
In-Memory Fuzzing for Binary Code Similarity
Analysis

Shuai Wang and Dinghao Wu
The Pennsylvania State University
University Park, PA 16802, USA
{szw175, dwu}@ist.psu.edu

Abstract—Detecting similar functions in binary executables
serves as a foundation for many binary code analysis and reuse
tasks. By far, recognizing similar components in binary code
remains a challenge. Existing research employs either static or
dynamic approaches to capture program syntax or semantics-
level features for comparison. However, there exist multiple
design limitations in previous work, which result in relatively
high cost, low accuracy and scalability, and thus severely impede
their practical use.

In this paper, we present a novel method that leverages in-
memory fuzzing for binary code similarity analysis. Our proto-
type tool IMF-SIM applies in-memory fuzzing to launch analysis
towards every function and collect traces of different kinds of
program behaviors. The similarity score of two behavior traces
is computed according to their longest common subsequence.
To compare two functions, a feature vector is generated, whose
elements are the similarity scores of the behavior trace-level
comparisons. We train a machine learning model through labeled
feature vectors; later, for a given feature vector by comparing
two functions, the trained model gives a final score, representing
the similarity score of the two functions. We evaluate IMF-SIM
against binaries compiled by different compilers, optimizations,
and commonly-used obfuscation methods, in total over one
thousand binary executables. Our evaluation shows that IMF-
SIM notably outperforms existing tools with higher accuracy and
broader application scopes.

Index Terms—in-memory fuzzing; code similarity; reverse
engineering; taint analysis;

I. INTRODUCTION

Determining the similarity between two components of
binary code is critical in binary program analysis and security
tasks. For example, binary code clone detection identifies
potential code duplication or plagiarism by analyzing the
similarities of two binary components [57], [50]. Patch-based
exploitation compares the pre-patch and post-patch binaries to
reveal hidden vulnerabilities fixed by the patch [11]. Malware
research analyzes similarities among different malware sam-
ples to reveal malware clusters or lineage relations [8], [36].

So far, a number of binary similarity analysis tools have
been developed with different techniques. The de facto in-
dustrial standard tool BINDIFF identifies similar functions
mostly through graph isomorphism comparison [20], [23].
This algorithm detects similar functions by comparing the
control flow and call graphs. Moreover, recent research work
proposes advanced techniques to identify the hidden similari-
ties regarding program semantics [50], [21], [56], [15].

Given the critical role of similarity analysis in binary code,
we observe several weaknesses in existing research. For ex-
ample, dynamic analysis-based methods usually have coverage
issues [35], [54], [59], [64], [14], which naturally impedes
their work from testing every function in binary code. Typical

static methods can test any program component, but they may
suffer from real-world challenging settings such as compiler
optimizations or program obfuscations [20], [23], [57], [19].
To overcome such limitations, we propose IMF-SIM, which
leverages in-memory fuzzing to solve the coverage issue and
reveal similarities between two binary code components even
in front of real-world challenging settings.

Fuzz testing, or fuzzing, is a widely-used software testing
technique that exercises a program by providing invalid or
random data as inputs. Compared with traditional testing
techniques, where a single input is used to test one execution
trace, fuzzing can largely improve the code coverage and
increase the chances of exposing hidden bugs. Despite its
simplicity in the concept, fuzz testing is proven as robust
and effective in the real-world settings and is widely used for
software testing [24], [51], [32], [31], [26], [62]. While most
standard fuzz testing mutates the program inputs, we have
noticed a special fuzzing technique that is designed to directly
fuzz the content of assembly registers or memory cells, i.e.,
in-memory fuzzing (Chapters 19 and 20 in [61]). In-memory
fuzzing can start one fuzzing execution at any program point.
While most testing techniques suffer from generating proper
inputs to reach certain program points, in-memory fuzzing can
start at the beginning of any instruction. Hence, every program
component becomes testable.

While fuzzing technique is originally proposed for software
testing, we observe that rich information regarding the pro-
gram runtime behavior is indeed revealable during fuzzing
without additional efforts. That means, semantics-based sim-
ilarity analysis shall be boosted through well-designed fuzz
testing. To this end, we propose IMF-SIM, a fuzzing based
similarity analysis tool that overcomes multiple design limi-
tations of existing research (details are discussed in §II) with
higher accuracy and broader application scopes. In particular,
IMF-SIM leverages in-memory fuzzing to launch dynamic
testing towards every function for multiple iterations and
records program runtime behaviors. We collect different kinds
of program behaviors (referred as behavior traces in this pa-
per) for each function, and behavior traces from two functions
are compared through their longest common subsequence. For
each comparison pair of two functions, we generate a vector
including the Jaccard index rates (the Jaccard index rate of
two behavior traces is derived from their longest common
subsequence) of the behavior trace-level comparisons, and we
then label sample vectors to train a machine learning model.
Later, given a vector by comparing two functions, the trained
model provides a similarity score.



The main contributions of this paper are as follows.
• We identify design limitations of existing research in sim-

ilarity analysis of binary components, and propose IMF-
SIM, a novel method that uses fuzz testing techniques for
function-level similarity analysis in binary code.

• IMF-SIM employs the in-memory fuzzing technique,
which is originally designed for assembly-level testing.
We propose several advanced methods to overcome the
unique challenges and reveal the hidden power of the
fuzzing technique in our new context.

• Benefit from its runtime behavior based comparison,
IMF-SIM is effectively resilient to challenges from dif-
ferent compilers, optimizations, and even commonly-used
program obfuscations. We evaluate IMF-SIM on over one
thousand widely-used binaries produced by various com-
pilation and obfuscation settings. Our evaluation shows
that IMF-SIM has promising performance regarding all
the settings and outperforms the state-of-the-art tools.

II. MOTIVATION

In this section, we summarize the limitations of previous
binary code similarity analysis work and also highlight the
motivation of our research. We discuss the design choices of
existing work in multiple aspects here.
Dynamic Analysis. Many program runtime behaviors, such
as memory accesses, function calls, and program return val-
ues, are descriptors of program semantics to some extent.
Some existing work leverages dynamic analysis and software
birthmarks for (function-level) similarity analysis [54], [59],
[64], [38], [14], [37], [35]. However, an obvious issue for
existing dynamic analysis is the potential low coverage of
test targets (e.g., functions). Theoretically, generating program
inputs to guarantee the reachability of every code component is
an undecidable problem. That means, those existing dynamic
tools are in general unable to analyze all the functions in
binary executables, which drastically limits its application
scope. Although Concolic testing techniques can improve the
coverage [13], [30]; however, most of these techniques suffer
from scalability issues on large programs.
Static Analysis. Static similarity analysis can start from any
program point and fully cover every test target, which is,
on this aspect, better than dynamic techniques [53], [50],
[49], [22], [56], [15], [65], [52]. Indeed, many recent work
in this field leverages symbolic execution techniques to re-
trieve program semantics. By leveraging constraint solvers,
semantics equivalent program components are identifiable in
a rigorous way. However, static analysis can have limited
capabilities for real-world programs, such as complex control
flows (e.g., opaque predicates [45]), libraries, or system calls.
In addition, similarity analysis through constraint solving may
have noticeable performance penalty [50].

Our proposed technique, IMF-SIM, is derived from typical
dynamic testing techniques with concrete inputs. Thus, com-
mon challenges for static analysis should not be obstacles
for our technique. Moreover, to solve the code coverage
issue of previous dynamic tools, IMF-SIM leverages a unique
fuzzing paradigm, in-memory fuzzing [61], to launch the
execution at the beginning of every test target. Furthermore,
fuzz testing naturally improves the code coverage within each

test component, as it mutates the inputs for iterations and aims
to exhaust execution paths in a best effort.
Program Syntax Information. To balance the cost and accu-
racy, many static analysis-based techniques capture relatively
“light-weight” features, such as the number of instructions,
opcode sequences, and control flow graph information [34],
[22], [20], [23]. However, note that one major application of
binary code similarity analysis is for malware study. Thus,
to better understand the strength and weakness of similarity
testing tools, we should consider commonly-used obfusca-
tion techniques as well. Typical obfuscations are designed
to change the program syntax and evade the similarity anal-
ysis [45]. As a result, syntax-based techniques can become
inefficient in the presence of obfuscations. However, as IMF-
SIM leverages dynamic analysis to collect program runtime
behaviors, commonly-used obfuscations should not impede it.
We evaluate IMF-SIM on three widely-used program obfus-
cations, and it shows promising results in all the settings.

III. IMF-SIM

We now outline the design of IMF-SIM. The overall work-
flow is shown in Fig. 1. To compare two functions in two
binary executables, we first launch in-memory fuzzing to
execute the functions for iterations, and record multiple kinds
of behavior traces (§III-A). The central challenge at this step
is the lack of data type information. For example, we have no
pre-knowledge on whether a function parameter is of value or
pointer type, and misuse of a non-pointer data as a pointer can
lead to memory access (pointer dereference) errors. To address
this issue, we propose to use backward taint analysis to recover
the “root” of a pointer data flow whenever a dereference
error occurs on this pointer. Later, we re-execute the function
and update the recovered dataflow root (e.g., an input of the
function) with a valid pointer value (§III-B).

After collecting behavior traces for each fuzzing iteration
(third column in Fig. 1), we then concatenate behavior traces
of the same kind (e.g., behavior traces representing heap
memory accesses) to build the final behavior traces, each of
which records one type of runtime behavior through multiple
fuzzing iterations. To compare two functions, two behavior
traces of the same kind are used to calculate a Jaccard index
rate (§III-C); the Jaccard index rates of all the behavior traces
are gathered to form one numeric vector for two functions. We
label sample vectors according to the ground truth and train a
machine learning model (§III-D). Later, for a given vector of
two functions, the trained model can yield a similarity score.
For a given function f1 in binary bin1, to find its matched
function in bin2, we compare f1 against every function in
bin2, and take the sorted top one matching as the final result.

IMF-SIM consists of four modules, namely the fuzzing
module, taint analysis module, similarity analysis module, and
machine learning module. The in-memory fuzzing module of
IMF-SIM is built on top of Pin, a widely-used dynamic binary
instrumentation tool [48]. We develop a plugin of Pin (i.e., a
PinTool) for the in-memory fuzzing functionality. This module
consists of over 1,900 lines of C++ code. The other three
modules are all written in Python, consisting of over 4,700
lines of code.
Scope and Limitations. IMF-SIM is mainly designed for
similarity testing among binary components. Although in this



Target function

Foo:
mov %rdi,%rcx
cmp %rsi,$0x10
je l
add %rax,%rbx
...

l:
mov %r12d,%edx
mov $0xff,%rcx
...

In-Memory Fuzzing

Foo:
mov %rdi,%rcx
cmp %rsi,$0x10
je l
add %rax,%rbx
...

l:
mov %r12d,%edx
mov $0xff,%rcx
...

rdi
=0x

0;
rsi

=0x
0

..
..

..

rdi=0x0; rsi=0xffrdi=0x0; rsi=0x1fe

Foo:
mov %rdi,%rcx
cmp %rsi,$0x10
je l
add %rax,%rbx
...

l:
mov %r12d,%edx
mov $0xff,%rcx
...

rdi=0x0; rsi=0x8f7

Program Behaviors

HeapRead: 0x12;0x34;...
HeapWrite: 0x01;0x23;...
Return: 0x00;
...

..
..

..

HeapRead: 0x12;0x99;...
HeapWrite: 0x01;0xff;...
Return: 0x1f;
...

Behavior Traces

HeapRead:
0x12;0x34;...
0x12;0x99;...
...

HeapWrite:
0x01;0x23;...
0x01;0xff;...
...

..
..

..

Return:
0x00;0x1f;...

concat

LCS Comparison

behavior
trace of
HeapRead

Function A

behavior
trace of
HeapRead

Function B

Feature Vector of 12 Elements

(0.83, 0.24, . . . , 0.12)

Jac
ca

rd
Ind

ex

Learning/Predication

X

  K1  K2  K3

vote

K

Fig. 1: The workflow of IMF-SIM. concat in the figure stands for “concatenation”.

research we utilize IMF-SIM to analyze the function-level
similarity, as in-memory fuzzing supports to execute any
program component (the fuzzing inputs need to be deliberately
selected regarding the context), it should be interesting to
investigate whether our technique can be used to find similar
code to an arbitrary trunk of code instead of a whole function.

IMF-SIM captures the program runtime behaviors, thus,
stripped binaries which contain no debug or program relo-
cation information are supported by IMF-SIM. Furthermore,
our evaluation shows that syntax changes due to different
compilers, optimizations or even commonly-used obfuscations
can also be analyzed without additional difficulties.

The employed dynamic analysis infrastructure, Pin, is de-
signed to instrument x86 binaries. In this work, we implement
IMF-SIM to instrument binaries on 64-bit Linux platforms
(i.e., binaries with the ELF format). It is not difficult to port
IMF-SIM to other platforms supported by Pin (e.g., Windows
or 32-bit Linux).

Naturally, users need to provide the range information (i.e.,
the starting and ending addresses) of the test function before
processing. Although the function information is indeed absent
in most stripped binaries, recent work has provided promising
results to precisely recover such information [7], [63].

A. In-Memory Fuzzing
In this section, we introduce the design of the in-memory

fuzzing module. Our fuzzing module is designed following
the common design of a fuzzer. In general, we first setup the
environment for fuzzing (§III-A1). Before each test iteration,
we mutate one input and then launch the fuzzing execution
(§III-A2). We collect the behavior traces during each fuzzing
iteration (§III-A3). After one iteration of fuzzing, we resume
from the starting point, mutate one input and launch the
next iteration until we have iterated for the predefined times
(§III-A4). We now elaborate on each step in details.

1) Environment Setup: To present a fair comparison regard-
ing program behaviors, we first create an identical environment
before the test of each function. To this end, we set all general-
purpose registers to zero and maintain a memory access map.
This map will be updated before every memory write opera-
tion; the key of each item is the memory address and the value
is the memory cell’s content before each fuzzing iteration. The

memory access map is used to reset the environment to its
original status at the end of each fuzzing iteration.

In the absence of program type information on assembly
code, it is likely to encounter memory access errors during
execution. For each invalid memory access, we use backward
taint analysis to recognize the root of the memory address
dataflow within the test function and update the root with
a valid memory address. To this end, we allocate a chunk
of (512 KB) memory (referred as v mem1) on the heap
when setting up the environment. We also initialize every
32-bit long memory cell in v mem1 with a valid memory
address that refers to a random position within v mem1; this
method guarantees most memory accesses through address
computation and (multi-level) pointer dereferences are still
valid. Since memory write could break valid pointers in
v mem1, we create another memory region (v mem2) with
the same size and intercept memory write towards v mem1.
The intercepted memory writes will be redirected to v mem2.

Note that we use the same seed to initialize the random num-
ber generator before initializing the memory chunk v mem1.
This approach guarantees the memory chunk is identical
among different testing. The pointer that refers to the middle
of this chunk is used to fix the root of an invalid memory
address data flow (§III-B).

At the program entry point, we update the value of the
instruction pointer register (i.e., rip for the 64-bit x86 ar-
chitecture); the execution flow is then redirected to the first
instruction of the target function. We then launch the above
procedure to initialize the context and memory.

2) Input Mutation: As we are focusing on analyzing the
function-level similarity, function inputs naturally serve as the
mutation targets. According to the calling convention on the
64-bit x86 architecture, caller functions use six predefined
registers to pass the first six arguments to callees. Functions
with more than six parameters use the memory stack to pass
additional arguments. IMF-SIM mutates those six predefined
registers to fuzz the first six (potential) arguments. For a
function with equal or less than six parameters, all of its inputs
are mutated by IMF-SIM. As for functions with more than six
parameters, their first six arguments are mutated.

Typically, the fuzzing process mutates program inputs ran-
domly or following certain predefined rules; both approaches



are widely adopted by fuzzers. Our implementation follows
a common approach—step fuzzing—to mutate the inputs.
Starting from zero, we increment one input with a predefined
step while preserving the others each time; the step is set as
0xff in our current prototype implementation. We mutate one
register for ten times while preserving the rest, which leads to
sixty execution iterations in total for one function.

3) Function Execution: During the process, we keep track
of multiple kinds of program behaviors; behavior information
is used for similarity comparison. In addition, to facilitate the
backward taint analysis, we also record the already executed
instructions; the context information (including the value of
every general-purpose register) of every executed instruction is
recorded as well. Whenever encountering a pointer dereference
error, this information will be dumped out as the input of our
taint analysis module (§III-B).

IMF-SIM captures various kinds of runtime behaviors. One
important design concept of IMF-SIM is that it treats the
target function as a blackbox. That means, we only capture
the interaction between the monitored function and its runtime
environment. This design choice should be more resilient
towards potential changes on the target program. For example,
compiler-optimized programs tend to use registers instead of
the memory stack to store function local variables. Hence,
monitoring of stack memory access could be impeded by
this optimization. We present the captured features as follows
(featuren is abbreviated as fn):

1) Value read from or write to the program heap (f1, f2).
2) Memory address offsets for reading the .plt.got sec-

tion (f3).
3) Memory address offsets for reading the .rodata section

(f4) .
4) Memory address offsets for reading (f5) or writing (f6)

the .data section.
5) Memory address offsets for reading (f7) or writing (f8)

the .bss section.
6) System calls made during execution (f9).
7) Memory address offsets for accessing v mem1 (f10) or

v mem2 (f11).
8) Function return value (f12).
As we intercept the memory accesses, we record the value

read from or write to the heap region, respectively (f1 and
f2). We also record memory address offsets used to access
four global data sections (for each memory access, the offset
is calculated regarding the base address of the target section).
.data and .rodata sections store global data objects,
.bss stores uninitialized objects while .plt.got section
stores routines to invoke functions in the dynamically-linked
modules. For .plt.got and rodata sections we keep track
of every memory read access as these two sections are read-
only (f3−4). We keep both read and write for other three
sections (f5−8).

Considering there could exist many zero bytes in the mem-
ory, we assume that the memory address offset is a more in-
formative feature than the visited content in a memory access.
Hence, while the concrete value read from or written to the
heap region is recorded as f1 and f2, we calculate the memory
address offsets of the visited memory cells for f3−8. Note that
heap has multiple memory allocation strategies, which could

put the same data at different places. Thus, we conservatively
employ the value instead of the offsets as features for f1 and
f2. On the other hand, as global data sections in the memory
essentially preserve the relative positions in original binary
executables, it is mostly safe to use the memory offsets as
features.

By reading the symbol tables of the input executables
(symbol tables still exist in even stripped executables to
provide “exported function” information for dynamic-linkage),
memory addresses for accessing the .plt.got section can be
mapped to dynamic-linked function names. In other words, we
have indeed recorded the invoked library functions. Besides,
system calls are recorded as well (f9). Recall we create
two special memory regions (v mem1 and v mem2) and
fix memory access errors with valid pointers towards those
regions (§III-A1). We create two features to represent memory
read and write towards them (f10 and f11).

Specified by the 64-bit x86 architecture calling convention,
callees pass the return value to the call site through register
rax. To capture potential return value, we record the value of
rax at the end of every execution (f12). In total, we collect
12 features (as shown in the third column of Fig. 1, each of
which is actually a sequence of numeric values) in this step.

4) Termination and Exceptions of One Fuzzing Iteration:
During execution, we can encounter normal exits, execution
exceptions, and even infinite loops. We rely on the following
rules to terminate the current iteration of execution.
Rule1 Function execution normally ends at return or inter-

procedural jump instructions.
Rule2 A configured timeout has expired.

The first rule identifies the normal end of a function
execution. Note that compiler may optimize return instructions
into jump instructions, so in addition to return instructions, we
also check inter-procedural jump instructions. When the target
function is inside a recursive call, we cannot immediately
terminate the execution only by the first rule. Hence, we keep
a counter to record the number of invoked target function;
the counter will be incremented every time when the target is
called and decremented when it is returned. We terminate the
fuzzing iteration only when the counter is zero.

The dynamic instrumentor we employed can register several
handling routines to receive exceptions and signals. Handling
routines check the type of exceptions; errors due to invalid
memory accesses will be fixed through backward taint analysis
(§III-B). However, given the diverse semantics of test candi-
dates, it is still possible to encounter exceptions that are hard
to fix (e.g., some library functions require the parameter to be
a valid file descriptor, which is hard to provide in our context).
To circumvent such issue, we keep track of the most-recently
executed instruction within the target function; execution will
be resumed from the next associated instruction in the target
function when encountering such exceptions.

5) Fuzzing Stop: Recall our current implementation exe-
cutes each function for sixty iterations, and at the end of each
execution, we check whether we have reached this threshold.
If not, we reset the environment, mutate one input, and re-
launch the execution at the beginning of the test function.

Since each function is fuzzed for sixty iterations, for each
type of monitored program behavior, we indeed collect sixty



1 mov %rdi,-0x8(%rbp)
2 mov $0x0,-0xc(%rbp)
3 jmp L2
4 L1:
5 mov -0x8(%rbp),%rax
6 lea 0x4(%rax),%rdx
7 mov %rdx,-0x8(%rbp)
8 mov (%rax),%eax
9 add $0x1,-0xc(%rbp)

10 cmp $0x4,-0xc(%rbp)
11 L2:
12 jle L1

C&F C&F ...

(a) In place recovery.

V_Addr
V_Addr
V_Addr
V_Addr
V_Addr
...

(b) Feature trace of memory
access.

1 mov %rdi,-0x8(%rbp)
2 mov $0x0,-0xc(%rbp)
3 jmp L2
4 L1:
5 mov -0x8(%rbp),%rax
6 lea 0x4(%rax),%rdx
7 mov %rdx,-0x8(%rbp)
8 mov (%rax),%eax
9 add $0x1,-0xc(%rbp)

10 cmp $0x4,-0xc(%rbp)
11 L2:
12 jle L1

fix

crash

(c) Root cause-oriented recovery.

V_Addr
V_Addr+4
V_Addr+8
V_Addr+12
V_Addr+16
...

(d) Feature trace of memory
access.

Fig. 2: Comparison between the in-place method and the root cause-
oriented method. The assembly instruction is in AT&T syntax. C&F
stands for “crash then fix in place”. V Addr is a valid memory
address used to fix the memory access error.

traces. Before we launch the next step analysis, we concatenate
behavior traces describing the same type of program behavior
into a long trace. That means, for each function, we finally
get 12 behavior traces for usage (as we monitor 12 features).

B. Backward Taint Analysis

As previously discussed, without program type information,
it is likely to misuse data of value type as inputs for functions
with pointer parameters. If we terminate the execution when-
ever encountering pointer dereference errors, only incomplete
behaviors will be collected.

An “in-place” strategy to solve the issue is to update the
memory access through an illegal address with a valid address;
the execution can be then resumed from the current instruction.
Despite the simplicity, this method does not solve the root
cause of memory access errors, and the collected behavior
traces can become uninformative.

Fig. 2a presents assembly code generated by compiling a
function; this function contains a loop to access every element
of an array. The base address of the array is passed in through
the first argument of the function (i.e., register rdi) and stored
onto the stack (line 1). Later, the memory address flows to
rax (line 5). Inside the loop, the base address of the array is
incremented (line 5–7) to access each memory cell (line 8).
Suppose the function argument rdi is incorrectly assigned
with data of value type. When memory access error happens
(line 8), the “in-place” method discussed above would only
update rax to facilitate the current memory access at line 8.
Memory access fails again (as the pointer on the stack is not
updated), and only memory cell “V Addr” will be accessed
and recorded for such case (Fig. 2b).

On the other hand, if we backtrack the pointer data flow to
the root and update it with a valid pointer (line 1 in Fig. 2c),
memory accesses originated from the root would not fail (line
8). More importantly, the typical memory access behavior of
a loop—incremental memory visit with a fixed step—can be
mostly revealed from the collected behavior trace (Fig. 2d).

Considering such observation, we propose to leverage back-
ward taint analysis to identify the root cause of a memory
access failure. Given a pointer dereference error, we taint the
pointer and propagate the taint backwards until reaching the
root (e.g., a function input parameter). We then re-execute the
function from the beginning, and when encountering the root,
we update it with a valid pointer. We now elaborate on each
step in details.

Given a memory access failure, the first step is to identify
the register that is supposed to provide a valid pointer (i.e., the
taint source). We leverage Pin API get base register
to get the base register of this memory access. We take the
base register as the starting point of our taint analysis.

We then dump the executed instructions. As mentioned ear-
lier, we record the context information associated with every
executed instruction (§III-A3). Here the recorded contexts are
also dumped out. The dumped instructions, contexts, and the
taint source register are the inputs of our taint analysis module.

The next step is to leverage taint analysis to identify the
taint sink (the “root cause”). Our taint analysis tool first parses
the dumped instructions into its internal representations. Then
starting from the taint source, the taint engine iterates each
instruction and propagates the taint label backwards. The taint
propagation will be stopped after we iterate all the instructions.
We then take the most-recently tainted code (which can be
either a register or a memory cell) as the sink point.

The taint module follows the common design of a taint anal-
ysis tool. We create a 64-bit bit vector for each 64-bit register.
As registers are represented by bit vectors, tainting is indeed
on the bit-level. This bit-level tainting guarantees operations
on (small length) registers can also access and propagate the
taint. To record taint propagation through memory cells, our
taint engine keeps a lookup table; each element in the lookup
table is a memory address, indicating the referred memory cell
is tainted. Tainting operation will insert new elements into this
table, while untainting will delete the corresponding entry.

As we perform static analysis on the execution traces
(straight-line code), the taint analysis is actually quite efficient.
In addition, before analyzing each instruction, our taint engine
updates registers with concrete values acquired from the con-
text information associated with the current instruction. That
means, even for memory read/write operations with composite
addressing, we know exactly what the memory address is.
Approximations made by most static analysis are not needed.

Table I shows the propagation rules adopted in our work.
Six potential backward taint flows are summarized in Table I,
and our current policy propagates taint for the first one. When
the left variable of an assignment instruction has taint (Policy
1 in Table I), we assume the taint is from the right variable.
Thus, we propagate the taint to the right value (could be a
register or memory cell) and remove the taint on the left value.
Besides this case, we conservatively keep the taint without any
propagation.



TABLE I: Taint flows under different conditions and their correspond-
ing backward propagation rules.

Policy Instruction Is t Is u Taint PolicyTainted? Tainted?
1 t = u X 5 ι(u); ζ(t)
2 t = u 5 X
3 t = u X X
4 t = t � u X 5
5 t = t � u 5 X
6 t = t � u X X

Symbol t and u stand for register, memory access or constant data. � denotes arithmetic
or logic operators. ι(b) taints b, while ζ(b) removes the existing taint label from b.

After the taint analysis is complete, we return the discovered
sink to the fuzzing module. There could exist multiple memory
access errors during the execution of one function, each of
which originates from a different taint sink. Thus, the fuzzing
module keeps a list of all the identified taint sinks, and fixes
encountered sink points by checking the list.

C. Longest Common Subsequence
As presented earlier, we acquire multiple behavior traces by

fuzzing a function. To analyze the similarity of two functions,
we compare each behavior trace of the same kind. In particular,
we utilize the Longest Common Subsequence (LCS) algorithm
to calculate the similarity among two traces. The longest com-
mon subsequence problem identifies the longest subsequence
that appears in all sequences. We note that since LCS allows
skipping non-matching elements, it naturally tolerates diverse
or noise on the behavior traces due to program optimizations
or even obfuscations.

To facilitate further “learning” step, we seek to create
numeric comparison outputs. Thus, instead of directly using
the common subsequence, a Jaccard index is derived from the
LCS of two traces. The calculated Jaccard index is a numeric
value ranging from 0 to 1. Thus, to compare two functions,
we build a numeric vector including Jaccard indices of all the
recorded features.
Jaccard Index. Given two behavior traces (T1 and T2), the
Jaccard index is calculated in the following way:

J(T1, T2) =
|T1 ∩ T2|
|T1 ∪ T2|

=
|T1 ∩ T2|

|T1|+ |T2| − |T1 ∩ T2|
The |T1 ∩ T2| is the length of LCS between T1 and T2, while
|T1|, |T2| represent the length of T1 and T2, respectively.
The J(T1, T2) is a numeric value ranging from 0 to 1; two
sequences are considered more similar when the Jaccard index
is closer to 1.

As numeric vectors built in this step describe the similarity
of two functions regarding different program behaviors, each
element in the vector is indeed a “feature” in the comparison.
Thus, we denote these vectors as “feature vectors” following
the common sense.

D. Training
After collecting feature vectors, we train a machine learning

model for prediction. Later, for a feature vector from the
comparison of two functions, the trained model yields a
probability score (range from 0 to 1) showing the possibility
that two functions are matched.

In this research, we choose to train a tree-based model (i.e.,
Extra-Trees [28]) for prediction. Comparing with kernel-based

models (e.g., SVM [33]) or neural network based models,
tree-based models do not assume the underlying distributions
(e.g., Gaussian) of the data set and are considered more un-
derstandable for human beings. Tree-based model essentially
trains a set of decision trees on sub-samples and leverages
a voting process on top of the decision trees for the final
results [58]. While the well-known tree-based model, i.e.,
Random-Forest [10], uses several optimizations in construct-
ing decision trees, Extra-Trees makes them at random. Our
tentative test shows that Random-Forest model can be trapped
in over-fitting (e.g., good performance on training sets while
worse on test sets), and we consider the over-fitting is mostly
due to its optimizations. However, without further information
to solve this issue, we choose Extra-Trees in our research
regarding its more generalized settings. Besides, without the
optimizations, Extra-Trees usually has a shorter training time.

We leverage the Python machine learning library sklearn for
the model training process [55]. Although the trained model
is usually used for a binary-prediction problem, i.e., given a
feature vector by comparing two functions, it yields whether
they are matched (1) or not (0), we use the trained model in a
slightly different way. That is, we configure the model to return
a probability score (i.e., the similarity score) for each input
vector, indicating the possibility to label this vector as one
(i.e., two functions are matched). As for the parameters, we
set the number of estimators (i.e., number of decision trees) as
100 which leads a time/accuracy trade-off, and use the default
value for all the other parameters.

Before the training process, we first label the feature vectors.
A feature vector is labeled as a positive sample when it is
produced by comparing functions that are supposed to be
matched. Such ground truth is acquired by comparing the
function name; we assume two functions are similar only if
they have the same name. (we introduce how we get such
ground truth for our evaluation in §IV). We label the rest as
negative samples. We also balance the positive and negative
training samples before training. Further discussions on the
applicability of our machine learning-based approach will be
presented in §V.

IV. EVALUATION

We now present the evaluation in this research. There are
12 features recorded along the analysis (§III-A3), and our
first evaluation studies the importance of each captured feature
regarding our predication task. We then launch a standard ten-
fold validation towards IMF-SIM; binaries produced by nine
different compilation settings are tested. The second step is
cross-compiler validation; we launch experiments regarding
six cross-compiler settings. In the third step evaluation, we
validate IMF-SIM by comparing normal binary code and their
obfuscated versions. Note that both second and third step
evaluations are cross-model validations. That is, we train the
model with data used in step one, and verify the trained
model with new data produced for experiments in step two and
three. This cross-model validation step is necessary as when
deploying in real world scenarios, IMF-SIM is supposed to
train with standard training sets (e.g. data used in step one)
and do prediction towards binaries from various compilation
and event obfuscation settings (typical cases are tested in step
two and three). We present further discussion in §V.



Similar with previous research [21], [35], [22], we measure
the performance of IMF-SIM regarding its accuracy, i.e., the
percentage of correctly matched functions.1 For a function f1
in binary bin1, we iteratively compare it with functions in
binary bin2 and take the comparison pair with the highest sim-
ilarity score (i.e., rank-one) as the matched pair. In addition,
we also evaluate whether a function can find its correct match
when checking the top three and five function pairs (rank-three
and rank-five). It is reasonable to assume experts can further
identify the correct match with acceptable amount of efforts
given three or five function pair candidates. Moreover, there
could exist several comparisons that have equivalent similar
rates, e.g., the similar rate of rank-6 and rank-5 is equal to
0.720. However, we do not consider such possibility and only
take the first N (N is 3 or 5) matches for consideration. We now
introduce the data set and the ground truth in the evaluation.
Data Set. We employ a widely-used program set—GNU
coreutils—as the data set in our research. coreutils
(version 8.21) consists of 106 binaries which provide diverse
functionalities such as textual processing and system manage-
ment. We rule out binaries with destructive semantics (e.g.,
rm), which leads to 94 remaining programs.

As previously mentioned, we compare normal binary
code with their obfuscated versions. We employ a widely-
used obfuscator (Obfuscator-LLVM [43]) in our evaluation
(Obfuscator-LLVM is referred as OLLVM later). OLLVM is a
set of obfuscation passes implemented inside llvm compiler
suite [46], which provides three obfuscation methods, i.e.,
instruction substitution [16], bogus control flow (i.e., opaque
control-flow predicate [17]), and control-flow flattening [45].
All of these methods are broadly-used in program obfuscation.
We leverage all the implemented methods to produce binaries
with complex structures. In summary, our data set consists of
three variables, leading to 1,140 unique binaries in total:

Compiler. We use GNU gcc 4.7.2, Intel icc 14.0.1 and
llvm 3.6 to compile programs.

Optimization Level. We test three commonly-used com-
piler optimization settings, i.e., -O0, -O2 and -O3.

Obfuscation Methods. we test program binaries obfuscated
by three commonly-used methods, which are provided by
Obfuscator-LLVM (version 3.6.1).
Comparison with Existing Work. We compare IMF-SIM
with the state-of-the-art research work BinGo [15] and Blanket
Execution (i.e., BLEX) [21] that deliver function-level sim-
ilarity analysis. Both research work employ coreutils as
the dataset in the evaluation. We compare IMF-SIM with them
by directly using data provided in their paper (Table V).

We also compare IMF-SIM with the industrial standard
binary diffing tool BINDIFF [2]. BLEX and BINGO are also
compared with BINDIFF in their paper. We use BINDIFF
(v4.2.0) to evaluate all the experiment settings (Table III,
Table IV, Table VI). Benefit from well-designed graph iso-
morphism comparisons [20], [23], BINDIFF is also stated as
resilient towards different compilers and optimizations [3].
Ground Truth. Although our technique itself does not rely
on the debug and symbol information inside the binary exe-
cutables, we compile the test programs with debug symbols

1Same with previous research, we use accuracy instead of precision/recall
rate for the evaluation. Note that “accuracy” is not equal to precision.

TABLE II: Feature importance evaluation. The definition of each
feature is presented in §III-A3.

feature importance feature importance feature importance
f1 0.061 f2 0.140 f3 0.103
f4 0.036 f5 0.096 f6 0.015
f7 0.082 f8 0.058 f9 0.137
f10 0.149 f11 0.053 f12 0.070

TABLE III: Ten-fold validation on the similarity score of
coreutils binaries in terms of different compilation settings.
Comparison results with three ranks are provided. We also evaluate
BINDIFF with same settings.

rank-one rank-three rank-five BINDIFF
gcc -O0 vs. gcc -O3 0.704 0.813 0.846 0.192
gcc -O2 vs. gcc -O3 0.895 0.955 0.962 0.780
icc -O0 vs. icc -O3 0.702 0.763 0.796 0.216
icc -O2 vs. icc -O3 0.971 0.984 0.985 1.00
llvm -O0 vs. llvm -O3 0.775 0.842 0.864 0.285
llvm -O2 vs. llvm -O3 0.973 0.993 0.994 0.996
average 0.837 0.892 0.908 0.578

to get the function information. Particularly, we disassemble
the binary code with a disassembler (objdump [1]), and
then read the function name and range information from
the disassembled outputs. The ground truth in our work is
acquired by comparing the function names. Two functions
are considered matching only if they have the same name.
Besides, the range (starting and ending memory addresses) of
each function serves as the input of IMF-SIM.

A. Feature Importance

We first evaluate the importance of each feature we cap-
tured. That is, we try to answer the question that with respect
to different features, how much does each feature contribute to
the overall effectiveness of IMF-SIM. The machine learning
model implementation (sklearn [55]) provides standard APIs
to acquire such data [5].

To this end, we fit our model with all the test samples, and
present the importance of each feature. The results are shown
in Table II. In general, four features have the importance of
over 10%, and eleven features over 5%. The only outlier (f6)
is memory writes towards the global data section, which has an
importance of 1.5%. Overall, our evaluation shows that most
of the features have noticeable importances, and we interpret
our feature selection step (§III-A3) as reasonable.

B. Ten-Fold Validation

In this section, we perform a standard approach, i.e., ten-
fold cross validation, to test the performance of IMF-SIM. In
general, this validation divides the total data set into 10 subsets
and tests each subset with the model trained by the remaining
9. In this step, binary code produced by nine compilation
settings are employed. Table III presents the evaluation results
of three ranks, respectively. The accuracy rate represents the
average of the 10 tests. Even through we train the model
with data of six different comparison settings together, we
separately verify the trained model regarding test data of each
setting, leading to six categories.

On average, IMF-SIM has over 83% rank-one similarity
score, and the accuracy rate goes to over 90% regarding the
rank-five matches. The evaluation data shows that compiler
optimizations indeed affect the performance. On the other



TABLE IV: Cross-compiler validation.

rank-one rank-three rank-five BINDIFF
gcc -O0 vs. icc -O3 0.634 0.721 0.772 0.187
gcc -O0 vs. llvm -O3 0.660 0.761 0.800 0.199
icc -O0 vs. gcc -O3 0.569 0.682 0.714 0.173
icc -O0 vs. llvm -O3 0.629 0.718 0.756 0.192
llvm -O0 vs. gcc -O3 0.601 0.706 0.734 0.229
llvm -O0 vs. icc -O3 0.599 0.700 0.763 0.223
average 0.615 0.715 0.757 0.201

hand, we observe the performance is notably increased regard-
ing rank-three and rank-five. Hence, we interpret that users
are very likely to identify the real matching pair by further
analyzing the first three or five matches.

IMF-SIM shows consistent results comparing with BINDIFF
regarding icc/llvm -O2 vs. -O3. Both IMF-SIM and BIN-
DIFF yield very high accuracies for these two comparison
settings. Our further study on the disassembled outputs shows
that assembly code produced by icc/llvm -O2 is indeed
similar to their corresponding -O3 level.

In addition, while the comparisons between binaries com-
piled by llvm (-O0 vs. -O3) show better performance, the
evaluation results for gcc and icc (-O0 vs. -O3) are similar.
We consider binaries compiled by gcc and icc show similar
behaviors regarding features IMF-SIM captures, and our fur-
ther evaluations report consistent findings. In general, while
the de facto industrial tool BINDIFF suffers from heavy com-
piler optimizations, we interpret IMF-SIM shows promising
results regarding such challenging settings.

C. Cross Compiler Validation
In this section, we launch evaluations to compare binaries

produced by different compilers. To this end, we train a model
leveraging all six groups of data used in the first evaluation
(§IV-B). The trained model is then used to verify comparisons
with cross compiler settings. Given the intuition that compiler
optimization “obfuscates” programs (evaluation in Table III is
consistent with this intuition), we compare binary code under
the most challenging setting, i.e., comparing un-optimized (-
O0) binary code with the heavily-optimized (-O3) code.

The evaluation results are presented in Table IV. Stating
the challenge, IMF-SIM actually performs well in most of
the settings. We observe the comparison between gcc/icc
and llvm show similar results, especially for llvm -O0
vs. gcc/icc -O3. We interpret the results are consistent
with our findings in §IV-B; binaries compiled by gcc and
icc compilers show similar behaviors in front of IMF-SIM.
Besides, while comparisons between llvm -O0 and gcc/icc
-O3 show relatively low performance in terms of rank-one
score, rank-three scores are improved to over 70%. On the
other hand, BINDIFF performs poorly in terms of all the
settings in this evaluation (on average 0.201 accuracy score).

D. Comparison with Existing Work
As aforementioned, we compare IMF-SIM with two state-

of-the-art research work [21], [15]. Table V presents the com-
parison results (we also include BINDIFF’s data for reference).
BLEX evaluates results of three different compilation/opti-
mization settings (last three rows in Table V). BINGO reports
more settings, and we use 6 settings that overlap with our
evaluation (row 2-7). In general, we interpret that all the four

TABLE V: Compare IMF-SIM with the state-of-the-art research work
(BLEX [21] and BINGO [15]) and de facto industrial-standard tool
(BINDIFF). 5 means such data is not available.

IMF-SIM BINDIFF BLEX BINGO
llvm -O0 vs. llvm -O3 0.775 0.285 5 0.305
llvm -O2 vs. llvm -O3 0.973 0.996 5 0.561
gcc -O0 vs. llvm -O3 0.660 0.199 5 0.307
llvm -O0 vs. gcc -O3 0.601 0.229 5 0.265
gcc -O0 vs. gcc -O3 0.704 0.192 0.611 0.257
gcc -O2 vs. gcc -O3 0.895 0.780 0.771 0.470
gcc -O0 vs. icc -O3 0.634 0.187 0.541 5

tools show similar findings that heavy compiler optimizations
bring in additional challenges, i.e., comparison between -O2
and -O3 yields better results than -O0 vs. -O3. On the other
hand, IMF-SIM can outperform all tools in all these settings.

As previously discussed, BINDIFF, which leverages pro-
gram control-flow as features to analyze the similarities, shows
notably low resilience towards heavy compiler optimizations
(comparisons between -O0 vs. -O3 are much worse than -
O2 vs. -O3 for BINDIFF). On the other hand, the other three
semantics-based tools are considered more “stable” regarding
optimizations. BinGo captures semantics information mostly
through symbolic execution and I/O sampling, and it has rela-
tively poor performance comparing to the other two dynamic
execution-based tools. IMF-SIM and BLEX both acquire
more precise information by indeed executing the test targets.
However, different from BLEX which forces to execute every
instruction of the test target and breaks the original execution
paradigm, IMF-SIM fixes pointer dereference error on demand
and reveal the original program behavior in a more faithful
approach. In sum, we interpret the comparison results as
promising.

E. Comparison with Obfuscation Code

In addition to the evaluations of normal binaries, we also
launch comparisons between normal binaries and their cor-
responding obfuscated code. We follow the same approach
as §IV-C to train the model. We leverage all the obfuscation
methods provided by OLLVM to obfuscate binary code opti-
mized with -O3 (OLLVM employs compiler llvm to compile
the code). Given three groups of obfuscated code, we then
compare each group with three sets of normal code.

The evaluation results are presented in Table VI. Instruction
substitution (“sub.”) replaces simple operations (e.g., addi-
tion) into semantics-equivalent but syntax-level more complex
formats. Despite its efficiency of misleading syntax-based
similarity analysis, such obfuscation can hardly defeat IMF-
SIM which captures program semantics (runtime behaviors).
Bogus control flow (“bcf.”) inserts opaque predicates to protect
conditional branches; such predicate is usually difficult to be
reasoned until runtime [17]. We observed that analysis results
become worse regarding this obfuscation technique. Consid-
ering our fuzzing strategy as relatively simple, we interpret
the results as reasonable; opaque predicate complicates the
monitored execution behaviors, and also potentially impedes
our fuzzer from “drilling” into the guarded branch.

We also observe that fewer functions are correctly matched
when applying the control-flow flattening obfuscation (“fla.”).
In general, control-flow flattening changes the structure of



TABLE VI: Validation towards obfuscated code compiled by OLLVM
with -O3 optimization level (OLLVM employs llvm compiler). The
name of the obfuscation methods are simplified due to the limited
space.

comparison obf. rank-one rank-three rank-five BINDIFF
llvm -O0 bcf. 0.513 0.631 0.686 0.235
gcc -O0 bcf. 0.385 0.525 0.590 0.190
icc -O0 bcf. 0.362 0.489 0.549 0.183
llvm -O0 fla. 0.649 0.753 0.797 0.269
gcc -O0 fla. 0.576 0.700 0.757 0.199
icc -O0 fla. 0.561 0.685 0.732 0.174
llvm -O0 sub. 0.779 0.845 0.870 0.285
gcc -O0 sub. 0.664 0.760 0.802 0.198
icc -O0 sub. 0.613 0.723 0.758 0.192
average 0.567 0.679 0.727 0.214

the original control flow into a “flatten” structure; the exe-
cution flow is chained by switch statements to iterate basic
blocks [45]. Considering such design, it is not surprising that
the collected behavior traces of IMF-SIM are affected due
to this structure-level changes. Nevertheless, comparing with
BINDIFF which relies on program control-flow information
for analysis, IMF-SIM still demonstrates the obfuscation re-
silience and outperforms this industrial strength tool.

F. Processing Time
Our experiments are launched on a machine with Intel

Xeon(R) E5-2690 CPU, 2.90GHz and 128GB memory. In this
section we report the processing time of IMF-SIM.
Feature Generation. In our evaluations, we test 21 groups
of comparison, each of which consists of 94 program pairs.
We measure the total feature generation time, from starting
to execute the first test binary until finishing producing the
feature vector of the last comparison. We report that IMF-
SIM takes 1027.1 CPU hours to process all the comparisons
(94 pairs * 21 groups). On average, it takes around 0.52
CPU hour to compare two binaries. Note that the report
time indeed underestimates IMF-SIM’s processing speed, as in
our prototype implementation, a binary re-generates behavior
traces for each comparison (a binary can participant in multiple
comparisons). We also report the processing time of BINDIFF
is 8830.8 CPU seconds. BINGO is reported as efficient as
well [15]. In general, our study shows that (lightweight) static
feature-based tools can take much less time to process (like
BINDIFF and BINGO); however, they suffer from relatively
worse comparison accuracies according to our evaluations
(§IV). On the other hand, BLEX [21] reports to take 57
CPU days (1368 CPU hours) to process 1,140 binaries, while
our work takes 1027.1 CPU hours for 1,974 comparison
pairs. Although test cases used by IMF-SIM and BLEX are
not exactly the same, and BLEX uses different hardware to
measure the processing time, we can still see that dynamic-
analysis based approaches, despite its much better comparison
accuracies, would lead to relatively high performance penalties
in general.

Our study reveals one task that takes a large amount of pro-
cessing time: the calculation of longest common subsequence
(LCS). This algorithm itself has a relatively high computation
complexity. However, since each comparison task performed
by IMF-SIM is independent with each other, the real time can
be reduced by employing more CPU cores.
Model Training and Prediction. The training of the Extra-
Trees model takes 609.8 CPU seconds. Given the trained

model and the generated feature vectors, prediction is straight-
forward. We report that total prediction time is 15389.6 CPU
seconds for all the experiments in §IV-B, §IV-C, and §IV-E.
Recall we undertake 21 groups of comparisons, each of which
consists of 94 binary pairs. Thus, on average it takes 7.8
CPU seconds to compare one pair of binaries. In general,
we consider the overall model training and predication as
effective. Furthermore, since we are using Extra-Trees as the
learning model, it is actually suitable to speedup the real
training time by employing multiple CPU cores.

V. DISCUSSION

Obfuscations. We have evaluated IMF-SIM on both benign
and obfuscated binary code. As discussed in §II, the dy-
namic testing approach used in IMF-SIM is indeed quite
robust even in the presence of code obfuscation techniques;
program runtime behaviors are revealed and captured during
the execution. On the other hand, previous static analysis
based similarity testing may be impeded. According to our
experiments, control-flow flattening obfuscation, which trans-
forms the structure of the control-flow, affects the accuracy.
Moreover, our evaluation shows that IMF-SIM still preserves
a quite promising result with diverse settings (§IV).

Note that many binary reverse engineering and analysis
tasks (e.g., indirect memory addressing) are theoretically unde-
cidable; results from computability theory suggest that it could
be very difficult to propose impeccable solutions. Hence it is
challenging—if possible at all—to propose a technique that
can defeat all known or to-be-invented obfuscations. Certainly
IMF-SIM is not designed to defeat all of them. Neverthe-
less, IMF-SIM shows its practical value in the presence of
commonly-used obfuscations.
Code Coverage. We have also performed some tentative tests
on the code coverage of IMF-SIM before launching the exper-
iments of function similarity. The results are promising, with
an average 31.8% instruction coverage. In general, we consider
the experiments and the comparisons with state-of-the-art tools
have shown promising results given the current coverage.
Additionally, code coverage could be further improved through
advanced grey-box fuzzing technique [9]; we leave it as one
future work to adopt such advanced techniques in IMF-SIM.

On the other hand, we believe pushing the code coverage
to the extreme (as “blanket execution” does [21]) may not
be the best practice in our context (i.e., similarity analysis).
Improving the code coverage at a best effort while preserving
the original execution paradigm shall be a better way to
collect features that can truly reveal the program behavior. Our
evaluation also reports consistent findings. We present further
comparisons with BLEX in §VI.
Applicability of the Machine Learning based Approach.
We do not undertake an explicit model tuning step in this
work. The key motivation is that by adopting the default
setting of the well-studied model (except setting the number
of decision trees as 100), we have already observed promising
results (§IV). Further tuning step can be launched by following
standard procedures, which is well documented by the machine
learning library we use [4].

We note that our classifier is not over-specialized regarding
“obfuscation.” We train IMF-SIM with only normal program



binaries compiled by three most-commonly used compilers on
Linux platforms, and further test the learned model regarding
a much broader setting (e.g., commonly used obfuscation
methods). Our training set is considered standard, which is
straightforward to produce and should be used together. This
is actually how IMF-SIM is supposed to use in practice;
training with a whole set of well-known binaries, and test
with other (unknown) settings in the wild. For example,
when performing malware similarity analysis for unknown
malware samples, malware researchers can employ samples
from several commonly-used malware families to train the
model, and let this model to decide the similarity among
different unknown pieces. In general, learning-based approach
has been adopted by very related research on binary code
reverse engineering [7], [60]. We believe our work can shed
light on future research to employ machine learning techniques
to analyze (binary) code similarities.
Future Work. Although in this paper we adopt in-memory
fuzzing for function-level similarity analysis, as previously
mentioned, in-memory fuzzing is indeed capable of launching
test towards any program component.

Besides, we also plan to further extend our technique by
studying the challenges and solutions in detecting similar
binary components among large sets of program binaries.
Conceptually, one potential approach is to put features of
each binary component (e.g., a function or a basic block)
into a “pool” and for a given binary component, querying
towards the pool. To improve the efficiency, coarse-grained
syntax-based clustering in the pool can be launched before
using the semantics-based comparison of IMF-SIM. As for
the processing time in terms of function-level comparisons, we
expect the feature generation time would stay the same with
our current experiments since the number of functions in this
setting does not change. The model training and prediction
time would increase, but since we leverage a typical tree-
structure model (i.e., Extra-Trees [28]), those procedures can
be boosted by multi-cores.

VI. RELATED WORK

In this section, we review the existing work in finding
similar components in programs. In particular, we focus on
similarity analysis in executable files. There also exist orthogo-
nal approaches that aim at finding code similarity at the source
code level [44], [47], [39], [40], [25], [41]. We will not discuss
this type of work since analysis on binary code has its own
unique challenges and applications.

Naturally, syntactic features, such as opcode (e.g., RAD-
IFF2 [6]), instructions, and control-flow structures (e.g., BIN-
DIFF [20], [23]) and execution traces are extracted from the
binary code and used for static comparison and clustering [57],
[34], [12], [23], [19]. Further studies propose to leverage the
semantics information to compare binary components [27],
[42]. CoP combines symbolic execution with longest common
subsequence (LCS) based similarity analysis for software
plagiarism detection; their work is considered robust against
different compilers and optimizations [50]. Ming et al. [53]
detects code similarity by equivalence checking of system call
sliced segments. These semantic methods are not very scalable.
David et al. [18] decompose components of an executable and

use statistical reasoning over small components to establish
the similarity. Their method is mostly proposed as searching
vulnerable procedures in a candidate binary pool, and no
evaluation is reported in terms of obfuscated code. Some
recent work also extends the application scope by searching
for semantics-equivalent components or similar bugs in binary
code cross different architectures [56], [22], [15]. BINGO [15]
lifts instructions into intermediate representations and capture
the semantics-level similarity through I/O samples of function
model traces. However, our evaluation shows that BINGO has
relatively poor performance regarding different compilation
and optimization settings.

Probably the most similar work with IMF-SIM is BLEX
(“blanket Execution”) proposed by Egele et al. [21]. They
propose a new execution model, i.e., “Blanket Execution”
to execute a part of a binary in a controlled context for
similarity comparison. A typical blanket execution starts from
the beginning of the target function and exhaustively executes
every instruction in the function. A typical blanket execution
could iterate for multiple rounds. Once an error happens, such
as a memory access error, it restarts from the so-far unexecuted
instruction to make sure each instruction is executed at least
once. Program behaviors are collected during execution. Inde-
pendently, Godefroid [29] proposes a similar idea (referred as
“Micro Execution” in his work) for testing and bug detection
in binary code. The main difference between the previous work
and IMF-SIM is that, while blanket execution and micro ex-
ecution break the common paradigm of program execution to
greatly improve the instruction coverage, IMF-SIM leverages
fuzzing and backward taint analysis to exercise a program’s
normal execution with better path coverage. In other words,
feature traces collected in IMF-SIM naturally represent the
true program behaviors, which further facilitates the longest
common subsequence technique to reveal the similarity among
even noisy behaviors. However, as the features do not always
truly reflect the normal program behavior in blanket or micro
execution, features are coarsely maintained into a set for
comparison [21]. In general, IMF-SIM can better reveal the
hidden similarity in challenging settings, as shown in our
experimental results.

VII. CONCLUSION

In this paper, we present IMF-SIM, a tool that identifies sim-
ilar functions in binary code. IMF-SIM uses a novel method
that leverages in-memory fuzzing to execute all the functions
inside a binary program and collect behavior traces to train a
prediction model via machine learning. Our evaluation shows
that it is effective in resilience to the challenges from different
compilation settings and commonly-used obfuscation methods.
The experimental results also show that IMF-SIM outperforms
the state-of-the-art research and industrial standard tools like
BINGO, BLEX, and BINDIFF.

ACKNOWLEDGMENT

We thank the ASE anonymous reviewers and Tiffany Bao
for their valuable feedback. This research was supported in
part by the National Science Foundation (NSF) under grant
CNS-1652790, and the Office of Naval Research (ONR) under
grants N00014-16-1-2265, N00014-16-1-2912, and N00014-
17-1-2894.



REFERENCES

[1] “objdump,” https://sourceware.org/binutils/docs/binutils/objdump.html,
2012.

[2] “BinDiff,” https://www.zynamics.com/bindiff.html, 2014.
[3] “Bindiff release note,” https://blog.zynamics.com/category/bindiff/,

2016.
[4] “Comparing randomized search and grid search for hyperparameter es-

timation,” http://scikit-learn.org/0.17/auto examples/model selection/
randomized search.html, 2016.

[5] “Feature importance,” http://scikit-learn.org/stable/auto examples/
ensemble/plot forest importances.html, 2016.

[6] “Radiff2,” https://github.com/radare/radare2/wiki/Radiff2, 2016.
[7] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “ByteWeight:

Learning to recognize functions in binary code,” in Proceedings of
the 23rd USENIX Conference on Security Symposium. USENIX
Association, 2014.

[8] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in Proceedings of the
2009 Network and Distributed System Security Symposium, ser. NDSS
’09. Internet Society, 2009.

[9] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
ACM, 2016, pp. 1032–1043.

[10] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[11] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
Proceedings of the 2008 IEEE Symposium on Security and Privacy, ser.
S&P ’08, 2008, pp. 143–157.

[12] D. Bruschi, L. Martignoni, and M. Monga, “Detecting self-mutating
malware using control-flow graph matching,” in Proceedings of the Third
International Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, ser. DIMVA’06. Springer-Verlag, 2006, pp.
129–143.

[13] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. USENIX Association, 2008,
pp. 209–224.

[14] S. Cesare and X. Yang, Software Similarity and Classification. Springer
Science, 2012.

[15] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan,
“BinGo: Cross-architecture cross-OS binary search,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016. ACM, 2016, pp. 678–689.

[16] F. B. Cohen, “Operating system protection through program evolution,”
Comput. Secur., vol. 12, no. 6, pp. 565–584, Oct. 1993.

[17] C. collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’98, 1998, pp. 184–196.

[18] Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
in Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’16. ACM, 2016.

[19] Y. David and E. Yahav, “Tracelet-based code search in executables,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14. ACM, 2014, pp.
349–360.

[20] T. Dullien and R. Rolles, “Graph-based comparison of executable
objects,” SSTIC, vol. 5, pp. 1–3, 2005.

[21] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
Proceedings of the 23rd USENIX Security Symposium. USENIX
Association, Aug. 2014, pp. 303–317.

[22] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE: Efficient
cross-architecture identification of bugs in binary code,” in Proceedings
of the 2016 Network and Distributed System Security Symposium, ser.
NDSS ’16. Internet Society, 2016.

[23] H. Flake, “Structural comparison of executable objects,” in Proceedings
of the First International Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, ser. DIMVA’04. Springer-Verlag,
2004, pp. 161–173.

[24] J. E. Forrester and B. P. Miller, “An empirical study of the robustness
of windows NT applications using random testing,” in Proceedings of
the 4th Conference on USENIX Windows Systems Symposium - Volume
4, ser. WSS’00. USENIX Association, 2000, pp. 6–6.

[25] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in Proceedings of the 30th International Conference on Software Engi-
neering, ser. ICSE ’08. ACM, 2008, pp. 321–330.

[26] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox
fuzzing,” in Proceedings of the 31st International Conference on Soft-
ware Engineering, ser. ICSE ’09. IEEE Computer Society, 2009, pp.
474–484.

[27] D. Gao, M. K. Reiter, and D. Song, “BinHunt: Automatically finding
semantic differences in binary programs,” in Proceedings of the 10th
International Conference on Information and Communications Security,
ser. ICICS ’08. Springer-Verlag, 2008, pp. 238–255.

[28] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[29] P. Godefroid, “Micro execution,” in Proceedings of the 36th Interna-
tional Conference on Software Engineering, ser. ICSE’ 2014. ACM,
2014, pp. 539–549.

[30] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’05.
ACM, 2005, pp. 213–223.

[31] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox
fuzz testing,” in Proceedings of the 22th Network Distributed Security
Symposium, ser. NDSS ’08. Internet Society, 2008.

[32] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowsing
for overflows: A guided fuzzer to find buffer boundary violations,” in
Proceedings of the 22nd USENIX Conference on Security, ser. SEC’13.
USENIX Association, 2013, pp. 49–64.

[33] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Schölkopf, “Sup-
port vector machines,” IEEE Intelligent Systems and their Applications,
vol. 13, no. 4, pp. 18–28, 1998.

[34] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing
using function-call graphs,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, ser. CCS ’09. ACM, 2009,
pp. 611–620.

[35] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Cross-architecture binary semantics
understanding via similar code comparison,” in Proceedings of the 23rd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, ser. SANER 2016, 2016.

[36] J. Jang, M. Woo, and D. Brumley, “Towards automatic software lineage
inference,” in Proceedings of the 22nd USENIX Conference on Security,
ser. USENIX Security’13. USENIX Association, 2013, pp. 81–96.

[37] Y. C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, “Program
characterization using runtime values and its application to software
plagiarism detection,” IEEE Transactions on Software Engineering,
vol. 41, no. 9, pp. 925–943, Sept 2015.

[38] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, “Value-based
program characterization and its application to software plagiarism
detection,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. ACM, 2011, pp. 756–765.

[39] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and accurate tree-based detection of code clones,” in Proceedings of the
29th International Conference on Software Engineering, ser. ICSE ’07.
IEEE Computer Society, 2007, pp. 96–105.

[40] L. Jiang and Z. Su, “Automatic mining of functionally equivalent
code fragments via random testing,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ser. ISSTA
’09. ACM, 2009, pp. 81–92.

[41] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-related
bugs,” in Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ser. ESEC-FSE ’07. ACM,
2007, pp. 55–64.

[42] W. Jin, S. Chaki, C. Cohen, A. Gurfinkel, J. Havrilla, C. Hines, and
P. Narasimhan, “Binary function clustering using semantic hashes,” in
Proceedings of the 11th International Conference on Machine Learning
and Applications, ser. ICMLA’12, Dec 2012, pp. 386–391.

[43] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM:
Software protection for the masses,” in Proceedings of the 1st Interna-
tional Workshop on Software Protection, ser. SPRO ’15. IEEE Press,
2015, pp. 3–9.

[44] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul. 2002.

[45] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, ser. S&P ’14, 2014, pp. 276–291.

[46] C. Lattner, “Macroscopic Data Structure Analysis and Optimization,”
Ph.D. dissertation, Computer Science Dept., University of Illinois at
Urbana-Champaign, Urbana, IL, May 2005.



[47] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for finding
copy-paste and related bugs in operating system code,” in Proceedings
of the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, ser. OSDI’04. USENIX Association, 2004,
pp. 20–20.

[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’05. ACM, 2005, pp. 190–200.

[49] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software and algorithm plagiarism detection,” IEEE Transactions on
Software Engineering, no. 99, pp. 1–1, January 2017.

[50] ——, “Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software plagiarism detection,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. ACM, 2014, pp.
389–400.

[51] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–
44, Dec. 1990.

[52] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, “Deviation-based
obfuscation-resilient program equivalence checking with application
to software plagiarism detection,” IEEE Transactions on Reliability,
vol. 65, no. 4, pp. 1647–1664, Dec 2016.

[53] J. Ming, D. Xu, Y. Jiang, and D. Wu, “BinSim: Trace-based semantic
binary diffing via system call sliced segment equivalence checking,”
in Proceedings of the 26th USENIX Security Symposium. USENIX
Association, 2017, pp. 253–270.

[54] G. Myles and C. Collberg, “Detecting software theft via whole program
path birthmarks,” in Proceedings of the 7th International Conference on
Information Security, ser. ISC ’04, 2004.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[56] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proceedings of the
2015 IEEE Symposium on Security and Privacy, ser. S&P ’15. IEEE
Computer Society, 2015, pp. 709–724.

[57] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting
code clones in binary executables,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ser. ISSTA
’09. ACM, 2009, pp. 117–128.

[58] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 21, no. 3, pp. 660–674, 1991.

[59] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for
Java,” in Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’07, 2007.

[60] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in Proceedings of the 24th USENIX
Conference on Security Symposium, ser. SEC’15. USENIX Association,
2015, pp. 611–626.

[61] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley Professional, 2007.

[62] A. R. Van Thuan Pham, Marcel Böhme, “Model-based whitebox fuzzing
for program binaries,” in Proceedings of the 31th International Confer-
ence on Automated Software Engineering, ser. ASE ’16. ACM, 2016.

[63] S. Wang, P. Wang, and D. Wu, “Semantics-aware machine learning
for function recognition in binary code,” in Proceedings of the 33rd
IEEE International Conference on Software Maintenance and Evolution
(ICSME ’17), 2017.

[64] X. Wang, Y. C. Jhi, S. Zhu, and P. Liu, “Detecting software theft
via system call based birthmarks,” in Proceedings of the 2009 Annual
Computer Security Applications Conference, 2009.

[65] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based software
plagiarism detection,” in Proceedings of the 25th IEEE International
Symposium on Software Reliability Engineering, 2014, pp. 66–77.


