
Dynamic Neural Network: Convolution, Involution, CondConv

KAO Shiu-hong 20657378

Abstract

The traditional architecture of the Convolution Neural Network (CNN) has been one

of the most common and powerful neural networks, especially for dealing with image

information. However, some of its shortcomings, such as redundant filters and parameters,

are believed to exist, contributing to unnecessary computation, and reducing the efficiency of

the network. Dynamic neural networks, on the other hand, provide a more flexible

architecture based on different samples.

In this report, traditional Convolution as well as the other two pixel-wise dynamic

networks, specifically, Involution and Conditionally Parameterized Convolutions

(CondConv), are introduced. The basic architectures of these networks are firstly specified.

Afterward, an experiment will be conducted to compare the efficiency and performance of

distinct networks.

1. Introduction

 In a traditional Convolution Neural Network, each filter is used to scan through every

pixel of the input and every sample. From current research, as a filter is believed to determine

the existence of some characteristics of the sample, redundant computation therefore exists.

 Dynamic neural networks, instead of fitting all the inputs with the same kernels, adapt

to different samples and are able to generate different kernels based on a given pixel,

vector, or region. We will introduce two types of dynamic neural networks, Involution [1.]

and Conditionally Parameterized Convolutions (CondConv) [2.], in this report.

In session 2, basic information about each network will be given, including the

architecture and the mathematical expression. In Involution Network, the vector of a pixel

across different channels is chosen to generate a kernel, which will be used to fit the

neighbour region of the pixel. This enables the network to produce a kernel according to the

information across the channels, unlike the traditional Convolution Network. In CondConv,

example-dependent scalar weights are applied to the kernels using some routing functions

related to the input sample, making the kernel conditioned on the input as well as reduce the

multiplication complexity.

2. Network Architecture

In this session, we will introduce the Convolution and two dynamic neural networks

which we use in the experiment.

2.1 Standard Convolution

 In [3.], a clear representation method of Convolution is introduced. In the standard

Convolution Neural Network, the operation at the 𝑖𝑡ℎ pixel of the image with a kernel 𝑊 can

be interpreted as

𝐹(.,𝑖)
′ = ∑ 𝑊[𝑝𝑖 − 𝑝𝑗]𝐹(.,𝑗) + 𝑏

𝑗∈Ω(𝑖)

, where Ω(𝑖) denotes the set of pixels fitted in the filter at the 𝑖𝑡ℎ pixel, 𝐹(.,𝑗) ∈ ℝ𝑐 denotes

the input feature vector at 𝑗𝑡ℎ pixel, 𝐹(.,𝑖)
′ ∈ ℝ𝑐′ denotes the output feature vector at the 𝑖𝑡ℎ

pixel; 𝑊 is ℝ𝑐′×𝑐×𝑘×𝑘 be a 𝑘 × 𝑘 filter, 𝑊[𝑝𝑖 − 𝑝𝑗] ∈ ℝ𝑐′×𝑐 is the filter at position offset

between 𝑖𝑡ℎ and 𝑗𝑡ℎ pixels, and [𝑝𝑖 − 𝑝𝑗] ∈ { (−
𝑘−1

2
, −

𝑘−1

2
) , (−

𝑘−1

2
, −

𝑘−1

2
+ 1) , … ,

(
𝑘−1

2
,

𝑘−1

2
) }, and 𝑏 ∈ ℝ𝑐′ is a bias vector. W is shared across every pixel in the input.

Figure 2.1.1

 For example, Figure 2.1.1 shows a standard convolution neural network with 𝑐 = 3,

𝑐′ = 4, and 𝑘 = 3.

2.2 Involution

 Different from standard convolution, the involution kernel ℋ𝑖 ∈ ℝ𝑘×𝑘 for the 𝑖𝑡ℎ

pixel of the image is conditioned on the feature vector 𝑋𝑖 ∈ ℝ𝑐. In mathematics,

ℋ𝑖 = 𝜙(𝑋𝑖)

for 𝜙 as a kernel generating function. In specific, we take

ℋ𝑖 = 𝜙(𝑋𝑖) = 𝑊1𝜎(𝑊0𝑋𝑖)

(1)

(2)

(3)

, where 𝑊0 ∈ ℝ
𝑐

𝑟
×𝑐

 and 𝑊1 ∈ ℝ𝑘×𝑘×
𝑐

𝑟 for 𝑐 as the number of channels of the input and 𝑟 as

the control of a reduction ratio, and 𝜎 is the Batch Normalization and non-linear activation

functions that interleave two linear projections.

 The operation at the 𝑖𝑡ℎ pixel of the image can be then interpreted as:

𝐹(.,𝑖)
′ = ∑ ℋ𝑖[𝑝𝑖 − 𝑝𝑗]𝐹(.,𝑗)

𝑗∈Ω(𝑖)

, where Ω(𝑖) denotes the set of pixels fitted in the filter at the 𝑖𝑡ℎ pixel, 𝐹(.,𝑗) ∈ ℝ𝑐 denotes

the input feature vector at 𝑗𝑡ℎ pixel, 𝐹(.,𝑖)
′ ∈ ℝ𝑐 denotes the output feature vector at the 𝑖𝑡ℎ

pixel; ℋ𝑖 ∈ ℝ𝑘×𝑘 is the 𝑘 × 𝑘 filter generating from (2), ℋ𝑖[𝑝𝑖 − 𝑝𝑗] ∈ ℝ is the weight in

filter ℋ𝑖 position offset between 𝑖𝑡ℎ and 𝑗𝑡ℎ pixels, and [𝑝𝑖 − 𝑝𝑗] ∈ { (−
𝑘−1

2
, −

𝑘−1

2
) ,

(−
𝑘−1

2
, −

𝑘−1

2
+ 1) , … , (

𝑘−1

2
,

𝑘−1

2
) }.

Figure 2.2.1

The example graph illustration is shown in Figure 2.2.1 with ⊗ indicating

multiplication broadcast across C channels and ⊕ indicating summation aggregated within

the K × K spatial neighborhood.

2.3 CondConv

 In standard convolution, an input is fitted with some kernels in size of 𝑘 × 𝑘, and

these results are combined afterwards. Each kernel is designed to adapted to every pixel, so

(4)

the computation complexity is high. In CondConv, however, we parameterize the

convolutional kernels by:

𝑂𝑢𝑡𝑝𝑢𝑡(𝑋) = 𝜎((𝛼1𝑊1 + 𝛼2𝑊2 + ⋯ + 𝛼𝑛𝑊𝑛) ∗ 𝑋)

, where 𝜎 is an activation function, ∗ implies the operation of kernel fitting, 𝛼𝑖 =

𝑟𝑖(𝑋) is a scalar weight conditioned on the input 𝑋 computed using a routed

function with learned parameters, and 𝑊𝑖 is the kernel with the same size as it is

in the standard convolution.

 This design can achieve the same performance as the standard

convolution does since

𝑂𝑢𝑡𝑝𝑢𝑡(𝑋) = 𝜎((𝛼1𝑊1 + ⋯ + 𝛼𝑛𝑊𝑛) ∗ 𝑋)

= 𝜎(𝛼1(𝑊1 ∗ 𝑋) + ⋯ + 𝛼𝑛(𝑊𝑛 ∗ 𝑋))

, but its computation complexity can be greatly reduced by combining the n

kernels together first. Figure 2.3.1 shows the flow of a CondConv layer with an

example of 𝑛 = 3.

Figure 2.3.1

(5)

(6)

3. Experiment

All the networks below are built using the PyTorch library, and GPU is used. The

source code is provided on Github https://github.com/DanielSHKao/Convolution-CondConv-

and-Involution. We conduct experiments on dataset Cifar-10 to compare the performance and

speed of these three networks, Convolution, Involution, and CondConv. The Cifar-10 dataset

is composed with of 60,000 images in 32 × 32 × 3 in 10 classes, each of which consists of

6,000 examples. Some samples are shown in Figure 3.0.1.

Figure 3.0.1

ResNet is one of the most powerful models for image recognition. Its architecture is

shown in Figure 3.0.2.

Figure 3.0.2

We apply ResNet18 to the dataset in the case of Convolution and adjust the source code of

ResNet18 to conduct Involution and CondConv. In specific, the second layer of the basic

block in ResNet18 is substituted with Involution layer or CondConv.

3.1 ResNet with Convolution

 There are 11.2M trainable parameters in the model, with estimated size in 44.696 MB.

We set batch size to be 64, learning rate to be 0.05 and max epoch to be 30. After 30 epochs,

the test accuracy is 91.6%. Related test profiler shows that the mean duration of model

forward is 0.00256 second and each training epoch takes 150.19 seconds.

3.2 ResNet with Involution

 We adjust the ResNet basic block by replacing the second Convolution layer of each

block with Involution layer. Figure 3.2.1 shows the architecture of the model we use.

Figure 3.2.1

There are 5.1M trainable parameters with estimated size in 20.467 MB. We set batch size to

be 64, learning rate to be 0.05 and max epoch to be 30. After 30 epochs, the test accuracy is

90.8%. Related test profiler shows that the mean duration of model forward is 0.00616

second and each training epoch takes about 34.27 seconds.

 We conclude that Involution can significantly increase the training speed without

greatly reducing the performance. The reduction of accuracy may originate from the loss of

cross-channel information in the samples.

3.3 ResNet with CondConv

We adjust the ResNet basic block by replacing the second Convolution layer of each

block with Involution layer. Figure 3.3.1 shows the architecture of the model we use.

Figure 3.3.1

 There are 30.0M trainable parameters with estimated size in 119.929 MB. We set

batch size to be 64, learning rate to be 0.05 and max epoch to be 30. After 30 epochs, the test

accuracy is 91.2%. Related test profiler shows that the mean duration of model forward is

0.00679 second and each training epoch takes about 74.53 seconds. Almost double number of

parameters are used in the model compared to the Convolution ResNet, but half of the

training time is used, and the forward time is similar, too.

4. Conclusion

Model Trainable Params Training Epoch Forward Performance

Convolution 11.2 M 150.19 (s) 0.00256 (s) 91.6 %

Involution 5.1 M 34.27 (s) 0.00616 (s) 90.8 %

CondConv 30.0 M 74.53 (s) 0.00679 (s) 91.2 %

Table 3.1

Table 3.1 shows the comparison of some main properties in the networks. We can

derive that the performance of Involution and CondConv is not significantly better than that

of Convolution on Cifar-10. Some possible reasons may be the complexity of the dataset and

the parameters we set on the network. The advantages of Involution and CondConv may have

their optimal architecture instead of ResNet. Also, the samples in Cifar-10 are in size of

32*32*3 (width*height*channels) and in ten classes. Some more complicated datasets such

as ImageNet and COCO are used in [2.].

Reference

[1.] Involution: Inverting the Inherence of Convolution for Visual Recognition,

https://arxiv.org/abs/2103.06255

[2.] CondConv: Conditionally Parameterized Convolutions for Efficient Inference,

https://arxiv.org/pdf/1904.04971

[3.] Decoupled Dynamic Filter Networks, https://arxiv.org/abs/2104.14107

[4.] Dynamic Neural Networks: A Survey, https://arxiv.org/abs/2102.04906

[5.] Dynamic Filter Networks, https://arxiv.org/abs/1605.09673

[6.] Dynamic Region-Aware Convolution, https://arxiv.org/abs/2003.12243

[7.] Pixel-Adaptive Convolutional Neural Networks, https://arxiv.org/abs/1904.05373

https://arxiv.org/abs/2103.06255
https://arxiv.org/pdf/1904.04971
https://arxiv.org/abs/2104.14107
https://arxiv.org/abs/2102.04906
https://arxiv.org/abs/1605.09673
https://arxiv.org/abs/2003.12243
https://arxiv.org/abs/1904.05373

