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Abstract 

 The concept “partition of integers” refers to representing a positive integer 𝑚 as a sum of 

indeterminate integers. Multiple researches concerning integer triangles have been conducted, and 

satisfying results have been reached. This research utilizes a different method to find the number of 

integer triangles with a specific perimeter, tackling the problem from an algebraic point of view, and 

applies this method to polygons. In the following research, given the integers 𝑚 and 𝑛, consider the 

partition of the integer 𝑚 into 𝑛 summands, with the condition that the value of each summand is 

smaller than the sum of the other 𝑛 − 1 summands, so that the summands of the integer can be used to 

construct the sides of an integral polygon. We discuss the case of triangles first, using inductive 

reasoning to find a pattern to the number of integral triangles. The numbers of integral quadrilaterals 

have also been discovered through this method. However, a pattern cannot be determined for polygons 

that have more than four sides. Thus, we have searched for a recurrence relation between the partition 

of quadrilaterals and triangles, and generalized the formula to find the number of partitions into 𝑛 

summands for a given integer 𝑚. 

 

1 Introduction 

 “Integer partition” is a significant problem in number theory and combinatorics. It aims to 

represent a positive integer 𝑚 as a sum of indeterminate integers. For example, 5 can be partitioned in 

7 ways, which are 5, 1+4, 2+3, 1+1+3, 1+2+2, 1+1+1+2, 1+1+1+1+1; thus, the indeterminately 

partitioning number of 5, 𝑝(5), is 7. This problem was first issued by G. W. Leibniz, 1646~1716, “I 

think the question is not easy” asserted by him in the letter sent in 1699 to John Bernoulli, 1667~1748. 

It was mentioned several times in his unpublished manuscripts. Later L. Wuler, 1707~1783, developed 

the topic to a kind of complete partitioning theory with important publishments in 1741 and 1748. 

German combinatorics scholar C. F. Hindenburg, 1741~1808, as well as J. F. W. Herschel, 1792~1871, 

A. De Morgan, 1806~1871, J. J. Sylvester, 1814~1897, A. Cayley, 1821~1891, P. A. MacMahon, 

1854~1929, etc., also made great contribution to this field successively. Nowadays, it has become a 

relatively robust theory, but there’s still no simple formula of 𝑚 for  𝑝(𝑚). 

 It is as hard as the original problem 𝑝(𝑚) if we restrict the partition of 𝑚  in 𝑛  parts, say 

𝑝(𝑚, 𝑛), unless 𝑛 is small. In the case of 5, we can easily tell 𝑝(5, 1) = 𝑝(5, 4) = 𝑝(5, 5) = 1 and 

𝑝(5, 2) = 𝑝(5, 3) = 2 . Generally speaking, 𝑝(𝑚, 1) = 1, 𝑝(𝑚, 2) = [
𝑚

2
] , where [𝑥]  is the largest 

integer smaller or equal to 𝑥. In specific, for positive integers 𝑚 and 𝑛, 𝑝(𝑚, 𝑛) is  

equivalent to the number of positive integer sequences (𝑎1, 𝑎2, … , 𝑎𝑛)  satisfying the following 

conditions: 

 (P1) 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = 𝑚 

 (P2) 1 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 



The target of this research is to add the third condition (P3) in addition to (P1) and (P2), regarding it as 

a conditional partition problem. In the following sections, 𝑓(𝑚, 𝑛) is used to represent the number of 

positive integer sequences (𝑎1, 𝑎2, … , 𝑎𝑛) fulfilling (P1), (P2) and (P3). 

 (P3) 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 > 𝑎𝑛 

These sequences are also equivalent to the sides which can construct a n-polygon, without considering 

the order of the sides. Actually, 𝑓(𝑚, 3) is the number of distinct integer triangles whose perimeters 

are 𝑚.  

 In Advanced Combinatorics, published by a French mathematician Louis Comtet in 1974, an 

exercise clearly stated that there are [
1

48
(𝑚2 + 3𝑚 + 21 + (−1)𝑚−13𝑚)] distinct integer triangles 

with perimeters equal to 𝑚. Four students in East China Normal University (Yajing Cai, Zhengli Tan, 

Fugang Chao, Han Ren) and Shanghai Key Laboratory of Pure Mathematics and Mathematical 

Practice published a paper in 2015, using Ferrers diagram and generating function as well as 

triangular coordinates to give out two approaches to prove the formula written by Comtet. 

 The goal of this research is to further find 𝑓(𝑚, 𝑛). First, different discussing methods will be 

conducted to show the result of Comtet’s formula again. Also, the approach can be extended to four-

part partition problem. Finally, recursive relationship between different 𝑛 values for 𝑝(𝑚, 𝑛) and 

𝑓(𝑚, 𝑛) will be shown. 

 

2 Three-integer Partition 

 

𝑓(𝑚, 3) will be discussed first in this section, with two approaches different from the 

aforementioned researches, to prove Comtet’s formula again.  

𝑓(𝑚, 3) = [
1

48
(𝑚2 + 3𝑚 + 21 + (−1)𝑚−13𝑚)] 

Table 1: Simple Examples for (a, b, c) 

m = 3 m= 4 m= 5 m= 6 m = 7 m = 8 

a b c a b c a b c a b c a b c a b c 

1 1 1    1 1 3 2 2 2 1 3 3 2 3 3 

            2 2 3    

m = 9 m = 10 m = 11 m = 12 m = 13 m = 14 

a b c a b c a b c a b c a b c a b c 

1 4 4 2 4 4 1 5 5 2 5 5 1 6 6 2 6 6 

2 3 4 3 3 4 2 4 5 3 4 5 2 5 6 3 5 6 

3 3 3    3 3 5 4 4 4 3 4 6 4 4 6 

      3 4 4    3 5 5 4 5 5 

            4 4 5    



For simple notation, we denote the sequence as (a, b, c), where a, b, c are three sides of the 

triangle. Without losing the generality, we can also assume that 𝑐 ≥ 𝑏 ≥ 𝑎. Then, it’s obvious that 

𝑏 + 𝑐 > 𝑎 and 𝑎 + 𝑐 > 𝑏, so only 𝑎 + 𝑏 > 𝑐 is required to be discussed. 

 For instance, a positive-side triangle with perimeter equal to 3 can only be (1, 1, 1). Hence, 

𝑓(3, 3) = 1. By brute-force approach, the examples in Table 1 can be easily found. According to 

these data, we can deduce the result in Table 2, where shows the fact that 𝑓(𝑚, 3) < 𝑓(𝑚 + 1,3) 

when 𝑚 is even and less than 15.  

Table 2: 𝒇(𝒎,𝟑) for small m 
m 3 4 5 6 7 8 9 10 11 12 13 14 15 

f(m, 3) 1 0 1 1 2 1 3 2 4 3 5 4 7 

 

2.1 First approach for 𝒇(𝒎, 𝟑) 

 We first show the first approach to get 𝑓(𝑚, 3). For a positive integer 𝑚, since 1 ≤ 𝑎 ≤ 𝑏 ≤

𝑐, we obtain 3𝑎 ≤ 𝑎 + 𝑏 + 𝑐 = 𝑚 and 𝑎 ≤
𝑚

3
; therefore, the valid range for 𝑎 can be concluded. 

1 ≤ 𝑎 ≤
𝑚

3
,which is equivalent to 1 ≤ 𝑎 ≤ [

𝑚

3
] 

After fixing 𝑎, as 𝑎 ≤ 𝑏 = 𝑚 − 𝑎 − 𝑐 ≤ 𝑐, we can deduce that  
𝑚−𝑎

2
≤ 𝑐 ≤ 𝑚 − 2𝑎. On the other 

hand, 𝑐 + 1 ≤ 𝑎 + 𝑏 = 𝑚 − 𝑐, so 𝑐 ≤
𝑚−1

2
, which means 𝑐 ≤ [

𝑚−1

2
]. We obtain two upper bounds for 

𝑐, both of which are compulsory. Further discussion about these two bounds can be found that 

[
𝑚−1

2
] ≤ 𝑚 − 2𝑎 is equivalent to 𝑎 ≤ [

𝑚+2

4
]. Hence, the valid range for c satisfies the following 

conditions: 

(2.1) If 𝑎 ≤ [
𝑚+2

4
] ,
𝑚−𝑎

2
≤ 𝑐 ≤ [

𝑚−1

2
] , which means [

𝑚+1−𝑎

2
] ≤ 𝑐 ≤ [

𝑚−1

2
]. 

(2.2) If 𝑎 ≥ [
𝑚+6

4
] ,
𝑚−𝑎

2
≤ 𝑐 ≤ 𝑚 − 2𝑎,which means [

𝑚+1−𝑎

2
] ≤ 𝑐 ≤ 𝑚 − 2𝑎. 

Thus, we obtain that 

f(m, 3) 

= ∑ ([
m− 1

2
] − [

m+ 1 − a

2
] + 1) + ∑ (𝑚− 2𝑎 − [

m + 1 − a

2
] + 1)

[
m
3
]

𝑎=[
𝑚+6
4

]

[
𝑚+2
4

]

𝑎=1

 

= ∑([
m+ 1

2
] − [

m + 1 − a

2
])

[
𝑚
3
]

𝑎=1

− ∑ ([
m+ 1

2
] − 𝑚 + 2𝑎 − 1)

[𝑚 3⁄ ]

𝑎=[
𝑚+6
4

]

 

= 𝑆1 − 𝑆2. 

When m is even, 𝑆1 is the sum of 0, 1, 1, 2, 2, 3, 3, … (there are 𝑥 = [
𝑚

3
] numbers in total.); it 

can be further discussed in two cases. If 𝑥 = 2𝑦 for some integer 𝑦, then  𝑆1 = 0 + 1 + 1 + 2 + 2 +



⋯+ (𝑦 − 1) + (𝑦 − 1) + 𝑦 = 𝑦2 =
𝑥2

4
. Otherwise, if 𝑥 = 2𝑦 + 1 for some integer y,  𝑆1 = 0 + 1 +

1 + 2 + 2 +⋯+ (𝑦 − 1) + (𝑦 − 1) + 𝑦 + 𝑦 = 𝑦(𝑦 + 1) =
𝑥2−1

4
. When m is odd, however, 𝑆1 is the 

sum of 1, 1, 2, 2, 3, 3, … (there are also 𝑥 = [
𝑚

3
] numbers in total.); likewise, if 𝑥 = 2𝑦 for some 

integer 𝑦,  𝑆1 = 1 + 1 + 2 + 2 +⋯+ 𝑦 + 𝑦 = 𝑦(𝑦 + 1) =
𝑥(𝑥+2)

4
. If 𝑥 = 2𝑦 + 1 instead, then  𝑆1 =

1 + 1 + 2 + 2 +⋯+ 𝑦 + 𝑦 + (𝑦 + 1) = (𝑦 + 1)2 =
(𝑥+1)2

4
. 

𝑆2 is an arithmetic series with length 𝑧 =  [
𝑚

3
] – [

𝑚+2

4
], common difference 2, and first 

number [
m+1

2
] − 𝑚 + 2 [

m+6

4
] − 1 = [

4[
m+6

4
]−m−1

2
] = [

w

2
], where 𝑤 = 3, 2, 5, 4 respectively when 

𝑚 ≡ 0, 1, 2, 3 (𝑚𝑜𝑑 4), so the first item is 1, 1, 2, 2 respectively. When m ≡ 0, 1 (𝑚𝑜𝑑 4),  𝑆2 =
(1+2𝑧−1)𝑧

2
= 𝑧2; when m ≡ 2, 3 (𝑚𝑜𝑑 4),  𝑆2 =

(2+2𝑧)𝑧

2
= 𝑧(𝑧 + 1). 

As  𝑆1,  𝑆2 are related to [
m

3
] , [

𝑚+2

4
], we can divide the problem into 12 cases by mod 12 and 

find the solution for 𝑓(𝑚, 3) respectively. Details are shown in Table 3. 

 With the 12 results shown in Table 3, we can then induce the conclusion that 

𝑓(𝑚, 3) = [
1

48
(𝑚2 + 3𝑚 + (−1)𝑚−13𝑚) + 𝑓′(𝑚, 3)] 

= [
1

48
(𝑚2 + 3𝑚 + 21 + (−1)𝑚−13𝑚)] 

 

, where the value of 𝑓′(𝑚, 3) can be found in the third row in Table 4 as well as the sixth column in 

Table 3. In fact, the scalar 21 in the formula can be replaced by any number between 21 and 31. 

Table 3: 12 cases of 𝒇(𝒎, 𝟑) 

m x=[m/3] 𝑆1  z=[m/3] – [(m+2)/4] 𝑆2   f(m, 3)= 𝑆1 − 𝑆2 

12t 4t 4𝑡2 4t-3t=t 𝑡2  3𝑡2 =
𝑚2

48
 

12t+1 4t t(4t+2) 4t-3t=t 𝑡2  3𝑡2 + 2𝑡 = (𝑚2 + 6𝑚 − 7)/48 

12t+2 4t 4𝑡2 4t-(3t+1)=t-1 t(t-1) 3𝑡2 + 𝑡 = (𝑚2 − 4)/48 

12t+3 4t+1 (2𝑡 + 1)2 (4t+1)-(3t+1)=t t(t+1) 3𝑡2 + 3𝑡 + 1 = (𝑚2 + 6𝑚 + 21)/48 

12t+4 4t+1 t(4t+2) (4t+1)-(3t+1)=t 𝑡2  3𝑡2 + 2𝑡 = (𝑚2 − 16)/48 

12t+5 4t+1 (2𝑡 + 1)2 (4t+1)-(3t+1)=t 𝑡2  3𝑡2 + 4𝑡 + 1 = (𝑚2 + 6𝑚 − 7)/48 

12t+6 4t+2 (2𝑡 + 1)2 (4t+2)-(3t+2)=t t(t+1) 3𝑡2 + 3𝑡 + 1 = (𝑚2 + 12)/48 

12t+7 4t+2 (t+1)(4t+2) (4t+2)-(3t+2)=t t(t+1) 3𝑡2 + 5𝑡 + 2 = (𝑚2 + 6𝑚 + 5)/48 

12t+8 4t+2 (2𝑡 + 1)2 (4t+2)-(3t+2)=t 𝑡2  3𝑡2 + 4𝑡 + 1 = (𝑚2 − 16)/48 

12t+9 4t+3 (2𝑡 + 2)2 (4t+3)-(3t+2)=t+1 (𝑡 +

1)2  

3𝑡2 + 6𝑡 + 3 = (𝑚2 + 6𝑚 + 9)/48 

12t+10 4t+3 (2t+1)(2t+2) (4t+3)-(3t+3)=t t(t+1) 3𝑡2 + 5𝑡 + 2 = (𝑚2 − 4)/48 

12t+11 4t+3 (2𝑡 + 2)2 (4t+3)-(3t+3)=t t(t+1) 3𝑡2 + 7𝑡 + 4 = (𝑚2 + 6𝑚 + 5)/48 



2.2 Second approach for 𝒇(𝒎, 𝟑) 

 Then we introduce the second approach to find 𝑓(𝑚, 3). Recall that 𝑓(𝑚, 3) is the number of 

positive integer sequences (𝑎, 𝑏, 𝑐) satisfying 

𝑎 ≤ 𝑏 ≤ 𝑐, and  𝑎 + 𝑏 > 𝑐. 

These sequences can be grouped in two cases: 𝑎 + 𝑏 = 𝑐 + 1 and 𝑎 + 𝑏 ≥ 𝑐 + 2. 

For the first case 𝑎 + 𝑏 = 𝑐 + 1, as 𝑎 + 𝑏 + 𝑐 = 𝑚, 𝑚 must be odd, and 𝑎 + 𝑏 =
𝑚+1

2
, 𝑐 =

𝑚−1

2
. Therefore, since 𝑎 ≤ 𝑏, there are [

𝑚+1

4
] solutions. 

For the second case 𝑎 + 𝑏 ≥ 𝑐 + 2, as 𝑐 ≥ 𝑏, 𝑎 + 𝑏 ≥ 𝑏 + 2, so 𝑎 ≥ 2. Consider a new 

sequence (𝑎′, 𝑏′, 𝑐′), where 𝑎′ = 𝑎 − 1, 𝑏′ = 𝑏 − 1, 𝑐′ = 𝑐 − 1. It satisfies that 𝑎′ + 𝑏′ + 𝑐′ = 𝑚 −

3, 𝑎′ ≤ 𝑏′ ≤ 𝑐′, and 𝑎′ + 𝑏′ > 𝑐′. Thus, the case corresponds to the solution of 𝑓(𝑚 − 3, 3). 

To sum up these two cases, we obtain: if m is even, 𝑓(𝑚, 3) = 𝑓(𝑚 − 3, 3); if m is odd, 

𝑓(𝑚, 3) = 𝑓(𝑚 − 3, 3) + [
𝑚+1

4
]. 

One step further, when m is even,  

𝑓(𝑚, 3) 

= 𝑓(𝑚 − 3, 3) 

= 𝑓(𝑚 − 6, 3) + [
𝑚 − 2

4
] 

= 𝑓(𝑚 − 12, 3) + [
𝑚 − 8

4
] + [

𝑚 − 2

4
] 

= 𝑓(𝑚 − 12, 3) +
𝑚 − 6

2
 

The last equation is true because [
𝑚−2

4
] + [

𝑚−8

4
] =

(𝑚−8)+{𝑚−2)−2

4
. Similarly, when m is odd, 

𝑓(𝑚, 3) 

= 𝑓(𝑚 − 3, 3) + [
𝑚 + 1

4
] 

= 𝑓(𝑚 − 6, 3) + [
𝑚 + 1

4
] 

= 𝑓(𝑚 − 12, 3) + [
𝑚 − 5

4
] + [

𝑚 + 1

4
] 

= 𝑓(𝑚 − 12, 3) +
𝑚 − 3

2
 



The last equation is true because [
𝑚−5

4
] + [

𝑚+1

4
] =

(𝑚−5)+(𝑚+1)−2

4
. We can induce the two equations 

as 𝑓(𝑚, 3) = 𝑓(𝑚 − 12) +
𝑚−𝑚′

2
, where 𝑚′ = 6 if m is even; 𝑚′ = 3 if m is odd. Let 𝑚 = 12𝑡 + 𝑟 

for some 𝑡 ∈ ℕ ∪ {0}, 𝑟 is an integer and 0 ≤ 𝑟 ≤ 11. Then, 

𝑓(𝑚, 3) 

= 𝑓(𝑚 − 12, 3) +
𝑚 −𝑚′

2
 

= 𝑓(𝑚 − 24, 3) +
(𝑚 − 12) −𝑚′

2
+
𝑚 −𝑚′

2
 

= 𝑓(𝑚 − 36, 3) +
(𝑚 − 24) −𝑚′

2
+
(𝑚 − 12) − 𝑚′

2
+
𝑚 −𝑚′

2
 

= ⋯ 

=  𝑓(𝑟, 3) +
(12 + 𝑟) − 𝑚′

2
+⋯+

(𝑚 − 24) − 𝑚′

2
+
(𝑚 − 12) − 𝑚′

2
+
𝑚 −𝑚′

2
 

= 𝑓(𝑟, 3) +
𝑚 − 𝑟

24
×
12 + 𝑟 −𝑚′ +𝑚−𝑚′

2
 

=
m2 + (12 − 2𝑚′)m − r(r + 12 − 2𝑚′) + 48𝑓(𝑟, 3)

48
 

, where 12 − 2𝑚′ = 0 if m is even; 12 − 2𝑚′ = 6 if m is odd. Hence, (12 − 2𝑚′)𝑚 = 3𝑚 +

(−1)𝑚−13𝑚. As of the scalar 𝑓′(𝑚, 3) = −𝑟(𝑟 + 12 − 2𝑚′) + 48𝑓(𝑟, 3) can be calculated from 

Table 4.  

 

Thus, we can conclude that 

𝑓(𝑚, 3) 

=
1

48
(𝑚2 + 3𝑚 + (−1)𝑚−13𝑚 + 𝑓′(𝑚, 3)) 

= [
1

48
(𝑚2 + 3𝑚 + (−1)𝑚−13𝑚)] 

 

 

Table 4: scalar discussion in 12 cases 

𝑟 = 𝑚 𝑚𝑜𝑑 12  0 1 2 3 4 5 6 7 8 9 10 11 

𝑓(𝑟 , 3) 0 0 0 1 0 1 1 2 1 3 2 4 

𝑓′(𝑚, 3) 0 −7 −4 21 −16 −7 12 5 −16 9 −4 5 



3 Four-integer Partition 

 In this section, two different approaches to deduce 𝑓(𝑚, 4) will be introduced. For simple 

notation, we set the four integers to be 𝑎, 𝑏, 𝑐, 𝑑, and they fulfill that 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑚, 1 ≤ 𝑎 ≤

𝑏 ≤ 𝑐 ≤ 𝑑, 𝑎 + 𝑏 + 𝑐 > 𝑑, so that they can be the sides of a quadrilateral (not taking the order into 

account). 

3.1    First approach for 𝒇(𝒎, 𝟒) 

 We introduce the first way to get 𝑓(𝑚, 4) in this section. We know that 4𝑎 ≤ 𝑎 + 𝑏 + 𝑐 + 𝑑 =

𝑚, so 𝑎 ≤ [
𝑚

4
]. In addition, to simplify the calculation, assume 𝑏 = 𝑎 − 1 + 𝑥, 𝑐 = 𝑎 − 1 + 𝑦, 𝑑 = 𝑎 −

1 + 𝑧. Then the solution of positive integer (𝑎, 𝑏, 𝑐, 𝑑) with 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑 is equivalent to the 

solution of positive integer (𝑎, 𝑥, 𝑦, 𝑧) with 1 ≤ 𝑥 ≤ 𝑦 ≤ 𝑧 and 1 ≤ 𝑎 . Also, 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑚 

means 𝑥 + 𝑦 + 𝑧 = 𝑚 − 4𝑎 + 3. In the following parts, we discuss 𝑓(𝑚, 4) in two cases: 𝑥 + 𝑦 > 𝑧 

and 𝑥 + 𝑦 ≤ 𝑧. 

 When 𝑥 + 𝑦 > 𝑧 , 𝑎 + 𝑏 + 𝑐 = 3𝑎 − 2 + 𝑥 + 𝑦 > 3𝑎 − 2 + 𝑧 > 2𝑎 − 2 + 𝑧 ≥ 𝑎 − 1 + 𝑧 =

𝑑. Thus, there are  

∑ 𝑓(𝑚 − 4𝑖 + 3, 3)
[
𝑚

4
]

𝑖=1
 solutions. 

 When 𝑥 + 𝑦 ≤ 𝑧, the condition 𝑎 + 𝑏 + 𝑐 > 𝑑 means 𝑥 + 𝑦 > 𝑧 − 2𝑎 + 1, so the valid range 

for 𝑥 + 𝑦 is (𝑧 − 2𝑎 + 1, 𝑧). Let 𝑥 + 𝑦 = 𝑧 − 𝑟. Then 2𝑧 − 𝑟 = 𝑚 − 4𝑎 + 3. We know that 𝑟 must 

be even if 𝑚 is odd, and 𝑟 must be odd if 𝑚 is even, in order to find the integer solution of 𝑧. 

Therefore, we divide the problem into two cases. 

 If 𝑚 is even, set 𝑚 = 2𝑘, then 𝑥 + 𝑦 is odd. Also, 𝑧 − 2𝑎 + 1 < 𝑥 + 𝑦 ≤ 𝑧  implies: when 

𝑎 = 𝑖, (𝑥, 𝑦, 𝑧) has positive integer solutions only when 𝑥 + 𝑦 ∈

{z –  1, z –  3, . . . , z – (2i –  3)}. Besides, along with 𝑥 + 𝑦 + 𝑧 = 𝑚 − 4𝑖 + 3, we obtain: when 𝑥 +

𝑦 = 𝑧 − 1, 𝑧 − 3,… , 𝑧 − (2𝑖 − 3), there are  

[
𝑘 − (2𝑖 − 1)

2
] , [
𝑘 − 2𝑖

2
] , … , [

𝑘 − (3𝑖 − 3)

2
] 

integer solutions of (𝑥, 𝑦, 𝑧) respectively. While if 𝑘 − 𝑗 < 0 for 2𝑖 − 1 ≤ 𝑗 ≤ 3𝑖 − 3, 𝑥 + 𝑦 < 0, it 

leads to a contradiction. For simplicity, let  

[𝑛]+ = {
[𝑛], 𝑛 ≥ 0
0, 𝑛 < 0

 



As a result, there are ∑ (∑ [
𝑘−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )

[
𝑚

4
]

𝑖=2
 solutions if 𝑥 + 𝑦 ≤ 𝑧 and 𝑚 = 2𝑘. Based on the 

discussion, we find: if 𝑚 = 2𝑘, 

𝑓(𝑚, 4) =∑𝑓(𝑚 − 4𝑖 + 3, 3)

[
𝑚
4
]

𝑖=1

+∑( ∑ [
𝑘 − 𝑗

2
]
+3𝑖−3

𝑗=2𝑖−1

)

[
𝑚
4
]

𝑖=2

 

Furthermore, assuming 𝑚 = 12𝑡 + 𝑟 for 𝑟 = 0, 2, 4, 6, 8, 10, we obtain 

∑𝑓(𝑚 − 4𝑖 + 3, 3)

[
𝑚
4
]

𝑖=1

 

= 𝑓(𝑚 − 1, 3) + 𝑓(𝑚 − 5, 3) + 𝑓(𝑚 − 9, 3) + ⋯+ 𝑓 (𝑚 + 3 − 4 [
𝑚

4
] , 3) 

=∑(𝑓(12𝑖 + 𝑎, 3) + 𝑓(12𝑖 + 𝑏, 3) + 𝑓(12𝑖 + 𝑐, 3))

𝑡−1

𝑖=0

+𝑚′ 

, where the information of 𝑎, 𝑏, 𝑐, and 𝑚′ can be found in Table 5. 

Table 5: 6 cases of even numbers 

𝑟 = 0 2 4 6 8 10 

[𝑚/4] 3𝑡 3𝑡 3𝑡 + 1 3𝑡 + 1 3𝑡 + 2 3𝑡 + 2 

𝑚+ 3

− 4[𝑚/4] 
3 5 3 5 3 5 

(𝑎, 𝑏, 𝑐) (3, 7, 11) (5, 9, 13) (7, 11, 15) (9, 13, 17) (11, 15, 19) (13, 17, 21) 

𝑚′ 0 0 𝑓(3,3) 𝑓(5,3) 
𝑓(3,3)

+ 𝑓(7,3) 

𝑓(5,3)

+ 𝑓(9,3) 

 

Along with the content of the section 2, we deduce the result in Table 6. 

Table 6: first part of 𝒇(𝒎,𝟒) 

𝑟 = 0 2 4 6 8 10 

∑ 𝑓(𝑚

[𝑚/4]

𝑖=1

− 4𝑖 + 3 , 3) 

(∑9𝑖2
𝑟−1

𝑖=0

+ 15𝑖 + 7) 

(∑9𝑖2
𝑟−1

𝑖=0

+ 12𝑖 + 4)

+ 3𝑟2 + 2𝑟 

(∑9𝑖2
𝑟−1

𝑖=0

+ 15𝑖 + 7)

+ 3𝑟2 + 3𝑟
+ 1 

(∑9𝑖2
𝑟−1

𝑖=0

+ 12𝑖 + 4)

+ 6𝑟2 + 6𝑟
+ 1 

(∑9𝑖2
𝑟−1

𝑖=0

+ 15𝑖 + 7)

+ 6𝑟2 + 8𝑟
+ 3 

(∑9𝑖2
𝑟

𝑖=0

+ 12𝑖 + 4) 

 



Then consider ∑ (∑ [
𝑘−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )

[
𝑚

4
]

𝑖=2
. For all natural numbers 𝑛 with 2𝑛 − 1 ≤ 𝑘 ≤ 3𝑛 − 3, set the 

minimum value of 𝑛 be 𝛼1 and maximum value be 𝛽1. For 2 ≤ 𝑖 ≤ 𝛼1 − 1 (𝑖 ∈ ℕ − {1}), [
𝑘−𝑗

2
]
+
=

[
𝑘−𝑗

2
] when 𝑗 = 2𝑖 − 1, 2𝑖, … , 3𝑖 − 3. Also, set [

𝑘−3

2
] = 𝑥 when 𝑘 ≥ 3. Let 𝑔(𝑖) = ∑ [

𝑘−𝑗

2
]3𝑖−3

𝑗=2𝑖−1 . We 

have 

∑ (∑ [
𝑘−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )

[
𝑚

4
]

𝑖=2
= ∑ 𝑔(𝑖)

𝛼1−1
𝑖=2 + ∑ (∑ [

𝑘−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )

𝛽1
𝑖=𝛼1

 , 

For all 𝑖 ≥ 𝛽1 + 1, ∑ [
𝑘−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 = 0. To make a deeper discussion about ∑ 𝑔(𝑖)

𝛼1−1
𝑖=2 , we have two 

cases: 𝑘 is odd, or 𝑘 is even. 

 For 𝑘 is even, [
𝑘−(2𝑛+1)

2
] = [

𝑘−(2𝑛+2)

2
] (2𝑛 + 2 ≤ 𝑘), so we have the following pattern of 

𝑔(𝑖) in Table 7. 

Table 7: 𝒈(𝒊) pattern when k is even 

𝑔(2) 𝑥 

𝑔(3) (𝑥 − 1) + (𝑥 − 1) 

𝑔(4) (𝑥 − 2) + (𝑥 − 2) + (𝑥 − 3) 

𝑔(5) (𝑥 − 3) + (𝑥 − 3) + (𝑥 − 4) + (𝑥 − 4) 

𝑔(6) (𝑥 − 4) + (𝑥 − 4) + (𝑥 − 5) + (𝑥 − 5) + (𝑥 − 6) 

 

Similarly, we obtain 𝑔(𝑖) = {
(𝑖 − 1)𝑥 − (

5

4
𝑖2 − 4𝑖 + 3) , 𝑖 is even

(𝑖 − 1)𝑥 − (
5

4
𝑖2 − 4𝑖 +

11

4
) , 𝑖 is odd

 . For simple computation, we 

discuss the problem in two cases again: 

When 𝛼1 is even: 

∑ 𝑔(𝑖)
𝛼1−1
𝑖=2  = ∑ ((2𝛾 − 1)𝑥 − (5𝛾2 − 8𝛾 + 3))

𝛼1−2

2
𝛾=1 + ∑ (2𝛿𝑥 − (5𝛿2 − 3𝛿))

𝛼1−2

2

𝛿=1
 

 = ∑ (4𝑥𝜀 − 𝑥 − 10𝜀2 + 11𝜀 − 3)
𝛼1−2

2
𝜀=1  

= ∑ ((−10)𝜀2 + (4𝑥 + 11)𝜀 − (𝑥 + 3))
𝛼1−2

2
𝜀=1  

When 𝛼1 is odd: 

∑ 𝑔(𝑖) 
𝛼1−1
𝑖=2 = ∑ ((2𝛾 − 1)𝑥 − (5𝛾2 − 8𝛾 + 3))

𝛼1−1

2
𝛾=1 + ∑ (2𝛿𝑥 − (5𝛿2 − 3𝛿))

𝛼1−3

2

𝛿=1
 

 = ∑ [(−10)𝜀2 + (4𝑥 + 11)𝜀 − (𝑥 + 3)]
𝛼1−2

2
𝜀=1 + (𝛼1 − 2)𝑥 −

5

4
(𝛼1 − 1)

2 + 4(𝛼1 − 1) − 3 



 The second situation is that k is odd. With the same method as the case k is even, we have: 

∑ 𝑔(𝑖)
𝛼1−1
𝑖=2 =

{
∑ [(−10)𝜀2 + (4𝑥 + 9)𝜀 − (𝑥 + 2)]
𝛼1−2

2
𝜀=1 ,                                                                                           if 𝛼1 is even

∑ [(−10)𝜀2 + (4𝑥 + 9)𝜀 − (𝑥 + 2)]
𝛼1−3

2
𝜀=1 + [(𝛼1 − 2)𝑥 −

5

4
(𝛼1 − 1)

2 +
7

2
(𝛼1 − 1) − 2] , if 𝛼1 is odd

 

Lastly, we can discuss ∑ (∑ [
𝑘−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )

𝛽1
𝑖=𝛼1

 in two cases. 

 The first case happens when k is even. Let 𝑎𝑝,𝑞 be the 𝑞-th 𝑗-value for 𝑖 = 𝑝, which is 

(2𝑝 − 1) + 𝑞 − 1. Some examples are shown in Table 8: 

Table 8: 𝒂𝒑,𝒒 examples 

𝑖 𝑗 𝑎𝑝,𝑞 

2 3 𝑎2,1 

3 5, 6 𝑎3,1, 𝑎3,2 

4 7, 8, 9 𝑎4,1, 𝑎4,2, 𝑎4,3 

5 9, 10, 11, 12 𝑎5,1, 𝑎5,2, 𝑎5,3, 𝑎5,4 

 

Assume that 𝑘 = 𝑎𝛼1,𝜔1 = 𝑎𝛼1+1,𝜔2 = ⋯ = 𝑎𝛽1,𝜔𝜎. For 𝑎𝛼1,𝜏(𝜏 > 𝜔1), [
𝑘−𝑎𝛼1,𝜏

2
]
+

= 0. Similarly, we 

can induce the result in Table 9 by discussing the 𝑎𝑝,𝑞 value with 𝑝 = 𝛼𝑡 and 𝑞 ≤ 𝜔𝑡, i.e. the 𝑎𝑝,𝑞 in 

the same row as k but smaller column.  

Table 9: [
𝒌−𝒋

𝟐
]
+

pattern 

𝑖  𝑗  [
𝑘 − 𝑗

2
]
+

 

𝛽1 2𝛽1 − 1, 𝑎𝛽1,𝜔𝜎(𝑘) 0, 0 

𝛽1 − 1 2𝛽1 − 3, 2𝛽1 − 2, 2𝛽1 − 1, 𝑎𝛽1−1,𝜔𝜎−1(𝑘) 1, 1, 0, 0 

…
 

…
 

…
 

𝛼1 2𝛼1 − 1, 2𝛼1, … , 𝑎𝛼1,𝜔1(𝑘) 
𝑘 − 2𝛼1

2
,
𝑘 − 2𝛼1

2
,… , 0 

 

From Table 9, we know that when k is even,  

∑ ( ∑ [
𝑘 − 𝑗

2
]
+3𝑖−3

𝑗=2𝑖−1

) 

𝛽1

𝑖=𝛼1

  



= ∑ 2(0 + 1 + 2 +⋯+
𝑘 − 2𝑖

2
)

𝛽1

𝑖=𝛼1

 

= ∑(
𝑘 − 2𝑖 + 2

2
)(
𝑘 − 2𝑖

2
)

𝛽1

𝑖=𝛼1

 

The second case is that k is odd; similarly, we have ∑ (∑ [
𝑘−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )

𝛽1
𝑖=𝛼1

= ∑ (
𝑘−2𝑖+1

2
)2

𝛽1
𝑖=𝛼1

. 

To sum up, we successfully deduce the value of ∑ (∑ [
𝑘−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )

[
𝑚

4
]

𝑖=2
. In detail, we have: 

1. When k is even,  

∑ (∑ [
2𝑡−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )𝑡

𝑖=2 = ∑ 𝑔(𝑖)
𝛼1−1
𝑖=2 + ∑ (

𝑘−2𝑖+2

2
)(
𝑘−2𝑖

2
)

𝛽1
𝑖=𝛼1

 

, where ∑ 𝑔(𝑖)
𝛼1−1
𝑖=2  

={
∑ ((−10)𝜀2 + (4𝑥 + 11)𝜀 − (𝑥 + 3))
𝛼1−2

2

𝜀=1 ,                                                                                    if 𝛼1 is even

∑ [(−10)𝜀2 + (4𝑥 + 11)𝜀 − (𝑥 + 3)]
𝛼1−2

2

𝜀=1 + (𝛼1 − 2)𝑥 −
5

4
(𝛼1 − 1)

2 + 4(𝛼1 − 1) − 3, if 𝛼1 is odd

. 

2. When k is odd, 

∑ (∑ [
2𝑡+1−𝑗

2
]
+

3𝑖−3
𝑗=2𝑖−1 )𝑡

𝑖=2 = ∑ 𝑔(𝑖)
𝛼1−1
𝑖=2 + ∑ (

𝑘−2𝑖+1

2
)2

𝛽1
𝑖=𝛼1

 

, where ∑ 𝑔(𝑖)
𝛼1−1
𝑖=2  

={
∑ [(−10)𝜀2 + (4𝑥 + 9)𝜀 − (𝑥 + 2)]
𝛼1−2

2

𝜀=1 ,                                                                                           if 𝛼1 is even

∑ [(−10)𝜀2 + (4𝑥 + 9)𝜀 − (𝑥 + 2)]
𝛼1−3

2

𝜀=1 + [(𝛼1 − 2)𝑥 −
5

4
(𝛼1 − 1)

2 +
7

2
(𝛼1 − 1) − 2] , if 𝛼1 is odd

. 

Replace 𝑚 with 12𝑡 + 𝑟 . For example, for 𝑟 = 0, 𝛼1 = 2𝑡 + 1, 𝛽1 = 3𝑡, 𝑥 = 3𝑡 − 2. We obtain: 

𝑓(12𝑡, 4) 

= (∑ 9𝑖2 + 15𝑖 + 7𝑟−1
𝑖=0 ) + ∑ [(−10)𝜀2 + (4𝑥 + 11)𝜀 − (𝑥 + 3)]

𝛼1−2

2
𝜀=1 + (𝛼1 − 2)𝑥 − 

 
5

4
(𝛼1 − 1)

2 + 4(𝛼1 − 1) − 3 + ∑ (
𝑘−2𝑖+2

2
)(
𝑘−2𝑖

2
)

𝛽1
𝑖=𝛼1

  

= 
9(𝑡−1)𝑡(2𝑡−1)

6
+ 15

𝑡(𝑡−1)

2
+ 7𝑡 +

(−10)(𝑡−1)𝑡(2𝑡−1)

6
+ (12𝑡 + 3)

(𝑡−1)𝑡

2
− (3𝑡 + 1)(𝑡 − 1) +

(2𝑡 − 1)(3𝑡 − 2) − 5𝑡2 + 8𝑡 − 3 +
3𝑡(3𝑡+1)(6𝑡+1)

6
−
2𝑡(2𝑡+1)(4𝑡+1)

6
 − (6𝑡 + 1)

(5𝑡+1)𝑡

2
+

3𝑡(3𝑡 + 1)𝑡  

= 6𝑡3 +
3

2
𝑡2 +

1

2
𝑡 

Similarly, for different r-value, we have the result in Table 10: 

 



Table 10: 𝒇(𝒎,𝟒) results when m is even 

𝑟 0 2 4 6 8 10 

𝑓(12𝑡 + r, 4) 
6𝑡3 +

3

2
𝑡2 +

1

2
𝑡 6𝑡3 +

9

2
𝑡2 +

3

2
𝑡 6𝑡3 +

15

2
𝑡2

+
7

2
𝑡 + 1 

6𝑡3 +
21

2
𝑡2

+
13

2
𝑡 + 1 

6𝑡3 +
27

2
𝑡2

+
21

2
𝑡 + 3 

6𝑡3 +
33

2
𝑡2

+
31

2
𝑡 + 5 

𝑓(𝑚, 4) 1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 −

11

72
 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 +

4

9
 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 −

3

8
 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 +

2

9
 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 +

5

72
 

 

When 𝑚 is odd, we use the same approach to deduce the equations in Table 11: 

Table 11: 𝒇(𝒎,𝟒) results when m is odd 

𝑟 0 2 4 6 8 10 

𝑓(12𝑡 + r, 4) 
6𝑡3 +

3

2
𝑡2

+
1

2
𝑡 

6𝑡3 +
9

2
𝑡2

+
3

2
𝑡 

6𝑡3 +
15

2
𝑡2

+
7

2
𝑡 + 1 

6𝑡3 +
21

2
𝑡2

+
13

2
𝑡 + 1 

6𝑡3 +
27

2
𝑡2

+
21

2
𝑡 + 3 

6𝑡3 +
33

2
𝑡2

+
31

2
𝑡 + 5 

𝑓(𝑚, 4) 1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 −

11

72
 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 +

4

9
 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 −

3

8
 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 +

2

9
 

1

288
𝑚3

+
1

96
𝑚2

+
1

24
𝑚 +

5

72
 

 

Hence, by induction, we have: 

𝑓(𝑚, 4) = [
1

288
(𝑚3 +

9

2
𝑚2 +

9

2
𝑚 + 128 + (−1)𝑚+1 (

3

2
𝑚2 −

15

2
𝑚))] 

3.2    Second approach for 𝒇(𝒎, 𝟒) 

 In this section, we introduce the second approach to deduce 𝑓(𝑚, 4). Similar to the method in 

2.2, for natural number 𝑚, four positive integers 𝑎, 𝑏, 𝑐, 𝑑 with 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑚 and 𝑎 + 𝑏 + 𝑐 ≥

𝑑 + 1 can be discussed in three situations: 

(3.1) 𝑎 + 𝑏 + 𝑐 = 𝑑 + 1 =
𝑚+1

2
.  It’s obvious that 𝑎, 𝑏, 𝑐, 𝑑 has integer solution if and only if 

𝑚 is odd; in specific, there are 𝑝 (
𝑚+1

2
, 3) = 𝑝 ([

𝑚+2

2
], 3) solutions. 

(3.2) 𝑎 + 𝑏 + 𝑐 = 𝑑 + 2 =
𝑚+2

2
. It’s obvious that 𝑎, 𝑏, 𝑐, 𝑑 has integer solution if and only if 

𝑚 is even; in specific, there are 𝑝 (
𝑚+2

2
, 3) = 𝑝 ([

𝑚+2

2
], 3) solutions. 

(3.3) 𝑎 + 𝑏 + 𝑐 ≥ 𝑑 + 3. If 𝑎 = 1 then 𝑏 + 𝑐 ≥ 𝑑 + 2 ≥ 𝑐 + 2, which implies 𝑏 ≥ 2 and 

(𝑏 − 1) + (𝑐 − 1) ≥ (𝑑 − 1) + 1, so there are 𝑓(𝑚 − 4, 3) solutions; if 𝑎 ≥ 2, it can be 



represented as (𝑎 − 1) + (𝑏 − 1) + (𝑐 − 1) ≥ (𝑑 − 1) + 1, which has 𝑓(𝑚 − 4, 4) 

solutions. Hence, when 𝑎 + 𝑏 + 𝑐 ≥ 𝑑 + 3, there are 𝑓(𝑚 − 4, 3) + 𝑓(𝑚 − 4, 4) 

solutions. 

To sum up, we obtain: 

𝑓(𝑚, 4) = 𝑓(𝑚 − 4, 4) + 𝑓(𝑚 − 4, 3) + 𝑝 ([
𝑚 + 2

2
] , 3) 

 To deduce the closed-form solution of 𝑓(𝑚, 4), we refer to the approach we use to 

find 𝑓(𝑚, 3) in 2.2 to calculate 𝑝(𝑚, 3). Recall that 𝑝(𝑚, 3) is the number of natural number 

sequences (𝑎, 𝑏, 𝑐) with 𝑎 ≤ 𝑏 ≤ 𝑐 and 𝑎 + 𝑏 + 𝑐 = 𝑚. These sequences can grouped into 

two categories: one satisfies 𝑎 = 1, the others fulfills 𝑎 ≥ 2. 

 Consider the first situation 𝑎 = 1. The equation 𝑎 + 𝑏 + 𝑐 = 𝑚 implies that  𝑏 + 𝑐 =

𝑚 − 1. Along with 1 ≤ 𝑏 ≤ 𝑐, we can conclude that there are 𝑝(𝑚 − 1, 2) = [
𝑚−1

2
] solutions. 

For the second case 𝑎 ≥ 2, consider a positive integer sequence (𝑎′, 𝑏′, 𝑐′) with 𝑎′ = 𝑎 − 1, 

𝑏′ = 𝑏 − 1, 𝑐′ = 𝑐 − 1, which satisfies 𝑎′ + 𝑏′ + 𝑐′ = 𝑚 − 3 and 𝑎′ ≤ 𝑏′ ≤ 𝑐′. This maps to 

a solution of 𝑝(𝑚 − 3, 3). Combining the two cases, we obtain 𝑝(𝑚, 3) = 𝑝(𝑚 − 3, 3) +

[
𝑚−1

2
]. One step further,  

 𝑝(𝑚, 3) = 𝑝(𝑚 − 3, 3) + [
𝑚−1

2
]  

  = 𝑝(𝑚 − 6, 3) + [
𝑚−1

2
] + [

𝑚−4

2
]  

  = 𝑝(𝑚 − 6, 3) +
(𝑚−1)+(𝑚−4)−1

2
  

  = 𝑝(𝑚 − 6, 3) + (𝑚 − 3) 

Let 𝑚 = 6𝑡 + 𝑟, where 𝑟 ∈ {0, 1, 2, 3, 4, 5}. Then 

𝑝(𝑚, 3) = 𝑝(𝑚 − 6, 3) + (𝑚 − 3)  

 = 𝑝(𝑚 − 12, 3) + (𝑚 − 3) + (𝑚 − 9)  

 = ⋯                                            

 =  𝑝(𝑟, 3) + (𝑚 − 3) + (𝑚 − 9) +⋯+ (𝑚 − 6𝑡 + 3) 

 = 𝑝(𝑟, 3) +
𝑚−𝑟

6
 
(𝑚−3)+(𝑚−6𝑡+3)

2
  

 =
𝑚2 − 𝑟2 + 12𝑝(𝑟, 3)

12
 

,where 𝑝′(𝑚, 3) ≔ −𝑟2 + 12𝑝(𝑟, 3) can be calculated as shown in Table 12. 



Table 12: 𝒑′(𝒎,𝟑) discussion 

𝑟 0 1 2 3 4 5 

𝑝(𝑟 , 3) 0 0 0 1 1 2 

𝑝′(𝑚, 3) = −𝑟2 + 12𝑝(𝑟, 3)  0 −1 −4 3 −4 −1 

 

  Therefore, we obtain that 𝑝(𝑚 , 3) =
1

12
(𝑚2 + 𝑝′(𝑚, 3)) = [

1

12
(𝑚2 + 3)]. In fact, the 

scalar 3 can be replaced by any number between 3 and 7. 

  With the formula of 𝑝(𝑚, 3), along with the result of 𝑓(𝑚, 3) in section 2. We obtain that 

𝑓(𝑚, 4) = 𝑓(𝑚 − 4, 4) + 𝑓(𝑚 − 4, 3) + 𝑝 ([
𝑚+2

2
] , 3)  

 = 𝑓(𝑚 − 8, 4) + 𝑓(𝑚 − 8, 3) + 𝑝 ([
𝑚−2

2
] , 3) + 𝑓(𝑚 − 4, 3) + 𝑝 ([

𝑚+2

2
] , 3)  

 = 𝑓(𝑚 − 12, 4) + 𝑓(𝑚 − 12, 3) + 𝑝 ([
𝑚−6

2
] , 3) + 𝑓(𝑚 − 8, 3) + 𝑝 ([

𝑚−2

2
] , 3) +

                                                                                                 𝑓(𝑚 − 4, 3) + 𝑝 ([
𝑚+2

2
] , 3)  

 =  𝑓(𝑚 − 12, 4) + 𝑓∗(𝑚, 4) 

, where 𝑓∗(𝑚, 4) = 𝐴 + 𝐵, and  

𝐴 =
1

48
((𝑚 − 12)2 + 3(𝑚 − 12) + (−1)𝑚−12−13(𝑚 − 12) + 4[

𝑚−6

2
]2) +   

         
1

48
((𝑚 − 8)2 + 3(𝑚 − 8) + (−1)𝑚−8−13(𝑚 − 8) + 4[

𝑚−2

2
]2) +   

         
1

48
((𝑚 − 4)2 + 3(𝑚 − 4) + (−1)𝑚−4−13(𝑚 − 4) + 4[

𝑚+2

2
]2)  

   = {

1

48
(6𝑚2 − 60𝑚 + 268),      if 𝑚 is even， 
1

48
(6𝑚2 − 48𝑚 + 139), if 𝑚 if odd，

 

𝐵 =
1

48
(𝑓′(𝑚 − 12, 3) + 4𝑝′ ([

𝑚 − 6

2
] , 3) + 𝑓′(𝑚 − 8, 3) + 4𝑝′ ([

𝑚 − 2

2
] , 3) + 𝑓′(𝑚 − 4, 3) + 4𝑝′([

𝑚 + 2

2
], 3)) 

Use Table 13 to compute 𝐵. We know that 𝐵 =
1

48
(−28) if 𝑚 is even, 𝐵 =

1

48
(−1) if 𝑚 is odd. 

Hence, 𝑓∗(𝑚, 4) = {

1

48
(6𝑚2 − 60𝑚 + 240),             if 𝑚 is even， 
1

48
(6𝑚2 − 48𝑚 + 138), if 𝑚 if odd，

 

Table 13: 𝑩’s discussion for 𝒇∗(𝒎, 𝟒)  

(m-12) mod 12  0 1 2 3 4 5 6 7 8 9 10 11 

𝑓′(𝑚 − 12, 3)  0 −7 −4 21 −16 −7 12 5 −16 9 −4 5 

(m-8) mod 12 4 5 6 7 8 9 10 11 0 1 2 3 

𝑓′(𝑚 − 8, 3)  −16 −7 12 5 −16 9 −4 5 0 −7 −4 21 

(m-4) mod 12 8 9 10 11 0 1 2 3 4 5 6 7 

𝑓′(𝑚 − 4, 3)  -16 9 -4 5 0 -7 -4 21 -16 -7 12 5 



[
𝑚−6

2
] mod 6 3 3 4 4 5 5 0 0 1 1 2 2 

4 𝑝′([
𝑚−6

2
] , 3)  12 12 -16 -16 -4 -4 0 0 -4 -4 -16 -16 

[
𝑚−2

2
] mod 6 5 5 0 0 1 1 2 2 3 3 4 4 

4 𝑝′([
𝑚−2

2
] , 3)  -4 -4 0 0 -4 -4 -16 -16 12 12 -16 -16 

[
𝑚+2

2
] mod 6 1 1 2 2 3 3 4 4 5 5 0 0 

4 𝑝′([
𝑚+2

2
] , 3)  -4 -4 -16 -16 12 12 -16 -16 -4 -4 0 0 

48𝐵  -28 -1 -28 -1 28 -1 -28 -1 -28 -1 -28 -1 

 

Then set 𝑚 = 12𝑡 + 𝑟 with 0 ≤ 𝑟 ≤ 12. Then 

𝑓(𝑚, 4) = 𝑓(𝑚 − 12, 4) + 𝑓∗(𝑚, 4)  

 = 𝑓(𝑚 − 24, 4) + 𝑓∗(𝑚 − 12, 4) + 𝑓∗(𝑚, 4)  

       = ⋯ 

 = 𝑓(𝑟, 4) + ∑ 𝑓∗(𝑚 − 12𝑖, 4)𝑡−1
𝑖=0   

 = 𝑓(𝑟, 4) + {
∑

1

48
(6(𝑚 − 12𝑖)2 − 60(𝑚 − 12𝑖) + 240), if m is even𝑡−1

𝑖=0

∑
1

48
(6(𝑚 − 12𝑖)2 − 48(𝑚 − 12𝑖) + 138), if m is odd𝑡−1

𝑖=0

  

 = {

1

288
(𝑚3 + 3𝑚2 + 12𝑚 − 𝑟3 − 3𝑟2 − 12𝑟 + 288𝑓(𝑟, 4)), if m is even

1

288
(𝑚3 + 6𝑚2 − 3𝑚 − 𝑟3 − 6𝑟2 + 3𝑟 + 288𝑓(𝑟, 4)), if m is odd 

 

= {

1

288
(𝑚3 + 3𝑚2 + 12𝑚 + 𝑓′(𝑚, 4)), if m is even

1

288
(𝑚3 + 6𝑚2 − 3𝑚 + 𝑓′(𝑚, 4)), if m is odd 

 

 

, where 𝑓′(𝑚, 4) can be found in Table 14.  

Table 14: scalar 𝒇′(𝒎, 𝟒) discussion 

m mod 12 0 1 2 3 4 5 6 7 8 9 10 11 

−𝑟3 − 3𝑟2 − 12𝑟  0  -44  -160  -396  -800  -1420  

−𝑟3 − 6𝑟2 + 3𝑟  -4  -72  -260  -616  -1188  -2024 

𝑓(𝑟, 4)  0 0 0 0 1 1 1 2 3 4 5 7 

𝑓′(𝑚, 4) 0 -4 -68 -72 128 28 -108 -40 64 -36 20 -8 

 

In conclusion, we can induce that 

𝑓(𝑚, 4) =
1

288
(𝑚3 +

9

2
𝑚2 +

9

2
𝑚 + 𝑓′(𝑚, 4) + (−1)𝑚+1 (

3

2
𝑚2 −

15

2
𝑚)) 



  = [
1

288
(𝑚3 +

9

2
𝑚2 +

9

2
𝑚 + 128 + (−1)𝑚+1 (

3

2
𝑚2 −

15

2
𝑚))] 

4 Multi-integer Partition 

 In this section, we extend the approach in 2.2 and 3.2, and apply it to find the multi-integer 

partition for more than four numbers. We first consider 𝑝(𝑚, 𝑛), which will be used in the process of 

deducing 𝑓(𝑚, 𝑛) 

4.1    Approach for 𝒑(𝒎, 𝟒) 

 

Recall that 𝑝(𝑚, 𝑛) is defined as the number of natural number sequences (𝑎1, 𝑎2, … , 𝑎𝑛) with  

1 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛, 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = 𝑚 

for positive integer 𝑚, 𝑛. These sequences can be grouped in two situations: one is 𝑎1 = 1, and the 

others is 𝑎1 ≥ 2. 

 For the first case 𝑎1 = 1, as 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = 𝑚 is equivalent to 𝑎2 +⋯+ 𝑎𝑛 = 𝑚 − 1, 

along with 1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛, there are 𝑝(𝑚 − 1, 𝑛 − 1) solutions. 

 For the second case 𝑎1 ≥ 2, consider another natural number sequence (𝑎1
′ , 𝑎2

′ , … , 𝑎𝑛
′ ), where 

𝑎𝑖
′ = 𝑎𝑖 − 1 for 𝑖 = 1, 2, … , 𝑛. It satisfies the conditions 𝑎1

′ + 𝑎2
′ +⋯+ 𝑎𝑛

′ = 𝑚 − 𝑛 and 1 ≤ 𝑎1
′ ≤

𝑎2
′ ≤ ⋯ ≤ 𝑎𝑛

′ , which maps to the solution of 𝑝(𝑚 − 𝑛, 𝑛) 

 Combining these two cases, we obtain 𝑝(𝑚, 𝑛) = 𝑝(𝑚 − 𝑛, 𝑛) + 𝑝(𝑚 − 1, 𝑛 − 1). One step 

further,  

𝑝(𝑚, 𝑛) =  𝑝(𝑚 − 𝑛, 𝑛) + 𝑝(𝑚 − 1, 𝑛 − 1) 

  = 𝑝(𝑚 − 2𝑛, 𝑛) + 𝑝(𝑚 − 𝑛 − 1, 𝑛 − 1) + 𝑝(𝑚 − 1, 𝑛 − 1) 

= 𝑝 (𝑚 − [
𝑚

𝑛
]𝑛, 𝑛) +∑𝑝(𝑚 − 𝑖𝑛 + 𝑛 − 1 , 𝑛 − 1)

[
𝑚
𝑛
]

𝑖=1

 

 = ∑ 𝑝(𝑚 − 𝑖𝑛 + 𝑛 − 1 , 𝑛 − 1)
[
𝑚

𝑛
]

𝑖=1
 

The last equation is true as 
𝑚

𝑛
− 1 < [

𝑚

𝑛
] ≤

𝑚

𝑛
 is equivalent to 0 ≤ 𝑚 − [

𝑚

𝑛
] 𝑛 < 𝑛. 

 The answer can be found by applying 𝑝(𝑚, 2) = [
𝑚

2
] to the recurrence relation.  

4.2    Generating Function of 𝒑(𝒎, 𝟒) 

 In this sub-section, we discuss 𝑝(𝑚, 𝑛) in the view of generating function. Recall that 

𝑝(𝑚, 𝑛) is defined as the number of natural number sequences (𝑎1, 𝑎2, … , 𝑎𝑛) with  

1 ≤ 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛, 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = 𝑚 



for positive integer 𝑚, 𝑛. Set 𝑏𝑖 = 𝑎𝑖 − 𝑎𝑖−1 for 𝑖 = 1, 2,… , 𝑛 with 𝑎0 = 1. The number of natural 

number sequences (𝑎1, 𝑎2, … , 𝑎𝑛) is equivalent to the number of non-negative integer sequences 

(𝑏1, 𝑏2, … , 𝑏𝑛). 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛 is equivalent to 𝑏1, 𝑏2, … , 𝑏𝑛 ≥ 0. 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = 𝑚 is 

equivalent to 𝑛𝑏1 + (𝑛 − 1)𝑏2 +⋯+ 1𝑏𝑛 = 𝑚 − 𝑛. 

 The number of non-negative integer sequences (𝑏1, 𝑏2, … , 𝑏𝑛) with 𝑛𝑏1 + (𝑛 − 1)𝑏2 +⋯+

1𝑏𝑛 = 𝑚 − 𝑛 is equal to the coefficient of 𝑥𝑚−𝑛 in (1 + 𝑥 + 𝑥2 +⋯) (1 + 𝑥2 + 𝑥4 +⋯) ...(1 +

𝑥𝑛 + 𝑥2𝑛 +⋯). This is because 𝑛𝑏1 = 0, 𝑛 ,2𝑛,… ; (𝑛 − 1)𝑏2 = 0, (𝑛 − 1), 2(𝑛 − 1),… ; 1𝑏𝑛 =

0, 1, 2,…, and so on. 

 We can simplify the polynomial. The coefficient of 𝑥𝑚−𝑛 in (1 + 𝑥 + 𝑥2 +⋯) (1 + 𝑥2 +

𝑥4 +⋯) ...(1 + 𝑥𝑛 + 𝑥2𝑛 +⋯) is equal to the coefficient of 𝑥𝑚 in 𝑥𝑛(1 + 𝑥 + 𝑥2 +⋯) (1 + 𝑥2 +

𝑥4 +⋯) ...(1 + 𝑥𝑛 + 𝑥2𝑛 +⋯). By Taylor series, we obtain that 𝑥𝑛(1 + 𝑥 + 𝑥2 +⋯) (1 + 𝑥2 +

𝑥4 +⋯) ...(1 + 𝑥𝑛 + 𝑥2𝑛 +⋯) = ∏
𝑥

(1−𝑥𝑖)
𝑛
𝑖=1 . Hence, the coefficient of 𝑥𝑚 in ∏

𝑥

(1−𝑥𝑖)
𝑛
𝑖=1  is the 

number of non-negative integer sequences (𝑏1, 𝑏2, … , 𝑏𝑛), and that’s the number of natural number 

sequences (𝑎1, 𝑎2, … , 𝑎𝑛). 

 In conclusion, the generating function of 𝑝(𝑚, 𝑛) is  

∏
𝑥

(1 − 𝑥𝑖)

𝑛

𝑖=1

 

4.3 Approach for 𝒇(𝒎,𝒏) 

 We can apply the approach we used for 𝑓(𝑚, 3) and 𝑓(𝑚, 4) in 2.2 and 3.2 to find 𝑓(𝑚, 𝑛). 

Recall that 𝑓(𝑚, 𝑛) is the number of natural number sequences (𝑎1, 𝑎2, … , 𝑎𝑛) satisfying  

𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 ≥ 𝑎𝑛 + 1, 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 = 𝑚, 𝑎1 ≤ 𝑎2 ≤ ⋯ ≤ 𝑎𝑛. 

These sequences can be divided in 𝑛 − 1 groups: 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 = 𝑎𝑛 + 1, 𝑎1 + 𝑎2 +⋯+

𝑎𝑛−1 = 𝑎𝑛 + 2,… , 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 = 𝑎𝑛 + 𝑛 − 2, and 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 ≥ 𝑎𝑛 + (𝑛 − 1). 

These groups can be categorized in three types. 

 For the first type, 𝑘 = 1, 2, … , [
𝑛−1

2
] and 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 = 𝑎𝑛 + 2𝑘 − 1 =

𝑚+2𝑘−1

2
, it’s 

obvious that 𝑎1, 𝑎2, … , 𝑎𝑛 are positive integers if and only if 𝑚 is positive odd number, and there are 

𝑝(
𝑚+2𝑘−1

2
, 𝑛 − 1) solutions. 

 For the second type, 𝑘 = 1, 2, … , [
𝑛−2

2
] and 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 = 𝑎𝑛 + 2𝑘 =

𝑚+2𝑘

2
, it’s 

obvious that 𝑎1, 𝑎2, … , 𝑎𝑛 are positive integers if and only if 𝑚 is positive even number, and there are 

𝑝(
𝑚+2𝑘

2
, 𝑛 − 1) solutions. 



 For the third type, 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛−1 ≥ 𝑎𝑛 + (𝑛 − 1), two sub-types are considered: 𝑎1 =

1 or 𝑎1 ≥ 2. If 𝑎1 = 1, then 𝑎2 + 𝑎3 +⋯+ 𝑎𝑛−1 ≥ 𝑎𝑛 + (𝑛 − 2), which can be shown to have 

∑ 𝑓(𝑚 − 𝑛 , 𝑖)𝑛−1
𝑖=3 . 

Proof: Consider 𝑛 = 4. 𝑎2 + 𝑎3 ≥ 𝑎4 + 2. There is no solution when 𝑎2 = 1, as it implies 

𝑎3 ≥ 𝑎4 + 1. Hence 𝑎2 ≥ 2 and (𝑎2 − 1) + (𝑎3 − 1) ≥ (𝑎4 − 1) + 1, which has 

𝑓(𝑚 − 4, 3) solution. Suppose that there are ∑ 𝑓(𝑚 − 𝑘 , 𝑖)𝑛−1
𝑖=3  solutions for 𝑎2 +

𝑎3 +⋯+ 𝑎𝑘−1 ≥ 𝑎𝑘 + (𝑘 − 2). Consider 𝑛 = 𝑘 + 1 with 𝑎2 + 𝑎3 +⋯+ 𝑎𝑘 ≥

𝑎𝑘+1 + (𝑘 − 1). If 𝑎2 = 1, then 𝑎3 +⋯+ 𝑎𝑘 ≥ 𝑎𝑘+1 + (𝑘 − 2), which has 

∑ 𝑓(𝑚 − 1 − 𝑘 , 𝑖) 𝑘−1
𝑖=3 solutions. If 𝑎2 ≥ 2, then (𝑎2 − 1) + (𝑎3 − 1) +⋯+

(𝑎𝑘 − 1) ≥ (𝑎𝑘+1 − 1) + 1, which has 𝑓(𝑚 − 1 − 𝑘, 𝑘) solutions. Thus, there are 

∑ 𝑓(𝑚− 1 − 𝑘 , 𝑖) 𝑘
𝑖=3 solutions when 𝑛 = 𝑘 + 1. By mathematical induction, we 

prove that there are ∑ 𝑓(𝑚 − 𝑛 , 𝑖) 𝑛−1
𝑖=3 solutions when 𝑎1 = 1. 

If 𝑎1 ≥ 2, then it can be represented as (𝑎1 − 1) + (𝑎2 − 1) + (𝑎3 − 1) + …+ (𝑎𝑛−1 − 1) ≥

(𝑎𝑛 − 1) + 1, which has 𝑓(𝑚 − 𝑛, 𝑛) solutions. Hence, there are ∑ 𝑓(𝑚 − 𝑛 , 𝑖) 𝑛
𝑖=3 solutions for the 

third type. 

 To sum up, we obtain the following result: 

{
 
 
 

 
 
 

When 𝑚 is even，𝑓(𝑚, 𝑛) =∑𝑓(𝑚 − 𝑛 , 𝑖)

𝑛

𝑖=3

+ ∑ p(
m+ 2k

2
, n − 1)

[
n−2
2
]

k=1

       

When 𝑚 is odd，𝑓(𝑚, 𝑛) =∑𝑓(𝑚 − 𝑛 , 𝑖)

𝑛

𝑖=3

+ ∑ p(
𝑚 + 2𝑘 − 1

2
, 𝑛 − 1)

[
𝑛−1
2
]

𝑘=1
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