
Semantics-Aware Machine Learning for Function
Recognition in Binary Code

Shuai Wang, Pei Wang, and Dinghao Wu
College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

{szw175, pxw172, dwu}@ist.psu.edu

Abstract—Function recognition in program binaries serves as
the foundation for many binary instrumentation and analysis
tasks. However, as binaries are usually stripped before distribu-
tion, function information is indeed absent in most binaries. By
far, identifying functions in stripped binaries remains a challenge.
Recent research work proposes to recognize functions in binary
code through machine learning techniques. The recognition
model, including typical function entry point patterns, is au-
tomatically constructed through learning. However, we observed
that as previous work only leverages syntax-level features to train
the model, binary obfuscation techniques can undermine the pre-
learned models in real-world usage scenarios. In this paper, we
propose FID, a semantics-based method to recognize functions
in stripped binaries. We leverage symbolic execution to generate
semantic information and learn the function recognition model
through well-performing machine learning techniques.

FID extracts semantic information from binary code and,
therefore, is effectively adapted to different compilers and op-
timizations. Moreover, we also demonstrate that FID has high
recognition accuracy on binaries transformed by widely-used
obfuscation techniques. We evaluate FID with over four thousand
test cases. Our evaluation shows that FID is comparable with
previous work on normal binaries and it notably outperforms
existing tools on obfuscated code.

Index Terms—reverse engineering; machine learning; function
recognition;

I. INTRODUCTION

Function recognition in binary programs is critical in reverse
engineering [1], [2], [3] and many binary instrumentation
and analysis tasks [4], [5], [6]. For example, control-flow
integrity validates control flow transfers with rules constructed
before execution [7], [8], [9], and function addresses are
used to define these rules. In addition, many binary similarity
analysis tools launch the similarity test in the granularity of
functions [10], [11], [12]. Thus, incorrectly identified functions
can drastically impede the similarity test. Recent research
work [13] studies the recovery of relocation information from
binary code, in which function addresses are the prerequisite
to identify code pointers.

Despite the fundamental role of functions in binary instru-
mentation and analysis applications, function information is
usually absent in real world program binaries. The main reason
is that to reduce application size and defeat reverse engineering
from adversaries, program symbols (including function infor-
mation) are usually removed from program binaries before
distribution. By far, identifying functions in stripped binaries
remains a challenge. Some research work has been proposed to
discuss the recognition of functions in stripped binaries [14],
[15]. Also, most of the widely-used binary reverse engineering
and analysis tools have implemented their own methods to

identify functions [16], [17], [18]. Note that most of these
existing tools rely on handwritten patterns to recognize func-
tion prologue instructions. However, it is reported that these
manually written patterns can become less effective when the
input binary is highly optimized. Indeed, it has been pointed
out that the industry strength reverse engineering tool IDA-
Pro (version 6.5) which features function detection fails to
recognize functions in a simple C program compiled by Intel
icc compiler with the O3 optimization level [19].

Distinguished from these manually written patterns, Rosen-
blum et al. [20] first consider the function recognition as a
machine learning problem; patterns are automatically learned
from the training data, which will be installed for usage. In
addition, recent work proposes advanced machine learning
techniques to recognize functions with improved performance
[19], [21]. In general, these machine learning methods auto-
matically learn key features from a large set of binary code to
train a detection model, and given a sequence of machine code
bytes (or assembly instructions), the “learned” model is able
to answer whether the given code bytes start new functions.
The machine learning approaches have been evaluated to work
better than handwritten pattern matching methods. However,
we observe one of the limitations of these methods is that
they construct the “key features” purely through machine code
bytes (or assembly instructions). That means, the leveraged
features only capture the syntax-level information in the binary
code. Thus, it is reasonable to suspect that program syntax
changes can potentially defeat the learned models due to
different complication settings or even program obfuscations.

Program obfuscation and diversification transform programs
into complex representations which are difficult to under-
stand. Typical obfuscation techniques insert garbage code into
random positions of the program, change the control flow
structures, and harden control flow predicates into opaque
formats. To defeat reverse engineering and analysis from
adversaries, besides deleting the debug and relocation infor-
mation, we assume software can be obfuscated before release.
To provide better analysis facilities of real world program
binaries, we study the function recognition problem against
binary obfuscated by commonly-used techniques, which, to
our best knowledge, has not been evaluated by previous work
systematically.

Symbolic execution captures the semantic information of
programs. The key idea of symbolic execution is to use sym-
bolic variables to represent the input and (statically) interpret
the code. After symbolic execution, for each initial input, a

1 <emit_try_help>:
2 push %ebp
3 mov %esp,%ebp
4 sub $0x18,%esp
5 lea 0x804db36,%eax
6 mov 0x8050144,%ecx
7 mov %eax,(%esp)
8 mov %ecx,-0x4(%ebp)
9 call gettext

(a) Original code.

eax = 0x804db36
ebx = reg2
ecx = mem1
edx = reg4
esi = reg5
edi = reg6
ebp = reg8
esp = reg7 - 32

(b) Assignment formulas corre-
sponding to the original code.

1 <emit_try_help>:
2 push %ebp
3 nop
4 mov %esp,%ebp
5 sub $0x18,%esp
6 lea 0x804db36,%eax
7 mov 0x8050144,%ecx
8 mov %eax,(%esp)
9 mov %ecx,-0x4(%ebp)

10 call gettext

(c) Obfuscated code.

eax = 0x804db36
ebx = reg2
ecx = mem1
edx = reg4
esi = reg5
edi = reg6
ebp = reg8
esp = reg7 - 32

(d) Assignment formulas corre-
sponding to the obfuscated code.

Fig. 1: A motivating example.

symbolic formula is generated to represent its output seman-
tics. To better tackle the function recognition problem, we pro-
pose to identify functions through the combination of symbolic
execution and machine learning. To this end, we first employ
an open-source reverse engineering tool Uroboros [13], [22]
to disassemble the input binary and recover basic blocks.
We then apply symbolic execution on each individual basic
block to generate corresponding semantics. In particular, we
record the assignment formula ([11]) of each register which
captures the behavior within one block as well as memory
accesses during the interpretation. We select key semantics
from the outputs of symbolic execution, and translate them into
numeric feature vectors. We utilize well-performing machine
learning techniques to learn from the acquired key features
and train a recognition model. For any given basic block, the
learned model can answer whether it represents a function
entry point basic block or not, thus identifying a new function.
We implement the proposed technique in a tool named FID,
and we evaluate FID against a broad set of diverse program
binaries produced by three compilers and four optimization
levels. The evaluation results show that FID is comparable or
even outperforms the state-of-the-art function recognition tools
towards the broad sets of test cases we use. We also employ a
widely-used program obfuscation tool, Obfuscator-LLVM [23]
to measure the obfuscation resilience of FID (Obfuscator-
LLVM is referred as ollvm later). Binaries transformed by
seven obfuscation strategies are produced and evaluated in
this paper (including three widely-used binary obfuscation
methods and their four compositions). Our evaluation shows
that while previous tools suffer from the drastically changed
syntax in obfuscated binary code, the performance of FID
is quite promising. In sum, this paper makes the following
contributions:

• We identify the limitations of previous machine learning
based techniques in function recognition, i.e., model
learned from syntax-level features can be defeated eas-
ily by program syntax changes. We propose a novel
technique to extract the semantics and learn a more
robust model. We implement our proposed approach as a
practical tool, FID.

• We evaluate a broad set of normal and obfuscated
program binaries. Evaluation shows that our approach
can successfully capture the semantic information across
various compilers and optimization levels. Our evaluation
also reports that FID can outperform previous available
tools against multiple widely-used obfuscation transfor-
mations and their compositions.

The rest of the paper is organized as the following. We first
present a motivating example in §II. We then give the overview
of FID in §III-A, iterate critical design choices of FID in the
following subsections of §III and evaluates FID in §IV. We
present the discussion in §V, review related work in §VI and
conclude the paper in §VII.

II. MOTIVATING EXAMPLE

We observed that previous function recognition methods can
become malfunctional in front of program syntax changes.
We present an example in Figure 1, in which a machine
learning based function recognition tool BYTEWEIGHT [19]
misidentifies a function entry point.

To set up this test, we first compile all the 32-bit GNU
Coreutils binaries (version 8.23) using LLVM 3.6 and op-
timization O0. We train BYTEWEIGHT (bap-byteweight in
BAP v0.99 [24]) to learn a recognition model from all these
binaries. This version of BYTEWEIGHT captures informative
machine code bytes to train the model. BYTEWEIGHT also has
another implementation which takes assembly instructions to
train the model [25]. In the rest of this paper we refer to the
byte-level BYTEWEIGHT as BW-BYTE while the other one
as BW-INSTR.

Garbage code insertion obfuscates programs by inserting
meaningless instruction sequences into the code. To present
a straightforward and informative example, We insert garbage
code to obfuscate the syntax of one Coreutils program binary
(basename). To this end, we disassemble the program binary
of basename, insert one nop instruction at the beginning
of the function emit try help (line 3 in Figure 1c),
and reassemble the instrumented output into an executable.
Figure 1a presents the prologue instruction sequence of
emit try help before obfuscation, and Figure 1c shows
the obfuscated code. We then employ BW-BYTE to identify
functions from both the original and the obfuscated binaries;
we report that while BW-BYTE can correctly recognize this
emit try help function from the original binary, the
same function cannot be recognized from the obfuscated code.

BW-BYTE constructs weighted prefix trees to represent
typical function entry point patterns, each tree node main-
taining one machine byte. We consider the main reason for
the misidentification is because the inserted nop defeats the
matching towards the pre-learned tree structures. To illustrate
the hidden similarity between the original and obfuscated code,
we present the assignment formula of eight registers through
symbolic execution ([11]). Assignment formulas capture the
code semantics in terms of input and output relations. We
initialize each register with a symbolic variable as the input

U
ro

bo
ro

s
D

is
as

se
m

bl
er

Binary

Basic Block

push %ebp
push %ebx
push %edi
sub $12,%esp
mov $0,(%edi)
lea 16(%edi),%eax

. . .

Simplified Instructions

mov ebp [esp]
sub 4 esp
mov ebx [esp]
sub 4 esp
mov ebi [esp]
sub 4 esp
sub 12 esp
mov 0 [edi]
add edi 16 t0
mov t0 eax

. . .

Assignment Formulas

eax = mem1 + 16
ebx = reg2
ecx = reg3
edx = reg4
esi = reg5
edi = reg6
ebp = mem4
esp = reg8 - 24

. . .

Feature Vectors

(1
.8

3,
2.

0,
..

.,
0.

12
)

. . .

Classification

Fig. 2: The workflow of FID.

(e.g., reg1), and during interpretation, every memory access
towards uninitialized region (e.g., line 6 in Figure 1a) creates
a new symbolic variable as well (e.g., mem1). The interpre-
tation outputs are shown in Figure 1b and Figure 1d; the
assignment formulas of the original and obfuscated instruction
sequences—as can be expected—are equivalent. Note that
while most formulas have one symbolic variable, formula
of stack register esp contains a subtraction operation of
32. Typically for programs on the x86 architecture, stack
needs to grow to store local variables, which decrements the
stack register. In sum, the recognition model trained from
program syntax could become unreliable in front of even
simple syntax changes, while the semantics can usually be
preserved regarding such changes.

III. DESIGN

We now outline our approach for function recognition in
program binaries. To this end, we train a classifier through
semantics of function entry point basic blocks. Later, for a
given basic block, our classifier is able to answer whether it
represents a function entry point or not, thus recognizing a
new function. The extracted semantics is mainly represented
as assignment formulas, which describe basic block’s behavior
regarding the input and output relation of registers.

FID is built on top of Uroboros, an open-source binary
disassembly and instrumentation platform [13]. The input pro-
gram binaries are disassembled and maintained as its internal
data, and Uroboros provides utilities to perform inspection and
manipulation. While some program instrumentation facilities
are provided already, the analysis component of Uroboros
is quite insufficient. In this paper, we extend Uroboros with
multiple analysis functionalities.
Scope and Assumptions. FID is mainly designed to recognize
functions inside x86 ELF binaries without debug or relocation
information. We evaluate it in test cases compiled by different
compilers, optimization levels and commonly-used obfusca-
tions. Careful readers may notice that FID extracts semantics
of each basic block. Thus, correct disassembling and basic
block recovery are the prerequisites of FID. In this paper, we
assume the disassembling and basic block recovery are mostly
reliable. We discuss these assumptions in §V.

As previously mentioned, one motivation of our research is
that syntax-based pattern is untenable or even misleading due
to syntax changes. Therefore, in this research, besides call
instructions identified inside the code section of the program
binary, FID does not take program syntax into consideration.
In addition to the trained recognition model, the destinations

(i.e., the callee) of call instructions are used to reveal more
functions. This design choice is detailed in §III-G and §V.

A. Workflow
Figure 2 shows the overall workflow of FID. FID takes

a stripped binary as input and employs Uroboros to recover
program control flow structures (including each basic block).
FID visits each recovered basic block and launches the im-
plemented analysis components.

As Uroboros is mainly designed to support binary instru-
mentation, assembly instructions maintained by it are not
parsed into analysis-friendly formats. Therefore similar to
other binary analysis tools, FID first simplifies the complex
representations maintained by Uroboros and lift them into
easy-to-analysis formats. This process exposes instructions
with implicit memory operations into corresponding explicit
expressions and simplifies composite instruction operands
(e.g., indirect addressing).

In the next phase, we launch a symbolic execution engine
to produce the semantics of each basic block. Note that as we
are only analyzing each individual block, it is not necessary
to track the intra and inter-procedure execution information.
We capture the assignment formulas for eight general-purpose
registers and also record the memory access behaviors in
this step (§III-B). Given all the acquired semantics, we then
select informative features and trim off redundancy before
learning (§III-C). We emphasize this step is necessary as
the deliberately-selected key features can boost the learning
process and improve the performance.

We now have the representations of the semantics each basic
block has; the assignment formulas and memory access behav-
iors describe operations a basic block will perform. However,
assignment formulas are purely syntactic; learning directly
from assignment formulas are very challenging. Therefore, we
then seek to translate semantics into numeric feature vectors.
We extract multiple numeric features from both lexical and
syntactic aspects of an assignment formula (§III-D).

With all the numeric vectors collected, we then discuss how
we launch the learning process and train the recognition model
(§III-E). In addition, our study shows that binary compiled by
different compilers may have different feature distribution, and
to present a practical tool, we undertake a pre-classification
step, determining which compiler the input binary is compiled
from (§III-F). After that, for a given binary, we use the model
learned from binaries compiled only by the identified compiler
to predicate.

Similar with previous work [19], [26], we improve the ac-
curacy through control flow analysis, i.e., identifying function

call instructions in the disassembled code. Motivated by the
low recognition precision of previous tools (§IV-C), one of
our central design choice is to present conservative feature
selection which guarantees high precision rate, and improve
the recall rate with call instruction collection (§III-G).1

B. Basic Block-level Symbolic Execution
After acquiring the simplified code, the first step is to

leverage symbolic execution to interpret instruction sequences
corresponding to each basic block. For each basic block,
we collect the assignment formula of every 32-bit general-
purpose register. We also record the memory access behavior
a basic block commits during the execution. As mentioned
previously, symbolic execution engine implemented in FID
initializes the interpretation at the beginning of every basic
block; this design choice can largely improve the practicabil-
ity, as typical challenges in analyzing real-world large size
binaries, such as inter-procedural analysis, are not considered.
Our implementation follows the common design of a symbolic
execution engine. We leverage bit vectors defined by the Z3
SMT solver [27] to construct the input value of each register.
The symbolic variables initialized through Z3 allow bit-level
arbitrary computation, and after aggregating assignment for-
mulas representing the output semantics, we pass formulas
to the Z3 solver to simplify the expressions before further
analysis.

FID also maintains a lookup table to represent memory
contents and how each position is accessed through memory
addressing formulas (e.g., 4*reg1 + 4, where reg1 is the
input variable of register eax). Memory read operations on
stack is likely to indicate access on function parameters, which
is considered as a key feature of function starting blocks (see
§III-C for details). Therefore after execution, FID iterates each
recorded memory read operation, and if any of the memory
read formula contains the input symbolic variable of the stack
register esp, this memory access formula will be recorded.
Note that it is likely to use other registers instead of esp
to access stack, as we statically interpret the instructions and
keep track of the memory, dataflow from esp to other registers
can be captured as well. After the interpretation, assignment
formulas and memory read formulas of each basic block are
dumped out for further analysis.

C. Select Informative Semantics
Before we “learn” a model from all the acquired data

in §III-B, we first select the key features that are mostly
informative in this research. Indeed, our preliminary test shows
that by deliberately selecting a subset from all the outputs in
§III-B, we could notably improve the performance of FID.
Stack Registers. We observe that most function entry point
basic blocks will create new stack frame and reserve spaces
to allocate local variables. That means, stack register esp and
ebp are likely to be adjusted in typical function entry point
basic blocks. Figure 4 presents an example, demonstrating
how stack register esp is used in a typical function beginning

1In this paper, precision represents the percentage of function entry points
identified that are correct; recall is the percentage of real function entry points
identified as such. We also calculate F1 score in evaluation sections, which
is the harmonic mean of precision and recall; naturally, the higher F1 score
is, the better a learned model is considered in general.

basic block. As shown in Figure 4a, register esp is utilized
to reserve 92 bytes on the stack to store local variables. Note
that besides the explicit subtraction operation on esp (line 5 in
Figure 4a), push opcode (line 1–4) also implicitly decrements
the input value of esp by 16 bytes (this implicit effect
has been translated into explicit statements before symbolic
execution). Figure 4b presents the assignment formulas corre-
sponding to instructions in Figure 4a. Assignment formulas of
register esp contain a subtraction operation of 92.

In general, stack registers are majorly informative, and we
pick their assignment formulas (formulas of register esp and
ebp) to learn.
Memory Read. Although stack registers are informative,
actually in a typical function call context, both caller and callee
can manipulate the stack registers. To future distinguish caller
and callee, we elaborate on how we select key features from
memory access behaviors.

In this research, we capture the stack memory read op-
erations through register esp, which is likely to indicate
typical parameter read operations at the beginning of functions.
Figure 3 presents typical memory access instructions in a
function call context (this example is from a GNU Coreutils
program printf). As shown in Figure 3d, memory positions
pointed by reg8+4 and reg8+8 which represent the memory
positions of the first two function parameters, are all visited by
the callee (reg8 is the input variable of stack register esp).
Whereas on the caller side no memory read can be found.

In general, we assume stack memory read operations are
informative in identifying function entry points, if the memory
access formula follows certain addressing patterns. Recall in
§III-B the symbolic execution engine has iterated all the mem-
ory read addressing formulas and dumped out formulas con-
taining the input variable of esp. We then check the presence
of memory addressing formulas following such pattern reg8
+ 4*n, where n can equal to 1, 2, and 3 (suppose reg8 is
the input variable of esp, and we assume each stack memory
fetching is 4-byte aligned). Such addressing formulas indicate
memory read towards the first three potential parameters of
a function. Functions with three or more parameters will
have the same feature vectors (i.e., (Present, Present,
Present)) in this step.

D. Translate Assignment Formulas into Numeric Vectors

Several previous work seeks to recognize equivalent assign-
ment formulas through a theorem prover [28], [29]. Given two
formulas, a theorem prover is able to prove the equivalence
between them, thus identifying program units (e.g., two basic
blocks) that are semantically equivalent. However, despite
its disinformative results (a prover can only tell “match” or
“unmatch”), we emphasize this equivalence-seeking approach
is not suitable in our usage scenario, as we are more interested
in the gradual similarity.

On the other hand, we observe that most data mining
methods take numeric vectors to train the model. Enlightened
by recent research [30], we seek to translate the acquired
semantics into numeric vectors to support a forthright learning
process. We also notice that some machine learning algorithms
are able to use more complex representations (e.g., string and
tree kernels [31]). We leave it as one future work to explore

mov $0x805248e,0x4(%esp)
mov -0x10(%ebp),%eax
mov %eax,(%esp)
call c_strcasecmp

(a) Caller’s basic block.

eax = mem1
ebx = reg2
ecx = reg3
edx = reg4
esi = reg5
edi = reg6
ebp = reg7
esp = reg8

(b) Assignment formulas of the
caller’s basic block.

<c_strcasecmp>:
push %ebp
mov %esp,%ebp
push %esi
push %ebx
sub $0x20,%esp
mov 0x8(%ebp),%esi
mov 0xc(%ebp),%ebx
cmp %ebx,%esi
jne 0x804cf85

(c) Callee’s basic block.

eax = reg1
ebx = mem1
ecx = reg3
edx = reg4
esi = mem2
edi = reg6
ebp = reg8 - 4
esp = reg8 - 44
[reg8+4] = mem3
[reg8+8] = mem4

(d) Assignment formulas and
memory reads of the callee’s basic
block.

Fig. 3: Memory access behaviors in an inter-procedure control transfer.

1 push %ebp
2 push %ebx
3 push %edi
4 push %esi
5 sub $0x4C,%esp
6 mov 0x68(%esp),%eax
7 mov 0x64(%esp),%edx
8 mov 0x60(%esp),%esi
9 test %edx,%edx

(a) A function entry point basic
block.

eax = mem1
ebx = reg2
ecx = reg3
edx = mem2
esi = mem3
edi = reg6
ebp = reg7
esp = reg8 - 92

(b) The corresponding assign-
ment formulas.

Fig. 4: Stack register adjustments in a function entry point.

challenges in adopting such advanced models in mining sym-
bolic formulas.

In this step, we choose to extract and combine lexical and
syntactic features from assignment formulas; each feature as
a numeric value. Most lexical features are captured directly
from formulas’ textual representations, while syntactic features
are acquired from the parsed abstract-syntax trees (ASTs).
Besides, we also capture three boolean (0/1) stack features
based on the stack memory access behaviors. Note that each
assignment formula produces 8 features, and we capture
formulas of esp and ebp (§III-C). Thus, for each basic block,
we construct a numeric vector with 19 elements (8*2+3).
Lexical Features. Table I shows the lexical features we
extract from the textual representations. We obtain the number
of operators and constants by directly analyzing the text.
As for the token related feature, we employ Python library
tokenize to calculate the total number of tokens. We are
particularly interested in the subtraction operations of stack
registers in typical function entry point basic blocks, and to
this end, we identify two features regarding the presence of
subtraction operations and their (potentially) small operands.2

Syntactic Features. In this step, we extract features that
can be ignored in the lexical analysis. In particular, as each
assignment formula can be parsed into a syntax tree, we extract
syntactic features on top of the parsed tree. Table II presents
features we utilized; We calculate the maximum levels of
nested parentheses and the maximum depth of an AST as two
features. Considering function prologue block delivers unique
assignment formulas, it shall be accurate to assume ASTs
of prologue blocks and other blocks would yield different
similarity distributions when comparing to randomly selected

2“Small operands” refer to operands of subtraction operations that are less
than a threshold. In our prototype implementation this threshold is 65536.

TABLE I: Lexical features.

Feature Definition

numOperator/length
the number of occurrences of operators

divided by the formula length of
characters

numToken/length the number of tokens divided by the
formula length of characters

numConstant/length the number of constants divided by the
formula length of characters

decOperator/length
the number of subtraction operators

divided by the formula length of
characters

decNum/length
the number of “small operands” in

subtraction operations divided by the
formula length of characters

TABLE II: Syntactic features.

Feature Definition

maxNestingDepth the maximum levels of nested
parentheses

maxDepthASTNode the maximum depth of an AST

aveTreeDistance
the average tree edit distance between
the target AST and 50 random picked

ASTs

ASTs. Hence, we calculate similarity for each AST with other
randomly select ASTs in our dataset. Tree edit distance is
employed to measure the similarity, and we use Python library
zss, which implements the Zhang-Shasha algorithm [32] to
calculate the distance. Without losing generality, we randomly
select 50 ASTs and calculate their tree edit distances towards
one target AST.
Stack Features. As in the previous step we have checked
the presences of three stack memory accesses that indicate
function parameter read (§III-C), here we create three boolean
(0/1) features for them. Zero indicates the absence and one is
for the opposite.

Normalization: Although it may not be obvious, the lexical
and syntactic feature extractions have implicitly “normal-
ized” the assignment formulas (normalization here means
generalizing a formula so that it can match formulas with
similar structures). The reason is that we extract structural
and tokenism information from the formulas (e.g., the total
number of constant numbers), and ignore concrete values
in the formula. The “normalization” can usually help us
identify more functions. For example, if one function entry
point basic block has an assignment formula esp = reg8
- 4 + mem4, then it is reasonable to assume a basic block
with formula esp = reg3 - 8 + mem5 belonging to a

TABLE III: Classifiers used by the majority voting mechanism.

Models Settings
LinearSVC penalty parameter C=16.0
AdaBoost number of weak learners=100

GradientBoosting number of boosting stage=100; learning
rate=1.0; random state=0

function entry point as well since two formulas produce the
same lexical and syntactic features.

Even though we distinguish ourselves from previous work
as we extract features from the semantics while they focus on
syntaxes, normalization is considered as a general optimization
for both.

E. Classification
After producing all the numeric feature vectors, we then

employ data mining methods to train a recognition model. Our
preliminary test shows that multiple machine learning tech-
niques have good performance. To present a well-performing
and robust classifier, we decide to employ the majority voting
mechanism on top of multiple learning algorithms. A typical
majority voting classifier combines multiple learning methods
and use a majority voter to predict. A majority voting approach
can rule out weakness of each individual method, which should
be more adaptable in our scenario.

As shown in Table III, our majority voting classifier contains
three classic learning methods. Besides settings shown in
Table III, we use the default value for all the other parameters
of the three learning methods. We use these methods from
Python machine learning library scikit-learn.

F. Distinguishing Different Compilers
Our preliminary test on three compilers (gcc, icc and

LLVM) shows that while binaries compiled by gcc and
icc share quite similar feature distribution, LLVM has a
slightly different distribution (§IV-A). Given this observation,
we construct a pre-classification step before predication in
the real-world usage scenarios, determining whether a given
program binary is compiled by LLVM compiler or gcc/icc
(we put binaries compiled by these two compilers into one
group as they have similar feature distributions according to
our observation). After that, we recognize functions from the
input with a model trained from binaries compiled only by the
corresponding compiler (i.e., LLVM or gcc/icc).

The question we seek to answer in this step is comparable to
a classic pattern recognition problem, i.e., given an image with
thousands of pixels (in our case, it is compared to a program
binary with thousands of basic blocks), which category does
this image belong to. Enlightened by research work in that
field, we classify program binaries according to the feature
distribution of informative basic blocks. We first select rep-
resentative basic blocks from thousands of candidates each
binary contains, and then calculate the distribution of these
selected blocks regarding some revealing features. We use the
acquired distributions (in the format of numeric vectors) to
train a classification model. After the training step, for a given
binary code (i.e., the input), our classification model is able to
answer which compiler it is compiled from (the output). We
elaborate on our method in terms of a three-step approach as
below:

TABLE IV: Boolean features to distinguish different compilers.

Feature Definition
decESP Does esp contain subtraction operator?
decEBP Does ebp contain subtraction operator?

memREAD
Can we identify stack memory read

operations on memory position reg8 + 4*n
(n can equal to 1, 2 and 3)?

The first step is to select “critical” basic blocks from all the
blocks a binary contains. Naturally, basic blocks corresponding
to function entry points should be considered as informative
candidates in our research. However, our study has shown
that without knowing which compiler it belongs to, identifying
functions from obfuscated binaries through pre-learned models
could become problematic (low recall rate in our case). Thus,
we conservatively select functions identified by the callees of
call instructions (as shown in Table VII, we can discover
about 50% functions through this method).

The semantics of each basic block is translated into a
feature vector with 19 elements (§III-D); as most of them
are continuous variables, it is—if possible at all—quite chal-
lenging to calculate a feature distribution. Instead, as shown
in Table IV, the second step constructs five boolean features
(note that memREAD stands for three features, and reg8 is the
input variable of register esp) from the numeric features we
already acquire (§III-D). As these features are all in boolean
distribution, the overall distribution space (25) is small and
practical. We then calculate the distribution of function starting
basic blocks with respect to these 25 (i.e., 32) variants and
train a model using a majority voting classifier with the same
settings (§III-E). Evaluations in this step are detailed in §IV-B.

G. Call Instruction Collection

Our preliminary study shows that when analyzing complex
binary code, it is not always possible to achieve low false
positive and negative rate at the same time. Besides, we have
observed that some of previous machine learning based tools
can have relatively high recall rate with quite low precision
rate (§IV-C). This is not satisfying in developing security
applications (e.g., control-flow integrity [7], [6], [9]), as low
precision rate indicates many instructions are incorrectly con-
sidered as function entry points, which potentially leaves more
opportunities for attackers to hijack the control flow.

To present a practical tool, one of our central design choice
is to preserve low false positive rate through deliberately-
selected conservative features, and reduce the false negative
rate with additional control flow analysis. To catch functions
that are missed by the trained model, we extend the function
entry point list through call instruction collection. That is, for
a given call instruction, if we can identify its operand (say,
the callee) in the code section, the callee is considered a new
function beginning. Functions identified by this approach will
be added to the final result of FID, thus reducing the false
negative rate. We name this technique FID-CIC later in this
paper.

H. Function Boundary Identification

Naturally, after recognizing function entry points, the next
step is to recover the function boundary, i.e., identifying both
the entry point and (multiple) exit points of functions. Most of

the existing work recovers the function boundary information
through control flow analysis [19], [26]; starting from the iden-
tified function entry point, they traverse the intra-procedural
control flow to rebuild the control flow graph, thus recovering
the function boundaries. Actually given the identified function
entries, as the intra-procedural CFG recovery techniques are
mostly well-developed, function boundary identification is a
matter of engineering effort. So our major effort in this paper
is to present novel techniques in recovering the function entry
points.

BYTEWEIGHT adopts one baseline method to split the
whole code section into multiple regions according to the
identified function beginnings; each region stands for one
function. Indeed besides typical challenges such as overlap-
ping functions in highly-optimized binary code, this “naive”
method has been proved as quite reliable [19]. FID provides
this method to recover the function boundary. Indeed, we
can utilize the value-set analysis to recover indirect control
destinations and precisely reconstruct the CFG [33]. Thus, the
function boundaries can be distinguished even for overlapped
functions. We leave it as one future work to extend FID with
the precise recovery of function boundaries.

IV. EVALUATION

We undertake a three-step evaluation in this research. The
first step evaluates FID in function entry point recognition of
normal binaries; three compilers and four optimization levels
are employed to generate test cases in this step. We then
test FID in distinguishing which compiler an input binary is
compiled from. The third evaluation is on obfuscated code. We
leverage the Obfuscator-LLVM [23] (referred to as ollvm) to
obfuscate all the test cases with three widely-used obfuscation
methods and their compositions (in total 7 strategies). All the
optimization levels are used to generate obfuscated code in
this evaluation. We evaluate FID in terms of three standard
criteria, i.e., precision, recall, and F1 score. In general, our
experiments aim to address the following questions:

• Is FID resilient to compiler and optimization changes
(§IV-A)?

• Is FID capable of answering which compiler an input
binary is compiled from (§IV-B)?

• Is FID resilient to widely-used code obfuscation tech-
niques (§IV-C)?

Before we present the evaluation of our approach, we first
introduce the data set we use and how we acquire the ground
truth for comparison.
Data Set. Our evaluation are designed to compare with the
cutting-edge research and industrial binary analysis tools who
features the function recognition functionality. We choose to
employ a widely-used program set, i.e., GNU Coreutils as the
test set in our research. GNU Coreutils consists of 106 binaries
which provides diverse tasks on Linux operating systems such
as textual processing, system management, and arithmetic
calculation. We compile the test cases with three compilers
(gcc, icc and LLVM) and four optimization levels to produce
“normal” program binaries for evaluation.

To evaluate the resilience to program obfuscation, we em-
ploy ollvm in our experiments. ollvm is a set of obfuscation
passes implemented inside LLVM compiler suite, which pro-
vides three widely-used obfuscation methods, i.e., instruction

TABLE V: Obfuscation strategies used in the evaluation.

Obfuscation Methods ins opq flt mix1 mix2 mix3 mix4
Instruction Replace 3 3 3 3

Opaque Predicate Insert 3 3 3 3

CFG Flatten 3 3 3 3

replace [34], opaque predicate insert [35], and control-flow
flatten [36] to obfuscate the inputs. All of these methods
are widely-used in typical program obfuscation tasks. In this
paper, we leverage all the implemented obfuscation methods,
together with their compositions (i.e., combining multiple
methods to obfuscate) to produce binaries with complex struc-
tures. We present the obfuscation strategies we use in Table V.
Note that each column name corresponds to the abbreviated
name we use in evaluation. In summary, our data set consists
of three variables:
Compiler. We use GNU gcc 4.7.2, Intel icc 14.0.1 and
LLVM 3.6 to produce test binaries.
Optimization Level. For both “normal” and obfuscated binary
evaluation, we test all the optimization levels, i.e., O0, O1, O2
and O3.
Obfuscation Methods. We test program binaries obfuscated
by 7 different strategies; each strategy is evaluated regarding
4 optimization levels as well.

In total, 4,240 (1,272 normal binaries and 2,968 obfuscated
binaries) unique test cases are evaluated in our work.
Ground Truth and Tool Usage. All the test cases are
compiled with the symbolic and debug information, and it is
easy to get the ground truth (i.e., function beginning addresses)
by disassembling the binary. Indeed we acquire the ground
truth by disassembling the code section of each test case with
GNU tool objdump, and extract all the functions with their
starting address information by using grep.

The symbolic and debug information will then be removed
from test binaries using GNU tool strip before analyzed by
FID. Note that while FID and BYTEWEIGHT can directly out-
put the identified function starting address, IDA-Pro recovers
functions as its internal data structure for analysis and transfor-
mation. For IDA-Pro, we write scripts to dump out the function
information. As previously mentioned, BYTEWEIGHT pro-
vides two syntax-based function recognition methods which
generate machine byte or assembly instruction-based models.
Both of them are evaluated in our research. we summarize the
tools we evaluated below:
BW-Byte: The machine byte-level BYTEWEIGHT has been
integrated into BAP [16]. We use BAP version 0.99 for
evaluation (the newest version by the time of writing) [24].
BW-Instr: The instruction-level BYTEWEIGHT is provided
through a virtual machine image [25]. The image is down-
loaded and configured to use.
IDA-Pro: We use IDA-Pro version 6.6 with all the function
identification options enabled.3

A. Normal Code
We first evaluate FID in all the normal programs. As

previously mentioned, we utilize three compilers and four

3Although the newest version of IDA-Pro is 6.9 by the time of writing, there
is no improvement for function identification in x86 ELF binaries according
to its release notes [37], [38], [39].

TABLE VI: Ten-fold validation on different compilers with different optimization levels.

Opt. Level LLVM gcc icc
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

O0 0.828 0.980 0.898 0.961 0.978 0.969 0.961 0.979 0.970
O1 0.868 0.933 0.899 0.958 0.951 0.954 0.958 0.952 0.955
O2 0.792 0.961 0.868 0.957 0.946 0.951 0.957 0.945 0.951
O3 0.826 0.961 0.888 0.961 0.955 0.958 0.961 0.857 0.906
average 0.829 0.959 0.889 0.959 0.958 0.958 0.959 0.933 0.946

TABLE VII: Comparison with different tools (the “baseline” method
only uses call instruction collection to recognize functions).

Precision Recall F1 Score
Baseline 1.000 0.527 0.690
IDA-Pro 0.998 0.600 0.750
BW-BYTE 0.788 0.954 0.863
BW-INSTR 0.996 0.997 0.996
FID 0.916 0.959 0.930

optimizations to compile programs in GNU Coreutils, resulting
into 1,272 test cases. To demonstrate the proposed semantics-
based model in FID, call instruction collection (§III-G) is not
used in this step.

We used ten-fold validation in this step. In general, this
validation divides the total data set into ten subsets and
tests each subset with the model trained by the remaining
9. Table VI presents the evaluation results against different
compilers and optimizations. The precision and recall rates
represent the average of the ten tests. On average, FID has
0.916 precision, 0.959 recall and 0.930 F1 score for the 1,272
test cases. While the precision rate of binaries compiled from
the LLVM compiler is slightly lower than the other two, the
overall data is convincing. Indeed, most of the evaluation
criteria on gcc and icc compiled binaries are quite stable
to around 96% (besides the recall rate of icc O3). We
interpret this as a promising result to show the semantics-
based technique implemented in FID has good performance
against various compilers and optimization levels.

We compare FID with existing research and industry de
facto tools, which features handwritten patterns or machine
learning based function recognition. We also present the “base-
line” method, i.e., only leveraging call instruction collection to
recognize functions (§III-G). We evaluate all of them using the
same test cases. Table VII presents the average performance
results; FID notably outperforms the baseline method, IDA-
Pro and BW-BYTE. Indeed by comparing with the baseline
method, we have shown how FID can effectively improve
the performance through the machine learning-based method.
BW-INSTR can marginally outperform FID on normal code
with no obfuscation; later we will see how the semantics-
based model implemented in FID can surpass BW-INSTR
on obfuscated code. Note that this evaluation only tests the
learned model, and in practice, call instruction collection
(§III-G) can always provide additional information to improve
the performance of FID.

B. Different Compilers
In this section, we present the evaluation on distinguishing

different compilers. As aforementioned (§III-F), for any given
input binary, we aim to develop a classifier which can answer
whether this binary is compiled by LLVM or gcc/icc.

Table VIII presents the performance of ten-fold validation
against all the benign code. Most of the binaries compiled by

TABLE VIII: Ten-fold validation on distinguishing different compil-
ers.

Opt. Level gcc/icc
Precision Recall F1 Score

O0 1.000 1.000 1.000
O1 1.000 1.000 1.000
O2 0.977 1.000 0.989
O3 0.940 1.000 0.969
Average 0.979 1.000 0.989

Opt. Level LLVM
Precision Recall F1 Score

O0 1.000 1.000 1.000
O1 1.000 0.775 0.873
O2 1.000 0.84 0.913
O3 1.000 0.84 0.913
Average 1.000 0.863 0.926

TABLE IX: Evaluation on distinguishing different compilers on
obfuscated binary code.

Precision Recall F1 Score
O0 1.000 1.000 1.000
O1 1.000 0.391 0.488
O2 1.000 1.000 1.000
O3 1.000 1.000 1.000
Average 1.000 0.848 0.918

gcc/icc can be correctly classified, with small errors (over
0.97 precision rate). As for the binaries compiled by LLVM, we
report the recall rate is slightly lower than the other group. In
particular, our finding shows that binaries compiled by LLVM
and optimization O1 have similar distributions with binaries
compiled by gcc/icc to certain degree. Nevertheless, given
1.000 precision and over 0.85 recall rate, we still interpret it as
a promising result to show FID can recognize which compiler
the input binary is compiled from for most of the cases.

Our tentative evaluation shows that training using data from
binaries compiled by O0 and O2 optimization level can lead to
stable performance, so to evaluate the obfuscation-resilience,
we train the model using data from Coreutils binaries compiled
by LLVM and icc compilers with O0 and O2 optimization
levels (in total 424 program binaries),4 and test the trained
model towards all the obfuscated binary code (seven obfusca-
tion methods and four optimization levels). Table IX presents
the average performance regarding different optimizations. We
report besides four types of obfuscated binaries compiled by
LLVM and O1 optimization, most of the obfuscated binaries
perform flawlessly in this evaluation. This is consistent with
our evaluation in Table VIII.

It is always possible to improve the recall rate when scari-
fying some precision. Besides, some tricks such as analyzing
the exported function name and mangling schemes can also
provide us with more clues. We leave it as one future work to

4Considering the similarity of binaries compiled by icc and gcc, we
choose to only use binaries compiled by one of them. Our test reports similar
test results when substituting with gcc compiled binaries.

TABLE X: Evaluation on obfuscated code compiled with O3 optimization level. FID-CIC (III-G) outperforms all the other tools in terms
of F1 score (i.e., the harmonic mean of precision and recall), which demonstrates the resilience of our technique towards obfuscated code.

Obf. IDA-Pro BW-BYTE BW-INSTR FID FID-CIC
P R F1 P R F1 P R F1 P R F1 P R F1

ins 1.000 0.474 0.643 0.719 0.929 0.811 0.911 0.920 0.915 0.958 0.683 0.798 0.966 0.839 0.898
opq 1.000 0.551 0.710 0.540 0.937 0.685 0.811 0.859 0.834 0.959 0.655 0.778 0.969 0.867 0.915
flt 1.000 0.489 0.656 0.730 0.924 0.816 0.716 0.936 0.811 0.913 0.607 0.729 0.933 0.806 0.865
mix1 1.000 0.543 0.704 0.569 0.931 0.706 0.768 0.907 0.832 0.955 0.586 0.726 0.968 0.840 0.899
mix2 1.000 0.489 0.657 0.494 0.935 0.647 0.685 0.915 0.783 0.896 0.621 0.733 0.918 0.809 0.860
mix3 1.000 0.560 0.718 0.395 0.929 0.554 0.671 0.942 0.784 0.943 0.608 0.740 0.958 0.835 0.892
mix4 1.000 0.565 0.722 0.444 0.925 0.600 0.703 0.941 0.805 0.849 0.557 0.672 0.895 0.842 0.868
Average 1.000 0.524 0.688 0.556 0.930 0.696 0.752 0.917 0.826 0.925 0.617 0.740 0.944 0.834 0.886

TABLE XI: Average performance evaluation on obfuscated code.

Opt. Level FID
Precision Recall F1 Score

O0 0.979 0.852 0.911
O1 0.900 0.555 0.685
O2 0.944 0.616 0.745
O3 0.925 0.617 0.740
Average 0.937 0.660 0.774

Opt. Level FID-CIC
Precision Recall F1 Score

O0 0.981 0.936 0.958
O1 0.933 0.885 0.907
O2 0.957 0.833 0.891
O3 0.944 0.834 0.885
Average 0.954 0.872 0.911

improve the recall rate of binaries compiled by LLVM and O1
optimization. Overall, we assume FID can clearly distinguish
whether an input binary is compiled by LLVM compilers or
gcc/icc for most of the cases.

C. Obfuscated Code

The next step is to evaluate FID against the obfuscated
binary code. In this test, we train a recognition model with
normal binary code, and test the trained model with obfuscated
code. Apparently, this is how FID is supposed to work in
practice. Note that as obfuscated binaries are all compiled
by LLVM compiler, as discussed in §III-F, we train FID
with normal binaries compiled by LLVM. To be consistent
with §IV-B, we train FID with normal binaries compiled by
optimization level O0 and O2 (in total 212 binary code). We
also train BW-INSTR and BW-BYTE with the same settings.

We first report detailed results regarding the most challeng-
ing setting, that is, obfuscations with optimization O3. Ta-
ble X reports the performance data. Note that BW-INSTR also
provides the functionality to improve the learned model with
call instruction collection (§III-G), therefore to present a fair
comparison, BW-INSTR is configured with this functionality
(column four). We do not configure BW-BYTE with call in-
struction collection, as the high recall rate of BW-BYTE shows
small space for improvement (as aforementioned, “recall” rate
represents the percentage of real function entry points that is
identified). As can be expected, FID-CIC outperforms all the
other tools in terms of average F1 score, which is a strong
evident to prove FID is resilient to obfuscated code.

In particular, our evaluation shows that while precision of
FID is high whether we leverage call instruction collection or
not, recall increases when it is applied (comparing column five
and six in Table X). This is consistent with our assumption,
i.e., we conservatively select semantics features to guarantee
precise recognition (low false positive rate), and eliminate
false negative (improve recall rate) through call instruction
collection.

Although BW-INSTR shows better recall compared with
FID, FID outperforms BW-INSTR in terms of precision and
F1 score. Thus, we interpret FID can have much lower false
positive in analyzing obfuscated code. Again, we emphasize
the recall rate can be improved by analyzing indirect function
calls through value-set analysis, which is left as our future
work.

We also reported the average performance score against all
four optimization levels. As shown in Table XI, the average
precision is over 0.95, and recall is over 0.87. Note that
our evaluation shows that with more complex optimization
applied, the recall rate decreases. We consider the main reason
is that advanced optimization techniques are likely to decrease
the need to use stack for parameter passing and locate variable
allocation. In general, given overall 0.91 F1 score, we interpret
that FID is capable of identifying functions even in front
of binary code obfuscated by widely-used techniques with
various optimization levels.

D. Execution Time

Our experiments are launched on a server machine with
Intel Xeon(R) E5-2690 CPU, 2.90GHz and 128GB memory.
In this section we report the time consumption of FID.
Feature Generation. FID takes 123.2 CPU hours to process
all the normal binary code, and 1659.9 CPU hours for all the
obfuscated code; the process time of each test case is recorded
from starting to disassemble until finishing producing the
numeric feature vectors. Naturally, as obfuscation complicates
control flow structure and generates more basic blocks, it is
reasonable to take more time to process.

Our study shows that there are two tasks taking more time
than others, i.e., symbolic execution (§III-B) and tree edit
distance computation (§III-D). On the other hand, while it
takes a relatively long CPU time to process, as FID boosts
several tasks (e.g., symbolic execution) with multithreading
facilities, the real execution time is indeed much shorter. We
report FID takes 23.1 real hours to process normal binary code
and 483.8 real hours for obfuscated binary code. On average,
it takes 7.2 minutes to analyze one binary code.
Model Training. Our ten-fold validation training takes 3.62
CPU hour (§IV-A), and the training time with only LLVM O0
and O2 binary code (§IV-C) takes 178.1 CPU seconds. We
consider the training time is in general promising.
Predication. Given the trained model and numeric feature
vectors extracted from an input binary, predication is straight-
forward. We report that the predication time is 679.53 CPU
seconds (§IV-C). That is, on average it takes about 0.23s to
recognize functions in one binary.

V. DISCUSSION AND LIMITATIONS

Binary Disassembling. Correct disassembling is a prerequisite
step in our research. BinCFI [6] uses an iterative disassem-
bling algorithm that guides the employed linear disassembler
with a validator to correct potential disassembling errors.
Uroboros [13] re-implements this algorithm as a prerequisite
for program relocation symbol recovery. It has been evaluated
that this algorithm can successfully disassemble real-world
large applications and libraries with no error (e.g., FireFox
5, Wireshark v1.6.2). In general, in this research we assume
the disassembling functionality is reliable even for large size
real-world applications.

While most of the binary diversification and obfuscation
methods are designed to impede code similarity test, Linn
et al. present obfuscation techniques to impede static disas-
sembling [40]. However, techniques have been proposed to
defeat these obfuscation techniques [14]. In addition, recent
research work has proposed techniques to defeat a long-living
challenge in binary code analysis–self modifying code–with
good results [41]. Although FID is not equipped with such
advanced techniques, we consider it an engineering effort to
solve most well-known challenges in disassembling obfuscated
binary code.
Basic Block Identification. It is reported that most indirect
addressing takes code pointers in code and data sections as the
destinations of control transfers [13]. Uroboros identifies code
pointers from random data in both code and data sections, and
it separates the code into multiple basic blocks according to
the collected pointers and control transfer instructions. Thus,
although CFGs may not be precisely recovered due to the
indirect addressing, as long as code pointers are correctly
collected, the basic block recovery should be reliable.

Indirect addressing through dynamic calculation undermines
the basic block recovery (as it is disclosed that Uroboros
only identifies the base address for such addressing mode).
Nonetheless, existing research work proposes straightforward
solutions to analyze such addressing mode [6], and there have
been available tools to provide similar functionality as well
(e.g., DynInst [26]). Although as a proof-of-concept prototype,
FID does not implement these techniques, it is only a matter
of engineering effort to cooperate them with FID.
Obfuscation Methods. Our motivating example highlights
the underlying design limitation of previous work, i.e., they
only learn from syntax-level features. In this paper, we pro-
pose techniques to capture the semantics information; the
evaluation in this work on thousands of program binaries
demonstrates that our method preserves promising evaluation
results even in front of drastically changed program syntax.
Note that in this paper, we are not stating to defeat all sort
of obfuscations, but mainly focus on outperforming existing
research in terms of commonly-used obfuscation methods,
while keep comparable performance regarding normal binary
code. Note that many binary reverse engineering tasks (e.g.,
indirect memory addressing) are indeed undecidable; results
from computability theory suggest that it could be very dif-
ficult to propose impeccable solutions through static analysis.
Hence we consider it is challenging–if not impossible at all–to
propose a technique that can become the “panacea” to defeat

all obfuscation methods. Again, proposing such technique is
not our main purpose here.

In addition, FID is designed as orthogonal to its underlying
disassembler. Although Uroboros is tenable to implement
FID as a proof-of-concept prototype, it is always possible to
improve the disassembling and basic block recovery by using
commercial reverse engineering tools (e.g., CodeSonar [42]).

VI. RELATED WORK

Function identification is considered as the foundation for
many binary analysis and test applications, and there has been
a number of related work in this topic [14], [15], [20], [43],
[44], [26]. Rosenblum et al. [20] propose to use machine
learning based approach to address the function recognition
problem. Bao et al. [19] detail multiple challenges in this
topic, and propose a weighted prefix-tree based approach to
train the recognition model. As aforementioned, their work
have two implementations by learning both machine code
bytes and instruction sequences, and it has been evaluated
that BYTEWEIGHT can significantly outperform previous
work [20] regarding recognition accuracy and processing time.
As BYTEWEIGHT releases its implementation, in this work,
we have mainly compared FID with it. Shin et al. [21] pro-
poses a deep-learning based technique to recognize functions
by learning from machine code bytes. It is reported that their
work has better performance and less processing time than
BYTEWEIGHT. We do not test their tool as it is not available.
However, as discussed in §V (and also admitted in their paper),
arbitrary inserted garbage code could break the trained model,
while FID would not be trapped in such cases.

While some recent research work reports good performance
using machine learning approaches, they essentially share a
similar design choice, i.e., they mainly capture the syntax-level
information to learn. Conceptually, while syntax can be easily
extracted, the learned model suffers from syntax changes, e.g.,
binary obfuscation and diversification. On the other hand, in
this paper we shows that by learning from deliberately-selected
semantic information, obfuscation-resilience is achievable for
widely-used techniques.

VII. CONCLUSION

In this paper, We present FID, a semantics-based function
recognition tool in binary code. FID leverages symbolic
execution to extract assignment formulas and memory access
behaviors. The acquired information will then be used to train
a function recognition model with well-performing machine
learning techniques. Our evaluation shows that FID is com-
parable with the state-of-the-art tools on normal binaries, and
outperforms them on obfuscated binary code.

ACKNOWLEDGMENT

We appreciate the anonymous reviewers for their valuable
feedback. We also thank Tiffany Bao for helping us setup
ByteWeight and providing valuable feedback. This research
was supported in part by the National Science Foundation
(NSF) under grant CNS-1652790, and the Office of Naval
Research (ONR) under grants N00014-13-1-0175, N00014-16-
1-2265, and N00014-16-1-2912.

REFERENCES

[1] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 de-
compilation using semantics-preserving structural analysis and iterative
control-flow structuring,” in Proceedings of the 22nd USENIX Security
Symposium, 2013.

[2] M. Van Emmerik and T. Waddington, “Using a decompiler for real-
world source recovery,” in Proceedings of the 11th Working Conference
on Reverse Engineering, ser. WCRE ’04, 2004, pp. 27–36.

[3] I. Guilfanov, “Decompilers and beyond,” Black Hat USA, 2008.
[4] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search

engine for binary code,” in Proceedings of the 10th Working Conference
on Mining Software Repositories, ser. MSR ’13. IEEE Press, 2013, pp.
329–338.

[5] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “XFI:
Software guards for system address spaces,” in Proceedings of the 7th
symposium on Operating Systems Design and Implementation, 2006, pp.
75–88.

[6] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
Proceedings of the 2013 USENIX Security Symposium, 2013.

[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and Communications Security. ACM, 2005, pp. 340–353.

[8] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Nürnberger, and A.-R. Sadeghi, “MoCFI: A framework to mitigate
control-flow attacks on smartphones.” in Proceedings of the 2012
Symposium on Network and Distributed System Security, 2012.

[9] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and randomization
for binary executables,” in Proceedings of the 2013 IEEE Symposium
on Security and Privacy, 2013.

[10] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
23rd USENIX Security Symposium, 2014, pp. 303–317.

[11] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Proceedings of the
2015 IEEE Symposium on Security and Privacy (SP), 2015, pp. 709–
724.

[12] “BinDiff,” http://www.zynamics.com/bindiff.html.
[13] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in

Proceedings of the 25nd USENIX Security Symposium, ser. USENIX
Security ’15, 2015.

[14] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly
of obfuscated binaries,” in Proceedings of the 13th Conference on
USENIX Security Symposium, ser. USENIX Security’04, 2004, pp. 18–
18.

[15] H. Theiling, “Extracting safe and precise control flow from binaries,”
in Proceedings of the Seventh International Conference on Real-Time
Computing Systems and Applications, 2000, pp. 23–30.

[16] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary
analysis platform,” in Proceedings of the 23rd International Conference
on Computer Aided Verification, 2011.

[17] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in Proceedings of
the 4th International Conference on Information Systems Security, 2008.

[18] S. Hex-Rays, “IDA Pro: a cross-platform multi-processor disassembler
and debugger,” 2014.

[19] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “ByteWeight:
Learning to recognize functions in binary code,” in Proceedings of the
23rd USENIX Conference on Security Symposium, 2014.

[20] N. Rosenblum, X. Zhu, B. Miller, and K. Hunt, “Learning to analyze
binary computer code,” in Proceedings of the 23rd National Conference
on Artificial Intelligence, 2008, pp. 798–804.

[21] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in 24th USENIX Security Symposium,
2015, pp. 611–626.

[22] S. Wang, P. Wang, and D. Wu, “Uroboros: Instrumenting stripped
binaries with static reassembling,” in Proceedings of the 23rd IEEE
International Conference on Software Analysis, Evolution, and Reengi-
neering, ser. SANER’16, 2016.

[23] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM
– software protection for the masses,” in Proceedings of the IEEE/ACM
1st International Workshop on Software Protection. IEEE, 2015, pp.
3–9.

[24] “ByteWeight with Machine Byte Code Features,” https://github.com/
BinaryAnalysisPlatform/bap.

[25] “ByteWeight with Assembly Instruction Features,” http://security.ece.
cmu.edu/byteweight/.

[26] W. R. Williams, X. Meng, B. Welton, and B. P. Miller, “Dyninst and
MRNet: Foundational infrastructure for parallel tools,” in Proceedings
of the 9th Annual Parallel Tools Workshop, 2015.

[27] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceed-
ings of 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[28] D. Gao, M. K. Reiter, and D. Song, “BinHunt: Automatically finding
semantic differences in binary programs,” in Proceedings of the 4th
International Conference on Information Systems Security, 2008.

[29] J. Ming, M. Pan, and D. Gao, “iBinHunt: Binary hunting with inter-
procedural control flow,” in Proceedings of the 15th International
Conference on Information Security and Cryptology, 2013, pp. 92–109.

[30] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt, “De-anonymizing programmers via code
stylometry,” in 24th USENIX Security Symposium, 2015, pp. 255–270.

[31] S. V. N. Vishwanathan and A. J. Smola, “Fast kernels for string and
tree matching,” in Proceedings of the 15th International Conference on
Neural Information Processing Systems, ser. NIPS’02, 2002, pp. 585–
592.

[32] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM J. Comput., vol. 18, no. 6,
pp. 1245–1262, Dec. 1989.

[33] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86
executables,” in Compiler Construction. Springer, 2004, pp. 5–23.

[34] F. B. Cohen, “Operating system protection through program evolution,”
Comput. Secur., vol. 12, no. 6, pp. 565–584, Oct. 1993.

[35] C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed application
tamper detection via continuous software updates,” in Proceedings of
the 28th Annual Computer Security Applications Conference, 2012.

[36] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, 2014.

[37] “IDA-Pro 6.7,” www.hex-rays.com/products/ida/6.7/index.shtml.
[38] “IDA-Pro 6.8,” www.hex-rays.com/products/ida/6.8/index.shtml.
[39] “IDA-Pro 6.9,” www.hex-rays.com/products/ida/6.9/index.shtml.
[40] C. Linn and S. Debray, “Obfuscation of executable code to improve

resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security, ser. CCS ’03,
2003, pp. 290–299.

[41] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and
A. Thierry, “Codisasm: Medium scale concatic disassembly of self-
modifying binaries with overlapping instructions,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15, 2015, pp. 745–756.

[42] “CodeSonar,” http://www.grammatech.com/products/binary-analysis.
[43] “IDA-FLIRT,” https://www.hex-rays.com/products/ida/tech/flirt.shtml.
[44] “DynInst-unstrip,” http://www.paradyn.org/html/tools/unstrip.

http://www.zynamics.com/bindiff.html
https://github.com/BinaryAnalysisPlatform/bap
https://github.com/BinaryAnalysisPlatform/bap
http://security.ece.cmu.edu/byteweight/
http://security.ece.cmu.edu/byteweight/
www.hex-rays.com/products/ida/6.7/index.shtml
www.hex-rays.com/products/ida/6.8/index.shtml
www.hex-rays.com/products/ida/6.9/index.shtml
http://www.grammatech.com/products/binary-analysis
https://www.hex-rays.com/products/ida/tech/flirt.shtml
http://www.paradyn.org/html/tools/unstrip

