(d20(m"logm))
n [15], O(d2°0™) in [10], and O(N!(@+1/21) in [11], where N is the total number of sample
points. In [2], the sampling is required to satisfy the condition that for every point y € M,
the distance between y and the nearest sample point is at most p for some sufficiently small
u € (0,1). The tangent space at a sample point p is estimated using the sample points within a
distance r from p, where r can be any value in [10y,1/2). Thus, at least o™ sample points are
needed for some constant @ > 1 depending on M. The angular error is O(r/p). The running
time is O(dno(m6 logm)) " wwhere n is the number of sample points in the neighborhood. The
work by Little et al. [26] is a multiscale analysis of the local covariance matrix. Noise is allowed
and only roughly O(mlogm) points in a local neighborhood are required for computation.

In our case, although n can be as small as (m; 1) + 1 for the algorithm to be applied, the

). In a manifold learning context, it is
d+1
2

Our techniques are not designed for the case of n > (
) is not an issue

probability bound 1 — O(n_l/ 3) is only meaningful for larger values of n because the hidden
constant in the probability bound is a polynomial in m. Nevertheless, a polynomial in m is
asymptotically smaller than a™ for any constant @ > 1. This makes our neighborhood radius
smaller than those in [2, 10, 11, 15] for large m, but we require more sample points than
the approach in [26]. The angular error bounds in [2, 10, 11, 15] are O(r/g). (Note that
r/o < 1.) Roughly speaking, the angular error bound in [26] is linear in r, but the bound has a
sophisticated expression and the reader is referred to [26] for details. Our angular error bound
is O(?) = O((r/0)?). The hidden constant in our angular error bound depends on M and a
polynomial in m.

The probability bound 1 — O(n_l/ 3) appears in many places in our analysis, where it is also
implicitly assumed that n is greater than or equal to some appropriate polynomial in m. In
practice, we suggest setting n > (m; 1) + m because our approach is based on locally fitting
a quadratic function, and the minimum number of variables in such a quadratic function is

(m;rl) +m when d = m + 1. In our experiments (Section 3), setting n = (m2+1) +m + 30 gives



good results in both the noiseless and noisy cases.

2 Problem formulation, algorithm and overview

2.1 Modeling

We discuss in this section how to model the local neighborhood of the origin using some implicit
functions Fy, ¢ € [m + 1,d], with domain R%. Recall that {a, : p € [1,n]} are the n sample
points nearest to the origin (which is also a sample point). The functions Fy are constructed so
that Fy(a,) = 0 for every p € [1,n] and every £ € [m + 1,d]. The goal is to obtain the compact
representation of (Fy(ai) -+ Fy(an)) in (2.3) below.

Let 71,...,74 be any d orthogonal coordinate axes of R? (with the same origin) such that
Y1y ..., Ym Span T .

First, we apply an (unknown) orthonormal transformation v so that the coordinates of each
point v (a,) is expressed with respect to the coordinate system (v1,...,74). Recall that the ¢-th
coordinate of 9(ay,), £ € [m + 1,d], is the value of the coordinate function f; on the first m
coordinates of ¢ (ap). Figure 1(a) shows an example of a manifold and the coordinate system
before applying the transformation . Figure 1(b) shows the corresponding fo and f3 after
applying .

For every positive integer k, let D¥f;|o denote the k-th derivative of f; at the origin, which
is a map that sends k vectors from R™ to a real number. The domain of D¥f,|o consists of k
copies of R™ spanned by (71,...,7m). When k = 2, one can view D2f;|o as an m x m matrix,
and then D%fy|o(v, V) is equal to vl - D?fy|o - v for every vector v € R™. The matrix D?f|o is
known as the Hessian matriz.

For every vector v € R™ with a small enough ||v||, the Taylor expansion of fy(v) is

folv) = 5DPfelo(v,v) + DY ilofv,v,v) 4+

There is no constant term in the Taylor expansion above because M passes through the origin.
There is no linear term because (y1,---,7vm) span 7 and so D fy|o vanishes. We extend the
domain of f; from R™ to R¢ by ignoring the last d —m coordinates of the input vector. That is,
the vector v can be paired with any vector w € R¥™™ to yield the following extended expansion:

l(vt Wt) < D2f€’0 Om,d—m ) (V> R

2 Od—m,m Od—m,d—m w
Transforming this extended expansion back to the coordinate system (xi,...,x4) gives the
following function F, : R — R whose zero-set contains the origin and a, for p € [1,n].

Vie [m+17d]7 Fe(}/) = ytgé'i_%thZy—’_ ) such that

ge = —P(01-11 01,9-0)", (2.1)
Q = P(D2fe|o O, d—m )Pt.

Odfm,m Odfm,dfm

The matrix P! is the unknown d x d orthonormal matrix that realizes the transformation .
The vector (07,7 1 OLd_g)t is the “vertical direction” for f, at the origin with respect to the
coordinate system (71 ---v4). It means that gy is the gradient of Fy and also a normal vector
to M at the origin. Qg is a d X d matrix.
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Figure 1: The manifold M is a curve shown in bold in (a) and (b). The coordinate system in (a)
is (z1, x2, x3), whereas (y1,72,73) is the coordinate system in (b). The right figure in (b) shows
an orthonormal basis (e1,e2,e3) of the coordinate system (71,72,73). The left figure in (a) is
mapped by the orthonormal transformation ¢ to the left figure in (b). The transformation
1 is realized by the orthonormal matrix P!. Therefore, x = P'y. Each basis vector e; with
respect to the coordinate system (71,72,73) is mapped to the vector g; = —Pe; with respect to
the coordinate system (x1,x2,x3). The tangent space 7 of M at the origin is spanned by the
vector g with respect to the coordinate system (x1,x2,23) in (a), or equivalently, the vector
e1 with respect to the coordinate system (1, 72,73) in (b).



Let qg;; denote the (7,7) entry of Q. Since Qg is symmetric, ¢gz;; and g j; are equal.
Expanding the terms alg, and 3a/Q,a, in Fy(a,) gives:

Fy(ap) = (apl ap2 " apd) 8t
L2 g e apapg -Sa2, appans - Gpplpg - —S=a2)) .
V241 Ap1Qp pllpd 502  Gp2dp p20p V2 %pd
1 1 N
\/594,11 qe,12 qe,1d \/5%22 qe,23 qde,2d ﬁQZ,dd
This motivates us to define:
def (1 i oL !

Cr = a1 e Qe1d 522 qe23 qe,2d /2dt.dd
ailr -+ aud

A
ap1  *°* Qpd (2.2)
1 2 12 12
ﬁan aiijaiz2 -+ ailaid ﬁaw ai2a13 - ﬁald

def . . .

B = : : i : : : . :
1 1 1
ﬁail an1Gp2 -+ (Apllnd ﬁagﬂ an20p3 - 7(1%(1

A is an n X d matrix, B is an n x (d;rl) matrix, and ¢y is a (dgl)—dimensional vector. They yield:
Fy(ar1)
4
Fﬁ(an)

The coefficient 1/v/2 of afn- in the definition of B is needed so that the eigenvalues of B!B

are independent of rotations in R¢ that keep the origin fixed. We will establish this fact in
Lemma 6.2. The vectors gy and ¢; are unknowns in (2.3), and ¢y is a linearization of the matrix
Q. Since F,(0) contains a, for p € [1,7], the left hand side of (2.3) is a zero vector.

To approximate the Fj’s using quadratic functions, the first attempt is to retain just (A B)-
(g, cb)! in the right hand side of (2.3) because this keeps only the linear and quadratic terms.
The subsequent analysis in Section 7 demands ||B|| to be comparable to the reciprocal of the
((m; 1) + 1)-th largest singular value of B. Unfortunately, |Bf|| is determined by the possibly
much larger reciprocal of the smallest singular value of B. As a result, we modify B by changing
its n — (m; 1) smallest singular values as follows. Recall that (m;r 1) +1 < n< (d;rl) by

assumption. Define:

def m
mo = (")
LAR? %" thin SVD of B, where A = diag,, (A1, A2, -+, A,) and

A=A 2> 2020
~ ef .
A E diag, (M A2 Amgs Aot s Amg+1)
n—mg copies

B ¥ AR

L is an n X n matrix, A and A are n x n diagonal matrices, and R is a (d'QH) X n matrix. B is

the replacement of B.



Lemma 2.1 below shows that the case of A,,+1 = 0 can be dealt with separately in the
algorithm. (The proof of Lemma 2.1 is given in Section 8.) Thus, we can assume that Ap,,+1 is
positive. For ease of presentation, we also assume that A, > 0; otherwise, for each A; =0 (such
an i can range from mg + 2 to n), we set the corresponding diagonal entry of A to zero. The
proof of Lemma 7.5 requires that if a diagonal entry of A is zero, the corresponding entry in A
is also zero.

Lemma 2.1 There exists a constant c¢ that is a polynomial in m such that if n > c, € is
sufficiently small, and A\p,y+1 = 0, then with probability 1 — O(n*1/3), T is equal to the space
spanned by the eigenvectors corresponding to the m largest eigenvalues of AtA.

By keeping only (A B)- (g}, c)" in the right hand side of (2.3) and replacing B by B, we
allude to some nonlinear functions Fy : R — R, ¢ € [m + 1,d], that approximate the F;’s and
satisfy the following system:

Fy(ar) .
Vi [m+1,d, : = (A B) (%i) (2.4)
Fy(an)

where g, and ¢, are the new unknowns. The vector gy is the unknown gradient of Fj. Since
the unknown gradients are supposed to span the approximate normal space at the origin, we
require them to satisfy the following constraints:

Ve [m+17d]a HEZHZ]'

~ ~ 2.5
Vi1 # Lo, &, 1 8¢, ( )

2.2 Algorithm and overview

Our algorithm solves an eigenvalue problem derived from B. Define the following matrix:
H = (BTA).
We find the eigenvectors corresponding to the m largest eigenvalues of the following matrix:
HH! = AY(BT)! - BTA = APLATATLIA.

These m eigenvectors span the approximate tangent space. We compute the full SVD of the
n x d matrix ATL*A to obtain the eigenvectors of HH!. The pseudocode is given below.

TANGENT(A)

1. Compute the thin SVD LAR! of B.

2. If Apy+1 = 0, then return the eigenvectors corresponding to the m largest
eigenvalues of A’A as an orthonormal basis of the estimated tangent space.

3. Compute AT and the full SVD CDE! of ATL'A. Assume that the diagonal entries
of D are in descending order and that E = (g1, ...,84), where gy corresponds
to the fth largest diagonal entry in D.

4. Return (g1, ...,8gmn) as an orthonormal basis of the approximate tangent space.

The running time is O (Ttsvd (n, (d;rl))+TfSVd (n, d)+d2n), which is O(d?n?) in practice [7, 16, 17].

Section 3 describes our experiments that demonstrate the accuracy of our tangent estimation
in both noiseless and noisy cases.



Section 5

Lemma 5.4
Results on sums of powers of
sample point coordinates

Lemma 5.1
Results on derivatives of f,

Section 6
Eigenvalues of B'B
and its submatrices

v

Section 7
Lemma 7.6 Lemmas 7.7 and 7.8 Lemmas 7.5, 7.9 and 7.10
Columns of Ap Angle between spaces Eigenvalues of HH? and its submatrices

v

Section 8 Section 9
Proof of Lemma 2.1 Proof of Theorem 1.1

Figure 2: Proof overview.

Section 4 turns (2.4) and (2.5) into an eigenvalue problem. The solution minimizes the
quantity %Z?:mﬂ ZZZI ﬁe(ap)2 + Z?:mﬂ al[cg||?, that is, the sum of squared interpolation
error with the “curviness” penalized by the term Z?:m 41 al[€e]|?. Tuning the parameter « is
time-consuming though. We push « to zero in the limit to derive the eigenvalue problem for
HH?.

Sections 5-9 contain the analysis that leads to an O(¢?) bound on the angular error. Fig-
ure 2 shows the dependence of results in different sections. Assume that the coordinate axes
x1,...,Tm span the tangent space of M at the origin. So the coordinate axes xp,11,...,2q
span the normal space at the origin.

Section 5 presents several results on the derivatives of the coordinate functions and on the
sums of powers of sample point coordinates. These results may be of independent interest.
Lemma 5.1(i) shows that ||( D%fm41lo(u,u) -+ D?fglo(u,u))|| = O(1/0) for any unit vector
u € R™, independent of the dimension and other factors. Similarly, Lemma 5.1(ii) shows
that (fm41(v),..., fa(v)) is approximated well by (2D*f,,41]0(v,V),..., 3D?f4lo(v,v)) for any
v € R™ such that ||v|| < ge, that is, ||(fmt1(v) — $D*ms1lo(v,v), ..., falv) — %DQfd|o(v,v))H =

3 i i n s n s
O(ee”). Lemma 5.4 gives concentration bounds for |3/ apiapjapkap|, |>_,—1 apiapjapk|, and

‘Z;Zl apiapj‘ for 4,4, k,1 € [1,m].

Since the approximate tangent space is spanned by some eigenvectors of HH?!, we need to
analyze the eigenvalues of HH! = At(gT)t . gTA, which requires us to bound the eigenvalues
of Bf. These results are presented in Section 6. Rearrange the columns of B so that B =
(Brr Brn Bnn), where By consists of columns in ap;ayp; for possibly non-distinct ¢, j € [1,m],
Brn consists of columns in ap;ay; for ¢ € [1,m] and j € [m+1,d], and Byy consists of columns



in ap;ap; for possibly non-distinct i, j € [m + 1,d]. We divide B'B into blocks as follows.

. B?TBTT BZTTBTN B?TBNN
BB = BtTNBTT BtTN Bry BtTNBNN
BynBrr BynBry BynBaw
We apply the concentration bounds in Lemma 5.4. Then, the Gershgorin Circle Theorem [13, 17]
says that the eigenvalues of B}.;.B1- are dominated by the diagonal entries which are O(no'*et)
(Lemma 6.3). Using known bounds on » ", %2;@' and Zf:m 11 a;%i, one can easily show that
IBrn|l = O(vno?e®) and ||Byy]|| = O(v/no?e?) (Lemma 6.4). Then, applying the Gershgorin
Circle Theorem to the division of BB above shows that the mg largest eigenvalues of BB are
dominated by those of BB and hence are ©(ng'e?) (Lemma 6.5). A finer analysis then
shows Athat the (mg + 1)-th largest eigenvalue A2, | of B'B is O(ng*c®) (Lemma 6.6). Note
that ||BT|| = 1/Anga1-
We write A = (Ar Ax), where Ar consists of the columns (ay, ... ,q\m-)t for i € [1,m] and
A consists of the columns (ay;, . . ., an;)! for i € [m + 1,d]. Since H = (BA), we can write

-~ =~ H H..H:.  H.,.H
_ (Rt t _ (Rt t _ T t_ THT TN
Hpr = (B AT) , Hy = (B AN) , H= (HN), HH" = (HNHtT HNH§\7> .

Note that Hy is an m x (dgl) submatrix and Hy is a (d—m) X ( submatrix. In Section 7, we
prove that |Hy| = O(y/noe3/Ame+1) and every singular value of Hp is ©(y/noe/Amg+1)- Then,
the Gershgorin Circle Theorem implies that the m largest eigenvalues of HH! are dominated by
those of HH%, and hence they are ©(ng®c?/A2, ), and the d —m smallest eigenvalues of HH
are at most |[Hy||? + |Hr[[[[Hy || = O(no®e*/A2, ,1) (Lemma 7.10).

In the analysis of HY, = BfAy (Lemma 7.5), our definition of B gives ||[BAy|| < |[BfAx].
Notice that B(BfAy) = Ay. By the Taylor expansion, we can approximate each entry ap in
An by 3(apt - apm)-D?felo- (ap1 -+ apm)’. The definition of B allows us to write these
Taylor expansions as BZ ~ Ay, where Z is a (d'gl) X (d —m) matrix such that the (£ —m)-th
column is

)

t
1 1 1
(ﬁ%n qe12 0 qed ﬁ%,m qe23 0 qe2d ﬁ%,dd) R

where gz ;; is the (i, j) entry of the Hessian matrix D2f|q if 4,7 € [1,m], and g;;; = 0 otherwise.
Then, Lemma 5.1(i) allows us to conclude that ||Z|| = O(1/p), and by the property of pseu-
doinverse, ||BfAN| < [1Z]] = O(1/0) = O(y/noe?/Amg+1) a8 Amg1 = O(y/no*e?) by the result
in Section 6. R R

The analysis of Hy makes use of the thin SVD LAR? of B (Lemma 7.9). Recall that the
my largest singular values of B are those of B. The other n — my singular values are equal to
Amo+1- 1f we group the largest mg singular values in an mgy x mg diagonal submatrix KQ, then
we can write K, L, and R as follows.

~ 7\\0 Om n—m,
A= 0.n=mo ,L:( L L, ),R:( Ry R, )
On—mo,mo Am()—i-lln—m() v v v v
mo columns n—mg columns mo columns n—mg columns

Combining the above with the relation HY. = @TAT, we obtain
i\ 2
HrHE = AZL </\(T)) LoAr + 7,\21 ATL LA
mo+1

Thus, the maximum eigenvalue of H,H% is at most HAtTLO(KEr])QLf)ATH + %HNTHL'%ATH,

which can be verified to be O(ng??/A2, ) using the facts that [[Lo| = [|Li[| = 1, [|Az| =
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O(y/noe) as ||ay| = O(oe), IN| = ©(1/(v/ne%e?)), and Apyr1 = O(v/ng?e®). The minimum
eigenvalue of HpHY is at least the minimum eigenvalue of %A%LIL’iAT. Using the concen-
mo+1

tration bounds in Lemma 5.4, we can show that every column vector (ay;,...,an;)! in Ap has
a 2-norm of O(y/nee), and that the angle between two distinct column vectors (a1, . ., an;)?
and (aij,...,an;)" in Ay is large (Lemma 7.6). Then, we show that every column vector
in A7 makes a small angle with the column space of L; (Lemmas 7.7-7.8). It follows that
Al}lLlL'i;AT %t |A7||? = ;/T;n -QQ(TLQQzEQ), ar'ld so the minimum eigenvalue of H,H% is at least
TOHATLlLlAT = Q(no°e?/ A, +1) as desired.

We analyze the angular error (Theorem 1.1) in Section 9 using the bounds on the singular
values of Hy and ||Hy||. We take an arbitrary unit eigenvector e corresponding to any of the
m largest eigenvalues of HH?, say o. Let v be the vector consisting of the first m coordinates
of e. Let w be the vector consisting of the other d — m coordinates of e. We check the angle
that e makes the true tangent space spanned by the coordinate axes x1,...,x,,. This is done
by examining the equation:

. t (VY HTH% HTH§V AN v
HH'e = HH <W> = <HNH§« HNHl}V w) =\

Then, w = (crld_m — HNH}t\,)_l HyH%v. Therefore, the angle between e and the true tangent
space is arctan([wl/Iv[) < | (ola-m — HyHl) ' - [Hyll - [H ]l Since o = O(|Hz?) =
O(no?e®/A2, 1) and |[Hy|| = O(v/noe®/Amg+1) by the results in Section 7, we conclude that
arctan(|\w||/|lv|]) = O(g?). It follows that the space spanned by the eigenvectors correspond-
ing to the m largest eigenvalues of HH! makes an O(s?) angle with the true tangent space,
completing the analysis of the angular error.

3 Experimental results

We carried out some experiments to estimate tangent spaces using sample points drawn from
different manifolds, including spheres, manifolds with saddles, and sinusoidal curves in high
dimensions. Since our algorithm works locally, sample points are only needed in a local neigh-
borhood. We do not know how to locally sample a manifold uniformly or according to a Poisson
distribution in general, so some adhoc heuristics are used for each class of manifolds. We will
describe the sampling heuristics in each case. For each manifold tested, we fix a point p in
the manifold and generate point samples in its neighborhood. Since we know the true tangent
space, we can compute the angular error for each trial, which allows us to report the mean
angular error over all trials. We conducted 25 trials for every manifold, every value of n, and
every neighborhood radius. The smallest value of n is (m;r 1) + m + 30 and we increase n by
adding multiples of 20.

3.1 Sphere

We tried unit spheres S™ for 3 < m < 9 in R?%. We choose p to be the north pole and put
an m-ball D of radius r tangent to S™ at p. We generate n sample points in D uniformly at
random and then project them towards the origin onto S™.

The projection of D towards the origin onto S™ is the spherical cap that sample points may
occupy. Projecting this spherical cap orthogonally onto D gives a concentric, smaller m-ball
D’. We can view D’ as part of the domain of the coordinate functions f,11, -, f4, which
map a point in D’ to a point on S™. Therefore, max,eps || fm+1(2), - -, fa(z)]] is the maximum
distance between a point in D’ and S". By elementary trigonometry, this maximum distance

11
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Figure 3: Plots of mean angular error for S?, S® and S°. The vertical axes measure the mean
angular errors. The horizontal axes measure 2. The maximum noise level is at least 16%.

is 72/(1 + 72 + V1 +72). We vary r between 0 and 1, so 72/(1 4+ 72 + /1 + r2) lies between
r2/(2 4+ v/2) and 72/2. Although the neighborhood radius is not exactly r, it is roughly cr for
some constant c.

We plot the mean angular error against r2 for S in Figure 3(a). A mean angular error of
1.8° can be achieved with n = 40 even when r is as large as 1. We experimented with noisy
data by adding random noise. We perturb each sample point by a random displacement chosen
from [0, 0.0872] in a random direction in R%. Therefore, the maximum noise level is at least 16%
of max,epr || fms1(2),- -+, fa(z)||. We plot the mean angular error against 72 for S? in the noisy
case in Figure 3(b). A mean angular error of roughly 3.5° can still be achieved with n = 40
even when r is as large as 1. Both plots in the noiseless and noisy cases demonstrate that the
angular error is roughly proportional to 72. Figures 3(c)—(f) show the plots of the mean angular
errors for S® and S? in the noiseless and noisy cases.

3.2 Manifold with saddles

Let S™~! be the (m — 1)-sphere centered at the origin with radius 4 in the subspace spanned
by the 1, ...,z axes. For each point q € S™ !, construct the circle centered at q with radius
2 embedded in the plane spanned by the vector q and the x,,+1-axis. The union of all such
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Figure 4: Plots of mean angular error for S? x C, S° x C and S® x C. The vertical axes measure
the mean angular errors. The horizontal axes measure 2. The maximum noise level is at least

16%.

circles is an m-dimensional manifold, which we denote by ™! x C. We choose the point p on
the x1-axis at distance 2 from the origin, which is a saddle of S™~! x C. We sample n points
in an m-ball D of radius r and tangent at p. Then, we lift the points orthogonally away from
D and onto S™ ! x C.

Since we lift sampled points in D orthogonally onto S™ ! x C, D is part of the domain
of the coordinate functions f,,41,--- , fs. The maximum distance between D and S™ ! x C
is maxzep || fma1(2), -, fa(z)||, which by elementary trigonometry is r2/(2 4+ v/4 — r2). We
vary r between 0 and 1.6, so 72/(2 4+ v/4 — r2) lies between 0.25r% and 0.3125r2. Although the
neighborhood radius is not exactly r, it is roughly c¢r for some constant c.

We plot the mean angular error against r? for 52 x C in Figure 4(a). Random noise is added
in the same way as before. We perturb each sample point by a random displacement chosen
from [0,0.05r2] in a random direction in R?. Therefore, the maximum noise level is at least 16%
of maxzep || fm+1(2), -, fa(2)||. Figure 4(b) shows the plot of the mean angular error against
r? for S% x C' in the noisy case. Figures 4(c)—(f) show the plots for S% x C and S® x C.

3.3 Curve

7] — R such that p() = (0,sin6,...,sinf) for d =

We experimented with the curve ¢ : [0,
= (m/2,1,...,1), where the curve twists a lot. We vary

20, 60 and 100. We pick the point p
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Figure 5: Plots of mean angular error for the sinusoidal curve in R?°, R and R!%°. The vertical
axes measure the mean angular error. The horizontal axes measure r2/d. The maximum noise
level is roughly 16%.

r between 0 and 7/2. For each r, the sample points are generated by sampling n values of 6
from [71'/2—7“/\/&, 77/2—}—7‘/\/8]. The minimum value of sin 6 over |7/2—r/\d, ©/2417/Vd| is

equal to cos(r/v/d) ~ 1 — r?/(2d). Therefore, the neighborhood radius is roughly (2/d + (d —
1)r*/(4d?))'/? ~ r/+/d. We plot the mean angular error against r2/20 for R?® in Figure 5(a).

Random noise is added by perturbing each sample point by a random displacement chosen
from [0,0.08r2//d] in a random direction in R?. As explained before, the minimum value of
sin@ over [1/2 —r/\/d, 7/2 4 r/v/d] is roughly 1 —r2/(2d). For every ¢ € [2,d], the coordinate
function fy(6) is 1 —sinf ~ r2/(2d). So the maximum value of || f2(6),--- , f4(0)] is roughly
V(d = 1)r1/(4d?) = r?/(23/d). Tt follows that the maximum noise magnitude of 0.08r2/+/d is
roughly 16% of the maximum value of || f2(0),- -, f4(6)||. Figure 5(b) shows the plot for the
noisy cases in R?°. Figures 5(c)—(f) show the plots for R and R0,

4 Transformation to an eigenvalue problem

In this section, we show how to reduce our tangent estimation problem to finding the eigenvalues
of the matrix HH? as described in Section 2.2.
For every d-dimensional vector g, that satisfies (2.5) and every (d;rl)—dimensional vector ¢y,
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we can apply (2.4) to evaluate the corresponding Fy at ap for p € [1,n]. Since Fy(a,) = 0 and
F\g is supposed to approximate Fy, we should choose gy and ¢, to minimize some fitting error.
Lemma 4.1 below shows that solving the eigenvalue problem for the matrix HH? gives the best,
less “curvy” fit.

Since Fy(ap) = 0, the mean squared error %Zg:m 12 pet Fy(ap)? is a natural error mea-

sure. However, since n < (d;rl), the system is under-determined and Fy(a,) can be made

zero for all p € [1,n] for many choices of g, and ¢;. We change the objective function to
%Zzl:m—l—l > et Fi(ap)? + Zzl:m—i-l a|[c||? for some positive parameter . Intuitively, T, is
an “approximation” of the linearization ¢, of Qy, so the penalty E?Zm 4 al[c||? favors a less
“curvy” fit. We convert this optimization problem to a matrix problem as follows. Define:

def  /d41
do - ( 2 )
Uo % 1BB 1 aly, »
def 1 AtRy|—-1 (4.1)
H, = EA BU,
def 1 A¢ t
W, = EAA—HaUaHa

U, is a dy X dg matrix, H, is an d X dyp matrix, and W, is a d x d matrix. U, and W, are
square and symmetric, and U, is invertible because av > 0. Lemma 4.1(i) below shows that
the minimization of 1 Z;l:m_H > ot Fo(ap)? + Z;l:mﬂ al|[cy||? subject to (2.5) is equivalent to
finding the smallest d —m eigenvalues of W,,. Lemma 4.1(i) also gives the optimal setting of ¢,.

A typical experimental approach is to solve the above optimization problem on some training
data in order to tune the parameter o. It may thus be time-consuming to set o appropriately.
For a small enough «, the quantity % Z?:m 1 Zzzl Fg(ap)2 will be made zero as the system is

under-determined, which means that the objective function value is effectively Z?:m L1 olee]?
Thus, a curvy fit is penalized no matter how small « is. This motivates us to push « to zero
in the limit. Lemma 4.1(ii) and (iii) show that lima—o W, gives another eigenvalue problem
that does not require any parameter, which is the problem solved by our tangent estimation
algorithm in Section 2.2.

Lemma 4.1

(i) For all a > 0 and for all mutually orthogonal unit vectors gm+1,--.,84, the value of
1 Z‘sz_H > et Fg(ap)Q—i—Z‘szH ao|[c||? is minimized with respect to o and g1 1, - - -, Ba
when'€, = —HL g, for every ¢ € m+1,d], and this minimum is equal to Zg:mﬂ ALV

oy 1 _ At t — 1 1 1 1

(i) LW, = ATLE,LIA, where T, = dlagn(m,..., S cm+A3no+1>'

(iii) Let H = limy 0 Ho. Let ¥ = limy 0 X,. Then, H = (@TA)t and A'LYL'A = HH!. For
every £ € [m+1,d], if we set gy to be the unit eigenvector corresponding to the Lth largest
eigenvalue of A'LYL'A and set ¢, = —H'gy, then Fy(ay) =0 for every p € [1,n].

Proof. We follow the argument of Taubin who proved a result similar to (i) for reconstructing
algebraic curves [32] in the presence of enough sample points so that the system is not under-

15



determined and the penalty Zg:mﬂ a|[c||? is not needed. By (2.4),

1 a 2 _ Loy Al B @e
w2 File)t = 5@ ) (&) () (&
LAtA Lt

5 g
- @ (&)

BtA 1Bt

S|
3= 3=
) )

Also, al[&|* = (g} <) < gj’dd gj’;() > <%ﬁ) Adding it to the above gives:
0, 0

1 n N A~
_ F 2 -~ 112 — ~t ~t 7 /g\f
LS A raled® = @ @z (%),

p=1
where
Z == =
1B'A LB'B + aly, UaHa Uq

We use the fact that U, is symmetric in deriving U, H!, in the lower left quadrant of Z. We
write Z as the product of three matrices:

7 _ ( lg Ha ) ( Wo 04,4, ) ( lg 04,4, >
Odo,d  do 0dy,d Ua Hg |d0 ’
Then,

o o (B o (laH W, 0 a0 &
A (/g\g) _ t ot < d fe? > < o d,do ) ( d d,do ) <A>
(gﬁ E) < (g Z) Odo,da o 0dp,a  Ua fo Ido Ce
W, 0 g
ot ot a  Uddo &t
= (ge Cpt+ g Ha) < Odpd Ua ) (Eg—l— Hgg)

= gW,g + (& + Hige)t U, (S +H.8)-

~

Observe that U, is positive semidefinite. It implies that (¢, + Hgfg\@)t U, (€ +H.8,) = 0. The
minimum value of Z?:mﬂ > =1 Fi(ap)? +Z?:m+1 al[ce||? is thus achieved when ¢, = —H., g,
for every ¢ € [m + 1,d], and this minimum equals Z?:m 118W, 8.

Consider (ii). Plugging the definition H, = %Athgl into the definition of W, gives:

W, = ZIA'A—H,U.H,
= 1A'A - IA'BHY
A~ _ t/\
= IA'A— LA'B(U,') B'A

= LA(1, - 1B(UZY)'BY)A. (4.2)

Recall that mg < n < do by assumption and LAR! is the thin SVD of B. Let L(K On,dg—n) R
be the full SVD of B. So Lis ann xn orthogonal matrix and R is a dy x dy orthogonal matrix,
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which means L = L~ and R* = R~!. Moreover, R is the leftmost dy x n submatrix of R.

_ 1ptp
Uo = ;B'B+alg,
15( A b Dt
= HR(A On,do—n) (A On,do—n) R+ aldo
5 22 Mg g1 A i1 Bt | P Bt
- R. dlagdo( S, 2mo Bmort L Zmott g ,0>~R + R(alg, )R
dp—n copies
= A2 an+AZ,  antAZ an+X2, =
= R'dlagdo(an: by, R ,a) ‘R
dp—n copies
It implies that
-1 _ R.di n__ ... n 1 ... 1), Rt
Ua = R dlagdo (om—i—)\%’ ) an"')‘%no ) an+)‘m0+l 9 an+>‘m0+1 a’ 9 a) R (43)
Therefore
1R (11-1\t Rt N
HB(Ua ) B> =L (A On,do—ﬂ)'
. 1 1 1 I e S I
dlagdo (an—l—)\%’ ) an+)\2 ’ an+)\m0+1 ’ an+)\m0+1 an’ ’ cm)
~ t ;
(A On,d07n> L
2 2
= L-diag M mg ’\mo+1 Amo+1 Lt
n\ ant+A}’ T antAZ om—i-/\mo+1 ) an+)\m0+1 )
Plugging this into (4.2) gives:
2 2
_ 1t T A2 )‘%10 A1 Ao +1 t
Wa — nA L(In dlagn(an+)\%a ) a”+>‘3no’ an+’\m0+1 9 O”H»)‘gno-&-il L A
= 1AtL dia, ( an an L).LtA
&n +)\2 ’ ’ 0‘"+>‘3n0 ’ an+)\m0+1 ’ an+>\m0+1

= aA'LL,L'A.
Consider (iii). Using the definition of H,, (4.3), and the full SVD of /B\, we obtain

Ho = LA'BUZ!

— ALL(A -di L. 1 1 1 1. L).Rt
= A L(/\ Omdo—n) dlagdo (oer)\%’ 5 an+)\2 ; 0m+z\m0+1 ’ anJr)‘mOJrl an’ ’ an) R
A A 1 Amg+1 t
= A'L-dia e S e ) R
&n +)\2 ) ’ oer)\gno ’ oer/\mm_1 ) oer)\mO_H

In the last step, we use the property that R is the leftmost dy x n submatrix of R. Define
H = lim, ,0H, and ¥ = lim,_ ¢ X,. As a result,

_ : _ t : 1 1 1 1 t
Ho= dmH, = A'Lding, (g ot i) R
Observe that Bf = R - dlagn()\—ll, - ,ﬁ, )\miﬂ,--- ,)\MEH) - L*. Therefore, H = (BfA)? and
HH! = AL - diag, (57, - ,A; ) LA = ALLYLIA
1 mo+1 mo+1

Take any ¢ € [m + 1,d]. Let e, be the unit eigenvector corresponding to the fth largest
eigenvalue of ALY ,L'A for a positive but arbitrarily small a. By (i), ¢, should be set to
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—Hle, to minimize the fitting error, which makes e/ W e, = %22:1 ﬁg(ap)Q +allg? =
1S | Fy(ap)? + ael(HoHY e, By (i),

1 < ~
ALT LA, = eh(EWo)ey = — > Fila,)? +eh(HoHh)e.
p=1

As a — 0, the left hand side and the second term on the right hand side converge to the same

value. Therefore, if we set gy = e, and ¢, = —H.g,, then lim,_ ﬁ ZZZI E(ap)2 = 0, which
makes limgy_0 ﬁg(ap) = 0 for every p € [1,n]. This proves (iii).

Remark: The condition n < (szrl) is needed for the proofs of Lemma 4.1(ii) and the identity
ALY L'A = HH! in Lemma 4.1(iii) to go through. The subsequent error analysis studies the
eigenvalues of HH! and use the identity A/LYL*A = HH? to bound the angular error.

5 Derivatives and Sums

5.1 Derivatives of coordinate functions

We derive two results in this subsection. Lemma 5.1(i) puts an upper bound on the 2-norm of the
second derivatives of the coordinate functions. Lemma 5.1(ii) bounds the error of approximating
the coordinate functions using their second derivatives. We use Taylor expansions [23] heavily
in the proofs. Given a smooth function h : X — R, where X is an open subset of R¥ for some
k > 1, if two points a,x € X are connected by a segment in X, then for every integer j > 1,
there exists a point z in the interior of the segment connecting a and x such that

h(x) = h(a)+Dhla(x—a)+ -+ DI hly(x —a,...,x—a) +

1
(=Dt
1.
ﬁDJh]Z(x—a,...,x—a).

If we let u be the unit vector (x —a)/||x — a|| and let ¢ = ||x — al|, then

j—1 . J_.
h(x) = h(a) + e Dhla(u) + - + (jg_ 1)'D3_1h|a(u, )+ %Djh\z(u, ).
As e = ||x — al| approaches zero, the magnitude of the remainder %Dj h|z(u, ..., u) approaches

zero faster than the magnitude of every preceding term in the expansion. In our case, we
will use the Taylor expansion of a coordinate function f, around the origin, and there are no
constant and linear term in the expansion.

Lemma 5.1 There exists a value g9 € (0,1) such that for every e € (0,e0] and every unit
vector u € R™ the following properties hold.

(i) [|[(D*fmrilo(u,u) -+ Dfalo(u,u) )[| = O(1/0).

(ii) Let v = oeu. ||( fns1(v) = D% miilo(v,v) -+ fa(v) — §D%falo(v,v) )|| = O(ee?).
Proof. Rotate space such that the coordinate axes x1,...,Z,; span 7 and the coordinate axes
Tmal,---,Tq span the normal space of M at the origin. Let v = peu.

Consider (i). Take any ¢ € [m+1,d]. We claim that if ¢ is sufficiently small, then |fy(v)| >
10%? ID2f4]o(u, u)| for all € € (0,0]. If D?f¢|o(u,u) = 0, our claim is trivially true. Assume that
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D2f¢|o(u,u) # 0. The Taylor expansion of fy(v) is 3D*felo(v,v) + - = $0%?D*frlo(u,u) + - --.
As ¢ approaches 0, the remainder approaches zero faster than %D2f5|o(v,v) does. Therefore,
there exists g9 > 0 such that for every e € (0,20] and v = geu,

fo(v) — %D2f€|O(V7V) < % ID*felo(v,v)| = 29282 ID?f¢lo(u, u)] .

Thus, |fe(v)| > 10%€?|D%f¢|o(u,u)|, proving our claim.
Any point in M within a distance ge from the origin is at distance O(ge?) from T [15,

Lemma 6], which implies that || (fm+1(v) -+ fa(v)) || = O(0e?). Therefore, by our claim,

1

19252 | (D% mtalo(u,u) -+ Dalolu, )| < || (fns1(v) -+ fa(v))]| = O(0e?).
Dividing both sides by ¢?¢%/4 gives H (D fmt1lo(u,u) -+ D%*ylo(u,u))|| = O(1/p), establish-

ing the correctness of (i).

Consider (ii). Let B. denote the d-ball centered at the origin with radius pe. Take any
¢ € [m+1,d]. Define the plane £ = {au+z: a € R A z is a vector parallel to the z, axis}. Since
u is a vector in the tangent space of M at the origin, for a sufficiently small g, MNB:NL is a
one-dimensional curve in the plane £ and D?f;|o(u, u) is the rate of change of the /-th coordinate
of the unit tangent along M N B. N L at the origin [28, Chapter 5]. That is, D2f;|o(u, u) is the
reciprocal of the radius of curvature of M N B. N L at the origin.

If we scale down the unit length linearly, all lengths increase linearly; in particular, the
radius of curvature of M N B. N L at the origin, the local feature size g at the origin, and the
value | fy(v)|. The linear increase in the radius of curvature means that |D?fy|o(u, u)| decreases
linearly, which implies that D?fy|o(v,v) = 0*€2D?f;|o(u, u) increases linearly.

A Taylor expansion of fy(v) is 1D2fs[o(v,v) + %Dgfdp[’uys (v,v,v), where %D3fg|p&u75 (v,v,v) is
the remainder and py, . = owgycu for some wy . € (0,¢). Notice that py, . and wy, . depend
on € and u. The remainder can be rewritten as:

1 1
fe(V)—gDQfelo(VN) = 6D3f€|w,u,s(v’vvv) = 0.

1

6Q2D3f£’pl,u,a(u’ U,U) (51)

Either fo(v) — 4D%f|o(v,v) is zero or it changes linearly when we scale down the unit length

because fy(v) and $D%fr|o(v,v) do. The leading factor pe? on the right hand side of (5.1) changes

linearly too as we scale down the unit length. Thus, %QQD?’fdpz,u’E(u, u, u) is scale independent.
We have the following equation:

fm+1(V) - %szm+1|0(v7v> %Q2D3fm+1|Pm+l,u,e(u7 u, U)
: = o’ : (5.2)
fa(v) = 3D%f4lo(v, V) 50*D%f4lp,.. (U u,u)

We maximize the norm of the vector on the right hand side of (5.2) by going over all possible
unit vectors u in the tangent space at the origin, but v on the left hand side of (5.2) is kept
fixed independent of the variation of u. For every u, we also vary pg, . by varying e over (0, go]
to maximize the norm of the vector on the right hand side of (5.2). Therefore,

fm-l—l(v) - %szm+1|0(va V) %QQDSfm—&—l‘PmH,u,s(u’ u, u)
: < 0’ sup :
flul| =1 1
fd(v) - %D2fd|0(v7v) €€ (0,g0] 6Q2D3fd‘Pd,u,5(u7u7 u)
In the inequality above, the rightmost factor on the right hand side is a constant that depends
on M but not on scale. This establishes the correctness of (ii). Hl
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5.2 Sums of powers of coordinates

The main result in this subsection is Lemma 5.4 which bounds certain sums of powers of sample
point coordinates. These bounds are proved using integration, the Chebyshev’s inequality, and
the technical result stated in Lemma 5.3 below. We need some notation. Let p and ¢ denote
two non-negative integers.

mg—=1)(g=3)---1

if ¢ is even and positive,

/8() def q(q_2)“'2 ’
q) =
2(¢—1)(g—3)---2 -
qlg—2)---1 7’ if ¢ is odd.

Vq lof volume of a unit g-ball.

Note that 5(1) = 2 and Vj = 1. It can be verified that 8 and V;, satisfy the following recurrences:

Vg>2, Blg—1)B(¢+2)=2m(qg+1)/(q(q+2)) (5.3)
Vg>1, Vo=pB(q)V4 .
Vg>2, Vy=21V,_2/q (5.5)

We will need the following two technical results. The Chebyshev’s inequality bounds the prob-
ability of a random variable deviating from the mean by a multiple of the standard deviation.

Lemma 5.2 (Chebyshev’s Inequality) LetY be a random variable with finite expected value
w and finite positive variance o%. For any positive real number a, Pr(|Y — p| > ac) < 1/a>.

The next result gives the value of a particular integral that will be used often in the proof
of Lemma 5.4.

Lemma 5.3 Let p and q be two non-negative integers. Let r;, x; and r;11 be three variables

such that x; € [—r;,r;] and rz~2+1 = 7“1-2 — a:? If p is non-negative and even, then

C(p—3)---1 1
(l;prq dmi: (p 'Bq+1 .7,1{7+Q+7
/ e o ey s sy o IR

(p—1(p-3)---1
(p+q+1)(p+q—1)---(¢g+3)

Proof. Perform a change of variables: x; = r;sin6 and ;11 = r; cos# and we obtain

where

1s interpreted as 1 when p = 0.
/x?rgﬂ dz; = ng+q+1 /sinp 6 cos?t1 9 d6.

The limits of the integrals also change: [—r;, r;] becomes [—7/2,7/2]. The following two recur-
sive formulae are from [19]:

Vp>2,4>0, /sinpﬁcosq'HGdO:

- p—1 0 q+2 0 —1
_sin cos p ) /sinp_2 0cos?tlodo (5.6)
p+q+1 p+qg+1
Vp>0,q>1, /Sinpecosﬁl&d@:
in?T1 0 cos? B
sin COs q . /sinp 0 COSq_1 6deo. (57)
pta+l  ptg+l
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In our case, since the limits of the integrals are [—7/2, /2], the leading additive terms in both
(5.6) and (5.7) vanish. Then, we first repeatedly apply (5.6) to decrease the exponent p. Since
p is even, it will eventually become zero and we then repeatedly apply (5.7) to decrease the
exponent q. One can then verify that we obtain the result stated in the lemma.

Lemma 5.4 below gives upper and lower bounds on certain sums of powers of sample point
coordinates. These upper and lower bounds are obtained by calculating the expected values
and variances of the sums of powers. Then, the Chebyshev’s inequality is applied to obtain
the high probability bound. Recall that the sample points in M are generated by a Poisson
process and the neighborhood of the origin being examined contains exactly n sample points
(excluding the origin). It follows that these n sample points are uniformly distributed in that
neighborhood [5]. As a result, the probability of a sample point falling into a region within
the neighborhood is the ratio of the volume of that region to the neighborhood volume. This
observation allows us to calculate the expected values and variances of the sums of powers by
integration and applying Lemma 5.3.

Lemma 5.4 Assume that the coordinate axes x1,...,xy, span the tangent space T of M at the
origin. Let i, j, k, and [ be four distinct integers from [1,m]. If € is sufficiently small, then for
every constant ¢ > 0, the following properties hold simultaneously with probability 1 — O(n‘1/3),
where the hidden constant in the probability bound depends on c.

0 |Xpm1 % — e ”9454‘ < en®/Pglet + O(ng'e®).
(i) |>p=1 %29@'%2;]' - mng‘ls‘L‘ < en?3p*et + O(ng*ed).

(ili) >y az; — m#”nfs?‘ < en?3%? 4+ O(ng’e?).

. no 3 no 9 n 2/3 44 4.6
(1v) |2 ope1 Gpitps|s [2op=1 apiapjapk‘ and ‘szl am-apjapkapl‘ are less than cn®/3 *e*4-0(np*e).

v) ZZ:l aii

2

? {2

n 2 n o 2/3 ,3.3 3.5
> =1 ap»apj‘ and ‘szl apzap]apk‘ are less than cn®/g3e® + O(ng®ed).

(vi) 2= sz'apj’ < en?/30%e? + O(np?e?).

Proof. Let B; be the d-ball centered at the origin with radius ge. Since ge is defined to be the
distance from the origin to the (n+ 1)-th sample point, there are exactly n sample points in the
interior of B., excluding the origin. As the sample points are generated by a Poisson process,
these n sample points are uniformly distributed in the interior of M N B..

Consider an m-dimensional triangulated hyperrectangle R in 7 N B, with infinitesimal side
lengths dx1, ..., dz,,. Suppose that R lies well inside B. so that its 2" vertices are the
orthogonal projections of 2 points in M N B, onto 7. Connect these 2™ points in M N B, as
in the triangulation of R to produce some m-simplices. The union of these m-simplices is an
infinitesimal volume U which is a deformed version of R. Let dV denote the volume of U. Since
U projects orthogonally onto R, the volume of U is at least the volume of R, and therefore,
dV > dzy - - -dx,,. For every segment s’ in an m-simplex in U, it projects to a segment s in an
m-simplex in the triangulation of R such that length(s’) = sec0-length(s), where 6 is the acute
angle between the support lines of s’ and s. The angle 6 is no more than the angle between T
and the tangent space at an endpoint of s’, which is known to be O(¢) [9, Lemma 15]. Therefore,
dV < (1+0(e?))™dwy - - - da, = (14 O(e2)) dzy - - - dzs. In the last step, we use the fact that
m is a constant, so m - O(?) + ('}) - O(e*) + - - - = O(e?). It follows that:

dzy...dz, < dV < (140(?)) - -dz;...dz, (5.8)
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Define the following symbols:

def

To = p
def .

r1 = k1o for some parameter k to be specified later
def .

ri, = ri—a?, foreveryie [l,m—1]

Since the tangent space at any point in MN B, makes an O(g) angle with 7 [9], the projection of
MNB; onto T covers an m-ball centered at the origin with radius ro cos(O(g)) = (1—0(e?))rg
The volume of this m-ball is thus (1—O0(g2))"V,, 77" > (1—0(e?))Vipri. Combining with (5.8),
we obtain:

(1= O0EH)Vrtt < volMNB.) < (14 0(3))Vyri. (5.9)

We will prove that each of (i)—(vi) holds with probability 1 — O(n~'/3). Therefore, they
hold simultaneously with probability at least 1 — 6 - O(n="/3) = 1 — O(n~'/3) as well. In the
following, z = (21, 22, . . . , z4)! denotes a random point in M N Be..

Analysis of (i): The variance of 377, a;; equals nE[28] —n(E[z} ]) < nE[28] < ne®e® because

|zi| < pe. Lemma 5.2 implies that )Zp 1 pl —E [Z”ﬁ a“} < en?/3p%e* with probability

p=1"pi

1 — ¢ 2n~1/3. Tt remains to bound E |:Zp 1 ;m

Since E[Y_)_, ay,] = oIMAED) S, AV, it follows from (5.9) that:
_O(2 n 2
“O(fn)m/ dav < B|Y k| < W(f;»"/ AdV (5.10)
Vg MNB. Vg MNB.

p=1

We first calculate VTLT‘E)n I D x? dx,, - --dzy, where D is the m-ball in 7 centered at the

origin with radius r;. Consider an (m — ¢ + 1)-ball with radius r; centered at the origin.

Its volume, which is V, _, 7" i+l can also be written as the integration of the volume of

its (m — i)-dimensional cross-section—an (m — i)-ball—that is perpendicular to the x; axis
and at distance z; from the origin as the value x; varies from —r; to ;. Figure 6 gives an

illustration. The radius of the ( —i)-dimensional cross-section is rj41 = {/r? — z7. Therefore,

Vi = fr’ m_iTip1 dxi, where V77" denotes the volume function of an (m—i)-

ball with radius r;41. Inductively, we obtain

V,

Ti+1 T
m— l—i—l ! m d dax:
ml+1r .. Ty -+ -dxy.
—Ti Y T4l —Tm

We now return to calculating ﬁ f D :L‘;1 dz,, - - - dxy. By symmetry, we can assume that ¢ = 1.

n 4
Y dz,, - d = dzy, ...dx
erz)n /D :EZ ! o V TO /;rl /7"7n xl !

nV, 1
= il / air =t day
VmTO -r1

Vo1 3B8(m)rmt
— . L 5.3
Vi (m+2)(m+4) (. Lemma 5.3)

3m’m+4
(m+2)(m+4)ry
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Tit1

v

Figure 6: The circle represents an (m — i + 1)-ball centered at the origin with radius r;. The
bold segment represents an (m — i)-dimensional cross-section of the (m — i + 1)-ball, and its

radius 7,41 is equal to \/r? — z2.

The orthogonal projection of M N B onto 7T is contained in the m-ball centered at the origin
with radius r9. By (5.8), if we set r1 = rg, then

n 4 2 n 4
| < (1 ) L dx,, - d
Vo /MQBE zz dV < (140(g%)) erf)n/DIz x 1
3nrd
= (1+0(?)- 0
( (%) (m +2)(m + 4)
B 3ng454 46
- (m+2)(m+4)+0(n96).

The orthogonal projection of M N B, onto T covers an m-ball centered at the origin with radius
(1 — O(g?))rg. Thus, if we set 71 to be this radius, then

n

4 n 4
z:dV > /J; dx,, - - -dx
VinTo" /MQBE ’ Vot Jp

S ) ap—L
(m+2)(m+4)
S 3nrg
> (1-0(%): (m+2)(m+4)
3no*e?
- (m+2)(m+4)_0(”9456)'

Then, it follows from (5.10) that ‘E [

the correctness of (i).

p=1 ?)1} - mm) € ‘ = O(no*eY), establishing

Analysis of (ii): The variance of » a’; p] equals nE[z} ] n(E[2? 2])2 < nE[z} 4} §
no®e® because |z;| < ge. Lemma 5.2 implies that ’Zp 1 %2;1“;2;] E [ZZ 1 pz m” < en?/3 gt
with probability 1 — ¢=2n~1/3. Tt remains to bound E {Zp 1 afnag]]

Since E[Zp 1%271%29]] = memB 2722 AV, we can derive as in (i) the relation
USQEDn [ BB AV < E[Zp padad] < WL L 22 AV, Let D be

the m-ball in T centered at the origin with radius r1. By symmetry, we can assume that ¢ = 1
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and j = 2.

n V-2
m/ x?m? dep, - --dr1 = i / / x1x27’3 2 dxoday
VmTO D mro —7r1 J—rg

_ nB(m—1)B(m+2)Vi,— grmtd -

= (m 1 AV L (. Lemma 5.3)
nr T

— T 2)(1m o (. (5.3) & (5.5))

As in (i), if we set r1 = r¢, then

n 2.2 2 n 2.2
“2dV < (140 . ‘xs dzgy, - - - d
Vinrf! /MOBEZ’ZJ s UHOE) o /D”““’xj B

n?"4
= 0406 CigymT o
n 4.4
= oy tomee)

The orthogonal projection of M N B, onto T covers an m-ball centered at the origin with radius
(1 — O(e?))rg. Thus, if we set 71 to be this radius, then

n n
m/ zfzf dv > m/ 2 2dxm --dxy
ero MNB: ero D

(1 O( 2))m+4 nré
= —_ E .
(m+2)(m+4)
4
nr
> (1-0(%) - 0
= (%) (m+2)(m+4)
4.4
no-e 4 6
= -0 .
mr2mey  0nee)
Therefore, [E|> ", a2.a2.| — _nglet |\ _ no*e%), establishing the correctness of (ii).
p=1 "pi~pj (m4+2)(m+4)
Analysis of (iii): The variance of _ is at most nE[z}] < ne*e*. Lemma 5.2 implies
=1 pz
that |30, Z@ — E[Zz 1 pl] < cn2/3 2 with probability 1 —¢~2n~1/3. Tt remains to bound

E[ZZ 1 pz] Since E[Zp_l IQJJ = 7\/01(/\2035) fMﬂB 22 dV, by (5.9), [ZZ 1 pl} lies between
(1—-0(?)) - erm Jnmins. 22 dV and (1 + O(?)) - erm Jmins. 22 dV. Let D be the m-ball in
T centered at the origin with radius r;.

n 2
2 A -+ - d = d c.day
ergl /sz m o m""o /—rl /—rm o1 G
an 1/ 2, m—1
= xir dxq
ero o 172
nrtt?
= W (. Lemma 5.3 and (5.4))
If we set 11 = rg, then E[Ep 1 ;271} < (1 +0(?)) - WIMHBE 22dV < (1 + O(g?))?
W fD z? day, - dzy = %JSQ) nrg = #H -ng%e? + O(ne?c*). The orthogonal projection
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of M N B. onto T covers an m-ball centered at the origin with radius (1 — O(¢2))rg. Thus,
if we set r; to be this radius, then E[Z 2} > (1 - 0(?) - ﬁfMﬂBs 22dV > (1 -

p=1 Ypi
O(e?)) - # [pa? day, - -day = % -nrg = mLJrz -no*e® — O(ng®c*). Therefore,
‘E pe10 ?M] - m}u”@ € ‘ O(no?c*). This establishes the correctness of (iii).

a’?
j=0 p’L]
where k > 1, i; € [1,m] for every j € [0,k], ep is an even (p0881b1y zero) integer, and e; is an

odd integer for every j € [1, k]. We show that ‘Zp 1 1" < en?3 0% + O(np°e2) with

Analysis of (iv), (v) and (vi): We prove a more general statement. Consider - _, 1"

j=04 pz
probability 1 — ¢ 2n~Y/3, where e = Zf:o e;.

The variance of Zp 1 H a’? is at most nE [Hk_ zzej} < np*¢e?® because z; < pe. By

j=0 % Dij j=0 ~i
Lemma 5.2, it holds with probability 1—c¢~2n~1/3 that ‘Zp 1 T ‘E[ =1 HJ —0 Oy } ’—i—

cn?/3 9. Thus, it suffices to bound )E[ p=1 H] @ pz]:| .

Let D be the m-ball in T centered at the origin with radius 71 = (1 — O(¢2))ry covered by
the orthogonal projection of M N B, onto 7. Let M be the portion of M N B, that projects
onto D. We deal with M and (M N B;) \ M separately.

Divide R? into 2* subsets so that for every subset and every j € [1,k], the sign of zfj

JOpz

does not flip within the subset. (Note that 2;° > 0 as eg is even.) Consider two such subsets
Hf ={xeR':z* >0 A v]'e[l,k—l],:cfj >0} and Hy = {x e R?:2{" <0 A Vje€
[1,k —1],257 > 0}. By (5.8),

/ HeJdV< 14+0(e / ijd:rm-- 1.
MNH;" 525 DNH 52

J 07 i é eJ dl’m dyjl, we
€ k— 1 e e
get fMﬂH H] 0 zj dV = - fMﬂH” 'Ek|'H] =0 zj dv < — fDmH | H zj day, - - - day.
By symmetry, fDmH xe’“ Hf é e” da,y, - -dxy = fDmH* HJ 0%;] A, - --d 21. Therefore,

k
4V < — / 2 Ay, - - dz
/MmH— H DNH} H K

Since z;* < 0 in H,~ and meHk_ |2;f 1L 2 dv > fDmH |5 Hf
zip |-

k 3=0 k j=0
Let H={xcR?:Vjec[l,k—1],z ;] 7> 0}. It follows that
b e ] €;
/MmHHZij] v = /MnH,jjl_[O j dVJr/MmHk‘]l_IO F
= /DmH,j]l_IOw] dm
< O(E%) - Vyrinte 2k (v xi; <)

< O(E%) - Viprte ok (o <)

Conversely, fMﬂH+ H] 0%i; 7 AV > fDﬁHJr H] =0 zj A, -- dxl and fMﬁH H] =0 zej dvi =
meHk_’ zk‘ Hf é fﬂ dV > —(1+0(¢)? fDmH“ \ H fj dz,, - - - dxq, which is equal
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to —(1+ O(g)?) - fDmH,j ]_[;?:0 a:ze]] dzy, - - - dzq, Therefore,

/ H AV > — / erJ day, - - > —0(?) - Vird e /2",
MNH ; DNH;"

k j=0
As a result, ] 0%, dV’ < O(2) - Virgte /2%,
There are 25~1 —1 other combinations of signs of zej for j € [1,k—1]. Each combination gives

bz av| 0@
dV‘<2’f L. O(2) - Vi J2F = O(e )-vmry+e.

rise to a subset G of R? and one can derive as in the above that ‘ Jvina H
Vinrgt€ /2%, Consequently, ‘fM =07,

Let Do be the m-ball in T centered at the origin with radius r¢. Since ‘H <rg, by

7=0 z
(5:8), [Jomrpoyar iz %7 dV] < (14 0(2)) - [ p 76 dvm - dan = (14 O(2)) - Vinr (1 —
) = O(e2) - Viprg ™.

We conclude that ‘meB H] 0%, dV} ‘fM =0 %, dV‘ ‘meB \MH] 0%, dV‘
O(e?) - Viprg? ™. Then,

n ko n k .
;]HO%% = vol(M N By) /MﬁBE iy JJ v
< Vof(lD) LO(2) - Vil
— O(nee**?).
This establishes the correctness of (iv), (v) and (vi). Hl

6 Eigenvalues of B'B

We show in this section that the largest mg eigenvalues of B'B are O(ng*c*) and the largest
(mo+1)-th eigenvalue of B'B is O(ng*e%). The bounds on the eigenvalues of B!B are obtained by
proving a series of lemmas using the Gershgorin Circle Theorem [17] and its generalization [13].

6.1 Preliminaries

Let C be a square matrix. The Gershgorin Circle Theorem states that for each eigenvalue o of

C, there exists a row ¢ of C such that |0 — ¢;| < >, [ei5]- It follows that |e;| — 32, |cij| <

o< Zj |cij|. By applying the Gershgorin Circle Theorem to C', there also exists a column j

of C such that |o — ¢j;| < 37, |cij|, which implies that |cj;] — 32,4 |eij| < 0 < 37, |ey5]. This

result has been generalized to the case when C is partitioned into blocks [13]. Consider the
following partition of C:

Ciui - Gy

SRR (6.1)

Crl o Crr

That is, there exist integers n; such that Cj; is an n; Xxn; matrix. Note that the matrices C;;’s are

square, but the other C;;’s may not be square. Each row of blocks (Cil R G R Cir)

defines a generalized gershgorin set G; which contains all real numbers p such that [|(C; —
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171 > j2i ICij|l. The eigenvalues of C;; are in G; by a continuity argument [13]. The
definition of GG; implies that:

min{y € G;} > smallest eigenvalue of C;; — Z I1Cisl (6.2)
i#j
max{y € G;} < largest eigenvalue of C;; + Z |Gyl (6.3)
i#]

Equations (6.2) and (6.3) help to bound the eigenvalues of C because G; contains some eigen-
values of C under certain conditions as stated in the following result.

Lemma 6.1 ([13]) Consider any partition of a square matriz C into blocks as in (6.1). Ev-
ery eigenvalue of C lies in some generalized gershgorin set G; with respect to this partition.
Moreover, if a generalized gershgorin set G; is disjoint from the union of the other gemeralized
gershgorin sets, then G; contains exactly n; eigenvalues of C, where n; is the dimension of Cy;.

In addition to the Gershgorin Circle Theorem, there are also some easy bounds on the
2-norm and eigenvalues of a matrix [17]. For any r x k matrix U,

Ul = Ul and [UUI| = [U]*
Moreover,
eERI?,E\Eﬁ:I eUlUe = 02, and eeergﬁrel”:l e'UllUe = 02,
where opax and oy are the largest and smallest singular values of U. Since || - || satisfies

triangle inequality, if U =V 4+ W, then
Ul < [IVI+ (W

If U= (V W), where the row dimension of U is 7 and the column dimensions of V and W are i
and j, respectively, then since we can write U = (V 0,;) + (0,; W), we get

Ul < [IVIE+ W

If U= VW, then
U< V- (Wl

Suppose that the row dimension of U is r. Then, ||U| < ||U|lr < /7 ||U||. Note that |U||r =

(24 uzzj)l/Q = (X Huz'*Hz)l/2. Therefore,

Ul < v/r max [luz]].
i€[1,r]

Suppose that U =V + W and all three matrices U, V and W are symmetric (of dimension k)
and positive semi-definite. In this case, the minimum eigenvalue of U is min.cgr jej=1 elUe =
MiN Rk |le[|=1 e'Ve + e'We, which is greater than or equal to both MiN Rk |le]|=1 e'Ve and
MRk |je[|=1 e'We. Therefore, if U = V + W for some symmetric and positive semi-definite
matrices U, V and W, then

min. eigenvalue of U > max {min. eigenvalue of V, min. eigenvalue of W} .

To facilitate the analysis of the eigenvalues of BB, it is convenient to assume that the
coordinate axes xi,...,Zm, span the tangent space 7 of M at the origin. That is, for every
p € [1,n] and every i € [1,m], a;; is the coordinate of a, on the z;-axis. The following result
shows that the eigenvalues of BB are preserved by rotations in R? that keep the origin fixed.
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Lemma 6.2 The eigenvalues of BB are preserved by rotations in R? that keep the origin fized.

Proof.  Recall that dy = (d'gl). Each row of B is a vector in R% and it is the image of the

function h : (y1 yd)lt — (%y% yiy2 - YiYd %y% Y2ys - %yﬁ)t. The linear
space spanned by h(R?) is R%. To see this, consider the vectors e;;, where i € [1,d] and
J € [i,d], such that the i-th and j-th entries of e;; are ones and all other entries of e;; are zeros.
There are dy such e;;’s and the vectors h(e;;)’s are linearly independent because for any k < [,
h(ey;) contains a 1 in the position of yxy; and no other h(e;;)’s do.

Take any rotation R in RY that keeps the origin fixed. Define the transformation ¢ : h(v)
hoR(v). For every pair of vectors u,v € R?, h(u)*-h(v) = 3 Zle u?v?—f—zgzl Z?:Z.H U005 =
%(Zle u;v;)*> = 3(u’ - v)% Since R preserves distances and angles in RY, u’ v = R(u)’ - R(v),
which implies that (¢ o h(u))t-poh(v) = h(u)t-h(v). That is, ¢ preserves distances and angles
in h(RY).

Since the h(e;j)’s form a basis of R% we can define a linear transformation v in R% such
that ¢ o h(e;j) = ¢ o h(e;;) for every i € [1,d] and every j € [i,d]. For any ¢,k € [1,d], any
j € [i,d] and any I € [k, d], (1 0 h(ei;))" - o h(ew) = (¢ o h(eij))" - ¢ o hew) = hlei;)" - hiew),
which implies that 1) preserves distances and angles in R% and hence 1/ is an isometry in R%.
Since 9 and ¢ agree on the h(e;;)’s by definition and both ¢ and ¢ preserve distances in h(R%),
¥(z) must be equal to ¢(z) for every vector z € h(R%).

We conclude that the effect on h(R?) caused by the rotation R in R? is produced by the
isometry 1 in R%. Since the eigenvalues of B!B are invariant under isometries in R%, they are
not changed by the rotation R. Hl

6.2 Analysis

Suppose that the coordinate axes z1,...,2Z, span 7. There are two kinds of columns in B,
¢

namely, the “double” columns <%a%i %a%,) for i € [1,d] and the “cross” columns

(ah-alj am-anj)t for i € [1,d] and j € [i + 1,d]. Rearranging the columns in B does

not change the eigenvalues of B!B. For convenience, we rearrange the columns of B so that
B = (Brr Brny Bnn), where Brr consists of the “double” columns for i € [1,m] and the
“cross” columns for ¢ € [1,m] and j € [i + 1, m], Bry consists of the “cross” columns for
i€ [l,m] and j € [m + 1,d], and Byx consists of the “double” columns for i € [m + 1,d] and
the “cross” columns for ¢ € [m+1,d] and j € [i 4+ 1,d].

Recall that dy = (d;rl) and mg = (m;rl) Brr has mg columns, Bpy has m(d —m) columns,
and By contains dg — mg — md + m? columns. The matrix B!B can be divided into blocks as
follows.

BrrBry

. BZTT Brr ] B?TBNN
B'B = BtTNBTT B?NBTN BtTNBNN (6.4)
BynBrr BynBry BinBww

We first analyze the eigenvalues of B?FTBTT and the singular values of Byy and By .

Lemma 6.3 Assume that the coordinate axes x1,...,ZTy, span T. If € is sufficiently small,
then with probability 1 — O(n~'/3), the eigenvalues of BlpBpp are ©(ng*e?) and so ||Brr| =

O(vne*e?).

Proof. For every p € [1,n] and every i € [1,m], |api| < ge. Thus, for every p € [1,n] and every
quadruple of possibly non-distinct 4, j, k, 1 € [1,m], 22:1 |lapiapjaprap| < ne'et. It follows that
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the maximum absolute row sum of BL-B, is at most monete? = O(nge?), which is an upper
bound on the largest eigenvalue by the Gershgorin Circle Theorem.

To prove the lower bound, rearrange the columns of Bpp such that its leftmost n x m
1.2 L2

w4 o B%m
submatrix is : : . This rearrangement does not change the eigenvalues of
12 12
ﬁanl T Tanm
t e . t
B% By Let V be the trailing (mg —m) x (mg —m) submatrix of Bf..B ;. Then,
1N\ 4 1y 2 2 1y 2 2
2 Zp:l ap1 2 Zp:l Ap1Gp2 """ 3 Zp:l Ap1Qpm | *
1y 2 02 1yw 4 .ol 2 9
8. B B 2 Zp:l Ap10p2 3 Zp:l Ap2 2 Zp:l Ap2Qpm | *
TTPTT = . : : ) (6.5)
1\~ 2 2 15 2 2 15 4
2 Zp:l Ap1%m 3 Zp:l Ap2pm "' 3 Zp:l Apm *
* * * \Y,
. . . . 1 4 4 _
Define an m x m matrix W whose entries are identical and equal to ] Cry e LI De

fine another m x m matrix U such that u;; is equal to the (i,j) entry of B%.B,, minus
no*e*. We split BLB, into the following sum of matrices.

U = W Om,mo—m
BrrBrr = <* V>+< o > (6.6)

Omo —m,m Omo—m,mo —-m

1
2(m+2)(m+4)

All matrices in (6.6) are symmetric, and B%..B, is clearly positive semi-definite. We show that
the two matrices on the right hand side of (6.6) are also positive semi-definite by bounding their
eigenvalues from below. Then, we can conclude that the minimum eigenvalue of BB, is at
least the maximum of the minimum eigenvalues of the two matrices on the right hand side of
(6.6). Since the entries of W are identical, the matrix ( W Ornmo—m ) has rank one.
Omo—m,m Omg—m,mg—m
One can verify that (1/y/m -+ 1/y/m Omo_m)t is a unit eigenvector and the only non-zero
W Om,mo—m ) is

no*e*. So the minimum eigenvalue of
Omo—m,m Omo—m,mo—m

eigenvalue is 2(m++(m%)

*
V
m. Then, it follows from (65) that,
with probability 1 — O(n~Y/3), for every i € [1,m], the (i,7) entry of Bf- B, is at least

zero. It remains to bound the minimum eigenvalue of (lj ) from below.

Apply Lemma 5.4(i) with the constant ¢ =

3 4.4 1 2/3 4.4 4.6 PP
T2y i) 0 €~ 3mr " 13gte* — O(ng*eY), which implies that
g > 3no*e? 7 notet B n?/3glet — O(ng<")
YT 2(m 4 2)(m+4) 2(m+2)(m+4)  3(m+2)(m+4)

(m+2)(m+4) 3(m+2)(m+4)
Apply Lemma 5.4(ii) with the constant ¢ = m. Then, it follows from (6.5) that,

with probability 1 — O(n~1/3), for every pair of distinct 4, j € [1,m], the (i, j) entry of BLr B

is at most WM“Q4€4 + mnw?’f&“‘l + O(no*e%), which implies that
4.4 4.4 2/3 4.4
no‘e no*e n 5
luii| < ¢ - ¢ + g + O(ng*e%)
2(m+2)(m+4) 2(m+2)(m+4)  3mo(m+2)(m+4)
n2/3gieh
= + O(no*e%). 6.8
3mo(m +2)(m +4) (nge”) (6:8)
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By the Gershgorin Circle Theorem, every eigenvalue of (S \j> is at least the absolute

value of the diagonal entry minus the absolute values of the off-diagonal entries in the same
row for some row.

Consider a row that contains the entry wu;; of U for some ¢ € [1,m]. By (6.8), the absolute
value of each off-diagonal entry in U is at most mnw 30%e* 4+ O(np*e%). The other
n

off-diagonal entries are % 22:1 afnapj and % > =1 agiapjapk for some distinct 4, j, k € [1,m].

V2 : : Ly 3
W. It lmphes that ﬁ szl apiapj

n?/3 g%t + O(ng*e%) with probability 1 —

Apply Lemma 5.4(iv) with the constant ¢ =
and % > =1 a]%iapjapk are at most
O(n~1/3). By (6.7), |us| minus the absolute values of the off-diagonal entries in the ith row is

greater than mng‘ls‘l - mnwgg‘ls‘l — O(no*e%), which is Q(no*e?).
no 92 2

Consider a row that contains a diagonal entry of V. This diagonal entry of V is szl Uiy

1
3mo(m+2)(m-+4)

for some distinct 7,5 € [1,m]. Apply Lemma 5.4(ii) with the constant ¢ =

1
Sy ) 1t

. . 1 1 .
1mphes that EZ:l agiagj Z m mnz/:’)g‘lg‘l — O(TLQ466) with pI'Ob_

ability 1 — O(n='/3). The off-diagonal entries are % Dot Gty % > =1 agiapjapk and
> p=1 Apitpjapkap for some distinct i, j, k, 1 € [1,m]. A similar analysis as in the previous para-

notet —

graph shows that Zzzl agiazj minus the off-diagonal entries in the same row is Q(ng*e?). H

Lemma 6.4 Assume that the coordinate azes x1,...,Tym span T. ||Bry| = O(v/ne*e?) and
IByn |l = O(vne?e!).

Proof.  For every p € [1,n], (30, afn»)l/2 < |lap|]| < oe. The 2-norm of a row of By is

d 1/2 1/2 d 1/2 . .

(D ez a2) ' = (X a2) (D, a2) "% The distance from aj to T is

known to be O(pe?) [15, Lemma 6], so (Z?:m_H a]%j)l/2 = O(pe?). Tt follows that the 2-norm

of a row of Bry is O(0%¢?). There are n rows in Bry, implying that ||Bry| = O(y/ne??). The
. 1/2

2-norm of a row of By is no more than (Z?:mﬂ a]%i ;l:i af)j) / < Z?:mﬂ a127j = 0(p%%).

Summing over the n rows in Byy shows that |Byy|| = O(v/no?e?). Hl

We are now ready to give bounds on the eigenvalues of B!B. The bound on the dy — mg
smallest eigenvalues is not the best possible yet. We boostrap a better bound from it later.

Lemma 6.5 If ¢ is sufficiently small, then with probability 1 — O(n=/3), the mg largest eigen-
values of B'B are O(no'c?) and the dy — mo smallest eigenvalues of B'B are O(ng*e®).

Proof. By Lemma 6.2, we can rotate R? so that the coordinate axes 1, ..., Z,, span 7T because
the eigenvalues of BB are not affected. Then, we can partition B'B as shown in (6.4). We
define three generalized gershgorin sets [13] as follows.

The first set G1 is for the row of blocks (BY By BBy BhpByy). By (6.2) and (6.3),
the real numbers in Gy are at least the minimum eigenvalue of BB, minus ||BL:Bry | +
1BLBy |l and at most the maximum eigenvalue of B}.Byp plus ||BLByy ||+ 1By By yll- By
Lemma 6.3, with probability 1 — O(n=1/3), ||BL.;:Byp|| = O(ne*e?) and ||Byp|| = O(v/no?e?).
Then, it follows from Lemma 6.4 that, with probability 1 — O(n='/3), |BL: Byl < |IBypll -
IBryll = O(ng'e®) and |BLrBynll < [IBprll - Byl = O(ng*e®). Thus, the numbers in Gy
are ©(ng*e*) with probability 1 — O(n~1/3

The second set Gy is for the row of blocks (BhnBrpr BiyBry BhyByy). By (6.3),
the real numbers in G are at most the maximum eigenvalue of Bl.\ By, plus ||BhyBrr| +
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1B xBy - By Lemmas 6.3 and 6.4, with probability 1 — O(n=13), IBLABrnll = IIBrall? =
O(ng*e%) and IBrnBrrl + 1BrnBynll < IBrw - [Brrll + [[Brall - [Byyll = O(ng'e®). Thus,
the numbers in Gy are O(no*e”) with probability 1 — O(n~1/3).

The third set G3 is for the row of blocks (BY By BiyyBry BiynBan)- By (6.3), the real
numbers in G3 are at most the maximum eigenvalue of B4 \;By y plus || Bl xBrrl +11ByyBrall-
By Lemmas 6.3 and 6.4, with probability 1 —O(n='/3), ||BY yByyll = [IByn||? = O(no'e®) and
1By nByrll + 1By By | < Bl Byl + [Bavwll - [Bpyll = Ofngte®). Thus, the numbers
in G3 are O(ng*e®) with probability 1 — O(n~1/3

If ¢ is sufficiently small, the numbers in (G; are much bigger than those in Gy and G3, im-
plying that G1 N (G2UG3) is empty. By Lemma 6.1, the disjointness of G; from Gy UG3 implies
that G7 and G2 UG5 contain exactly mg and dg—mg eigenvalues of BB, respectively. Hence, G4
contains the mg largest eigenvalues and Go UG5 contains the dy —mg smallest eigenvalues. Hl

Lemma 6.5 allows us to show a tighter bound O(n%e®) on the (mg+1)-th largest eigenvalue
of B!B. It will be important later that this bound is smaller than the bound on the mq largest
eigenvalues by a factor 2.

Lemma 6.6 Ife¢ is sufficiently small, then with probability 1—O(n=/3), the (mo+1)-th largest
eigenvalue of B'B is O(no*eb).

Proof. By Lemma 6.2, we can rotate R? so that the coordinate axes 1, ...,z span 7 and
then partition BB as shown in (6.4). Let o be an eigenvalue of BB among the dg —m smallest
ones. By Lemma 6.5, o is O(ng*e®) with probability 1 — O(n=1/3). Let e be an eigenvector
of B'B corresponding to . Divide e into two parts (v’ wt)t, where v consists of the first mg
coordinates of e and w consists of the last dy — mg coordinates of e.

We claim that w # 04y—ym,,1 Wwith probability 1 — O(n‘1/3). If w = 0gy—my,1, then the
following relation holds as e is an eigenvector of B!B.

Bt B - v
BtB~e:<TTTT )zae:( v )
* od()*mm1

This implies that o is an eigenvalue of BL.-Byp. Then, either o is not O(ng*e®) which occurs
with probability O(n~'/3) by Lemma 6.5, or ¢ = O(ng*e®) is an eigenvalue of Bf..B,, which
occurs with probability O(n~/3) by Lemma 6.3. This proves our claim.

From now on, assume that w # 0g4,_,,1 and e is scaled such that |w|| = 1.

Next, we show that ||v] = O(g). Refer to the partition of B!B in (6.4). Expanding the
equation B'B-e = oe gives the equation B};:Byp v+ (BLyBry  BhpByy) -w = ov. It implies
that v = —(BbyBrp — 0lmg) ™' - (B4pByry  BhyByy) - w. Therefore,

VI < [[(BrrBrr = aling) 7| - [[(BrrBra BrrByn) |- (6.9)

Note that ||(BfrBry BrrByy)|| < [IBGrBryll + IBrrByyl < IBrr] - 1Bryll + [Brrll -
IBynll- Then, Lemmas 6.3 and 6.4 imply that ||(B4,Bry BhrByy)| = O(no'e®) with
probability 1—O(n~'/3). By Lemmas 6.3 and 6.5, with probability 1—O(n~1/?), the eigenvalues
of BL.y By — 0l are O(noiet) —O(np*e®) = O(no'e?), implying that ||(BL-rBrp —0lm,) 7| =
©(1/(no'e*)). Plugging the bounds on || (BL:;Bry BhyByy) || and [|(BhyBry — oliyg) 7Ll
into (6.9) gives ||v|]| = O(e).

By the definition of eigenvalues, if we project each row vector of B onto the support line of
e, the sum of the squared lengths of the projections is . We show that this sum is O(no*e%)
as follows.
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Take the pth row by, of B. Divide by, into two parts (Bp* Bp*), where Bp* consists
of the first mg entries and b,. consists of the last dy — mg entries. Note that ||by.|| =

\/ Zz 1 pz+21 12] =i+1 CLZCLJ = %(Z;nl m) < ”3 H2 < Q2€2 Therefore

Vb < VBl < 0() - 2% = 0.

By grouping terms in ||bp||, we get

m d
lop® = > > apap; + Z 5 ap; + Z Zam pj

i=1 j=m+1 i=m-+1 i=m+1 j=i+1
m d 1 d 2
— 2 2 2
SO ISR REA( o
i=1 j=m+1 j=m+1
The distance from a, to T is O(ge?) [15, Lemma 6], so Z] 1 12)] O(0?c*). Tt follows that

[bpe|| < /0262 - O(0%e%) 4 O(0%e8) = O(p?¢?). Since ||w|| =1,
W' by < [wll - (Bl = O(0%?).

The squared length of the projection of b, onto the support line of e is

el VI WP T+ 0) e

Summing this bound over the n rows of B gives O(ng*e%), which is an upper bound of .  HI

7 Eigenvalues of HH!

7.1 Preliminaries

Given a k x [ matrix U, what happens to ||U]| if we multiply each row u;, by a factor which is
less than or equal to one? Let V be the matrix obtained after changing U. Then

2 k , 1/2
M= (e )= (g T e
k , 1/2 . 1/2
<t o) = (oo
= Ul

Also, for every orthonormal k£ x k matrix R, R‘R = I, and therefore,

1/2 1/2
||RU||:( max et(RU)t(RU)e> :< max etUtUe> = [|U]].

e€RF [lef|=1 e€RF [lef|=1

We need three more technical results concerning the angles between vectors and spaces. The
first one is from [12]. The other two are folklore and we include their proofs for completeness.
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Lemma 7.1 ([12, Lemma 1.1]) Let M be an s X s real symmetric matriz with eigenvalues
Wi,y s 0 an arbitrary order. Let v; denote a unit eigenvector of M corresponding to p;. If
M + M’ is a real symmetric matriz, i’ is an eigenvalue of M + M’, and z is a unit eigenvector
of M+ M’ corresponding to i, then for every r € [1,s — 1], the angle between z and the space

M/
spanned by {vi,...,v,} is at most arcsin ( . Ml / >
minep 41,6 [ — 1|

Lemma 7.2 Let (U V) be an s x s orthonormal matriz such that U is s x (s —r) and V is
s X r for somer € [1,s —1]. Let Z = (2*1 Z*T) be an s x r orthonormal matriz. The
angle between the column spaces of V and Z is arcsin (|[U'Z||) < arcsin (v/r max;ep . [|U'z4)).

Proof. Let 0 denote the angle between the column spaces of V and Z. For every unit vector
z in the column space of Z, the sine of the angle between z and the column space of V is
|U'z||/||z]| = ||U%z||. Each such vector z is a linear combination of the columns of Z, i.e., z = Ze
for some r x 1 unit vector e. It follows that sinf = maxHeH:lHUtZeH = HUtZH. Moreover,

l0z]| < Uzl = V2l < Vi maieq |02 =

Lemma 7.3 Let v be a r-dimensional vector. Let {e; : 1 < i < k} be an orthonormal basis of
the column space of a r x 1 matriz U. If 0; denotes the acute angle between the support lines of v
and e;, then the acute angle between v and the column space of U is at least arccos(Zle cosb;) =

arccos(ﬁ Zle Ivie;|), provided that ||T1H Zle Ivie;| < 1.

Proof. Take the projection of v onto the column space of U, and normalize the projection to a

unit vector w. Sow = Zle aje; for some «; € [—1,1]. The cosine of the angle between v and
: 1 1k 1k 1k

w is equal to mvtw = T 2oi=1 avle; < TV 2oiet 0] Ivie;| < TV 2mimt [vie;|.

The main result of this section is Lemma 7.10 which gives bounds on the eigenvalues of
HH?. The proof of Lemma 7.10 will be facilitated by a rotation of R? so that the coordinate
axes I1,...,Tm span 7. We prove below that such a rotation does not change the eigenvalues
of HH!.

Lemma 7.4 If we apply a rotation to R? that keeps the origin fized, the eigenvalues of HH!
are preserved and the eigenvectors of HH! are rotated correspondingly.

Proof. Recall that LAR? denotes the thin SVD of B and that HH! = A’LY LA by Lemma 4.1(iii).
Let M be a d x d rotation matrix. The proof of Lemma 6.2 reveals that the effect of applying
M is produced by an isometry in R%. It follows that the application of M only changes the
matrix R but not L or A in the thin SVD of B. Therefore, when we apply M, the middle part
LY L of HH! remains fixed and A is changed to AM! by the rotation. This changes HH! to
MALY L!AM! = MHH!M!. Since M is a rotation matrix, multiplying M on the left and M? on
the right does not change the eigenvalues of HH?, but it does rotate the eigenvectors of HH?
correspondingly. =

7.2 Analysis

Suppose that the coordinate axes x1, ...,z span 7. Then, A can be divided into two submatri-
ces. Let Ar be the leftmost nxm submatrix of A. Let Ay be the rightmost n x (d—m) submatrix
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~ - - t
of A. That is, A= (Ar Ay). Lemma 4.1(iii) implies that H = (BTA)? = (BTAT BTAN) . We
define two submatrices of H as follows.

H= (ET) , where Hp % (B1A7)! and Hy 4 (BTAN)".
N

Note that Hy is an m x dyp matrix and Hy is a (d — m) x dyp matrix. Our analysis begins with
bounding ||Hy/|.

Lemma 7.5 Assume that the coordinate axes x1,...,xTm span T . If € is sufficiently small, then
with probability 1 — O(n™1/3), |Hx|| = O(v/nee® /Amo+1)-

Proof. Recall that f;, £ € [m+ 1,d], denotes a coordinate function of M at the origin. Define:

~ def t t
Qpy = %DQfAO((apl tet apm) , (apl T apm) )
A1m+1 -+ A1
AN déf :
an,m-‘rl to dnd
oA BER
Hy = (B'An)

In the Taylor expansion of f;, there is no constant term or first order term because M contains
the origin and the coordinate axes x1, ..., Z, span T. As a result, if € is sufficiently small, then
ape is close to aye, and therefore, Ay and Hy are approximations of Ay and Hy, respectively.
Substituting Ay = AN—I— (AN —AN) intoHy = (gTAN)t, we obtain Hy = F'N+ (/B\T(AN —AN))t.

I Bf (An — An)|.
We first bound ||Bf(Ay — Ay)||. For every p € [1,n], the pth row of Ay — Ay contains the
third and higher order terms in the Taylor expansions of fy((ap1 --- apmzt) for £ € [m+1,d).

By Lemma 5.1(ii), if ¢ is small enough, the 2-norm of each row of Ay — Ay is O(pe?). Thus,
HAN — ANH < HAN — ANHF = O(y/nge?). Since Ay, 11 is the smallest singular value of B,
IBF|| = 1/Amg+1. Therefore, ||BF(Ay — Ay)|| < ||BF|| - [|Ax — Ax| = O(VR0e® /Amg+1)-

It remains to show that HI:INH O(v/10e®/Angt1). Observe that HHNH = HH | =
HBTANH The smallest singular value of B is smaller than or equal to the smallest singular
value of B by construction. Intuitively, we would expect HBTANH < HBTANH Therefore, we

can bound HBTANH if we can bound HBTANH.

Recall that D?fy|o can be viewed as the m x m symmetric matrix (OQfg/axiﬁxj)i ieltm] with

every entry evaluated at the origin. Let gy;; denote the (4,j) entry of D2?fy|o. By definition,
ape = 3(ap1 -+ apm) Do (ap1 -+ apm)'. Expanding this equation gives:

m m
apé = ZZ %q&ijapiapj Z q uapz + Z Z q40,i5ApiQpj -

i=1 j=1 i=1 j=i+1

We extend the range of ¢ and j in gg;; to [1,d] by letting g¢;; = 0 whenever i € [m + 1,d] or

j € [m+1,d]. Then, define Z to be the do x (d — m) matrix (zs1 -++  Zsd—m), where
_ (L . 1 .. L. L !
Zil—mn = ﬁqg,n qe,12 q¢,1d \/QQe,zz qe,23 qe,2d \/ECM,dd .
The definition of z,s_,, is crafted so that Bz.,_,, equals (ELM e ang)t. Therefore,
BZ = Ay. (7.1)
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Consider the square matrix obtained by appending dy — d + m zero columns to the right of
Z. Then, ||Z| is equal to the 2-norm of this square matrix, which by the Gershgorin Circle
Theorem is at most max;c(y 4| Z?il |zij|. Among the entries in z,;, mo entries are from
the upper triangular portion of D2fj+m|o and the other dy — mg entries are zeros by defini-
tion. Thus, Zfil |2ij| < \/mo - ||z« By Lemma 5.1(i), |D%fj4mlo|| = O(1/0) and therefore,
[zl < HDij+m|oHF < Vm - ||D?jimlo|| = O(1/0). By the Gershgorin Circle Theorem,
1Z]| < maxjecpy,q—m) Zf 1 12i5] < maxjep g—m) /Mo - |2+l = O(1/0). Since dy — mg rows of Z
contain only zeros by construction, ||Z|r < /mq - [|Z]| = O(1/0).

BfAy also satisfies (7.1), i.e. B(BTAN) Apy. By the property of pseudoinverse, HBTANHF
is no more than ||Z|| or the Frobemus norm of any matrix that satisfies (7.1). As a result,

|BAx| < |IBM ]|, < I1ZIlr = 0(1/0). (7.2)

We relate H@TANH to HBTANH as follows. Recall that LAR! and LAR? are the thin SVDs of

B and B, respectively, and Ay > Ap > --- > A, > 0 are the singular values of B. Let o; and 0
denote the diagonal entries of AT and AT, respectively. By Lemmas 6.5 and 6.6, it holds with
probability 1 — O(n~1/3) that A, = O(v/no’*e?) and A\y,y11 = O(v/no%e®). Therefore,

\V/iE[l,mo}, 3220'7,:1/)\“
. ~ _ 1 1 _
VZG[mO‘i‘l,TLL O-i_m*/\ii_o-i'

(For simplicity, we assume that the smallest singular value \,, of A is positive, and therefore, A
has n positive diagonal entries. Otherwise, if A; = 0, both o; and 0; are zero by our definition

of \.)
The full SVD of Bis L(A 0y,4y—n) Rt, where R consists of the dy unit eigenvectors of B'B

and R is the leftmost dy x n submatrix of R. It follows that L (K On.do—n) R? is the full SVD of
B, and therefore, Bf = R (AT On.do—n)' L' and Bf = R(A On.dy—n)' L'. Observe that:

e For i € [1,n], the ith row in R!BTAy equals the ith row in R'BTAy multiplied by Gi/0;.
e The bottom dy — n rows in both F_{th/j\N and IitBTAN contain only zeros.

Therefore, HRtBJrANH < HRtBTANH as 0; < oy for i € [1,n].
Multiplying A, BtAy and BfAy on the left by Rt does not change their 2-norms. Therefore,

[Fin ] = (A = [RBTAN| < [[RB"Ax]| = [[B'Ax]| = O(1/0).
Thus, HHNH = O(v/n0e®/Amy+1) because A\py+1 = O(v/no*e®) by Lemma 6.6.

Before we analyze the singular values of Hy, we prove two technical results about the column
vectors of Ay and the column space of Brp. First, we show that the acute angle between the
support lines of any two distinct columns of Ay is large and A has rank m.

Lemma 7.6 Assume that the coordinate axes x1,...,%Ty, span T. If € is sufficiently small,
then with probability 1 — O(n=/3), for every distinct i,j € [1,m], the acute angle between the
support lines of ay; and a.; is at least arccos (%m_ln_l/?’), and Ar has rank m.

Proof. Take an arbitrary pair of distinct columns a,; and a,; of Ap. By Lemma 5.4(iii),

it holds with probability 1 — O(n~'/3) that ||a.|| and |la.;|| are at least c1y/nos for some
constant ¢; > 0. The inner product a; - a,; equals ) >, apiay;. Apply Lemma 5.4(vi) with the
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constant ¢ = 118 c2m~L. Tt implies that if ¢ is small enough, then with probability 1 — O(n~1/3),
|ali-a,;| < en®Po’+0(ne’e?) < 2en/30%* = S n2/3 e al;a,l/(asilllagll) <

%mflnfl/ 3 which implies that the acute angle between the support lines of a,; and ayj is at

least arccos (%m_ln_l/?’).
We prove that Ap has rank m by bounding the minimum eigenvalue of AE_FAT away from
zero. Observe that:

ZZ:1 %2;1 22:1 ap12ap2 T 22:1 Ap1Qpm
n n n
TAT = . . ) .
2221 Apmdpl Zz:l ApmGp2 "+ 2221 azz)m

By the Gershgorin Circle Theorem, the minimum eigenvalue of A%.A,. is greater than or equal

to min,epy ) {ZZ La ?M- — Eje[l m]\{i}‘zzzl am-apj‘}. Apply Lemma 5.4(iii) with ¢ = 7 +2) to
obtain Zp 1 m > m+2ng g2 (ml+2) n?/3 %22 —O(np*e*) with probability 1—O(n~1/3). Apply
Lemma 5.4(vi) with ¢ = m to obtain Zje[l,m}\{i}‘ZZ:l apitp;| < mn2/39252 +
O(no?*c*) with probability 1 — O(n~/3). Then, with probability 1 — O(n~'/3), the minimum
eigenvalue of ALA, is at least anQeQ — O(ng?c*), which is positive when ¢ is small
enough.

Next, we show a lower bound on the angle between any column vector of A and the column
space of Bpr.

Lemma 7.7 Assume that the coordinate axes x1,...,xTm span T . If € is sufficiently small, then
with probability 1 — O(n_l/S), every column vector of Ar makes an angle arccos (%m_ln_l/?’)
or more with the column space of Bpr.

Proof.  We first introduce three constants ci, ¢z and c3. It holds with probability 1 —
O(n~'/3) that all eigenvalues of BL.; By are greater than cjngte? for some constant ¢; > 0
(Lemma 6.3), the 2-norm of each column of Byr is greater than coy/no?e? for some constant
co > 0 (Lemma 5.4(i) and (ii)), and the 2-norm of every column of Ay is greater than cs\/nge
for some constant ¢z > 0 (Lemma 5.4(iii)).

Let e1,...,emn, be mo unit eigenvectors corresponding to the eigenvalues of B;Bh. Let
b1, bs2, ..., bym, denote the columns of By
We first show that for every j € [1,mo], ej = >./*% Bijbsi/||bsil for some coefficients

Bij’s such that |B;;| < 1/ /c1i. By Lemma 6.3, BBl has rank mg, implying that e; =
>0 Bijbsi/||bsil| for some coefficients 3;;’s. It remains to bound |3;;|. We put the equations
ej = y i Bijbsi/| bl in matrix form as follows.

71 . e 71
Ty A1 To.a Plmo
E= (e1 emo) = BTT (73)
71 .« e . 71
Mgl Pmol Tozmg ] Pmomo

The thin SVD of Bl is VDE!, where D is an mg x mg diagonal matrix whose (j, j) entry is the
square root p; of the j-th largest eigenvalue of Bl.;B;, and V is an mg x mg matrix whose
j-th column v, is the unit eigenvector of B%.B,, corresponding to ujz-. Multiplying both sides
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of (7.3) by VD~ E! gives:

1 1
BalPit o eanPime
VD! = : :
—L 8 . L 3
[Bamg ~mol B[00
Comparing the matrices on the two sides term by term shows that 3;; = ||b.il|vij/p; for 4,5 €

[1,mg]. By assumption, u; > \/c1y/no’e?. Since |aprays| < o%e? forr,s € [1,d), ||bs|| < v/no?e?.
Also, |vij| <1 as v,; is a unit vector. It follows that |5;;| < 1/,/c1.

We bound al, - b,; for k € [1,m] and i € [1,my] as follows. The inner product a’, - b,; is
equal to Zgzl %apkagr or Z;zl ApkGpraps for some possibly non-distinct k,7,s € [1,m]. Ap-
ply Lemma 5.4(v) with the constant ¢ = %mflmg 2. It implies that, with probability 1 —
O(n=1/3),]at, - b*i‘ < en?33e34+0(ng3e®), which is at most 2cn?/3 3% = @m_lmfﬁ/‘gg%?’
when ¢ is sufficiently small.

: 1|4t 1841 t 1

For k € [1,m] and j € [1,mol, iylalee;| < X0 o fony ok bul < X Jamamgrs -

@m_lmfnwzj’g‘ge?’ = ém‘lmaln_l/g. Therefore, HleH Zmol‘aik . ej‘ < %m‘ln_l/g.

]:
Then, Lemma 7.3 implies that the acute angle between a,, and the column space of Bprp

is arccos (%m_ln_l/g) or more.

The matrix A in the thin SVD LAR? of B can be partitioned into blocks to separate the myg
largest singular values of B from the A, 4+1’s. The matrices L and R can then be partitioned
correspondingly. Specifically, we obtain

K _ RO Omg,n—mo ’
On—mo,mo Amo—l-lln—mo
L:( L L )
— - (7.4)
mgo columns n—mg columns
R:( Ro R )
~~~ ~~~

mo columns n—mg columns

Note that ||Lo|| = ||L1]| = 1.
Our subsequent analysis of the eigenvalues of Hp requires an upper bound on the angle
between the column spaces of Ly and Brr, which is given in the following result.

Lemma 7.8 Assume that the coordinate axes x1,...,xTy span T . If € is sufficiently small, then
with probability 1 — O(n~'/3), the angle between the column spaces of Ly and By is O(g?).

Proof. Recall that B = (BTT Brn BNN). Therefore, BB! = BTTBZ}T—FBTNB?[N—FBNNBR,N.
Let 11 > po > ... > fum, be the mq largest eigenvalues of B, Bfy. Let V be an n x mg
matrix whose columns are the unit eigenvectors of BBl corresponding to p1, ..., tm,. The
diagonalization of B BY. is:

BrrBhp = (V. %) - diag, (111, - - - ftang, 0, - -, 0) - (V%) (7.5)

Take any column vector z of Ly. Thus, BB'z = 1//z where 1/ is one of the largest my eigenvalues
of BBY. We expand BB' to obtain (BBl + ByryBhy + ByyBlyy)z = p'z. We invoke
Lemma 7.1 with M = BBl and M’ = B, Bl + ByyBly . Lemma 7.1 and (7.5) imply
that the angle between z and the column space of V is at most arcsin(||M’||/|#]). By Lemma 6.4,
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IM’|| < || BrylI? + [|Bun|]? = O(nge%). Lemma 6.5 implies that the largest mq eigenvalues of
BB, including 1/, are ©(no*e*) with probability 1 — O(n~'/3). It follows that, with probability
1- O(n_l/ 3), for every column z of Ly, the angle between z and the column space of V is at
most arcsin(O(g2)) = O(e?).

Let U be an n x (n — myp) matrix such that the columns of U and V form an orthonormal
basis of the column space of B. For every column z of Lg, since z makes an O(¢?) angle with
the column space of V, the angle between z and the column space of U is 7/2 — O(g?). That
is, HUtzH = cos(m/2 — O(g?)) = O(£?). Then, Lemma 7.2 implies that the angle between the
column spaces of Ly and V is arcsin(y/mg - O(?)) = O(£?). Since the columns in V form an
orthonormal basis of the column space of By, the angle between the column spaces of Ly and
Brr is O(2). H

We are ready to bound the eigenvalues of Hy. The analysis uses the tools that we have just
developed, namely Lemmas 7.6, 7.7, and 7.8.

Lemma 7.9 Assume that the coordinate axes x1,...,xTm span T . If € is sufficiently small, then
with probability 1 — O(n=/3), the singular values of Hy are ©(y/noe/Amgs1) and so |[Hr|| =
O(v/noe/Amg+1).

Proof. Refer to the partitions of A, L and R in (7.4). Note that Ag = diag,,,, (A1, 5 Admo),
where \; > Ay > ... > A\, are the mq largest singular values of B. Then,

- A} Ompn—mo \ (L
H, = B'A; = (Ro Ry) <0 L ¥ Ap
n—mg,mo )\m0+1 n—mo 1
= RALGA; + - RLiAL

Since every column vector of Ry is orthogonal to any column vector of Ry (i.e., R\R; = Omg n—my
and R!Ry = 0p,—1m.m, ), We obtain

HyH? = (Ro/\ LoAr + s —R LtA:r) (Ro/\ LoAr + s =R LtAT)
_ (RO/\(T)LOAT) (RO/\OLBAT> + v (R LAz (RngAT)
~\ 2
= ALL, (/\g) LoAr + i EHA?FLILIAT.

The three matrices H, HY, ALL, (/\T) LoAp, and 5 - At L,LYA} are symmetric and pos-
itive semi-definite. It follows that the maximum elgenvalue of HyHY is at most the sum of
the maximum eigenvalues of ALL, (/\8)2L6AT and )\2#+1AtTL1 L’iAT, and the minimum eigen-

mQo

value of HpH% is at least the maximum of the minimum eigenvalues of A%L, (Kg)zLBAT and
/\Q#AtTLlLﬁAT.

mo+1

For every i € [1,m], [lawll = (/> _)_; az; < v/noe as |ap| < oe. Therefore, [|Ar| < /mnge.
Then, |52 —ALL LA < IALIPILUR AR o1 = IATIP/AZ, 1 = O(g?e2/02, ).
By Lemma 6.5, it holds with probability 1 — O(nfl/ 3) that the diagonal entries of K%
are ©(1/(y/ng’?)). Thus, it holds with probability 1 — O(n~Y/3) that ||ALL( (A) V2LEAL|| =
~ 2 2 o
IASLEAL] < (ISP ILolIPIALI? = IAT]2/©(no'e") = O(1/(e%?)), which is O(ng®e! /A%,11)
as Amgt1 = O(yv/no*e®) with probability 1 — O(n~1/3) by Lemma 6.6.
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We conclude from the previous two paragraphs that HHTHtTH = O(ng?*c?/ )\mo 41) or, equiv-
alently, ||Hr|| = O(v/noe/Amg+1)- In the rest of the proof, we show that every eigenvalue of
ALL LY A is Q(ng?e?). This implies that the minimum eigenvalue of HyHY% is Q(ng?e? /A2, 1)
or, equivalently, the minimum singular value of Hy is Q(y/noe/Amg+1)-

Lemmas 7.7 and 7.8 imply that, with probability 1 — O(n‘l/ 3), every column vector a; of
A7 makes an angle at least arccos (%m_ln_l/ 3) —O(£?) with the column space of Ly. Therefore,
with probability 1 — O(n~1/3), every column vector a,; of A; makes an angle at most O(£2) +
arcsin (ém n 1/3) with the column space of L. Let a,; denote the projection of a,; in the
column space of L.

Take an arbitrary pair of distinct columns a,; and a; of Ap. By Lemma 7.6, the acute angle
between the support lines of a,; and a,; is at least arccos (%mflnfl/ 3). We have argued in the
previous paragraph that each of a,; and a,; makes an angle at most O(g?) +arcsin (%m_ln_l/ 3)
with the column space of Ly. Therefore, the acute angle between the support lines of a,; and
3.j is at least 7/2 — O(e?) — 3arcsin (%m_ln_l/?’).

For every i € [1,m], 3,; = LyL%a,;. Thus, (3,1 -+ 3un) = L,L}A;. It follows that:
t t t t t
Z;:l 6_%291 Zﬁzl aplgﬂ T Z;Ll ap1apm
n —— n — n — —
B Zp:l Gp2apl Zp:l Ap2 e szl Ap2Qpm
Zzzl apmGp1 22:1 ApmAp2  * - Zz 1@ _}22m

By the Gershgorin Circle Theorem, the minimum eigenvalue of ALL,L{AL is greater than or
equal to mine(y ) {ZZ:I &;271' - Zje[l,m]\{i}}ZZ:l @piam“}'

We have shown earlier that [|a.|| > [la.| cos (O(e?) + arcsin (§m~'n ~1/3)), which is at
least [la.| (1 — %mflnfl/:g) for a small enough e. Note that >, api = ||34]|*>. We have
also shown that |af; - é*j‘ |3l |a«;]| cos (7r/2 — 0(52) — 3arcsin (§m ™! _1/3)), which is
at most |3, |34 - 2m ™73 < |lay| lasj| - 2m~tn~Y/3 for a small enough . Note that

3t
Zp 10pilpj = 3, - 3,

Apply Lemma 5.4(iii) with ¢ = m to show that the relation ’||a*i|\2 - m#ﬁnfg?‘ <
mnz/%%? + O(no?*e*) holds with probability 1 — O(n~/?). Thus, > =1 az; = [lal® >
2| (1 = jn=1/%) > ﬁn@252—10(é+2) n*/3 g%~ (m1+ 2) n?/3g%e? (1+2) 3%~ O(ng?e").
Also, 3 e, m]\{i}|zz 1 Qpilipj| = 2 jellm] \{‘}‘a*i' W] < 2o jeltm\{i} Ha*zH [asj]|- 3m~tn /3 <
(m—1)- (10(m+2)”9 5 +O(n9254)) SAmTIn T8 < % (1 L n?/39?e? 4 O(n?/3g%*). Hence,

With probablhty 1—0O(n~'/3), the minimum eigenvalue of ALL LY AT is greater than or equal to
m+2ng g2 — ﬁ (110 + % + 4—10 + ;—(1]) no’e? — O(no?et) = f—on,gzez — O(ng?¢e*) which is Q(no?c?)

for a small enough . Hl

We are now ready to bound the eigenvalues of HH*—the main result of this section.

Lemma 7.10 If € is sufficiently small, then with probability 1 — O(n_l/g), the m largest eigen-
values of HH! are ©(ng?e? /X2, 1) and the d—m smallest eigenvalues of HH' are O(ng** /A2, ).

Proof. By Lemma 7.4, we can rotate R? so that the coordinate axes x1,...,%,, span T.
Partition HH? into blocks using Hr and Hy:

S <HTH% HTHgtV>
HNHT HNHN
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We apply the generalization of the Gershgorin circle theorem [13]. Let G be the set of all
real numbers g such that (||(HpHL — ply,) 7)™ < |[HpHY ||, and let G be the set of all real
numbers g such that (||(HyHY — pla—m) 7)™ < [[HAHE

By (6.2) and (6.3), the numbers in Gy are at least the minimum eigenvalue value of H, HY.
minus ||HpHY/| and at most the maximum eigenvalue value of HpH% plus |[HpHY||. If € is
small enough, the numbers in Gy are ©(ng??/A2, . ) with probability 1 — O(n _1/3) because
Lemmas 7.5 and 7.9 imply that, with probability 1 — O(n -1/ 3), the eigenvalues of H,H. are

©(no?e? /A2, 1), which dominates [H HY | < [[Hz| [[Hy|| = O(ng®e* /X2, L)

By (6.3), the numbers in G2 are at most the maximum eigenvalue value of HyHY, plus
[HyH%[. If € is small enough, the numbers in Gy are O(ng**/AZ, ) with probability 1 —
O(n~1/3) because Lemmas 7.5 and 7.9 imply that, with probability 1 — O(n=1/3), [[Hy HY || =
[Hx[12 = O(ng?e® /22, ) and [HyHy| < [Hall [Hrll = Olne®t/32, ).

As a result, if € is small enough, then with probability 1 — O(n~1/3), all numbers in Gy are
smaller than those in G;. By Lemma 6.1, the disjointness of G; and G5 implies that G; and
G contain exactly m and d—m eigenvalues of HH, respectively. Hence, the lemma follows. H]

8 Proof of Lemma 2.1

Let S be a set of sample points in M. Without loss of generality, we assume that the origin is
a sample point in S. We require S to satisfy the condition that the distance between the origin
and its (n+ 1)-th nearest sample point is at most pe for some sufficiently small € € (0, 9] where
g0 is the constant in Lemma 5.1. We rotate R? so that the coordinate axes x1, ..., x,, span the
tangent space T of M at the origin. By Lemma 6.2, this does not change the singular values
of B.

Let E denote the event that Ay, 41 = 0 and there exists ¢ € [1,n] such that a,j # 0 for some
k € [m+1,d]. Our goal is to prove that Pr(E) = O(n~/3). Then, it holds with probability
1—O(n~'/3) that if Apg41 = 0, we have a,; = 0 for all p € [1,n] and for all i € [m +1,d], and
so Lemma 2.1 is true.

By Lemma 6.3, it holds with probability 1—O(n~1/3) that the eigenvalues of BY By are at
least cono*e?* and at most cinpe* for some constants cg and ¢;. The proof of Lemma 6.3 reveals
that co and ¢; are polynomlals in m. Let F denote the event that the eigenvalues of BY..B
lie between cono*e? and cyno*e*. The probability Pr(E) can be split up into the following sum:

Pr(E|F) - Pr(F) + Pr(E|-F) - Pr(—F).

The second term is O(n~/3) because Pr(—=F) = O(n~'/3) by Lemma 6.3. We show that
Pr(E|F) = 0 below. From now on, we assume that the condition F' holds.

When the event £ happens, Apy+1 = 0 and there exists index ¢ € [1,n] such that ag; # 0
for some k € [m + 1,d]. By swapping coordinate axes if necessary, we can further assume that
agm+1 7 0. Let Cy 77 denote the matrix obtained by deleting the row in Bpp for a;. Since
n > mgo + 1, there are at least mg rows in C, 7r. We claim that C, 77 has rank mg, provided
that n > comg. Otherwise, the smallest eigenvalue of C;TTCq?TT is zero, which implies that
there is a unit direction u € R™° that is orthogonal to every row vector of C, 7. Since every
coordinate of a; has magnitude at most ge, the projection of the row for a; in By onto u has
a squared length at most mgo*e?*. Therefore, if we project the row vectors of Bpp onto u, the
sum of the squared lengths of the prOJectlons is at most moo*e*, which implies that the smallest
eigenvalue of Bl.;B is at most moo*e* < conple?, a contradlctlon to the condition F'.

Let C,; denote the matrix obtained from B by removing the row for a,. Since C 77 is a
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submatrix of C; which is in turn a submatrix of B, we have
mo = rank(Cq ) < rank(Cy) < rank(B).

Since Apy+1 = 0, the rank of B is at most mg, and so rank(B) > rank(C, 77) = mo implies that
rank(B) = mg. This allows us to conclude that C, has rank my.

Since rank(B) = my, the column space of B has rank mg, which implies that every column
in B is a linear combination of the columns of Bpr7. Therefore, there exist coefficients g;;’s such
that )

2
Vpe [1, TL], \ﬁapm_ﬂ = Z Gij OpiQpj - (81)
i<j€E[l,m]
Since n > mg + 1, there are mg coefficients g;;’s, and C; has rank my, the coefficients g;;’s are
completely determined by the following smaller system:

1
Vpe [1,71] \ {Q}v \@ pm+1 Z 9ij ApiQp; - (82)
i<j€(l,m]

In other words, when E happens under condition F', the coefficients g;;’s are determined
irrespective of the coordinates of a; and yet a, must satisfy (8.1). We can interpret (8.1) as
saying that the sample points a,, p € [1,n], lie in the following hypersurface:

H(x) = \/ﬁ 221 — Z gijrix; = 0. (8.3)

i<je(L,m]

Both the hypersurface H(x) = 0 and M contain the origin. Let L denote the linear subspace
spanned by axes x1,...,Zm+1. The intersection of L and the hypersurface H(x) = 0 is a conic
surface, and this can be seen as follows. Recall that the axes x1,...,z,, span the true tangent
space T of M at the origin. Take any unit vector u € 7 that makes an angle 6; with the axis
x; for i € [1,m]. For any ¢ € R, the z,,+1 coordinate of the point in the hypersurface H(x) =0
that projects to the point cu € T can be written as

$3n+1 = Z \@gijcos&cos@j 2
i<jel,m]
1/2
= Tpy1 = =+ Z V'2gi; cos 0; cos ) c. (8.4)
i<j€[l,m]

Therefore, the cross-section of H(x) = 0 in the plane spanned by u and the axis x,,+1 consists
of two lines through the origin with slopes of the same magnitude but opposite signs.

Recall the coordinate function f,, 41 : R™ — R for M such that, given a point (z1 ... x4)! €
M, we have T, 11 = fmar1((x1 ... 2p)Y) in a local neighborhood of the origin. We can choose
the constant £g in Lemma 5.1 so that peg is at most the radius of this local neighborhood. Also,
recall that the Taylor expansion of fy,+1 does not have a constant or a linear term, that is,

2
VueER™ VeeR, fryi(cu)= %szg\o(u,u) T (8.5)
We claim that the set of points K = {x € M : zp41 # 0 A H(x) = 0} has measure zero.

Suppose not. Then, there exists a unit vector v = (vy ... v,)" € T such that the intersection
between K and the plane spanned by v and the coordinate axis z,,+1 consists of some curve
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segment(s) of positive length. By the definition of I, fi,,+1 is not identically zero along the
directions v and —v. Then, since (8.4) is a linear equation, it can only agree with (8.5) at
isolated values of ¢ after we substitute u by v. This is a contradiction to the existence of curve
segment(s) of positive length in the intersection of K and the plane spanned by v and the axis
Tm+1- We conclude that K has measure zero. It follows that the probability of drawing the
sample point a, from K is zero, which implies that Pr(E|F) = 0.

In summary, Pr(E|F) - Pr(F) + Pr(E|-F) - Pr(-F) = O(n~'/3), completing the proof of
Lemma 2.1.

9 Proof of Theorem 1.1

By Lemma 7.4, we can assume that R? has been rotated so that the coordinate axes x1, ..., Zn
. . H
span the tangent space T of M at the origin. Then, we can partition H = HT .
N

We call TANGENT(A). If Apy4+1 = 0, then Lemma 2.1 implies that, with probability 1 —
O(nfl/ 3), the estimated tangent space is equal to 7, and therefore, there is no angular error.

Assume that A\,,+1 > 0 for the rest of the proof. Then, the estimated tangent space is
spanned by the unit eigenvectors corresponding to the m largest eigenvalues of A/LY LA = HH?.
Let e be one of these m unit eigenvectors. Divide e into two parts (vt Wt)t, where v consists
of the first m coordinates and w consists of the last d — m coordinates. Let o be the eigenvalue
of HH? corresponding to e. Then,

e HTHtT HTH}tV vy v
HH'e = <HNH§F HNH§V N e (9.1)

We want to bound arctan(|lw||/[|v]|), the angle between e and 7.

We first show that v # 0,,, 1 with probability 1—-0(n='/3). Suppose that v = Om,1 - By (9.1),
we get HyHiyw = ow, meaning that o is also an eigenvalue of HyHY, in addition to being
one of the m largest eigenvalues of HH!. This occurs with probability O(nfl/ 3) because, with
probability 1—0O(n~1/3), the m largest eigenvalues of HH! are ©(no*? /A2, ;1) by Lemma 7.10,
but the eigenvalues of HyHYy are O(ng®c%/A2, ;) by Lemma 7.5.

Assume that v is non-zero. By (9.1), w = (ald_m — HNH'§V)_1 HyH%v. By Lemmas 7.5
and 7.9, it holds with probability 1 —O(n~/3) that [|[HyHL|| < |[Hy |l [Hz| = O(no*e* /A%, 41)-
By Lemmas 7.5 and 7.10, it holds with probability 1 — O(n~'/3) that the eigenvalues of H ~HY
are O(ng®c®/X2, 1) and 0 = ©(ng*?/A2, ;). The smallest eigenvalue of olg_,, — HyHY,
is thus ©(ne?e?/A2, 1), implying that [[(clg—m — HyHY) 7 = O(\2, L1/ (no*?)). Hence,
Iwl < |[(olg—m — HyHA) Y| - [[HyHE | - IVl = O(e?) - |Ilv]l. The angle between e and T is
arctan(|w]/|V]) = O(2).

We conclude that, with probability at least 1 —m-O(n~1/3) = 1—O(n~1/3), all eigenvectors
corresponding to the m largest eigenvalues of HH? make an O(¢?) angle with 7. Let (U V) be
a d x d orthonormal matrix such that the columns of V form an orthonormal basis of 7. This
implies that, with probability 1 — O(nil/ 3), all eigenvectors corresponding to the m largest
eigenvalues of HH! make an O(£?) angle with the column space of V and hence an 7/2 — O(g?)
angle with the column space of U. Then, Lemma 7.2 implies that /m - O(¢?) = O(g?) is an
upper bound on the angle between T and the space spanned by the eigenvectors corresponding
to the m largest eigenvalues of HH.
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10 Conclusion

We present an algorithm for estimating tangent spaces from a given set of sample points in
an unknown manifold. The algorithm works locally and uses the n sample points nearest to
p. The distance from p to the (n + 1)-th nearest sample point can be expressed as pe, where
e € (0,1) and p is the local feature size at p. (The algorithm does not need to know p though.)
When we fix n, the value € decreases as sampling density increases. Assuming that the sample
points are distributed according to a Poisson process with an unknown parameter, our algorithm
guarantees an O(¢?) bound on the angular error with high probability. The quadratic angular
error convergence has been confirmed in our experiments.

The angular error bounds in [2, 10, 11, 15, 26] hold for all sample points. Our O(g?) angular
error bound applies to the center of a local neighborhood in which the sample points are used
to estimate the tangent space at the center. One should be able to extend our result so that it
applies simultaneously to centers of disjoint neighborhoods by restricting the range of e further
and estimating the failure probability using the union bound. Further work is needed to see if
our angular error bound can be guaranteed at all sample points.

Our algorithm assumes that the manifold dimension m is known to us. The results in
Section 6 show that the largest (m;r 1) eigenvalues of B'B are ©(ng*c*) and the other eigenvalues
are O(no*e%). Therefore, one should be able to determine the manifold dimension automatically
by detecting this Q(e?) factor gap in the eigenvalues. This approach of finding gaps in the
spectrum of eigenvalues has been used in several previous work on detecting manifold dimension.

One may wonder what happens if we omit the conversion of B to B in practice. This is
%%, ey é Y
values of B. We experimented with this alternative method. While this method performs
reasonably in the noiseless case, it fails badly in the noisy cases. So the conversion of B
to B makes a real difference. There is also the possibility that Ap,,+1 is positive but close
to zero. In that case, although the theoretical analysis holds, there will be numerical issues

%, e ,/\%, 2 L ..., /\21 > Therefore, some thresholding of the
1 mQ mp+1 mg+1

singular values may be necessary for numerical stability.

equivalent to defining ¥ as diag, (%, where Ay > Ao > ... > A, are the singular
1

in forming ¥ = diag,
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