
LibD: Scalable and Precise Third-party Library
Detection in Android Markets

Menghao Li∗‡§, Wei Wang∗, Pei Wang†, Shuai Wang†, Dinghao Wu†¶, Jian Liu∗§¶, Rui Xue‡§, Wei Huo∗§
∗Key Laboratory of Network Assessment Technology, Institute of Information Engineering, Chinese Academy of Sciences, China
†College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
‡State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, China

§School of CyberSpace Security at University of Chinese Academy of Sciences, China
{limenghao,wwei,liujian6,xuerui,huowei}@iie.ac.cn, {pxw172,szw175,dwu}@ist.psu.edu, ¶corresponding author

Abstract—With the thriving of the mobile app markets, third-
party libraries are pervasively integrated in the Android ap-
plications. Third-party libraries provide functionality such as
advertisements, location services, and social networking services,
making multi-functional app development much more produc-
tive. However, the spread of vulnerable or harmful third-party
libraries may also hurt the entire mobile ecosystem, leading
to various security problems. The Android platform suffers
severely from such problems due to the way its ecosystem
is constructed and maintained. Therefore, third-party Android
library identification has emerged as an important problem which
is the basis of many security applications such as repackaging
detection and malware analysis.

According to our investigation, existing work on Android
library detection still requires improvement in many aspects, in-
cluding accuracy and obfuscation resilience. In response to these
limitations, we propose a novel approach to identifying third-
party Android libraries. Our method utilizes the internal code
dependencies of an Android app to detect and classify library
candidates. Different from most previous methods which classify
detected library candidates based on similarity comparison, our
method is based on feature hashing and can better handle code
whose package and method names are obfuscated. Based on this
approach, we have developed a prototypical tool called LibD and
evaluated it with an update-to-date and large-scale dataset. Our
experimental results on 1,427,395 apps show that compared to
existing tools, LibD can better handle multi-package third-party
libraries in the presence of name-based obfuscation, leading to
significantly improved precision without the loss of scalability.
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I. INTRODUCTION

Mobile app market has been rapidly growing in the past
decade. By July 2015, Android has become the largest mobile
application platform in terms of the number of available
apps [1]. Third-party libraries make app development much
more convenient by offering ready-made implementations of
specific functionality, e.g., advertisement, navigation, and so-
cial network services. A previous study shows that in some
extreme cases, an Android app can refer to more than 30
different third-party libraries [2].

On the other hand, the widely used third-party libraries can
also lead to new problems that hurt the security and stability
of the Android ecosystem. For example, with advanced reverse
engineering techniques, an adversary is able to modify popular
advertising libraries and direct the revenues to a station under

his control, while preserving the other functionality of the
original apps. The adversary can then deploy the tampered
and repackaged apps into an unofficial Android market to lure
downloads. In this way, an attacker can contaminate a large
number of apps by just tampering a few libraries. For another
example, if a specific version of a popular social network
library contains a security vulnerability, the threat from this
vulnerability would be spread to many different apps and
influence tons of users.

To countermeasure the emerging threats caused by vulner-
able and harmful third-party libraries, the security community
has longed for reliable techniques to accurately identify li-
braries in mobile apps at a large scale. There are currently
two approaches to recognizing third-party libraries in Android
apps. The first is based on whitelists of known libraries. A
whitelist is typically generated through manual analysis [3],
[4] and has to be constantly maintained to stay updated. Even
though, it is hard to guarantee that such a list is comprehen-
sive, considering there are currently millions of mobile apps
available and new library providers keep emerging. Therefore,
the whitelist-based method usually leads to both precision loss
and high operation cost.

The other approach is to directly extract libraries from apps
without a priori knowledge about the libraries [5]–[9]. In the
extraction process, a mobile app is first divided into different
components which are regarded as library candidates. Then
a similarity metric or a feature-based hashing algorithm is
designed to classify these candidates. If a group of similar
candidates exists in different applications, components in that
group are considered variants of the same library.

The second approach is currently the state of the art.
Although the results reported by previous work have been
very promising, they are still not as good as they could have
been due to several limitations of the employed methods. Our
investigation shows that most existing methods are heavily de-
pendent on Java package names and package structures when
detecting and classifying library candidates. However, package
names can be easily mangled by name-based obfuscation and
package structures may vary in different versions of the same
library.

To further improve the accuracy of third-party library iden-
tification on the Android platform, we propose a new library
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detection and classification technique that can effectively over-
come the limitations discussed above. Different from previous
work which recognizes library candidates purely based on
the Java package names and structures, we extract library
candidates based on the reference and inheritance relations
between the Java classes and methods, with the assistance
of auxiliary information excavated from app metadata. After
collecting these candidates, our classification technique will
decide if there exist enough apps sharing the same group of
candidates. If so, that group of candidates indeed forms a
third-party library. Our classification method is implemented
through a novel feature hashing algorithm, such that we can
avoid pair-wise candidate comparison which is required by
approaches based on binary similarity measurement. This
design makes it easier for the classifier to scale to millions
of Android apps. Compared to previous work which heavily
depends on Java package names and structures, our method
only treat them as supplementary information. As such, our
research provides a more general solution to the problem of
third-party library identification for Android.

We have implemented our detection technique in a tool
called LibD and evaluated it with 1,427,395 apps collected
from 45 third-party markets. Compared with similar tools like
LibRadar [7] and WuKong [6], LibD can not only identify a
much larger number of third-party libraries from the dataset
but also find them with a higher precision.

In summary, we make the following contributions in this
research.

• We develop a new third-party library identification tech-
nique for the Android mobile platform. Our method can
overcome various limitations shared by the majority of
previously proposed approaches. In particular, our method
is resilient to Java package name-based obfuscation and
diversified package structures.

• We implement our identification technique in a tool
called LibD and test its performance with more than a
million Android apps collected from 45 different markets.
Compared to other similar tools, LibD is able to report
better results in terms of both quantity, i.e., the number
of identified third-party libraries, and quality, i.e., the
identification precision.

• To benefit the research community, we share LibD
at https://github.com/IIE-LibD/libd.git. Other researchers
will be able to build various software engineering and
security applications based on our work.

The rest of the paper is organized as follows. We first dis-
cuss the limitations of the previous work which motivate our
research in Section II. We then present our third-party library
identification method and its implementation in Section III.
The experimental results are presented in Section IV. We
discuss a few potential issues in Section V, review related
work in Section VI, and conclude the paper in Section VII.

II. MOTIVATION

In this section, we elaborate on two major limitations of
previous research that motivate the development of our new
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Fig. 1: Variants of the same library with different package structures

third-party library identification technique. According to our
investigation, the two limitations stem from similar design
decisions shared by existing techniques. The assumptions
behind these design choices, although valid in many cases, do
impose constraints that affect the generality of the techniques.

The first assumption which may be problematic is that the
instances of an Android library included by different apps
have the same package name. This assumption is the basis of
the pre-clustering algorithms used in similarity-based library
identification [8], [9]. Since these methods need to compute the
pair-wise similarity among all library candidates in the dataset,
they have to first partition the dataset and group candidates that
are likely to be in the same cluster; otherwise the classification
will not scale. Most similarity-based identification techniques
use package names to tentatively cluster the candidates before
undertaking fine-grained comparison. However, using package
names as a feature for clustering becomes unreliable when
obfuscation is considered. Package name obfuscation is one
of the most widely used obfuscation methods for Java code.
A recent study on Android libraries showed that over half
of the inspected instances are protected by obfuscation tech-
niques [2]. As a consequence, identification methods utilizing
package names as the primary features to detect and classify
libraries are likely incapable of handling a considerable portion
of Android apps on the market.

Some researchers have realized that deeply depending on
package names can make the identification method less robust.
A recent tool called LibRadar [7] developed an algorithm that
takes obfuscated package names into consideration. Rather
than binary diffing, LibRadar classifies library candidates
through feature hashing. Therefore, LibRadar does not need
pair-wise similarity comparison between library candidates
and does not need package names for pre-clustering. How-
ever, LibRadar recognizes library candidates according to the
directory structures of the packages. In particular, LibRadar
requires a library candidate to be a subtree in the package
hierarchy. This is another assumption that may not be valid
in reality, because we found that a library can be differently
packaged in its different versions, as illustrated by a real-world
example in Fig. 1.

Motivated by the reasoning above, we aim to develop a
new third-party library identification method that does not take
the two aforementioned assumptions for granted. Although
our method does not completely abandon the package-level
information, we utilize it as supplementary features in the
identification process.
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III. METHOD

A. Overview

We now outline the design of the proposed approach. As
shown in Fig. 2, the overall workflow consists of four steps.
We first decompile the input app and recover the intermediate
representation (IR). Information is then retrieved from the IR
regarding multiple levels of the Android app organizations
(i.e., packages, methods, and classes) and the primary relations
among them (i.e., inclusion, inheritance, and call relations). We
then leverage the retrieved information to build the instances
of potential libraries. Note that each instance has standalone
functionality, and it consists of one or multiple packages. The
next step is to generate features from each instance; we pro-
pose techniques at this step to select features that are mutation-
sensitive and resilient to name-based obfuscation (hereinafter
referred to as simply obfuscation). With a predefined threshold
of occurrence, third-party libraries are identified by clustering
instances with equivalent features.

We have implemented our technique in a prototype tool
called LibD, which consists of 3,529 lines of code in Python.
We deployed our experiment environment on OpenStack, a
cloud computing platform [10]. We implemented 408 lines
of code to manage machines and schedule experiments on
this platform. Ten virtual machines were employed to analyze
Android apps in parallel.

B. App Decompilation

The first step of our approach is to decompile the input
Android apps. As shown in Fig. 3(a), a directory tree is
generated by decompiling an Android app. Each node on
the directory tree can include Java class files as well as
subdirectories (i.e., the edges to the successor nodes). Note that
each tree node with a set of class files is actually an Android
package [11]; in this research, we group package nodes on the
directory tree to recover third-party library instances. There
also exist some other nodes that only contain subdirectories
(e.g., com/tencent node in Fig. 3(a)); we ignore such nodes
due to their trivial contents.

Same as existing work [6], [12]–[15], we employ two
commonly-used app analysis tool Apktool [16] and Andro-
guard [17] to decompile the input apps. Apktool is used
to extract the tree structures of the decompiled apps. We
recover the whole directory structures with all the class files.
In addition, we use Androguard to find relations between
packages, classes, and methods. Three informative relations
are particularly collected to construct the homogeny graphs
(§III-C1) and call graphs (§III-C2). We now introduce each
relation in details.

• Inclusion relation. The first relation describes the parent-
child structures on a directory tree. Considering the
path that leads from com/tencent to /connect in
Fig. 3(a), such path represents an inclusion relation.

• Inheritance relation. We also record the program in-
heritance relations; inheritance relations can be directly
read from the decompiled class files. Fig.3(b) shows the

inheritance relations between package /common and two
other packages.

• Call relation. This relation represents the inter-package
function calls. Fig.3(c) describes the call relation be-
tween packages /connect/auth, /tauth and /
open. For example, by identifying the function call be-
tween methods in Auth..$..listener.smali and
AuthActivity.smali, /tauth (i.e., callee) and /
connect/auth (i.e., caller) are considered to have the
call relation.

C. Library Instance Recovery

One of the key contributions in this paper is our systematic
approach to recovering the boundaries of third-party libraries.
Given the decompiled outputs of an input app, we traverse its
homogeny graphs (explained in §III-C1) as well as the call
graph for multiple iterations, each of which relies on different
conditions to prioritize nodes and edges. The outputs of our
traversals are weakly connected components; each component
(including one or several packages) has an independent func-
tionality, and such components are assumed as the instances
of potential libraries. We now detail our technique to recover
library instances in a two-step approach.

1) Homogeny Package Union Construction: The first step is
to find highly-correlated packages regarding the inclusion and
inheritance relations (§III-B). Before discussing our algorithm,
we first define three terms as follows.

Definition 1: Homogeny package. Let Pi and Pj be two
packages of the input app, we say Pi and Pj are homogeny
packages if there are inclusion or inheritance relations between
them.

Definition 2: Homogeny graph. A homogeny graph is a
directed graph H = (V,E), where V is the set of all the app
packages, and E is the set of inclusion or inheritance relations.

Definition 3: Homogeny package union. A homogeny
package union consists of one or several homogeny packages;
each union is a weakly connected component on the homogeny
graph. A weakly connected component is a maximal connected
subgraph of the undirected graph resulted from replacing
all the directed edges with undirected edges in the original
directed graph.

Algorithm 1 describes how we find homogeny package
unions. We construct the homogeny graph with every package
in the app and their inclusion and inheritance relations as the
graph edges (line 2, line 5–6). Note that before constructing
the graph, we first eliminate two kinds of special packages
(line 3–4). The first elimination (line 3) rules out packages
at the root of a directory tree. According to our observation,
an app usually does not have class files in the root directory;
developers would put the code base (packages) starting from
the second level of the directory tree. Actually our study on
2,000 commonly-used apps only finds three apps to have class
files in the root nodes. Further investigation shows that all
of these class files are used to impede reverse engineering.
As a result, we rule out packages if they are in the root

3



Method info
(Call)

Class info
(Inheritance)

Package info
(Inclusion)

Decompilation Library Instance Recovery

Candidate 
database Libraries

Homogeny Package 
union construction

Library instance 
construction

 Library Identification

Filter with 
threshold

Feature 
Generation

method

method
... class ... class 

ha
sh

Library 
feature

hash

...

Fig. 2: The architecture of LibD

/connect /mm...

/share ...

Inclusion

...

UserInfo.smali

/avatar

BaseApi.smali

Image..$..lmp.smali

.super ../common/B
aseApi

.super ../common/BaseApi

UserInfo.smali

QQShare.smali QzoneShare.smali

/connect/auth
/tauth /open

Auth..$..listener.smali
L../connect/auth/Auth
..$..;->a(...)

AuthActivity.smali

Tencent.smali
L../tauth/Tencent;
->ask(...)

SocialApi.smali

(a) Inclusion relation (b) Inheritance relation (c) Call relation 

Under package of 
com/tencent/connect

Under package of 
com/tencent

C
al

l

/common
com/tencent

Fig. 3: Packages in a typical app directory tree and three critical relations.

nodes. Besides, the Android official libraries (e.g., android/
support/v4) are also trimmed off (line 4), as our main
focus is on the third-party libraries.

After the elimination, we search for weakly connected com-
ponents on the homogeny graph (line 7–8); such components
could contain single or multiple nodes (packages). As nodes
in each component are connected by inclusion and inheritance
edges, each identified component is one homogeny package
union following our definition.

Algorithm 1: Homogeny package union construction
Input: Android app p
Output: Homogeny package union set Hp

1 Hp ← ∅; H ← ∅,
2 H.V ← packages in the input app; /* V is the set of vertices. */
3 filter out packages in the root nodes in H;
4 filter out Android official packages in H;
5 H.E ← inclusion relation set; /* E is the set of edges. */
6 H.E ← H.E ∩ inheritance relation set;
7 for each weakly connected component g in H do
8 Hp.add(g);

9 return Hp

2) Library Instance Construction: Given the constructed
homogeny package unions, the next step is to group one or
several unions together to recover the instances of potential
third-party libraries. Our manual investigation of over 200
real-world commercial apps reports method calls as a quite
informative feature. Thus, we first recognize all the inter-union
function calls and build the call graph. As a result, identifying
library instances essentially becomes a task to collect all the
reachable nodes on the call graph from the root nodes.

Algorithm 2 presents our approach to generating the call
graph for homogeny package unions and finding the instances
of potential libraries. We first build the call graph I, according
the inter-union calls (line 2–5). We then filter out noisy calls

(line 6–7) in terms of two criteria. Finally, for each weakly
connected component, we search for “root nodes” and collect
all the reachable components from one root node as one
instance of a potential library (line 9–12). Naturally, the root
node is defined as a node on the call graph with no incoming
edges. On the other hand, if there is no root node, we output
the connected component as one library instance (line 14).

In this research, we identify and eliminate two noisy calls
that could impede our analysis. The first one describes the
call graph edges connecting the application code and the
libraries. Such connections could incorrectly bridge two library
instances through the application code, thus overestimating the
library boundaries. We identify application code according to
the manifest files in the input apps; the application code and
evolved call edges are trimmed off on the call graph (line 6).

We also observe a special call that could lead to false
positive in this research; we name it ghost call. A ghost call ap-
pears in a method, but neither the caller nor the callee exists in
the DEX code of the decompiled app. Actually such ghost calls
are not rare; we find 82 apps containing the ghost calls during
our analysis of 10,043 test samples. Most of “ghost calls” are
calling functions from customized Android frameworks. For
example, there is a call invoking com.samsung.android.
SsdkInterface.getVersionCode which exists only
on Samsung phones. The decompiler failed to consider these
cases, leading to dangling function targets. To filter out such
errors, we check the appearance of both caller and callee for
each call relation, and eliminate those ghost calls (line 7).

D. Feature Generation

As previous mentioned, a library instance includes one or
more homogeny package unions, while a union can consist of
multiple packages. The feature of a library instance can be
defined as the combination of package features, and further
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Algorithm 2: Library instance construction
Input: Homogeny package union set Hp

Output: Library instance set Il
1 I ← ∅;
2 I.V ← Hp; /* V is the set of vertices. */
3 for any union u1 and u2 in I do
4 if there is a call relation in 〈u1, u2〉 then
5 add 〈u1, u2〉 in I.E; /* E is the set of edges. */

6 filter out application code-related calls in I;
7 filter out ghost calls in I;
8 for each weakly connected component g in I do
9 if there are root nodes in g then

10 for each root do
11 cl ← reachable components from this root;
12 Il.add(cl);

13 else
14 Il.add(g);

15 return Il

divided into features of classes in each package. Since each
class usually consists of several methods, in this research
we employ method-level features as the basic elements to
construct the library instance-level features.

To this end, we first build the control flow graph (CFG) of
each method. The feature of every basic block on the CFG is
calculated by hashing all the opcodes inside the block. We then
concatenate the features of the basic blocks on the CFG in a
depth-first order. For a parent node with two or more children,
we sort the values of the children nodes and prioritize the node
with the smallest value.

We then construct the feature of a class with features
of all its methods. To this end, we concatenate the feature
values of all methods in a non-decreasing order. Such feature
sequences is then hashed again as the class-level features.
Finally, we build the library instance-level feature following
the same strategy—sorting all of its class-level features in a
non-decreasing order and hashing the feature sequences.

Note that one of our central design choice is to generate
mutation-sensitive and obfuscation-resilient features for each
library instance; such design choice can enable finer-grained
Android app analysis in an efficient way. We now discuss how
we satisfy such requirements.

1) Mutation Sensitive: To produce features that are sensi-
tive to library mutations, we generate hash value from opcodes
of all the instructions in the basic blocks. Since even subtle
modifications would lead to the changes of the underlying
instructions, our instruction-level hashing should be surely
updated regarding almost all the mutations.

Actually many (security-related) mutations, e.g., the remote
control vulnerability exposed in Baidu moplus SDK [18],
would only update a single line of code in one specific version
of the library. That means, previous system API-based library
detection algorithm is not able to distinguish such mutations.
On the other hand, by hashing the underlying instructions
within each basic block, features utilized in our research can
preserve the sensitivity in front of various real-world scenarios.

Naturally, mutations with different features are considered
as different library instances. That means, instances of one
library can be put into different groups if they have different
features. To further cluster mutations, we compare the package
names of mutations; in our current design, two mutations are
considered from the same library if they have the same name.

2) Obfuscation Resilient: Our in-depth study of obfuscated
Android apps shows that commonly-used Android obfuscators
are typically designed for renaming; package, class, and even
method names will be obfuscated into meaningless strings
(e.g., /t, /a, /b). Stating such observation, LibD is designed
to only hash the underlying opcode sequences as the features
of each basic block. Note that by extracting features from the
underlying implementation, LibD is naturally resilient towards
renaming on package names. In addition, although renaming
on class and method names can change the operands of certain
control-flow instructions, the original opcodes are preserved.
For example, method call instructions would have different
operands when the callee’s name is obfuscated. However, since
we only calculate the hashing value of the opcode sequences
within basic blocks and do not consider the operands, LibD is
suitable to defeat the class and method-level renaming obfus-
cations. In sum, features extracted by LibD are obfuscation-
resilient, as shown in our experimental results.

Note that given our renaming-resilient features, obfuscated
library instances should be clustered into the same group as
their normal versions. In other words, we are able to recover
the original identity of the obfuscated libraries by investigating
instances clustered into same groups.

E. Library Identification

Given an input app, the aforementioned techniques can
generate instances of potential libraries (§III-C) as well as
features of each instance (§III-D). We actually repeat such
process towards a large amount of apps and collect all the
identified instances and their features (experimental details are
disclosed in §IV).

The next step is to cluster instances regarding their features;
instances with equivalent features are put into one group. We
set a threshold according to our empirical study results. A
group of library instances is considered to truly represent a
third-party library only if the number of instances in this group
is equal or greater than the threshold. Details on how we set
the threshold are presented in §IV-B.

We label each cluster with the library name found in the
package information. We also try to merge certain clusters if
they have the same library name; such merged clusters should
indicate library mutations.

IV. EVALUATION

A. Dataset

We collect in total 1,427,395 Android apps from 45 third-
party markets. Although the official app market, Google Play,
contains over a million apps [1], it employs more rigorous
reviews on the uploaded apps, including both static and dy-
namic analysis, and presumably many malicious or vulnerable
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TABLE I: Markets and the number of apps collected from each
market.

Market # of apps Market # of apps
mumayi 55,682 3533 15,871
appfun 47,090 apk91 27,190
520apk 13,048 Nduo 8,965
lenovo 151,426 lmobile 16,659
baidu 30,275 sougou 27,795
jifeng 30,661 anzhi 401,578

yingyongbao 5,184 anzow 12,521
hiapk 76,066 zs2345 4,538
gezila 11,030 7xz 4,871
xiaomi 63,494 huawei 6,804
yy138 5,073 16app 38,003
liqucn 10,134 apk3310 22,376

angeeks 54,432 appchina 244,413
others 62,216

total 1,427,395

TABLE II: Detected third-party libraries with different threshold
settings.

Threshold # of different
instances

# of different
libraries Threshold # of different

instances
# of different

libraries
50 9,868 2,350 30 17,298 3,827
45 11,061 2,584 25 21,405 4,550
40 12,576 2,893 20 27,763 5,811
35 14,563 3,298 15 38,150 7,576
32 16,074 3,567 10 60,729 11,458

third-party libraries could have been rejected during the review
process [19], [20]. On the other hand, third-party markets
usually do not have such review process, and we expect to
collect more diverse library instances. As reported in our
experiments, we successfully collect a considerable number
of mutation and obfuscation samples. We choose broadly-
used third-party markets (e.g., Huawei and apk91) as well as
some infamous Android forums for evaluation. Table I lists
the markets we used and the corresponding apps collected in
each market.

B. Threshold

Recall we need to define a threshold to decide whether
a cluster of library instances surely represents a third-party
library (§III-E). The threshold is the number of appearances
of a potential library candidate in the dataset, in our research
and previous studies [6], [8]. In this section, we first study how
many libraries can be detected regarding different thresholds
and try to set a reasonable threshold by comparing with a
previous whitelist approach [3].

Previous work sets different thresholds to cluster libraries.
For example, Wukong [6] sets the threshold as 32 while
Li et al. use 10 [8]. To present an in-depth and thorough
study, we iterate different thresholds from 10 to 50 and record
the clustered libraries. Table II shows the detection results
regarding different threshold settings. Recall LibD clusters
library instances with the same feature into one group, and
further clusters groups together if they have the identical name
(§III-E). In Table II, we report the number of library instances
with different features, as well as the number of different
library names (i.e., the detected libraries). Naturally, with the
increase of the threshold, less libraries can be found.

We consider the total number of detected libraries is quite
promising. Even by setting the threshold as a relatively-high
value, i.e., 50, we report LibD can still detect over two
thousand libraries.

TABLE III: The number of libraries reported in the whitelist but not
found in LibD’s outputs.

Threshold # of neglected libraries Threshold # of neglected libraries
45, 50 16 20 4

40 13 15 1
35 8 10 0

25, 30 7

When comparing with previous work, we report that LibD
can detect more third-party libraries than both whitelist and
system API-based methods [3], [6]. We will present further
discussions in §IV-D.

Setting threshold according to a library whitelist [3].
Chen et al. [3] present a whitelist, including names of
72 commonly-used third-party libraries in the market. We
validate each threshold used in Table II to find a proper one
that could include all the libraries reported in the whitelist.
As shown in Table III, when the threshold decreases to ten,
all the libraries reported in the whitelist can be found in
LibD’s outputs. As a result, ten is used as the threshold in
our following experiments.

C. Comparison with LibRadar

To our best knowledge, there is no systematic approach
to giving us the ground truth (i.e., third-party libraries) from
Android apps—the boundary of a library is unknown. Manual
collection is also not feasible with over a million apps.

To present a convincing and feasible evaluation, we ran-
domly collect 1,000 apps from our dataset as a subset, and
manually investigate the subset to get the ground truth. We
assume a package name indicates an instance of a third-party
library if it is a legal domain name. We employ nslookup to
check the package names on the Domain Name System (DNS)
according to the following conditions.

• If the library name represents a legal domain name, then
it is a library instance.

• If the package name is a subdomain of a domain name,
we will then check the entire name on search engines
(e.g., Google) to verify whether the suspicious name has
been used by others. If so, we consider to find a new
library instance.

Following the above strategy, we acquire in total 2,613
libraries as the ground truth from the 1,000 apps. We then
use LibD and a state-of-the-art library detector, LibRadar [7],
to detect third-party libraries in the 1,000 apps. LibRadar [7]
provides an online service to detect libraries; this enables
convenient comparison with LibD. As LibRadar only provides
the names of the detected libraries, we compare LibD with
LibRadar regarding the library names.

Table IV presents the performance of both LibRadar and
LibD. We also validate the detected libraries according to the
ground truth. In general, LibD identifies 1,954 libraries, among
which 1,456 libraries are true positive. LibRadar finds 670
different libraries in total, and 264 libraries are true positive.
Considering the false positive and negative rates, we report
that LibD can notably outperform LibRadar in both criteria,
and the overall result is quite promising.
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TABLE IV: Comparison with LibRadar. We also validate the results
according to the ground truth (2,613 libraries).

# of detected
libraries # of true positive false positive

rate (%)
false negative

rate (%)
LibRadar 670 264 60.6 89.9

LibD 1,954 1,465 25.0 43.9

Besides the validation according to the ground truth, we also
evaluate the correctness in terms of obfuscated libraries. Both
LibRadar and LibD are able to map the obfuscated libraries to
their unobfuscated instances. As the online service of LibRadar
is not stable during our experiment, we were only able to
test 100 apps at this step. Among these 100 apps, LibRadar
reports to find 13 obfuscated libraries, while LibD reports
14. Our manual investigation on the outputs of LibRadar
shows five false positive. For example, LibRadar incorrectly
considers library com/avos/avospush as an obfuscation
version of the Android official library android/support/
v4. Note that the implementations of these two libraries are
quite different. On the other hand, no error is reported when
we manually correlate the obfuscated libraries detected by
LibD with their original instances. We interpret the main
reason for LibRadar’s high false positive is that it captures
features from the System APIs used by the libraries; two
libraries are considered identical if they use the same APIs.
On the other hand, since LibD captures the features regarding
the underlying implementation, commonly-used obfuscation
methods would not impede LibD.

D. Comparison with Other Work

Table II reports our library detection results regarding
different thresholds. In the following section, we present an
in-depth study on this library detection results and compare
the results with previous work in terms of different aspects.

Comparing with Li et al. [8]. Li et al. detect 1,113
libraries from apps on Google Play [8]. Like the whitelist
approach [3], Li et al. only provide the detected (unobfuscated)
library names. We compare their reported names with LibD.

In general, among 1,113 libraries detected by their approach,
we report 262 libraries are new to LibD. Further study
shows that 249 of the 262 libraries are indeed highly cor-
related to our results; they have similar names and structures.
For example, com/comScore/exceptions and com/
comScore/stramsense are two libraries reported in their
list, which have no match in our results. However, we found a
library named com/comScore in the outputs of LibD; this
library has the same root and second directory names (i.e., com
and comScore). Given the similar names and structures, we
assume these 249 unmatched libraries are caused by different
techniques deployed to recognize library boundaries.

Our finding also shows that there are 13 libraries totally
new to LibD. Since Li et al. analyze apps on the Google Play,
we expect libraries that are only used by apps in the Google
Play would be unknown to LibD. For example, several apps
on Google Play are linked with library com/android/psu,
and this library is absent in our third-party market dataset.

Comparing with WuKong [6]. Comparing with WuKong [6],
our approach finds more libraries with the same threshold.
WuKong takes 32 as the threshold to detect libraries, and
we evaluate LibD with the same threshold. In addition, since
WuKong considers each mutation (referred as “version”
in their paper) as one library, here we use the same
measurement for LibD (i.e., the “# of different instances”
columns in Table II). In general, WuKong reports to detect
around 10,000 libraries in [7], while LibD finds 16,074
libraries with the same threshold.

We interpret the comparison results as quite promising.
In particular, we consider such improvement mainly comes
from the much finer-grained features retrieved by LibD. As
previously discussed, features captured by LibD are sensitive
to the underlying mutations of the apps. On the other hand,
since WuKong uses system-level APIs to detect libraries, this
approach is not suitable to find many (subtle) library mutations
(§III-D).

E. Processing Time

Our system is deployed on top of OpenStack, including ten
virtual machines. All the virtual machines are configured with
a Xeon E3-1230 CPU and 2GB RAM. The operation system
is Ubuntu 14.04 LTS x64.

We report that LibD takes no more than 10 seconds to ana-
lyze an app. App decompilation (§III-B), including intermedi-
ate representation recovery and package relation construction,
takes around 6 seconds. Library instance recovery (§III-C)
takes around 2 seconds. Average clustering time of one library
instance is less than 12 milliseconds, and we report on average
it takes 100 milliseconds to cluster all the library instances in
an app.

Comparing with LibRadar, we report LibD’s average pro-
cessing time for one app is around 2 seconds longer. Naturally,
as LibD undertakes much finer-grained analysis, it can cost
more time. Overall, LibD is quite efficient and scalable.

F. Further Investigation

In the following subsections, we study three typical chal-
lenges in Android library detections, i.e., multi-package li-
braries, obfuscated libraries, and library mutations. Note that
as we confirm a library (mutation) according to the number of
instances in a cluster (§III-E), some instances—even if they
are multi-package, obfuscated or library mutations—would be
ignored if the total number of their appearances is less than the
threshold. To present a thorough study, we use all the different
instances of potential libraries, in the whole set of 1,427,395
apps, for multiple evaluations in the following subsections
(i.e., data reported in the “# of different instances” columns
in Table II).

1) Multi-Package Libraries: A third-party library may con-
tain more than one package. Benefited from our novel library
boundary identification technique, LibD discovers many multi-
package libraries. In particular, when setting the threshold as
ten, we report to find 5,141 multi-package libraries (8.4% of
all the detected libraries in total).
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Fig. 4: Distribution of different multi-package library instances re-
garding the number of packages.

Fig. 5: Distribution of different multi-package library instances re-
garding the number of structures.

We also use all the different library instances for evaluation,
as they can reveal potential rare changes on the third-party
libraries. Fig. 4 presents the distribution of different multi-
package library instances. The number of library instances
decreases quickly with the increase of the packages each
instance contains. Most of the multi-package instances contain
two packages; there are in total 63,948 two-package instances
(58.8% of all the multi-package instances). We manually an-
alyzed 10 commonly-used instances (e.g., /com/tencent/
wap) and the result shows that the library boundaries are
reasonable.

We also find that multi-package library instances can have
different internal structures. For example, library /fly/
fish/adil has three different structures; each of which con-
tains two, three and four packages, respectively. We consider
two library instances have different structures if their internal
package names or the number of packages are different. We
also report the distribution of different multi-package instances
regarding the number of structures. As shown in Fig. 5, while
there are 51,099 instances with only one structure, 67,147
instances actually contain more than two different structures
(56.7% of the multi-package instances). Our experiments also
report that a library could have 214 different structures at most.

Further investigation of multi-package libraries also reports
that some packages are shared by several multi-package li-
braries. Those shared packages usually provide some common
utilities. Table V presents 5 packages that are shared by at
least two libraries. Given the observation that the first two

TABLE V: Five shared packages and evolved libraries.
Shared packages Evolved libraries

/cn/sharesdk/framework

/cn/sharesdk/douban
/cn/sharesdk/sina
/cn/sharesdk/wechat
/cn/sharesdk/oneshare
/cn/sharesdk/tencent
/cn/sharesdk/twitter
/cn/sharesdk/google
/cn/sharesdk/whatsapp

/com/weibo/sdk /com/weibo/net
/com/weibo/android

/cn/emagsoftware/sdk /cn/emagsoftware/android
/cn/emagsoftware/sms

/com/umeng/common

/com/umeng/update
/com/umeng/analystic
/com/umeng/newxp
/com/umeng/socilize

/com/mobi/tool
/com/mobi/controller
/com/mobi/weather
/com/mobi/assembly

TABLE VI: Top ten commonly-used first two segments of package
names.

Directory # of libraries
/org/fmod 2,613
/twitter4j/util 2,480
/LBSAPIProtocol/a 2,217
/twitter4j/management 2,184
//com/unionpay 2,167
/twitter4j/json 1,723
/com/tencent 1,192
/roboguice/content 1,109
/com/umeng 1,308
/com/facebook 764

segments of these package names are the same, we assume
that they should come from the same developers.

Many library names have three or even more segments (e.g.,
/com/facebook/util has three “segments”). However,
we observe that many of the first two segments of package
names are identical. We report that there are in total 18,594
different kinds of first two segments in the outputs of LibD; we
list the top ten in Table VI. Note that if the first two segments
of two library names are identical, they are likely from the
same developers. In other words, Table VI shows that most
library developers prefer to provide a series of libraries instead
of one.

2) Obfuscated Libraries: LibD is designed to address
name-based obfuscation techniques. Obfuscators (e.g., Pro-
guard [21]) replace the library name with several meaningless
strings while preserve the original directory structures. Our
experimental results report two kinds of renaming strategies.
The first one obfuscates the library full names; all the names in
the directory structures are replaced with meaningless strings,
such as c/a/b or u/y/e. For such obfuscation, we are un-
able to get any useful information by only analyzing the name.
The second obfuscation partially changes the library names
(e.g., the last segment of the library name /com/tencent/
t is obfuscated). Libraries with such partial obfuscation can
usually provide some information of their functionalities or
developers.

As shown in Table II, by setting the threshold as ten, LibD
can detect 11,458 different libraries in total. With our manual
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TABLE VII: Distributions of the obfuscated library instances.
# of obfuscated

names # of instances Percentage (%)

<5 14,931 76.41
5–10 2,238 11.45

10–50 1,736 8.88
50–100 258 1.32

100–1,000 340 1.74
>1,000 37 0.20

Total 19,540 100

TABLE VIII: Libraries with the top ten number of mutations.

Rank Library name
# of mutations

in each identified
library

# of mutations
in total

1 /com/sina/sso 84 175
2 /com/ut/device 10 42
3 /com/nineold/androids/animation 79 222
4 /com/alipay/android 381 2,485
5 /m/framework/utils 55 131
6 /com/google/gson 421 2,422
7 /com/android/vending 161 2,126
8 /com/alipay/mobilesecuritysdk 173 463
9 /com/tencent/mm 288 1,552
10 /cn/sharesdk/wechat 168 495

effort, we report that there are about 5,000 obfuscated library
instances in our dataset, among which 1,453 are completely
renamed, while the rest (around 3,500) are partially renamed.
According to our best knowledge, there is no well-developed
automatic approach to distinguishing a (partially) renamed
library from the others. In other words, our manual verification
of library obfuscation is already the best effort.

In total, we have found that 19,540 different library in-
stances (i.e., library instances with different features) are
obfuscated. Table VII presents six groups of obfuscated in-
stances; instances in each group have different number of
obfuscated names. In general, around 24.5% library instances
have equal or greater than 5 different obfuscated names. We
interpret that obfuscations are actually quite common in real-
world Android applications.

3) Library Mutations: In this section we study the library
mutations. In general, our experimental results report plenty of
libraries with more than 100 mutations. For example, /com/
google/gson has 421 different mutations, while /com/
baidu/android has 197 mutations.

Table VIII lists the identified third-party libraries with the
top ten number of mutations. We also report the number of
mutations when considering all the different library instances
(§IV-F). Our study shows that many mutations indeed only
modify a few lines of code. For example, each updating on
library /com/ut/device only adds a few move opcodes.
We also find some major updates among mutations of certain
libraries, i.e., library structure-level changes. For example,
some mutations of /com/google/gson contain only a few
classes, while others can even include multiple packages.

Another finding is that the number of the “ignored” mu-
tations (fourth column in Table VIII) is even greater than
the confirmed library mutations. In other words, we consider
there are actually many libraries having “stealthy” mutations;
mutations that are only used by less than 10 apps in the
third-party markets we studied. We consider these mutations
potentially indicate illegal or even malicious behaviors.

V. DISCUSSION

Obfuscation. Obfuscation has been broadly used by many
Android applications. In this section, we investigate the
commonly-used Android obfuscation tools and discuss the po-
tential advantages and weakness of our techniques in front of
them. Proguard [21], the official obfuscation tool provided by
the Android SDK, is considered the most popular obfuscator
in the Android developer community. This tool is essentially
designed for renaming obfuscation. Typical renaming obfus-
cation can modify the package, class, and even method names
into meaningless strings. As previously discussed (§III-D2),
by hashing the underlying opcodes, LibD is resilient to the
renaming obfuscations. Our evaluation also presents promising
results in detecting obfuscated third-party libraries (§IV-F2).

We have also noticed that some obfuscation tools can
perform code encryption or even program control flow-based
obfuscations [22]–[24]. Given our current design, such
advanced obfuscations can impede LibD to certain degree.
However, since most code encryption and control flow-based
obfuscations follow predefined patterns, deobfuscation is
mostly feasible. Actually there has been much orthogonal
work proposing to deobfuscate those techniques [25], [26].

Setting threshold. As previously discussed (§III-E),
LibD identifies libraries according to a predefined threshold,
and we set the threshold by validating a board set of
candidates regarding an existing work (§IV-B). Although
our experiments report promising results given the threshold
as ten, conceptually, a “module” shared by only two
Android apps can be considered as a library. In other words,
determining a foolproof threshold regarding real-world
Android applications may need further investigation and
study.

The current implementation of LibD can be easily
configured with different thresholds. Besides, we consider a
rigorous training step regarding the ground truth should also
be applicable in our research. On the other hand, since there
is no systematic approach to acquiring the ground truth, our
current ground truth set constructed by manual efforts may
not be sufficient for training (§IV-C). In sum, we leave it as
further work to extend the size of our ground truth set and
launch a rigorous training procedure to decide the threshold.

Semantics-based similarity analysis. LibD detects instances
of potential libraries (§III-C2); instances with identical
features are clustered into one group (i.e., a third-party
library). Conceptually, we are indeed searching for the hidden
“similarity” among different code components (e.g., Java
packages).

Note that features extracted by LibD (e.g., opcode se-
quences) are essentially from the program syntax. Syntactic
features are straightforward representations of the target pro-
grams, and they have been widely used by many existing
work for program similarity comparison and code clone detec-
tion [27]–[29]. Our experimental result has also demonstrated
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efficient and precise detection of Android third-party libraries
(§IV-C) using syntactic features.

On the other hand, we have also observed some program
semantics-based similarity analysis work [30]–[32]. Ideally,
similarity analysis work in this category retrieves features
by modeling the functionality of the program, and it can
usually reveal the underlying similarities of code snippets
in a more accurate way. However, existing semantics-based
similarity work may not be very scale [31], [32]. Given
the high scalability as a requirement for Android third-party
library related search, we consider it may not be feasible to
directly adopt previous techniques in our new context. We
leave it as future work to integrate more scalable semantics-
based methods in our research.

VI. RELATED WORK

A. Third-Party Library Identification

Early work on third-party mobile library identification
mostly focuses on advertising libraries. Book et al. [33] and
Grace et al. [34] use the whitelist-based method for detecting
advertising libraries. After collecting the names of well-known
advertising libraries, they examine the existence of such li-
braries in a mobile app by package name matching. Later
techniques like AdDetect [35] and PEDAL [4] start to em-
ploy machine learning methods to provide more accurate and
comprehensive results, but they still target advertising libraries
only. AdRob [36] analyzes the network traffic generated by the
advertising services in Android apps to identify which libraries
are bundled, with both static and dynamic analysis.

Identification techniques specialized for advertising libraries
are not suitable for many security analysis on mobile apps.
Recent research has proposed more general methods that
do not rely on a priori knowledge about what types of
libraries are to be identified. WuKong [6] is an Android app
clone detection technique which needs to filter out third-party
libraries before the actual detection starts. WuKong adopts the
assumption that a library consists of only one package. For
each package, WuKong assigns the set of invoked Android
API functions as its signature. Given a large set of apps,
WuKong clusters all packages by this signature and reports
clusters that are large enough to be recognized as a third-party
libraries. LibRadar [7] is an online service that implements the
identification method of WuKong, with a better-performing
package clustering algorithm.

To distinguish app-specific classes from third-party-library
classes, Vásquez et al. [37], [38] extracted the package name
(i.e., main package) from AndroidManifest.xml for an
app. Then, they considered all the classes inside the main
package and its sub-packages as app-specific classes; classes
outside the main package were considered as classes from
third-party libraries. An empirical study conducted by Li et
al. [8] investigated the usage patterns of third-party Android
libraries. Another study by Chen et al. [9] tried to find
potentially harmful libraries in iOS as well as Android apps.
Both studies need to identify Android third-party libraries first,
but they adopt an approach different from the one employed

by WuKong. Instead of matching packages by signature, the
two studies cluster library candidates by computing a distance
metric between each pair of them. The distance is based
on binary similarity and computed through binary diffing
algorithms. With the distances computed, candidates close to
each other are clustered and considered to belong to the same
library. Since binary diffing is usually very costly, both studies
have to perform pre-clustering based on package names to
narrow the scope of pair-wise library candidate comparison,
which could be impeded by obfuscation.

B. Applications
Third-party library identification has been used to imple-

ment many security applications targeting the Android ecosys-
tem, one of which is Android app clone and repackaging
detection [3], [6], [14], [39]–[41]. In this application, third-
party libraries are considered noises, so they need to be
detected and filtered out before app plagiarism is checked.

Another important application of library identification is
mobile vulnerability analysis. Paturi et al. [42] and Stevens et
al. [43] extracted advertising libraries from popular Android
apps and studied the privacy leakage problems residing in
these libraries. Jin et al. [44] discovered that some third-party
libraries providing HTML5 support for mobile developers
can be easily exploited by code injection attacks. SMV-
HUNTER [45] analyzed the man-in-the-middle SSL/TSL vul-
nerabilities in Android apps and third-party libraries. Li et
al. [46] found a vulnerability in a specific version of the
Google cloud messaging library that leads to private data
leakage. Since these vulnerabilities are sometimes closely
coupled with specific libraries, identifying those libraries can
be very helpful to searching for certain kinds of security
threats. LibD can in general assist with these applications.

VII. CONCLUSION

In this paper, we present a novel approach to identifying
third-party libraries in Android apps. Our method overcomes
some long existing limitations in previous work that affect
library identification accuracy. We have implemented our
method in a tool called LibD. From a dataset of 1,427,395
Android apps recently collected from 45 markets, LibD iden-
tified 60,729 different third-party libraries with a manually
validated accuracy rate that clearly surpasses similar tools. In
particular, our tool possesses certain degrees of obfuscation
resilience. Our experimental results show that LibD can find
19,540 libraries whose package names are obfuscated.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their invaluable
comments and suggestions. This research was supported
in part by the National Science Foundation of China
(No. 61572481, 61402471, 61472414 and 61602470), the
Program of Beijing Municipal Science & Technology Com-
mission (No. Y6C0021116), the US National Science Foun-
dation (Grant No. CCF-1320605), and Office of Naval Re-
search (Grant No. N00014-13-1-0175, N00014-16-1-2265, and
N00014-16-1-2912).

10



REFERENCES

[1] “Number of apps available in leading app stores as of July 2015,”
http://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/.

[2] J. Lin, B. Liu, N. Sadeh, and J. I. Hong, “Modeling users mobile app
privacy preferences: Restoring usability in a sea of permission settings,”
in Proceedings of the 2014 Symposium On Usable Privacy and Security,
ser. SOUPS ’14, 2014, pp. 199–212.

[3] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets,” in
Proceedings of the 36th International Conference on Software Engineer-
ing, ser. ICSE ’14, 2014, pp. 175–186.

[4] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’15, 2015, pp. 89–103.

[5] J. Crussell, C. Gibler, and H. Chen, “Scalable semantics-based detection
of similar Android applications,” in Proc. of Esorics, 2013.

[6] H. Wang, Y. Guo, Z. Ma, and X. Chen, “WuKong: A scalable and accu-
rate two-phase approach to Android app clone detection,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis,
ser. ISSTA ’15, 2015, pp. 71–82.

[7] Z. Ma, H. Wang, Y. Guo, and X. Chen, “LibRadar: fast and accurate
detection of third-party libraries in Android apps,” in Proceedings of the
38th International Conference on Software Engineering (Demo Track),
ser. ICSE ’16 Companion Volume, 2016, pp. 653–656.
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