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Abstract—Recent years have witnessed a widespread use of
deep neural networks (DNNs) in providing various intelligent
services, and vehicular networks are no exception. Given the lim-
ited computing capabilities of vehicles, collaborative vehicle-edge
DNN inference has emerged as a viable alternative. This approach
employs DNN partitioning, where a part of DNN is computed
on vehicles, and the other part on the edge, e.g., roadside unit
(RSU), aiming to enhance the inference accuracy and reduce
the inference latency. In this setting, deriving an optimal DNN
partitioning scheme becomes critical, yet challenging given the
constant movement of vehicles and the highly dynamic wireless
connections. Furthermore, vehicles may move out of the signal
coverage of an RSU, making it difficult to receive the inference
results. To this end, we propose a two-stage intelligent scheduling
framework named Soft Actor-critic for discrete actions (SAC-D)
based collaborative DNN inference FramEwork (SAFE). SAFE
engages multiple RSUs to assist vehicles in completing inference
tasks sequentially and ensuring reliable data transmission. It
can learn the dynamic vehicular network and make scheduling
decisions to minimize the overall latency of vehicle inference
tasks. Extensive experimental results show that SAFE can reduce
up to 80% of the overall latency with a lower failure rate,
compared to four baselines.

I. INTRODUCTION

The recent technological advancement of deep neural net-

works (DNNs) has enabled an increasing number of intelligent

services in vehicular networks. However, DNN inference tasks

are usually compute-intensive [1] and latency-sensitive [2],

making it infeasible to deploy complex models and inde-

pendently execute them on vehicles with only limited on-

board computing resources. In contrast, roadside units (RSUs)

equipped with edge servers possess stronger computational

and storage capabilities. This opens up a potential opportunity

for collaborative vehicle-edge inference, in which a DNN

model is partitioned into two parts, one computed on the

vehicle and the other on a nearby RSU. The vehicle computes

the first part and transfers the intermediate output to the RSU,

which computes the remaining part and returns the result

back to the vehicle [3]. Collaborative vehicle-edge inference

not only reduces the inference latency but also effectively

combines the dynamic information from vehicles with the

Corresponding author: Ziyi Han.

static information from RSUs, resulting in significantly better

inference results. For example, vehicle-mounted cameras and

sensors capture data, and collaborative vehicle-edge inference

can be employed to reduce latency and enhance the accuracy of

video analysis and object detection/tracking, thereby ensuring

safe driving [4].

However, collaborative DNN inference in vehicular net-

works faces several challenges. First, DNNs have chain or di-

rected acyclic graph (DAG) topologies, where each layer’s op-

eration depends on the previous layers’ outputs [5]. The com-

puting demand and the size of the intermediate data generated

at different layers in DNN models vary dramatically. Optimally

partitioning DNNs is hence essential for efficient computation

and data transfer during collaborative inference. Second, as

the environments of vehicular networks change dynamically,

such as uneven workload distribution and unstable wireless

connections [6], the allocation of computing resources and

wireless bandwidth to vehicles should be adjusted accordingly,

so does the DNN partitioning scheme [7]. Third, vehicles are

constantly moving, while some inference tasks require a few

seconds to finish computing, e.g., trajectory prediction with

a large-scale model and data [8]. The vehicle may move out

of an RSU’s signal coverage before the inference completes,

making it unable to receive the inference results.

Existing work in achieving efficient DNN inference with

edge collaboration includes methods like model partition [9],

[10], which focus on DNN partitioning in an end-edge-cloud

environment, without considering the mobility of vehicles,

which may lead to task failures. Research on vehicular net-

works, mainly addresses task offloading and resource alloca-

tion [11], [12], but these approaches primarily target general

computing tasks and do not exploit the unique characteristics

of DNN inference tasks. To our knowledge, there are only a

few studies on DNN inference in vehicular networks. Notably,

Wang et al. [7] proposed an algorithm to select one RSU

for collaborative inference, but did not address the potential

failures of data transmission caused by vehicle mobility.

In this paper, we design a Soft Actor-critic for discrete ac-

tions (SAC-D) based collaborative DNN inference FramEwork

(SAFE) to achieve reliable and low-latency DNN inference
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Fig. 1: Collaborative DNN inference in vehicular networks.

in vehicular networks. To our knowledge, this is the first
formal study of online scheduling design for collaborative

DNN inference across multiple RSUs in vehicular networks.

To better illustrate this idea, we refer to Fig. 1. For the red

vehicle, the first RSU is selected to execute part of DNN

inference as the helper and the second RSU is used as the

deliverer for the remaining part of computation and result

delivery; in contrast, for the blue car, only one RSU is selected.

We summarize our main contributions as follows:

• Collaborative DNN Inference Model. We analyze the

characteristics of DNN models and the mobility of ve-

hicles and an average latency minimization problem is

formulated to evaluate the performance of SAFE.

• Two-stage Collaborative Inference Framework. To solve

the formulated problem, SAFE first decomposes the

problem into two subproblems, workload distribution

and resource allocation. For the first subproblem, SAFE
utilizes SAC-D to determining RSU selection and

DNN partitioning. In the second stage, by leveraging

Karush–Kuhn–Tucker (KKT) conditions, SAFE makes

the optimal resource allocation decisions for each RSU

in linear time.

• We evaluate the effectiveness of SAFE through extensive

experiments. The results show that i) SAFE achieves

the low average latency and the high success rate; ii)

SAFE significantly outperforms four baselines in various

vehicular network scenarios; iii) SAFE improves the

success rate by up to 65% while reducing the average

latency by up to 80%, compared to four baselines.

II. SYSTEM MODEL

A. DNN Inference in Vehicular Networks

System Overview. As shown in Fig. 1, we consider a

vehicular network along a road with a number of RSUs,

denoted as S. Each RSU s ∈ S is equipped with a computing

server and has a signal coverage of radius r. Denote the

computing resource and the wireless bandwidth capacity of

RSU s as Cs and Bs, respectively.

Vehicle Information. On the road, I vehicles travel at

constant speeds and can communicate with a nearby RSU

and execute DNN inference tasks in cooperation with RSUs.

To model the mobility of vehicles, we adopt zone-based and

time-slotted models. The road is divided into M zones with

equal lengths. Let Lm
s ∈ {0, 1} denote whether zone m is

within the signal coverage of RSU s. Over a time span T ,

vehicles generate DNN inference tasks randomly and request

processing. We assume that there will not be two uncompleted

tasks on a vehicle at the same time. Therefore, each vehicle

i ∈ I can be represented by a tuple {vi, ci, ai, li(t)}, where

vi denotes the travel speed of vehicle i, ci represents the

computing capacity of vehicle i, ai ∈ T indicates the request

time for the task of vehicle i, and li(t) ∈ M denotes the

location of vehicle i at time slot t.

Collaborative Inference Model. To overcome the significant

latency incurred by resource-limited vehicles in completing

inference tasks independently, we adopt a collaborative model

that leverages the resources of RSUs to accelerate the inference

process. Considering the mobility of vehicles, a vehicle may

leave the signal coverage of the cooperative RSU when the

RSU completes the task, such as the red vehicle in Fig. 1. To

address this, we extend the collaborative model by selecting

two RSUs, referred to as the helper and the deliver [13]. Both

the helper and the deliver can assist the vehicle in completing

the inference task sequentially, with the deliver responsible for

sending the results to the vehicle. Note that one RSU can be

selected as the helper and the deliver simultaneously, such as

the blue vehicle in Fig. 1.

DNN Model Partition. DNN models are well-trained and

pre-installed on both vehicles and RSUs. Due to limited com-

puting and memory resources in vehicles, the deployed models

on vehicles are compressed, reducing the computing workload

while preserving models’ topology and intermediate data size

[14]. Conversely, RSUs deploy complete and uncompressed

models. The architecture of a DNN model is structured as

a sequence of logical layers. The DNN model of vehicle

i consists of Ki logical layers. The output of k-th layer is

called the intermediate data of k-th layer, which is required

as the input by the (k + 1)-th layer. Each layer k ∈ Ki can

be represented by a tuple {xi,k, x
′
i,k, di,k}. xi,k/x

′
i,k indicates

the complete/compressed computing workload of k-th layer,

which is determined by the layer type, input size, and output

size. di,k denotes the intermediate data of the k-th layer. Based

on the settings of helper and deliver, it is necessary to select

two partition layers to divide the model into three parts.

Decision Variables. After the DNN inference task of vehicle

i arrives at time slot ai, the decisions made by the central

controller include: i) hi,s, di,s ∈ {0, 1}, binary variables which

represent whether RSU s is selected as the helper/deliver

for vehicle i; ii) pi,k1 , ei,k2 ∈ {0, 1}, binary variables which

indicate whether layers k1 and k2 are selected as two partition

layers for vehicle i; iii) αt
i,s, β

t
i,s ∈ [0, 1], the ratio of computing

resources/ wireless bandwidth allocated to vehicle i in RSU s

at t; For convenience, let κi,1, κi,2 denote the partition layers

of vehicle i, i.e., κi,1 =
∑

k∈Ki
k ·pi,k and κi,2 =

∑
k∈Ki

k ·ei,k.
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B. Latency Model

Inference Latency. The total latency of the processing task

for vehicle i consists of three types of computation latency and

two types of data transmission latency, which is calculated as:
μi = μl

i + μo
i + μh

i + μg
i + μd

i , (1)

where μl
i, μ

h
i and μd

i are the computation latency for executing

the first, second and third part of vehicle i’s DNN model at

local, helper and deliver, respectively; μo
i is the communication

latency for transferring intermediate data of the first partition

layer from vehicle i to helper to continue execution; and μg
i is

the communication latency for transmitting intermediate data

of the second partition layer of vehicle i from helper to deliver.

Computation Latency. i) Local Computation: The local

computation latency is the execution time of the first part

of the DNN model (from layer 1 to the first partition layer

κi,1), which can be calculated as μl
i =

∑
k:k<=κi,1

x′
i,k/ci.

ii) Helper Computation: In the helper computation phase,

the latency of vehicle i consists of the execution time

of layer κi,1 to layer κi,2, which can be represented by

μh
i =

∑
s∈S

∑
k:κi,1<k<=κi,2

xi,k

αt
i,shi,sCs

. iii) Deliver Computa-
tion: The latency of vehicle i in the deliver computation phase

is the execution time of the remaining layers, which can be

given by μd
i =

∑
s∈S

∑
k:k>κi,2

xi,k

αt
i,sdi,sCs

.

Communication Latency. i) Vehicle-to-infrastructure (V2I)
communication: Vehicles communicate with RSUs via a wire-

less network connection (e.g., 4G, 5G, and wifi). In this paper,

the orthogonal frequency division multiple access technique is

used to achieve network slicing, which enables simultaneous

transmission of multiple signals without causing interference

[15]. Then, the data rate between vehicle i and RSU s at

time slot t is obtained by the Shannon formula as rti,s =

βt
i,sBs log2(1 +

ρig
t
i,s

σ2 ), where ρi indicates the transmission

power of vehicle i, gti,s represents the channel gain between

vehicle i and RSU s at time slot t, and σ2 denotes the

power of the Gaussian noise. The wireless transmission la-

tency between vehicle i and the helper can be calculated by

μo
i =

∑
s∈S

di,κi,1

hi,sr
t
i,s

. ii) Infrastructure-to-infrastructure (I2I)
communication: RSUs communicate with each other through

wired links (e.g., optical fiber). Due to the stability of wired

links, we assume that the transmission rate remains constant.

Let Rs,s′ denote the data rate between RSU s and RSU s′.

The communication latency between the helper and the deliver

is μg
i =

∑
s∈S

∑
s′∈S

di,κi,2

hi,sdi,s′Rs,s′
. It is worth noting that the

transmission latency for result delivery is ignored due to the

relatively small size of the result [16].

C. Problem Formulation

Problem Formulation. Our objective is to minimize the

DNN inference latency while ensuring task delivery, subject to

the mobility of vehicles and the limited communication range

of RSUs. The online problem for DNN inference in vehicular

networks can be formulated as follows.

minimize
1

I

∑
i∈I

μi (2)

∑
i∈I

αt
i,s <= 1, ∀s ∈ S, ∀t ∈ T , (2a)

∑
i∈I

βt
i,s <= 1, ∀s ∈ S, ∀t ∈ T , (2b)

∑
∀s∈S

hi,sL
s
li(ai+μl

i)
= 1, ∀i ∈ I, (2c)

∑
∀s∈S

di,sL
s
li(ai+μi) = 1, ∀i ∈ I, (2d)

∑
∀s∈S

hi,s = 1,
∑
∀s∈S

di,s = 1, ∀i ∈ I, (2e)

∑
∀k∈Ki

pi,k = 1,
∑

∀k∈Ki

ei,k = 1, ∀i ∈ I, (2f)

t <= t′ < t′′, ∀t : βt
i,hi

> 0, ∀t′ : αt′
i,hi

> 0,

∀t′′ : αt′′
i,di > 0, ∀i ∈ I, (2g)

hi,s, di,s, pi,k, ei,k ∈ {0, 1}, ∀i, ∀s, ∀k. (2h)

Constraints (2a) and (2b) guarantee the allocated computing

resources and wireless bandwidth within the capacity of each

RSU. To ensure reliable communication, constraints (2c) and

(2d) ensure that vehicles are within the signal coverage of

the corresponding RSUs for data transmission. Constraint (2e)

means that only one RSU is selected as the helper/deliver for

each vehicle. Constraint (2f) represents that only one layer is

selected for each partition point. Constraint (2g) enforces the

execution sequence of vehicles’ inference phases.

Challenge. The above problem (2) is a mix-integer non-

linear optimization problem. Integer linear programming

(ILP), which is known as NP-hard [17], is reducible to it.

So the problem (2) is also NP-hard even in the offline setting,

which is challenging to solve by conventional optimization

methods. Moreover, the network condition dynamic changes

and the arrival of vehicles are unknown. Finally, problem (2)

is time coupled, making it more difficult to be addressed.

III. THE DESIGN OF SAFE

In order to solve the average latency minimization problem

(2), we first decouple the problem into two subproblems:

workload distribution and resource allocation. Then, a two-

stage SAC-D based framework, SAFE, is proposed.

A. Solution for Workload Distribution

Problem Transformation. We first reformulate the workload

distribution subproblem into an MDP. An MDP can be denoted

by the tuple {S,A,P,R, γ}. In our scenario, the central

controller is considered an agent. The MDP can be defined

as follows.

i) State. At each time slot t, the agent observes the state

information from the current vehicular network environment.

The state st includes the state of all RSUs and Vt repre-

sents the information of currently arriving vehicles’ tasks It.

The state of each RSU s includes: the computing resource

capacity Cs, the bandwidth resource capacity Bs, and the

workload already assigned to RSUs at the current time slot

Dload
s,t =

∑
t′:t′>=t

∑
i∈I αt′

i,sCs, i.e., St = {Cs, Bs, D
load
s,t }s∈S .

The information of vehicle i includes: the travel speed vi, the
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computing resource capacity ci, the transmission power ρi, and

the location li(t), i.e., Vt = {vi, ci, ρi, li(t)}i∈It .

ii) Action. Given the observed state st, the agent determines

the action at of the workload distribution (RSUs selection and

DNN partition) for all vehicles It at time slot t, i.e., at = {hi,s,

di,s, pi,k, ei,k}i∈It,s∈S,k∈Ki .

iii) Reward. Given the state-action pair, the agent will

receive a reward rt from the environment to evaluate the

quality of action at. The reward function is defined as follows:

rt =
1

It

∑
i∈It

rt,i, where (3)

rt,i =

{− μi, constraints (2c) and (2d) are satisfied,

− ωμi, otherwise.

rt,i denotes the reward of vehicle i, and ω indicates the penalty

factor. When the constraints (2c) and (2d) are satisfied, the

reward is the negative value of the latency. And an extremely

small value −ωμi is returned as a penalty for violating

constraints. Note that there must be ω >> 1 to incentivize the

agent to select actions that satisfy the constraints. The specific

set of parameters is listed in Sec. IV.

Challenge and Solution. In vehicular networks, it is chal-

lenging to model the environment state accurately due to the

limited knowledge of transition probability and task arrival

patterns of all vehicles. High-dimensional continuous state

spaces and high-dimensional discrete action spaces further

exacerbate convergence issues due to their computational cost

[18]. Traditional dynamic programming solutions are ineffec-

tive in solving this MDP problem. DRL has emerged as a

promising approach for MDP problems [19]. In this paper, we

exploit the SAC-D [20], an off-policy actor-critic algorithm

with soft policy updating based on the maximum entropy

RL framework, to address the above MDP problem. It is

specifically designed for discrete action spaces and can be

applied in large-scale networks without requiring statistics on

network dynamics, which is described in detail in Sec. III-C.

B. Solution for Resource Allocation

Since the workload distribution strategy is obtained through

the SAC-D based algorithm, and the DNN inference phases

are executed sequentially, the start time of each phase can

be obtained. Therefore, resource allocation on each RSU is

independent and can be decomposed into a series of single-

slot wireless bandwidth allocation problems and computing

resource allocation problems.

Wireless Bandwidth Allocation. The wireless bandwidth

allocation problem of RSU s at t can be modeled as follows:

minimize
∑

i∈Is,t

μo
i (4)

∑
i∈I

βt
i,s <= 1, (4a)

where Is,t denotes the set of vehicles that need to allocate

bandwidth by the RSU s for intermediate data transmission at

time slot t. The above problem (4) is a convex optimization

problem, which can be addressed directly by a convex solver,

e.g., CVX. But, considering the low latency requirement

of online inference, we derive the following equations to

quickly calculate the optimal solution according to the convex

optimization theory and KKT condition [11], [21]:

∇(
∑

i∈Is,t

μo
i + δ(

∑
i∈I

βt
i,s − 1)) = 0,

δ >= 0,

δ(
∑
i∈I

βt
i,s − 1) = 0, (5)

∑
i∈I

βt
i,s − 1 <= 0.

By solving the equations, the optimal bandwidth resource

allocation for vehicles i ∈ Is,t can be obtained as follows:

βt
i,s =

√
ηi∑

i∈Is,t

√
ηi
, ∀i ∈ Is,t,where

ηi =
di,κi,2

Bs log2(1 +
ρig

t
i,s

σ2 )
, ∀i ∈ Is,t. (6)

Computing Resource Allocation. Similar to the problem

(4), computing resource allocation is also a convex optimiza-

tion problem, and its solution is given by:

αt
i,s =

√
ζi∑

i∈I′
s,t

√
ζi
,∀i ∈ I′

s,t,where

ζi = Xi,s/Cs,∀i ∈ I′
s,t. (7)

where I′
s,t denotes the set of vehicles that need to allo-

cate computing resources by the RSU s for task inference

at time slot t, Xi,s indicates the computation workload of

vehicle i in RSU s. In helper computation phase, Xi,s =∑
k:κi,1<k<=κi,2

xi,k, and Xi,s =
∑

k:k>κi,2
xi,k for deliver

computation phase.

C. SAC-D Based Collaborative Inference Framework

Design of SAFE. We propose a two-stage SAC-D based col-

laborative inference framework, SAFE, to handle the problem

(2). SAFE includes four crucial elements to enhance perfor-

mance: 1) An actor-critic architecture with an actor network,

a pair of evaluative critic networks, and a pair of target critic

networks. The actor makes action decisions based on its policy

πφ(s). The evaluative critic networks provide a pair of Q-

values (Qθ1 , Qθ2 ) to evaluate the actor’s actions, while the

target critic networks calculate (Qθ′
1
, Qθ′

2
). 2) An off-policy

way with the experience replay technique to accelerate the

convergence efficiency. 3) Discrete actions that are suitable for

our transformed MDP problem. In the output layer of the actor

network, decision elements are addressed via discretization.

Critic networks output the Q-value of each possible action

rather than simply providing the action as input. 4) Maximum

entropy framework to ensure exploration and stability. For our

algorithm, the goal of the agent is to find a policy π∗ that

maximizes the maximum entropy objective:

π∗ = argmax
π

∑
t∈T

E(st,at)∼ξπ [γ
t(rt + λH(π(.|st)))], (8)

where λ denotes the temperature parameter that balances the

reward and entropy, ξπ indicates the distribution of trajectories

induced by policy π, and H(π(.|st)) represents the entropy of

the policy π at state st.
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Algorithm Details. Our SAC-D based collaborative infer-

ence framework, SAFE, is presented in technical report [22].

IV. PERFORMANCE EVALUATION

A. Experiments Setup

Vehicle-edge System. We implement a vehicle-edge system

with two types of devices: MacBook Pro 2020 with chip M1

and desktop PC. We take ten MacBook Pros (which utilize

only one CPU core) to emulate vehicles. Five desktop PCs

are employed as the RSUs. Each desktop PC is equipped

with 12 CPU cores, 16GB RAM, 500GB HDDs, and a dual-

port 1GbE NIC. We consider a road with five RSUs whose

signal coverage radius is 300 m. The length of each zone

is 20 m. The wireless bandwidth capacity of RSU is [5, 20]
MHz (default Bs = 10 MHz). The travel speed vi is [36, 72]

km/h. Due to budget limitations, we cannot deploy physical

vehicles and RSUs. Therefore, we used a data simulation

approach to realize the movement of vehicles and wireless

communication. The transmission power ρi is set within [5, 10]

dBm, the channel gain gti,s follows −(128.1 + 37.6 log10 d),

where d (in km) indicates the distance between vehicle i and

RSU s, and the Gaussian noise σ2 is set to −174 dBm/Hz.

Workload. In our experiments, three well-known DNN

models, AlexNet [23], VGG-16 [24], and ResNet50 [25] are

considered (VGG-16 is used by default). We implement all

DNN models with PyTorch in Python. Both training and

inference of DNN models are performed using the Berkeley

Deep Drive data set (BDD100k) [26]. Specifically, the input

data is a 1280 ∗ 720 image with 3 channels.

TABLE I: Parameter Setting of SAFE

Parameter Value Parameter Value

Number of episodes E 3000 Number of steps T 200
Replay buffer size |D| 10000 Mini-batch size U 100
Learning rate �Q, �π , �λ 0.0001 Discount factor γ 0.99

Temperature initial λ 1.0 Target entropy Ĥ -log(1 + ι)
Soft update factor τ 0.01 Optimizer Adam
Hidden layer act. ReLU Actor output act. Softmax

Algorithm Networks. In our DRL, the actor network and

critic networks of the agent are all four-layer neural networks.

The number of neurons in the hidden layers are 512 and 256,

The penalty factor of reward ω is set to 3. Other parameters

of SAFE are listed in TABLE I.

Baselines. To evaluate the performance of SAFE, the fol-

lowing four baselines are compared.

• Local: all DNN inference computations are completed on

vehicles without any assistance.

• Edge: vehicles directly upload the input data to the nearby

RSU, and all computations are done on this RSU.

• DSL [27]: DSL is a state-of-art DNN partition scheme,

which executes the inference tasks with the cooperation

of the nearby RSU. In this approach, both RSUs and

vehicles are capable of running only one task at a time,

utilizing all available resources.

• INSGA [28]: INSGA is a specialized algorithm designed

for resource allocation in vehicular networks. It offloads

inference tasks to nearby RSUs and makes resource

allocation decisions based on an improved non-dominated

sorting genetic algorithm.

B. Evaluation Results

Evaluation Metrics. Given that vehicles may be driven out

of the signal coverage of the assist RSU, not all vehicles

can complete the inference task computation and delivery.

Therefore, we consider the following metrics to evaluate the

performance of SAFE. i) Success rate, which is defined as the

number of completed tasks over the total number of inference

tasks. ii) Average latency of all completed tasks.

Fig. 2: The convergence per-

formance of SAFE.

Fig. 3: The convergence per-

formance details of SAFE.
Convergence of SAFE. The convergence performance of

our framework SAFE is presented in Fig. 2. The light blue

region represents the standard deviation. We can observe that

as the number of training episodes increases, the reward value

rises gradually until it reaches a relatively stable value. It

validates that SAFE converges after parameter iterations for

1800 episodes. Specifically, we plot the success rate and the

average latency under each iteration in Fig. 3. It can be

observed that the average latency decreases and the success

rate rises gradually as the number of episodes grows, which

further proves that SAFE has a good convergence effect, i.e.,
small average latency with a high success rate.

Fig. 4: Success rate on VGG-

16 with different Cs.

Fig. 5: Average latency on

VGG-16 with different Cs.

Impact of Computing Resources. After well offline training,

we evaluate the online performance of SAFE. Fig. 4 and Fig.

5 illustrate the success rate and the average latency of all

algorithms with VGG-16 in terms of the computing resources

capacity in each RSU, respectively. The results show that the

average latency decreases as the amount of resources increases,

while the success rate increases gradually. This is attributed to

the fact that the computation latency on RSUs is influenced by

the available resource capacity. With sufficient resources, the

latency decreases, reducing the likelihood of vehicles traveling

out of RSU signal coverage and thereby increasing the success

rate. In addition, SAFE performs better than the four baselines.

This is due to SAFE’s ability to capture dynamic changes in
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the environment, such as vehicle location, RSU workload, and

channel conditions. The DRL-based framework SAFE targets

the long-term performance to adapt to a dynamic environment,

while baselines focus only on the immediate performance.

Fig. 6: Success rate on VGG-

16 with different Bs.

Fig. 7: Average latency on

VGG-16 with different Bs.

Impact of Wireless Bandwidth. Fig. 6 and Fig. 7 present

the impact of wireless bandwidth on the performance of

SAFE. It can be observed that as bandwidth grows, average

latency decreases, and the success rate rises. The reason

is that sufficient wireless bandwidth resources reduce the

data transmission latency in V2I communication. Furthermore,

SAFE consistently outperforms the four baselines and can

adapt to changes in the available wireless bandwidth.

Fig. 8: Success rate with

mixed DNN models.

Fig. 9: Average latency with

mixed DNN models.

Mixed DNN models. In real-world scenarios, vehicles of-

ten employ a variety of DNN models. To address this, we

conducted experiments using mixed DNN models. The task’s

DNN model type ui ∈ {0, 1, 2} employed by vehicle i is added

to the state so that SAFE can adapt to different model features.

The results under the different ratios of the three models used

for inference tasks (i.e., ratio = AlexNet : VGG-16 : ResNet50)

are presented in Fig. 8 and Fig. 9. It can be seen that SAFE
enhances the success rate by 10% to 20% while reducing the

average latency by up to 50%.

Fig. 10: Success rate on

VGG-16 with different I .

Fig. 11: Average latency on

VGG-16 with different I .

Large Scale. To assess the effectiveness of SAFE on a

broader scale, we conducted experiments with 10 RSUs and

[20, 50] vehicles. The results are presented in Fig. 10 and Fig.

11. It can be observed that SAFE consistently outperforms the

four baselines, especially in larger-scale scenarios. In addition,

as the number of vehicles increases, average latency of DSL
becomes worse compared to INSGA. This is because suitable

resource allocation strategies effectively improve resource

utilization, reducing latency in resource-constrained scenarios.

V. RELATED WORK

A. DNN Inference Acceleration
DNN Model Optimization. To support latency-sensitive

applications, collaborative DNN inference [5], [29] have been

used to reduce inference latency by leveraging DNN parti-

tioning and offloading partial computation from the resource-

constrained local to nearby edge devices [30], edge servers [9],

and powerful cloud [31]. Mohammed et al. [10] design a fine-

grained adaptive DNN partitioning strategy and a distributed

offloading algorithm based on a matching game to minimize

latency. Hu et al. [32] propose a distributed inference mecha-

nism with progressive model partitioning to enhance run-time

performance on edge devices. Huang et al. [33] present a novel

adversarial group linear bandits algorithm for collaborative

edge inference. However, these works overlook the mobility

of vehicles in dynamic vehicular networks, which may lead to

inference task failures.

B. Vehicular Edge Computing
In recent years, great efforts have been paid to computation

offloading and resource allocation in vehicular networks [11],

[12]. Wu et al. [34] propose a dynamic radio access network

(RAN) slicing framework for different latency-sensitive vehi-

cle network tasks. Considering the vehicle mobility dynamics,

Li et al. [35] present a stochastic scheduling scheme to

minimize the traveled distance of vehicles. There are few

existing studies on DNN inference tasks in vehicular networks.

Wang et al. [7] design a chemical reaction optimization based

algorithm with the best partition point selection scheme for

joint vehicle-edge DNN inference. However, they only focus

on the allocation of computing resources and ignore the

wireless bandwidth, which is scarce and unstable in the edge

environment. The above DNN inference researches all neglect

the dynamic mobility of vehicles, which is a major feature of

vehicular networks.

VI. CONCLUSION

In this paper, we propose a collaborative DNN inference

framework, SAFE, for vehicular networks. Our goal is to

reduce the inference latency under the limited computing

resource and wireless bandwidth capacity constraints of RSUs.

We decouple the problem into two subproblems: workload

distribution and resource allocation. We first present a SAC-D

based algorithm to solve the workload distribution subproblem

to decide the RSU selection and DNN partition. Second, the

resource allocation subproblem which calculates the amount

of allocated computing resources and wireless bandwidth of

selected RSUs to the vehicle is solved by convex optimization

theory. Extensive experiments show that SAFE can adapt to a

highly dynamic environment and significantly reduce inference

latency.
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