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Abstract—Federated Learning enables mobile users to collab-
oratively learn a global prediction model by aggregating their
individual updates without sharing the privacy-sensitive data. As
mobile devices usually have limited data plan and slow network
connections to the central server where the global model is main-
tained, mitigating the communication overhead is of paramount
importance. While existing works mainly focus on reducing the
total bits transferred in each update via data compression, we
study an orthogonal approach that identifies irrelevant updates
made by clients and precludes them from being uploaded for
reduced network footprint. Following this idea, we propose
Communication-Mitigated Federated Learning (CMFL) in this
paper. CMFL provides clients with the feedback information
regarding the global tendency of model updating. Each client
checks if its update aligns with this global tendency and is
relevant enough to model improvement. By avoiding uploading
those irrelevant updates to the server, CMFL can substantially
reduce the communication overhead while still guaranteeing
the learning convergence. CMFL is shown to achieve general
improvement in communication efficiency for almost all of the
existing federated learning schemes. We evaluate CMFL through
extensive simulations and EC2 emulations. Compared with
vanilla Federated Learning, CMFL yields 13.97x communication
efficiency in terms of the reduction of network footprint. When
applied to Federated Multi-Task Learning, CMFL improves the
communication efficiency by 5.7x with 4% higher prediction
accuracy.

I. INTRODUCTION

Due to the widespread adoption of mobile and edge
devices [1], [2], the past few years have seen a surging
demand of performing Machine Learning (ML) on these
devices for personalized, low-latency AI applications [3], [4].
Federated Learning (FL) [4]–[9] has been proposed to enable
collaborative machine learning over a large number of edge
devices (clients) without centralized training data. In FL, a
global model, maintained in a central server, is shared by all
participating clients. To train the model, each client uploads
its individual update to the server while keeping the privacy-
sensitive training data on its own device. The server aggregates
the updates of all clients and applies it to the model before
proceeding to the next training iteration [3], [4].

However, a key challenge posed to FL is the communication
overhead. On one hand, in FL, participating edge devices
such as mobile phones and tablets usually have a limited data
plan with unreliable, expensive network connections. On the
other hand, advanced machine learning applications deployed
on edge devices, such as Gboard [10], increasingly employ
complex deep neural networks (DNNs), where the training

update uploaded by each client consists of a large gradient
vector, making communication a severe bottleneck. Therefore,
minimizing the network footprint for FL becomes critically
important [4], [5].

In general, there are two approaches to reduce the commu-
nication overhead during the model training: (1) reducing the
total bits transferred for each client update, and (2) reducing
the total number of updates transferred for each client. Existing
works mainly focus on the first approach by means of data
compression. For example, structured updates [4] is proposed
to compress the client update using a more compact data
structure. However, data compression results in information
loss of training updates, which may harm the learning accuracy
and usually come with no convergence guarantees [4].

In this paper, we turn to the second approach and ask:
is it possible to improve the communication efficiency of
FL while still providing convergence guarantee? We give an
affirmative answer to this question. We propose to reduce the
communication overhead by dynamically identifying irrelevant
updates made by clients and excluding them from data transfer.
This simple approach is efficient and general. First, as FL is
performed on edge devices, the training updates are computed
based on the personal data of clients. Given the non-IID
distribution of these training data, some local updates can be
biased and are simply outliers. Integrating these biased updates
would drive the global model in a tangential direction to the
collaborative convergence. Therefore, excluding these outliers
from model updating has no adverse impact to the learning
accuracy, but it avoids unnecessary data transfer. Second, this
approach generally applies to a wide range of FL frameworks,
provided that their model training is based on aggregating the
client-side optimizations.

A simple solution that implements a similar intuition goes to
Gaia [11], which is proposed to minimize the communication
overhead for geo-distributed machine learning by excluding
the helpless updates from data transfer. However, instead of
checking if a local update is relevant to the global convergence,
Gaia concerns the significance of a local update by comparing
its absolute value (magnitude) with a predefined threshold:
the update is considered significant if its magnitude is larger
than the threshold. The local updates which are insignificant
in magnitude are not uploaded to reduce the network footprint.
While Gaia is proven effective for geo-distributed learning
across a small number of datacenters [11], it does not transfer
well to the FL setting due to a number of mismatches



in assumptions and target environments. In particular, the
magnitude-based significance metric concerns only the speed
of model training, while being agnostic to the optimization
direction. By simply comparing the significance of an update
with a fixed threshold, Gaia is unable to tell if this update, which
is a local gradient, aligns with the collaborative optimization
trend across all clients, and hence cannot correctly identify its
(ir)relevance. This problem can be even more salient given a
large number of clients (e.g., hundreds of thousands of edge
devices) participating in FL. As we shall show in Sec. V,
directly applying Gaia to FL results in marginal savings of
communication overhead.

Given the inefficiency of Gaia, we address this challenge with
a novel algorithm called Communication-Mitigated Federated
Learning (CMFL). Our key insight is to identify the relevance
of a client update by checking if it aligns with the global
tendency of model updating that jointly considers all clients.
Specifically, in each learning iteration, a client first receives the
feedback information about the global update from the central
server. Next, the client proceeds its local training and produces
a local update. The client then compares it with the global
update, checking how well the two gradients align with each
other. To do so, given a local update, CMFL calculates the
percentage of its parameters having different signs—positive or
negative—compared with their counterparts in the global update.
Intuitively, the higher the percentage is, the more divergent to
the collaborative convergence the local update is, and thus the
more irrelevant it will be. By excluding those irrelevant local
updates from data uploading, CMFL can effectively reduce the
communication overhead of FL while still providing provable
convergence guarantees.

We evaluated CMFL through both simulations and EC2
emulation, and compared its performance against state-of-the-
art solutions, including vanilla FL [5], Gaia [11], and the
recently proposed federated multi-task learning [12]. Evaluation
results show that CMFL outperforms the vanilla Federated
Learning by 13.97x in terms of the reduced communication
overhead, whereas Gaia only achieves 1.26x improvement.
Moreover, when applied to the advanced Federated Multi-Task
Learning [12], CMFL yields 5.7x savings of communication
overhead, while at the same time improving the prediction
accuracy by 1.04x.

II. MODEL AND BACKGROUND

In this section, we briefly introduce Federated Learning (FL)
and describe our objectives. We then survey related work and
motivate the need for a new optimization scheme to reduce
the network footprint of Federated Learning.

A. Federated Learning

Synchronous update scheme. Following the previous
work [4], [5], [13], we assume a synchronous update scheme
that proceeds in each training iteration of FL:

1) Clients independently train their local models using
the client-side training data, e.g., the click history of
Gboard [3], [10].

2) All the clients upload their local optimizations (gradient
updates) to the cloud-side central server for aggregation.

3) The central server aggregates the received local updates
(typically by averaging) to obtain a global update, and
uses it to improve the global model. The system then
proceeds to the next training iteration, where each client
computes the update based on the newly updated model.

Privacy Protection. Instead of uploading the privacy-sensitive
training data directly to the central server, the participating
clients in Federated Learning only send the model updates
which could be ephemeral [2], [5], [14]–[16]. This anonymous
update reveals no information about the source client. Besides,
as the global optimization in the central server requires no
metadata about the sources of updates, the communication can
be performed without exposing the personal information.

Model Training. We now formalize the description of the
model training process in FL as follows. Let C = 〈c1, . . . , cD〉
be the set of participating clients in FL. Each client has a private
training dataset Pk. A global prediction model is shared and
collaboratively trained by all D clients. The goal is to find the
optimal model parameters x ∈ Rl that minimize the average
prediction loss f(x):

minimizex∈Rl f(x) =
1

D

D∑
k=1

fk(x), (1)

where fk(x) is the loss value given by client k based on its
private training data.

As a common practice, we establish the federated optimiza-
tion in Eq. (1) through Stochastic Gradient Descent (SGD) [17],
where the batch gradient is calculated in each training iteration
and used to improve the model. Formally, in the tth iteration
of the synchronous SGD algorithm, the global model xt is
obtained by:

xt = xt−1 −
D∑

k=1

ηk∇fk(xt) = xt−1 +

D∑
k=1

uk,t, (2)

where ∇fk(·) and ηk respectively denote the gradient function
and the learning rate of client k, and uk,t denotes the local
update of client k given in the tth iteration: uk,t = −ηk∇fk(xt).
Assuming the learning converges in iteration T , we describe
the learning process as a sequence of optimizations, i.e.,

xT = x0 +

T∑
t=1

D∑
k=1

uk,t. (3)

B. Objectives

Minimizing the accumulated communication rounds. As we
explained in the introduction, FL clients are usually edge
devices with the limited data plan and expensive mobile
connections. It is therefore desirable to minimize the total
amount of data uploaded from the edge devices to cut the
mobile bills. To this end, our first objective is to minimize
the accumulated communication rounds used for transferring
client updates throughout the entire training process.



Formally, in the tth iteration, let St be set of clients
who upload their local updates to the server. We define the
communication round in the tth iteration as rt = |St|, i.e., the
number of clients in St. Given a targeted prediction accuracy a,
suppose this can be achieved in T iterations using an algorithm
A . The accumulated communication rounds is defined as the
total number of local updates made by clients in T iterations:

Φa
A =

T∑
t=1

rt =

T∑
t=1

|St|. (4)

Therefore, our first objective is to design a communication-
efficient algorithm A to minimize the accumulated communi-
cation rounds Φa

A given learning accuracy a.

Guaranteeing the learning convergence. Communication
efficiency should not be improved at the expense of learning
convergence. In particular, let x∗ be the optimal model
parameters that minimize the prediction loss (1). We require
the learning algorithm to meet the following convergence
requirement:

lim
T→∞

1

T
R[x] = lim

T→∞

1

T

T∑
t=1

|f(xt)− f(x∗)| = 0, (5)

where R[x] is the regret function.
To summarize, our objective is to minimize the accumulated

communication rounds while guaranteeing the convergence of
the learning algorithm, i.e.,

minimize Φa
A =

T∑
t=1

rt,

s.t. lim
T→∞

1

T

T∑
t=1

|f(xt)− f(x∗)| = 0.

(6)

C. Related Work

Advanced designs of Federated Learning. There is a rich
body of work on FL. Most of them are limited to explor-
ing sophisticated model training architectures. For example,
MOCHA [12] employs the multi-task learning (MTL) frame-
work to capture the distributed nature of FL, where the goal is
to train separated but related models simultaneously. Formally,
MOCHA captures the relationship between all clients (tasks)
through their relationship matrix. Another recent advance is
Federated Meta-Learning [18], where the user’s information is
shared at the level of algorithms instead of models or data as
assumed in the previous approaches. Although these learning
frameworks can accelerate the training process, they show little
improvement in reducing the communication overhead.

There are other works which implemented the complex data
structures to compress the total amount of data communicated
in each update, such as structured updates and sketched
updates [4]. Unfortunately, these works come without a con-
vergence guarantee while adding the computational complexity
during the communication stages.
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Fig. 1: Distribution of the Normalized Model Divergence (dj)
for all of the trained parameters xj ∈ x.

Prior art in geo-distributed learning. Gaia [11] is recently
proposed as a communication framework that reduces cross-
datacenter communications for geo-distributed machine learn-
ing. Specifically, Gaia measures the significance of a local
update from one datacenter by the update’s magnitude relative
to the current parameter value, i.e., ||Update

Model ||, where ||.|| is the
Euclidean norm. Any update with ||Update

Model || < Threshold are
considered insignificant and will be precluded from uploading.
We notice that this identification is made based only on the
local update, without accounting for the federation of all clients.
In the context of Federated Learning where there are a large
number of clients each with non-IID training data, this open-
loop method without a feedback of the global tendency fails
to efficiently identify helpless updates.

III. INTUITION AND CHALLENGES

In this section, we present our intuition of reducing the
communication overhead by means of excluding irrelevant
local updates. We also discuss the challenges to implement
this intuition in FL.

A. Intuition

We begin our discussion by analyzing why some local
optimizations are not helpful to the global convergence.

The divergence between global and client models. In FL,
the global model is obtained by aggregating (e.g., averaging) a
large number of local models on the client side. As local models
are trained using the client-specific training data on devices,
the discrepancy between the local and global models generally
exists. Given the non-IID nature of the on-device training data,
some local updates may not be representative following the
population distribution. For example, when training a query
suggestion model of Google’s Gboard [3], clients have different
clicking choices. While some choices align well with the
common preference, others may produce client-specific updates
which are tangential to the collaborative trend of the training
convergence.

In this work, we measure the difference between the global
and local parameters by a metric called Normalized Model
Divergence. Normalized Model Divergence is defined, for each
model parameter xj ∈ x, as the average difference between



its values in the client and global models normalized by the
global value, i.e.,

dj = 1
D

∑D
k=1 |

xj,k−x̄j

x̄j
|, (7)

where xj,k is the local value of parameter xj in client ck,
and x̄j is the global value of xj . Intuitively, the larger dj is,
the more divergent the global and client-side models are with
respect to the trained parameter xj .

In order to illustrate the divergence between the global
and client-side models, we trained two models following the
previous work [19]: MNIST CNN [20], [21] and Next-Word-
Prediction LSTM [22]–[24], each with the dataset distributed to
100 clients. The detailed description of these two models and
datasets can be found in Sec. V-A. We measured the Normalized
Model Divergences in these two models and depict their CDF
distributions in Fig. 1. We see more than 50% of parameters
in both models produce model divergence higher than 100%,
suggesting a drastic difference between the global and local
models. Moreover, the maximum parameter divergences in the
two models reach up to 268 and 175, respectively. We attribute
this significant divergence to the client-specific training data.

To summarize, there are a salient number of client-specific
local optimizations which are tangential to the collaborative
training convergence. Uploading these outliers to the central
server makes little contributions but can even do harm to the
convergence of the global model.

Intuition. Based on our discussions, there is a potential
opportunity to reduce the communication overhead without
uploading the outlier updates. Our intuition in this regard is
to dynamically identify the relevance of client-side updates
based on whether these updates align with the collaborative
convergence trend, or they are just outliers with client-specific
optimization. Irrelevant updates will not be uploaded.

B. Challenges

However, there are two main challenges of implementing
the intuition above.

How to guarantee learning convergence? Ideally, our solu-
tion should guarantee the training process to converge fast.
However, reducing the amount of data transfer means to lose
some training information, which would inevitably disturb
the convergence of the model training. Therefore, our solution
should judiciously determine which updates should be discarded
without slowing down convergence. We note that although some
FL algorithms [4] can effectively reduce the communication
overhead, they provide no convergence guarantee.

How to measure the relevance of an update? As we have
discussed in Sec. II-C, Gaia [11] provides a simple solution for
geo-distributed machine learning that determines which local
updates should not be transferred based on their magnitude, i.e.,
any updates satisfying ||Update

Model || < Threshold are considered
insignificant and will not be uploaded. A natural question is:
can we apply the same solution to Federated Learning?

Unfortunately, while magnitude serves as a good indicator
for geo-distributed machine learning performed in only a few
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Fig. 2: Comparison of two measures over iterations when
training MNIST CNN model with 168 clients. (a) Gaia [11]
measures the significance of a local update by its magnitude,
which decreases exponentially over iterations (y-axis in log
scale). (b) CMFL measures the relevance of a local update
based on Eq. (9), which remains stable over iterations.

datacenters, it is not a good fit for Federated Learning due to
the following three reasons.

• First, given a large number of participating clients in FL
and their non-IID data distributions, some clients have
much heavier training workload and optimize many more
parameters than others. These clients usually end up with a
larger value of ||Update

Model ||. Besides, the update’s magnitude
also depends on the chosen learning rate. Therefore, it
is hard, if not impossible, to set an appropriate global
threshold of magnitude to identify helpless updates.

• Second, as the global model is the federation of a large
number of clients, whether a local update is useful in
model optimization cannot be simply measured by its
magnitude. Consider a scenario in which a large number
of clients making similar updates of small magnitude.
These updates, though small in magnitude, are by no
means helpless, because their federation shapes the global
optimization direction. In contrast, a few outliers, though
significant in magnitude, have no impact to the global
model training in the presence of a massive number of
more relevant updates.

• Third, as the training approaches convergence, the updates’
magnitude decreases exponentially, making the threshold
used in identifying updates’ significance hard to tune. To
illustrate this problem, we trained a model of MNIST
CNN in FL with 168 clients following the same setting
of [5]. We depict in Fig. 2a the average value of ||Update

Model ||
for all the clients in each learning iteration. As the training
proceeds, the value decreases exponentially. If we set a
large threshold, say, 5 × 10−5, almost all the updates
beyond the 300th iteration are identified as insignificant
and are not uploaded. Consequently, the global optimiza-
tion will stagnate after the 300th iteration, preventing the
training from convergence. On the other hand, if we set
a small threshold, say, 1× 10−5, almost all updates are
considered significant, missing the opportunity to reduce
the communication overhead before this watershed.
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We will show in Sec. V that directly applying Gaia [11] to FL
can only achieve a marginal improvement in communication
efficiency.

IV. COMMUNICATION-MITIGATED FEDERATED LEARNING

In this section, we present our solution to minimize the
network footprint of FL, which we call Communication-
Mitigated Federated Learning (CMFL). We first explain some
key insights that guide our design. We then give a detailed
description of CMFL. Finally, we show that our solution
provides a provable convergence guarantee.

A. Key Insight

Estimating the global update. From the previous discussions,
we see that in order to avoid transferring irrelevant local
updates, each client need to know the collaborative optimization
tendency in the global aggregation. Ideally, in each learning
iteration, clients should compare their local updates with the
global update so as to determine if their updates are relevant.
However, a challenge in this regard is that the global update
cannot be known in advance until all of the local updates have
been aggregated in the current iteration.

To address this challenge, we use the global update made
in the previous iteration to estimate that in the current
iteration. Our insight is: given that model training usually
converges steadily and smoothly, the difference between two
sequential global updates should be small. Specifically, given
two sequential global updates Updatet and Updatet+1 that are
respectively made in iterations i and i+ 1, we measure their
normalized difference as

∆Updatet =
||Updatet+1 − Updatet||

||Updatet||
, (8)

where ||.|| is the Euclidean norm of a given vector. Intuitively,
the larger the normalized difference is, the more the two
sequential updates diverge from each other.

To verify if our insight holds in practice, we trained two
models, MNIST CNN [20], [21] and Next-Word-Prediction
LSTM [22]–[24], and for each model, we depict in Fig. 3 the
CDF distribution of the normalized difference of two sequential
global updates. We see that for MNIST CNN, more than
99% of the global updates have normalized difference smaller
than 0.05, and the maximum difference is less than 0.67. For
the Next-Word-Prediction model, in more than 93% of the
training iterations, the difference is smaller than 0.05, and the

maximum difference is only 0.21. We therefore confirm our
insight that the global update made in the previous iteration
can be used as a good estimation for that to be made in
the current iteration. Implementing this prediction does not
require additional communications, because each client already
maintains the global update made in the previous iteration.

Measuring the relevance of an update. Given the (estimated)
global update in the current iteration, we need to choose an
appropriate metric to measure the relevance of a local update.
As a training update is essentially a gradient vector of model
parameters, we compare the two updates—local and global—
parameter-wise. We compute how many parameters are of
the same sign in the two updates, and normalize the result
by the total number of parameters. This gives the percentage
of same-sign parameters in the two updates. We shall use
this percentage to measure the relevance of a local update.
Specifically, let u = 〈u1, u2, . . . , uN 〉 be a local update over N
model parameters. Let ū be similarly defined for the (estimated)
global update. We measure the relevance of local update u
with respect to global update ū as

e(u, ū) = 1
N

∑N
j=1 I(sgn(uj) = sgn(ūj)), (9)

where I(sgn(uj) = sgn(ūj)) = 1 if uj and ūj are of the same
sign, and 0 otherwise.

Intuitively, given a parameter in an update, its sign determines
the direction (increase or decrease) to which the model should
be improved along the dimension of that parameter. Therefore,
by comparing the signs of parameters in two updates, we could
measure the “alignment” of the two updates.

Following this idea, our solution dynamically identifies
relevant local updates and excludes those irrelevant from being
updated. An update is considered irrelevant if its relevance
measure (9) is smaller than a predefined threshold. Compared
with prior work Gaia [11], this simple approach provides the
following two benefits:

1) It effectively identifies whether the client-side updates
follow the collaborative direction or are just outliers.
Unlike Gaia, comparing the sign of parameters directly
measures the alignment with the global update, irrespec-
tive of the learning rate and the size of local dataset.
Therefore, it avoids the misidentification of the common
yet slight updates and the outliers of large magnitude.

2) The relevance measure remains stable throughout the
learning process, making it easy to fine-tune threshold for
good performance. We measured the average relevance
of local updates over the training process of MNIST
CNN and depict the result in Fig. 2b. Compared with
Gaia in Fig. 2a, the relevance measure keeps stable as the
training proceeds. This makes threshold tuning a much
easier task than Gaia.

B. Communication-Mitigated Federated Learning

We present our solution, Communication-Mitigated Feder-
ated Learning (CMFL), in detail.



Aggregation at the central server. As a starting point, the
global aggregation at the central server is similar to the vanilla
FL [4], [5]. Specifically, at the beginning of the tth learning
iteration, a global model xt−1 is distributed to all the clients as
an initial model to train, along with the feedback information of
the global update ūt−1 in the previous iteration. After receiving
the relevant local updates from all clients, the central server
aggregates them as the global update and uses it to refine the
model. Algorithm 1 details the global aggregation process in
procedure GlobalOptimization.

Local optimization on client-side devices. The client-side
optimization is iteratively obtained by the local model training
using on-device data. Before uploading the local update uk,t,
CMFL calculates its relevance e(uk,t, ūt−1) using Eq. (9).
Any local update with e(uk,t, ūt−1) smaller than a tuned
threshold v(t) is identified as irrelevant, and are not uploaded
for aggregation. Algorithm 1 details the local optimization and
relevance identification in two procedures, LocalUpdate and
CheckRelevance, respectively.

Extensions. Although our solution is presented based on
vanilla FL algorithm [4], [5], CMFL can be easily generalized
to support a wide range of FL designs, provided that the
global model is the aggregation of local updates. For example,
MOCHA [12] employs the multi-task learning (MTL) where
distributed clients independently train their individual models
instead of sharing a global model. CMFL supports MOCHA by
locally calculating the update of the global matrix based on the
local training iterations and the record of the relationship matrix
among client-side models. As we will show in Sec. V, CMFL
not only reduces the communication overhead for MOCHA
but also slightly improves its prediction accuracy.

C. Convergence Guarantee

Our objective is to minimize the accumulated communication
rounds while guaranteeing the learning convergence (i.e.,
Eq. (6)). However, given the non-IID distribution of the client-
side training data, minimizing the required communication
rounds Φa

A remains an open problem [11]. Therefore, in this
paper, we only show in theory that Algorithm 1 is guaranteed to
converge, while relying on simulations and real-world testbed
to illustrate the significant improvement of communication
efficiency of our solution (Sec. V).

Assumptions: Our convergence analysis is based on two
assumptions. First, we assume convex loss function f(x), which
is a standard assumption for tractable analysis in the Machine
Learning literature [25].

Second, we assume that the global update in the previous
iteration can be used to estimate the global update to be made in
the current iteration. We have justified this assumption through
measurement experiments in Sec. IV-A (Fig. 3).

Convergence Guarantee. We next show that CMFL is guaran-
teed to converge. To this end, we consider two scenarios: 1) The
global model is trained in vanilla FL using the updates made
by all clients, irrespective of their relevance; 2) The global
model is trained using CMFL, without irrelevant updates. Let

Algorithm 1 Communication-Mitigated FL
1: procedure GLOBALOPTIMIZATION
2: Input: Client set C = 〈c1, . . . , cD〉
3: Initialize the global model x0 and the global update ū0

4: for each iteration t = 1, 2, ... do
5: for all client ck ∈ C do in parallel
6: (sk,t, uk,t)← LocalUpdate (k, xt−1, ūt−1)

7: St ← {uk,t| sk,t is True} . relevant updates

8: ūt ← 1
|St|

∑
uk,t∈St

uk,t . global update

9: xt ← xt−1 + ūt

10: procedure LOCALUPDATE
11: Input: Client index k, Model xt−1 and Update ūt−1

12: Execute the local training and obtain the local update uk,t

13: sk,t ← CheckRelevance (ūt−1, uk,t)

14: if sk,t is False then
15: uk ← NULL . exclude irrelevant update
16: return (sk,t, uk,t)

17: procedure CHECKRELEVANCE
18: Input: Global update ūt−1 and Client-side update uk,t

19: Calculate the relevance e(uk,t, ūt−1) following Eq. (9)
20: if e(uk,t, ūt−1) < v(t) then
21: return True
22: else
23: return False . identify irrelevant updates

xt and x̃t respectively denote the global models trained up to
the tth iteration in scenarios 1) and 2). Following Eq. (5), to
show that Algorithm 1 converges, it is equivalent to proving
limT→∞

1
TR[x̃] = 0. We have the following theorem:

Theorem 1 (Convergence Guarantee). Let ηt and vt be the
learning rate and relevance threshold in the tth iteration,
respectively. We bound the time-average loss function of
Algorithm 1 as follows:

lim
T→∞

1

T
R[x̃] =

1

T
[O(

T∑
t=1

ηt) +O(
1

ηT
) +O(

T∑
t=1

vt)], (10)

where O(.) is the big O notation used in asymptotic analysis.

We make two remarks on Theorem 1:
1) The convergence of Algorithm 1 depends on the choice

of learning rate ηt and relevance threshold vt. To ensure
fast learning convergence, these two hyper-parameters
should be set as time-decreased variables that make
limT→∞

1
TR[x̃]→ 0.

2) There are a diverse choices of ηt and vt that can
guarantee convergence, though the convergence speed
can be different. For example, if we choose ηt =
η0/
√
t and vt = v0/

√
t, we have limT→∞

1
TR[x̃] =

limT→∞O(
√
T/T )→ 0.

We next give a proof sketch of Theorem 1. The complete
proof is deferred to our technical report [26] due to space
constraints.

Proof Sketch. We start by considering the convex property of
the loss function f(x). We note that the convex function f(x)



has the following property: f(x) − f(y) ≤ 〈x − y,∇f(x)〉,
where 〈·, ·〉 represents the inner product of two vectors. Accord-
ingly, we have

∑T
t=1 f(x̃t)−f(x∗) ≤

∑T
t=1〈x̃t−x∗,∇f(x̃t)〉.

The latter part of this inequality can be further transformed
into three parts. The first two parts come together to represent
the difference between the optimal model x∗ and the federated
model x including all the updates regardless of their relevance,
while the third part shows the additional loss between x and
x̃t, due to the elimination of the irrelevant updates. We execute
the asymptotic analysis of these three parts independently and
obtain the bound of the summarized loss function as shown in
Eq. (10). ut

V. EVALUATION

We evaluated CMFL through both simulations and real-
world emulations deployed on a 30-machine Amazon EC2 [27]
cluster. The highlights of our evaluation are summarized below:

• CMFL substantially reduces the communication overhead
of vanilla FL. Specifically, with CMFL, the communica-
tion efficiency is enhanced by 13.97x in terms of accu-
mulated communication rounds. CMFL also outperforms
Gaia [11] by 11x in terms of saving.

• CMFL provides general improvement in communication
efficiency for a wide range of FL algorithms. In particular,
when applied to Federate Multi-Task Learning [12], CMFL
not only reduces the network footprint by 5.7x but also
improves the learning accuracy by 1.04x.

• CMFL can be easily implemented in practice, with
negligible computational overhead: it takes < 0.13%
iteration time to identify the relevance of a local update.

A. Simulation of Vanilla FL

We start by evaluating the reduced communication overhead
when applying CMFL to vanilla FL [5] via simulations. We
also compare the communication efficiency improvement of
CMFL and Gaia [11].

Workload. In order to provide comparability with existing
works, we set up our first simulation using similar training
models and datasets in [5]. In particular, we choose two
machine learning models in our simulation:

1) MNIST digit recognition model using CNN. The training
model consists of a CNN with two 5 × 5 convolution
layers, a fully connected layer, and a final output layer
[21]. The dataset contains 60, 000 samples of handwritten
digits [28]. We sort these samples by their digit labels
and then divide them into 100 clients each receiving 600
examples, developing a non-IID data distribution.

2) Next-Word-Prediction (NWP) model using LSTM. We
train a 2-layer LSTM language model (each with 256
nodes) at the word-level, which after reading a fixed
number of words in a sentence, predicts the next word
[23]. Specifically, we develop the training dataset from
The Complete Works of William Shakespeare [29]. The
input is a 10-word sequence in the dialogue, and the

output is the predicted next word. We construct the
local dataset of each client with the dialogue of a
speaking role in the plays with at least 20 words. This
produced a dataset with 100 clients. Totally, there are
1675 vocabularies and 6630 training samples.

Baseline algorithms. We compare CMFL against two base-
lines: vanilla FL [5] and Gaia [11].

Setup. In our simulations, the model architectures were built
upon TensorFlow [30]. We use a 100-client setting to mimic
the large volume of participating edge devices in practical FL.
Similar to previous works [4], [5], we set the parameter E,
i.e., the number of training passes each client makes over its
local dataset on each round, as 4. We also set the parameter
B, the local mini-batch size used for the client updates as
2. For Gaia and CMFL, we set the learning rate η and the
significance/relevance threshold v as two independent time
variables that decrease over time: ηt = η0/

√
t and vt = v0/

√
t.

Communication overhead. We measured the learning ac-
curacy and accumulated communication rounds in Eq. (4)
over time and depict their relationship in Fig. 4. Those
communications which are eliminated from being uploaded
will not be counted. In order to do a thorough analy-
sis for Gaia and CMFL despite of the influence of the
threshold, we tested various threshold values to identify
the significance/relevance of local updates and chose the
threshold values with the best performance for plotting. In
specific, we tested a set of 10 relevance threshold values
for CMFL: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9}, and
another set of 10 significance threshold values for Gaia:
{0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.7, 0.9} in both two
models. For the MNIST CNN model, the best performance is
obtained when setting the relevance threshold value in CMFL
as 0.8 and the significance threshold value in Gaia as 0.05.
Similarly, these two values are tuned as 0.7 and 0.25 for the
NWP LSTM to get the best performance, respectively.

We can observe that in both training models, CMFL
substantially reduces the accumulated communication rounds
without losing the learning correctness. In contrast, Gaia shows
a similar behavior to the vanilla FL, decreasing only a slight
number of network footprints. We can also observe that the
curves of CMFL in both models are obviously jagged. We
attribute this to CMFL’s elimination of partial client-side
updates, making the intermediate models mismatching part
of the local datasets.

Motivated by the visualized results above, we are curious to
know to what extent our CMFL outperforms Gaia in terms of
improving the communication efficiency for FL. To this end,
we compared CMFL against Gaia based on a metric called
saving. Saving is defined, for a given learning accuracy a, as the
number of required accumulated communication rounds under
vanilla FL normalized by that under the compared algorithm
A , i.e.,

Savinga
A = Φa

0/Φ
a
A ,

where Φa
0 represents the accumulated communication rounds
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Fig. 4: The performance of CMFL compared to vanilla
Federated Learning and Gaia. (a) Learning accuracy vs. com-
munication rounds for the MNIST CNN. (b) Learning accuracy
vs. communication rounds for the Next-Word-Prediction LSTM,
x-axis is in log scale.

under vanilla FL, and Φa
A represents that under the compared

algorithm A . Intuitively, the greater savingaA is, the more
substantially algorithm A will improve the communication
efficiency. We measured the saving of both Gaia and CMFL
in MNIST CNN and NWP LSTM under different leaning
accuracies. Table I gives a statistical summary of the saving
for both algorithms when reaching the target accuracy of 60%
and 80%, respectively.

In particular, for the MNIST CNN model, when the learning
accuracy raises to 60%, the vanilla FL costs 500 communication
rounds, while Gaia slightly reduces this overhead to 400. On
the other hand, our CMFL substantially reduces the required
communication rounds to 145, providing a saving of 3.45.
Furthermore, when the learning accuracy reaches nearly the
highest value, i.e., 80%, the vanilla FL and Gaia take 900 and
800 rounds, respectively. Our CMFL costs only 259 rounds,
reducing the network footprints by 3.47x.

For the more complicated NWP LSTM, the communication
overhead obviously increases in all of the three algorithms.
Intuitively, the DNN in LSTM is more complex and the real-
world data from the dialogue dataset is highly non-IID, making
the training harder to be converged. As shown in Fig. 4b,
the vanilla FL uses 40, 200 rounds to obtain a training model
with the accuracy of 60%. Setting the significance threshold

TABLE I: Summary of the saving for different learning
accuracies in MNIST CNN and Next-Word-Prediction LSTM.

Gaia CMFL
MNIST CNN 60% Accuracy 1.25 3.45
MNIST CNN 80% Accuracy 1.13 3.47
NWP LSTM 60% Accuracy 1.42 13.35
NWP LSTM 80% Accuracy 1.26 13.97

as 0.25 provides the best performance under Gaia, costing
31, 900 rounds to reach the same learning accuracy. CMFL
provides the saving of 13.35 with the relevance threshold
tuned as 0.7, reducing the required number of communication
rounds to 2, 877. Moreover, CMFL dramatically reduces the
communication rounds from 56, 600 to 4, 241 when requiring
the learning accuracy as 80%with the saving of 13.97, whereas
the saving under Gaia is only 1.26. In summary, CMFL
outperforms Gaia by more than 11x in terms of the saving.

We attribute this to Gaia’s fixed significance threshold
ignores the updates’ relevance during the entire training process.
For example, in the Next-Word-Prediction model in Fig. 4b,
the threshold with the value of 0.25 will identify almost all
the updates before the 20, 000th rounds as significant, losing
the potential opportunity to mitigate irrelevant updates. We
make two remarks on these results:

1) CMFL consistently outperforms Gaia in improving the
communication efficiency for FL in both training models
under various learning accuracies. As we can see in
Table I, CMFL keeps outperforms Gaia by more than
2.8x in MNIST CNN and more than 9.4xx in Next-Word-
Prediction LSTM.

2) CMFL provides much more substantial enhancement in
the communication efficiency under more complicated
training models. Intuitively, in the complex training
models such as the Next-Word-Prediction LSTM shown
in Fig. 4b where there is a huge number of training
parameters, employing CMFL to eliminate those useless
updates from being uploaded can provide obvious benefit.

B. Simulation of Federated Multi-Task Learning

CMFL provides general improvements for almost all the
follow-up FL designs in further reducing their network
footprint. To illustrate this, we applied CMFL to recently
proposed MOCHA [12] and developed the following simulation.
Specifically, CMFL identifies local updates’ relevance in
MOCHA’s federated multi-Task learning by locally calculating
the changing of the global matrix based on the local update
and the record of the relationship matrix among clients.

Workload. Here we use two datasets to develop our simulation.

1) Human Activity Recognition dataset. The first is the
same Human Activity Recognition dataset [31] as used
in [12]. The dataset contains 10299 samples each with a
561-length feature vector used to predict between sitting
and the other activities. We further randomly separate
the data into 142 clients each with 10 to 100 samples.
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Fig. 5: Illustration of CMFL’s generality in supporting federated
multi-task learning, the x-axis is in log scale. (a) Learning
accuracy vs. accumulated communication rounds for the Human
Activity Recognition. (b) Learning accuracy vs. accumulated
communication rounds for the Semeion Handwritten Digit.

TABLE II: Summary of the saving when applying CMFL to
MOCHA under various learning accuracies.

MOCHA with CMFL
HAR 85% Accuracy 4.3
HAR 91% Accuracy 5.7
SHD 75% Accuracy 1.97
SHD 84% Accuracy 3.3

2) Semeion Handwritten Digit dataset. The second is the
Semeion Handwritten Digit dataset [32] containing 1593
samples with 256 features. We predict the digit between
zero and other numbers. These samples are randomly
divided into 15 clients each with 10 to 200 samples.

Setup. In our simulations, we use a 142-client cluster for
Human Activity Recognition to mimic a large-scale FL setting
and a 15-client cluster to behave as a small-scale one in
Semeion Handwritten Digit. We also set the number of local
training iteration within each communication round as E = 10
and the local mini-batch size as B = 3. For simplicity, we set
a constant learning rate as η = 0.0001.
Communication overhead. Similarly, we plot the learning ac-
curacy and the accumulated communication rounds relationship
over time in Fig. 5. We also choose the significance/relevance
threshold values as 0.75 and 0.2 to get the best performance
to plot, receptively. In particular, for the Human Activity
Recognition dataset, when setting the learning accuracy as
91%, using MOCHA with the support of CMFL only needs
4892 rounds, whereas directly implementing MOCHA requires
28120 rounds, 5.7x of that with CMFL. For the Semeion
Handwritten Digit dataset, training the model to reach the
learning accuracy of 84% takes 1500 and 460 rounds in
MOCHA and MOCHA with CMFL, respectively. In this dataset,
CMFL improves the communication efficiency with the saving
of 3.3x. Similarly, we also summarize the saving of CMFL
compared with MOCHA in Table II.

Learning accuracy. More impressively, as we can see in Fig. 5,
CMFL can even improve the learning accuracy from 92.07%
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Fig. 6: Distribution of the Normalized Model Divergence (dj)
between outlier/non-outlier local models and the global model
in Human Activity Recognition, x-axis is in log scale.

to 94.94% (1.03x) and 86.03% to 89.37% (1.04x) in the two
datasets, respectively.

We attribute this to CMFL’s elimination of irrelevant updates
which are essentially outliers that will harm the global training.
In order to illustrate this point, we dived into the statistical
summary of the clients whose local updates are frequently
eliminated from being uploaded. We found that among all the
142 clients in the HAR dataset, there are 37 clients whose
eliminated updates are more than 2000. The total number of
eliminated updates in these 37 outliers is up to 84.5% of
the total eliminations, meaning the identified irrelevant local
updates mainly come from a small subset of clients.

Based on this observation, we separated the 142 local
optimized models into 37 outliers and 105 non-outliers. We
then use the metric of Normalized Model Divergence defined
in Eq. (7) and summarize the average global-local parameter
divergences in Fig. 6. As we can see, the 105 non-outlier
clients show an obviously smaller model divergence of the
global model than that of the 37 outliers. Specifically, in
the 37 outliers, there are more than 50% of the parameters
whose model divergences are higher than 100%, whereas this
value is only 15% in the subset of those 105 non-outliers.
Uploading the local updates of these outliers will bring negative
influence to the model convergence, yet bringing unnecessary
communication cost.

C. EC2 Deployment

We next micro-benchmark the performance of CMFL using
our real-world emulation.

Emulation based on an EC2 cluster. We used an EC2 cluster
to prototype the client-side model training as well as the cloud-
side coordination. We did not use the real edge devices like
mobiles or tablets to emulate the scarce network connections,
due to the following two reasons: First, the slow network
connection along with the limited computation capacity at the
real edge-side devices will significantly slow down the training
process. Second, given our measurement of the communication
overhead in this paper is the accumulated communication
rounds defined in Eq. (4), i.e., the network footprint instead
of the time span of data transfer, using EC2 cluster with
more stable and larger bandwidth network connection will



speed up the experiment without impacting the performance
of algorithms.

Implementation. We have prototyped CMFL in Python with a
master-slave architecture. In particular, the master aggregates
the local optimizations and sends the new global model back
to clients in each learning iteration, as shown in Algorithm 1;
a slave performs as a client, running local training and
identifying the significance/relevance of its local updates before
sending them to the master. To automate the deployment
and management of CMFL in a real cluster, we developed a
dedicated plugin based on Ansible [33], a popular DevOps
tool to control the behavior of all clients and the central server.

In our implementation, the master executes the synchronous
global optimization through aggregating local updates in each
training iteration. In particular, each slave periodically sends
its update to the master. If the local update is identified
as insignificant/irrelevant, the slave eliminates its uploading
by sending status information to the master, indicating the
completion of its local training and the elimination of its update
in the current iteration. The transferred data size of this status
information is negligible when compared with an entire local
update with all the parameters in the weight matrix. Once
receives all of the local updates or elimination information
from the 30 slaves, the master executes an aggregation by
averaging those significant/relevant updates and feeds the new
global model to all the clients for the next iteration.

Cluster deployment. We performed experiments in a 30-node
Amazon EC2 [27] cluster. For each node, we used a m4.xlarge
EC2 instance with 4 cores and 16 GB RAM.

Testbed-benchmark. To benchmark the behavior of CMFL
in a more controlled manner, we ran the same Next-Word-
Prediction LSTM in Sec. V-A, where we separated the
training data into 30 clients each with the dialogue of
3 roles. Similarly, we tested a set of 10 threshold val-
ues for CMFL: {0.1, 0.2, 0.3, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9},
and another a set of 10 threshold values for Gaia:
{0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.7, 0.9}. We plot the
training process of Gaia and CMFL with the thresholds 0.65 and
0.15 that produce the best performance in Fig. 7, respectively.

Communication overhead. Fig. 7a depicts the communication
overhead under various prediction accuracies. We can see a
similar trend to Fig. 4b, i.e., CMFL continuously outperforms
Gaia, substantially reducing the uploading rounds. To better
illustrate CMFL’s efficiency, we measured the consumed
network footprint during the learning procedure among these
schemes, as shown in Fig. 7b. Specifically, CMFL reduces the
size of the uploaded data by 7.1x, 6.4x and 6.9x given the
three learning accuracy values, respectively.

Computation overhead. In our 30-client benchmark, the
computation of checking the relevance of an update takes
less than 1.6 microseconds on average, while each client-side
learning iteration costing about 1.25 second in our m4.xlarge
EC2 instances. In other words, checking the updates’ relevance
takes < 0.13% time of the local training iteration. In summary,
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CMFL can be deployed to real-world federate learning with
negligible additional computation overhead, and thus can be
implemented at a large scale.

VI. CONCLUSION

In this paper, we have proposed to improve the communica-
tion efficiency of Federated Learning while at the same time
providing guaranteed learning convergence. Our key idea in this
regard is to identify and exclude irrelevant client-side updates
trained over client-specific and biased data. Following this idea,
we have proposed a new algorithm called Communication-
Mitigated Federated Learning (CMFL). CMFL measures the
relevance of a client-side update based on its alignment with
the global update collaboratively produced by all participating
clients. CMFL sets a tunable threshold and uses it to identify
and exclude irrelevant updates whose relevance metric is
smaller than that threshold. We have shown in theory that
CMFL is guaranteed to converge. Both simulations and EC2
emulation have confirmed that CMFL results in significantly
smaller network footprint compared with the state-of-the-art
solutions, outperforming vanilla FL by 13.97x, Gaia by 11x,
and Federated Multi-Task Learning by 5.7x.
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