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Abstract—Federated learning is recently proposed as a new
machine learning setting where a global model is maintained
by and shared with a large volume of edge devices (clients).
By aggregating only the training updates to a central server
while leaving the privacy-sensitive training data distributed local,
federated learning provides effective protection to the clients’
privacy. Considering the expensive and relatively slow network
connections at client-side devices (e.g., mobile phones), improving
the efficiency of the client-server communication is of great
importance. However, existing works are limited to compress
the number of transmitted bits in each update, while directly
reducing the rounds of client-side updates has so far received
little attention in the literature. We argue that by precluding
some insignificant client-side updates from being uploaded, those
unnecessary client-server communication cost could be effectively
mitigated. Unfortunately, a recent design for geo-distributed
learning, Gaia which follows the similar intuition, fails in effec-
tively revealing updates’ significance when there are hundreds
of thousands of participating clients, making it unsuitable in the
context of federated learning. In this paper, we propose a new
communication strategy, Communication-Mitigated Federated
Learning (CMFL), which is tailored to identify the significance
of client-side updates in federated learning. CMFL provides
feedback information regarding the global training tendency to
clients, and each client uses this information as a reference
to judge whether its update follows the collaborative tendency.
By eliminating those updates whose optimization direction is
far from the global trend, CMFL dramatically reduces the
accumulated communication overhead while guaranteeing the
learning convergence. We show that CMFL is a generic enough
to improve the communication efficiency for all the existing
federated learning designs. Both simulation and EC2 deployment
confirm that CMFL improves the communication efficiency of
basic federated learning by 13.97x in terms of accumulated
communication cost, outperforming the state-of-the-art Gaia
by 11x. Moreover, when built under the follow-up Federated
Multi-Task Learning, CMFL further enhances its communication
efficiency by 5.7x along with a 1.04x improvement of the
learning accuracy.

I. INTRODUCTION

The past a few years have seen the tendency that the training
process of machine learning is moving towards the mobile
devices at the edge of the Internet [1], [2]. Unfortunately,
conventional distributed machine learning systems [3]-[5]
which are designed for highly controlled environments (e.g.,
data centers) do not suit in this context, due to the highly
unbalanced and non-IID data distribution [6].

To this end, federated learning [6]-[11] is proposed as an
alternative machine learning setting towards the large volume
of edge devices (clients) that participate in the model training.

In federated learning, a global model is maintained in a trusted
central server. By aggregating the client-side training updates
while leaving the sample data distributed local, the global
model is optimized without exposing the privacy-sensitive data
[12]. The resulting model is then distributed back to all clients,
eventually converging to a jointly representative model.

A successful demo implementation of federated learning in
the industry is Gboard [13], the Google Keyboard on Android,
which provides a query suggestion according to user’s input
context, while each user’s click history is, in turn, served as
the training data to improve the suggestion model [14]. The
cloud-side global suggestion model is collaboratively trained
by hundreds of thousands of Gboard users (clients) without
uploading their local click information.

In order to reap the benefits from practical federated learning,
the scarce network connection poses a particular challenge. On
the one hand, in federated learning, the targeted clients are
edge devices such as mobile phones and tablets, each with
unreliable, expensive, and asymmetric network connections.
On the other hand, advanced machine learning services like
Gboard’s query suggestion employ increasingly complicated
neural networks, dramatically adding the amount of transferred
data within each local update. Therefore, specific strategies
towards improving the client-server communication efficiency
are of utmost importance.

There are two fundamental ways to ease the communication
burden during the model updating (1) compressing the size of
transferred data within each client-side update and (2) reducing
the frequency of model updating for each client. Unfortunately,
the majority of existing works are restricted to the first direction,
i.e., data compression. For example, structured updates [6] is
proposed to employ specific data structures to compress the
number of bits uploaded in each client-side update. However,
these compressions may hurt the learning accuracy and thus
come without convergence guarantees.

In this paper, we challenge the status quo with a bold
question: is it possible to enhance the communication efficiency
by reducing the communication rounds — the number of client-
side updates — without hurting the learning accuracy? We
provide an affirmative answer to this question. In specific, we
propose to mitigate the underlying client-server communication
by dynamically identifying and eliminating those insignificant
communications from being uploaded. Intuitively, this simple
approach is both efficient and general. First, as federated
learning is proposed towards the edge devices, personalized



training data is non-negligible. Given the non-IID nature
of the client-side training data, some local updates are just
outliers which modify the global model in a tangential
direction to the collaborative convergence. Eliminating these
local optimizations from uploading hurts little of the learning
accuracy, while potentially reducing the unnecessary commu-
nication. Second, this insight can generally support all the
follow-up federated learning designs and further enhance their
communication efficiency, as long as their model training is
based on aggregating the client-side optimizations.

However, directly implementing existing approach Gaia [15]
which has a similar intuition is problematic. Specifically, Gaia is
proposed as a geo-distributed machine learning framework that
identifies the significance of the local optimization by judging
whether the update’s absolute value is large enough. Those
slight updates with small absolute value will be precluded
from uploading. We argue that this simple method ignores the
federation of a large volume of participating clients, losing the
opportunity to correctly identify the updates’ significance under
federated learning. Specifically, by comparing the update’s
absolute value with a fixed threshold, Gaia is unaware of
whether this update follows the collaborative optimization
trend among all the clients. This is even fatal when there
are hundreds of thousands of edge devices. As we will show
in Sec. V, directly implementing Gaia provides an unsatisfying
improvement of communication efficiency in federated learning.

We address this challenge through a novel algorithm called
Communication-Mitigated Federated Learning (CMFL). Our
key insight is to identify the significance of client-side updates
by adding the feedback information of the global training
tendency to each client as a reference to judge whether its
update follows the joint optimization. Particularly, in each
learning iteration, a client first gets the feedback information
about the global update from the central server. Next, the
client proceeds its local training and calculated its local update.
The client then compares its local update with the global
update, checking whether its local optimization follows a
collaborative convergence tendency. To do this, for each local
update, CMFL calculates the percentage of parameters in
the local update whose signs (positive/negative) are opposite
to the corresponding value in the global update. Intuitively,
the higher this percentage is, the more tangential direction
to the collaborative convergence this client-side update will
have, and thus the more insignificant this update will be. By
eliminating those local updates with the percentage higher than
a threshold, CMFL can effectively mitigate those unnecessary
communication load.

We evaluated CMFL against basic federated learning [7],
Gaia [15] and the follow-up advances [16] through both
simulations and EC2 deployment on a 30-machine cluster.
Evaluation results show that CMFL outperforms the basic
federated learning by 13.97x in terms of communication
cost, whereas the alternative Gaia only improves it by 1.26x.
Moreover, for the advanced federated multi-task learning [16],
CMFL further enhances the communication efficiency by 5.7,
while also increasing the learning accuracy by 1.04x.

II. MODEL AND BACKGROUND

In this section, we describe our models for federated learning
along with our objectives, i.e., minimizing the communication
rounds while still guaranteeing the learning convergence. We
also survey the background information of existing works and
motivate the need for a new communication mechanism to
eliminate the uploading of insignificant local updates.

A. System Model

Synchronous update scheme. Following the previous works
[6], [7], [17], We assume a synchronous update scheme that
proceeds in each training iteration:

1) Clients independently train the updated models based on
their local training data (e.g., from the sensor information
on device).

2) All the clients upload their local optimization to the
central server for aggregation.

3) The central server aggregates received local models
(typically by averaging) to construct an improved global
model and then distributes the resulting model back to
the clients for the next iteration.

Protection of privacy. Instead of uploading the raw training
data directly to a centralized server, the participating clients
in federated learning transfer only the model updates which
could be ephemeral [1], [7], [18]-[20]. This anonymous update
reveals little information about the source client. Besides, as the
global optimization in the central server requires no information
of the meta data about the update’s source, the communication
can be executed without identifying the personal information
or through a third party.

Model and Notations. We formulate the learning problem as
an optimization problem where the model x € R' is trained to
minimize the average value of the loss function f(x) :

minyep f(X), fx) =550 fe(x), (D)

where fj(x) is the loss value within the ™ client. In particular,
there is a fixed set of D clients: C = {¢y,...,cp), each with
a fixed local dataset &7. A global model x is shared with and
updated by all the D clients.

As a common practice, we build the federated optimization
in Eq. (1) through Stochastic Gradient Descent (SGD) [21],
where the batch gradient is calculated in each training iteration
and the global optimization is approached through iterative
steps. Formally, in the " iteration of the synchronous SGD
algorithm, the global model x; is obtained by:

Xt = X¢—1 — Zszl MV fr(Xe) = X1 + Zszl ugg,  (2)

where V fi(x) and 7 represent the gradient function and
the learning rate of the ™ client, respectively. We also
define the local update of the k™ client in the t™ iteration
as ug; = —1, V f(X¢). Accordingly, the learning process can
be represented as a sequence of optimizations of the global
model x7, i.e.,

where

3)

XT = X0+ Yp 1 Dopet Ut



B. Objectives

Minimizing the accumulated communication rounds. In
practical federated learning where the typical clients are edge
devices such as mobile phones and tablets with scarce network
connections, the constraint of communication between the
central server and clients naturally arises. For example, the
client may wish to reduce the amount of uploaded data from his
mobile phone to minimize the charging from mobile operators.

Instead of reducing the number of transmitted bits within
each update in [6], our first objective is to minimize the
number of uploaded client-side updates, i.e., the accumulated
communication rounds.

Definition 1 (Accumulated Communication Rounds). In the
t™" iteration of the synchronous SGD algorithm, let S; be set
of clients whose local updates are uploaded to the central
server. We define the communication round in the t™ iteration
as ry = |S|, i.e., the number of clients in S;. Given a targeted
training accuracy </ and the corresponding learning iterations
T, the accumulated communication rounds is defined as

ZtT=1 Tt = ZtT=1 [SP 4

Therefore, our first objective is to minimize the accumulated
communication rounds shown in Eq. (4).

Guaranteeing the learning convergence. The improved
communication efficiency should not sacrifice the learning
convergence. In specific, we use x* to represent the optimal
global model which the parameters are trained to approach.
Proving the convergence of a machine learning algorithm equals
to guaranteeing the following condition:

lim o0 2 RX] = Hmr o0 & Y0, (%) — F(x*)| =0,
4)
where RI[x] is the regret function.

To summarize, our objective is to minimize the accumulated
communication rounds while guaranteeing the convergence of
the machine learning algorithm, i.e.,

T
minimize Z?‘t,
t=1
T (6)
s.t. lim = ; |f(x¢) — f(x*)| = 0.

C. Related Works

Advanced designs of federated learning. Despite the rich
literature on federated learning, a large body of works are
mainly restricted to designing sophisticated machine learning
methods. For example, MOCHA [16] is proposed to employ the
multi-task learning (MTL) framework to capture the distributed
nature of federated learning, where the goal is to consider
fitting separate but related models simultaneously. Formally,
MOCHA captures the relationship among all the clients (tasks)
through their relationship matrix. Besides, federated meta-
learning [22] is another recent advance, where the user’s
information is shared at the level of algorithms, instead of
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Fig. 1: Distribution of the Normalized Model Divergence (d;)
for all the trained parameters x; € X.

model or data adopted in previous approaches. Although these
learning frameworks can speed up the training process, they
achieve little in increasing the communication efficiency.

There are also other works implementing complex data
structures to compress the amount of data communicated, e.g.,
structured updates and sketched updates [6]. Unfortunately,
these works come without convergence guarantees while
adding the computation complexity during the communication
stages. To our best knowledge, all of these works above
ignore the potential benefit from mitigating the unnecessary
communication rounds.

Prior art in geo-distributed learning. Gaia [15] is recently
proposed as a communication framework that reduces the
across-datacenter communication for geo-distributed machine
learning. Specifically, Gaia identifies the significance of the
local optimization from one datacenter by its update’s magni-
tude relative to the current parameter value (i.e., || lﬁ’g;;f”),
where ||.|| is the Euclidean norm of a vector. Any update with
I Ul\/‘[’f;:f || < Threshold will be precluded from uploading. We
notice that this identification is made based only on the local
update itself, irrelevant to the federation with all the clients.
In the context of federated learning where there are hundreds
of thousands of clients each with non-IID training data, this
open-loop method without a feedback of the global tendency

fails in efficiently identifying the update’s significance.

III. INTUITION AND CHALLENGES

In this section, we present our intuition of reducing the
communication overhead by eliminating insignificant local
updates. We also discuss the challenges to implement this
intuition in federated learning.

A. Intuition

We begin our discussion by analyzing why some local
optimizations are useless to the global convergence.

The Divergence between global and client-side models. As
the global model in federated learning is the aggregation
(typically by averaging) of a huge number of client-side local
models, the divergence of these two parts of models generally
exists, especially when considering the personalized local
training datasets. Specifically, given the non-IID nature of
the clients’ local training data, some of the updates may not be
representative of the population distribution. For example, when



training a query suggestion model for Google’s Gboard [14],
various clients can show a diversity of clicking choices. While
some of these choices follow a common preference, others may
also produce personalized local updates which are tangential
to the collaborative trend of the training convergence. To show
the model divergence, we measure the difference between the
global and local parameters by a metric called Normalized
Model Divergence. Normalized Model Divergence is defined,
for each trained parameter x; € X, as the average difference
between the client-side value and the corresponding global
value normalized by the global value, i.e.,

dj = § Tio |42, @

where x; . is the local value of the parameter x; in client cy,
and Z; is the global value of x;. Intuitively, the larger d; is,
the more difference the global and client-side models with
have regarding the trained parameter x;.

In order to illustrate the difference between the global and
client-side models, we follow the previous work [23] to train the
following two models: MNIST CNN [24], [25] and Next-Word-
Prediction LSTM [26]—-[28], each with the dataset distributed
to 100 clients. We defer the detailed description of these two
training models and datasets to Sec. V.

We extract the Normalized Model Divergences in these two
models and plot their distributions in Fig. 1. As we can see,
more than 50% parameters in both models produce the model
divergence higher than 100%, suggesting that there generally
exists an obvious difference between the global and local
models. Moreover, the maximum parameter divergences in the
two models reach up to 268 and 175, respectively. We attribute
this obvious model divergence to the personalized training data.

To summarize, there are a non-negligible number of per-
sonalized local optimizations which are tangential to the
collaborative training convergence. Uploading these outliers to
the central server contributes little and even does harm to the
convergence of the global model.

Intuition. Our discussion above reveals the potential oppor-
tunity to enhance the communication efficiency in practical
federated learning by precluding some outliers from being
uploaded from local clients. In light of this observation, our
intuition is to dynamically identify the significance of the
client-side updates based on whether these updates follow
the collaborative convergence trend or are just outliers with
personalized optimization, followed by eliminating those in-
significant updates from being communicated.

B. Challenges

However, directly implementing the intuition above is
challenging. We identify two key challenges in designing such
a communication mechanism for federated learning.

Guaranteeing the learning convergence. The enhanced un-
derlying communication strategy should guarantee the training
process to converge timely. Intuitively, reducing the amount
of data to be transferred means losing some of the training
information, which will inevitably disturb the convergence of
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Fig. 2: Illustration of Gaia’s failing in identifying updates’
significance using MNIST CNN with 168 clients. (a) Gaia’s
measurement decreases exponentially with the training ap-
proaching to convergence, y-axis is in log scale. (b) CMFL’s
measurement keeps stable.

the global optimization. Therefore, the expected communication
strategy should not eliminate arbitrary local optimization from
being uploaded and come with convergence guarantee. We note
that although some of the follow-up federated learning designs
[6] can efficiently reduce the communication overhead, they
provide no convergence guarantee.

Hardness in capturing the updates’ significance. As we
have discussed in Sec. II-C, Gaia [15] provides an efficient
paradigm in identifying and eliminating the insignificant local
update in geo-distributed learning, i.e., and any update with
(I [ﬁ’odjgle || < Threshold) will be precluded from uploading.

Directly judging the update’s magnitude is an efficient
measurement in geo-distributed machine learning, since there
are only a few datacenters each with heavy communication load.
However, due to the massive volume of participating clients and
the non-IID and unbalanced nature of the client-side training
data, this method fails in identifying the significance of updates
in federated learning for the following three reasons:

o First, as there will be hundreds of thousands of clients
collaboratively training the global model, some with much
heavier local training workload than others, optimizing
much more parameters with the larger value of H[l{f[)f;etf [-

Besides, the update’s magnitude also relies on the learning

rate, with larger learning rate bringing more obvious

optimization. Therefore, it is hard to set a global threshold
to identify how much of the data size in an update should

be regarded as significant.

¢ Second, as the global model is the federation of a massive
amount of clients, the significance of the local updates
cannot be represented by their absolute value. Consider
a condition where a large volume of clients providing
the similar updates but with small absolute values. These
updates are slight but non-negligible, because their federa-
tion forms out a global optimization tendency. In contrast,
an outlier with large absolute value will eventually be
submerged by other massive updates.

o Third, as the updates’ magnitude will exponentially
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decrease with the learning approaching convergence, a
fixed threshold cannot satisfy the identification during
the entire learning procedure. In order to illustrate this
point, we follow the previous work [7] to train a model
of MNIST CNN in federated learning with 168 clients
and plot the average value of H[I{}ffi:f || for all the clients
in each learning iteration, as shown in Fig. 2a. As we can
see, with the learning iteration raises, this value reduces
exponentially. On the one hand, if we set the threshold
with a ‘large’ value, e.g., 5 X 105, almost all the updates
later than the 300th learning iteration will be identified
as insignificant, being eliminated from uploading. Con-
sequently, the global optimization will stagnate after the
300th learning iteration, preventing the training from
convergence. On the other hand, with a ‘small’ threshold,
e.g.,1lx 1072, almost all the updates will be uploaded,
losing the opportunity to reduce communication overhead
before this watershed. Although we can delicately set this
threshold as a time variable which decreases over time,
the tuning highly depends on the workload, making it
hard to implement in practical federated learning.

Accordingly, this open-loop method without a perception of
the collaborative optimization tendency fails in identifying the
update’s significance in federated learning. As we will show
in Sec. V, directly implementing Gaia only slightly improves
the communication efficiency in federated learning.

IV. CMFL

In this section, we first illustrate our key insight to perceive
the global optimization tendency, which is to obtain a feedback
of the global update and use the sign of model parameters to
indicate the consistency of the global and client-side updates.
Based on this insight, we then present a new communica-
tion mechanism, called Communication-Mitigated Federated
Learning (CMFL), efficiently eliminating the insignificant local
update from being uploaded. We further show that our proposed
CMEFL provides provable convergence guarantee.

A. Key Insight

Feedback of the global update. Our discussion above reveals
that the key to eliminating some useless local updates is to
be aware of the collaborative optimization tendency in the
global aggregation. Ideally, in each learning iteration, clients
are expected to obtain the collaboratively-aggregated update in
advance, based on which they can identify the local updates’

significance before uploading. To this end, an efficient feedback
method is required.

Slight difference between sequential global updates. How-
ever, the collaborative optimization cannot be revealed until the
finish of local uploading and global aggregation in the current
iteration. We argue the global update in the previous iteration
can be used to approximately represent the corresponding value
in the current iteration. Intuitively, given the training process
approaches the convergence stably and gradually, the difference
between two sequential global updates should not be arbitrarily
large. In order to quantify this difference, we use the metric
of AUpdate to denote the differential degree of two sequential
global updates. Formally, AUpdate is defined, for each two
sequential iterations, as the difference of the two global updates
normalized by the former one, i.e.,

__||lUpdate, , —Update,||
AUpdate;, = Update, | , 8)
where ||.|| is the Euclidean norm of a vector.

Intuitively, the larger AUpdate; is, the higher the differential
degree of the two sequential global updates will have. We
summarize the AUpdate during the training of the MNIST
CNN and Next-Word-Prediction models in Fig. 1 and plot
its distribution, as shown in Fig. 3. We can see that in the
MNIST CNN model, more than 99% of the global updates
have AUpdate lower than 0.05, while the maximum AUpdate
is less than 0.67. For the Next-Word-Prediction model, in more
than 93% of the iterations, the AUpdate is lower than 0.05,
and the maximum value is only 0.21. Therefore, using the
global update in the previous iteration will only bring slight
difference. We also note that the previous global updates even
do not require additional communication, because the clients
can maintain the previous global model by themselves.

Parameter’s sign as an indication. After getting the feedback
of the global update, the next step is to choose an appropriate
measurement to identify local updates’ significance based on
this feedback information. Our previous analysis of Gaia [15]
has revealed that directly computing the update’s magnitude
is ineffective. We argue that the proportion of the trained
parameters whose client-side update have the same sign
(positive/negative) with the global update can be used to
efficiently represent the local updates’ significance.
Intuitively, the absolute value of an update decides only the
speed of the training convergence, while the sign of updates
represent the direction of the training, deciding the convergence
point of the optimization which is much more essential.
Therefore, comparing the parameters’ sign can effectively
measure the consistency of the two training updates. Besides,
the disturbance of the additional factors (e.g., the learning rate)
which are crucial in calculating the absolute value of updates
will be definitely avoided when comparing the sign instead.
Consider an extreme condition where there is a local update
with all its parameters having the opposite sign to the global
update. This local optimization absolutely runs counter to
the collaborative direction, and precluding it from being



uploaded will not hurt the global convergence while reducing Algorithm 1 CMFL

the communication overhead.

Key Insight. Following this observation, our key insight is
to dynamically identify and eliminate the insignificant client-
side optimization based on comparing the sign of parameters
between the client-side and global updates.

Formally, in the ¢, learning iteration, for client ci, we define
the number of its trained parameters whose updates have the
same sign (positive or negative) with the global update as n¥.
We also define the total number of parameters in the model as
N. We then identify the significance of the update of client

¢y, in the ty, iteration by the following ratio:
ek =n¥F/N. 9)

Any update with e¥ < Threshold will be identified as
insignificant, and thus be eliminated from uploading. Compared
with prior work Gaia [15], this simple approach can potentially
provide the following two benefits:

1) It effectively reveals whether the client-side updates fol-
low the collaborative direction or are just outliers. Unlike
Gaia, comparing the sign of parameters directly shows
the consistency of optimization direction, regardless of
the influence of the learning rate and the size of the
local dataset. Therefore, it avoids the misidentification
of both the common but slight updates and the outliers
with large absolute value. This identification is much
more suitable to the nature of federated learning, i.e., the
highly unbalanced and non-IID datasets are distributed
in a large volume of clients.

2) This measurement keeps stable during the learning
procedure, being easy to set a global threshold. In
contrast to Gaia, the average value of e,’f during the
training process keeps stable all the time, as shown in
Fig. 2b. Therefore, we can easily set a global threshold
to identify the updates’ significance.

B. Communication-Mitigated Federated Learning

Based on the insight above, we next illustrate our proposed
new communication mechanism, Communication-Mitigated
Federated Learning (CMFL).

Aggregation at the central server. As a starting point, the
global aggregation at the central server is similar to the basic
federated learning [6], [7]. Specifically, at the beginning of the
ts learning iteration, a global model x;_1 is first distributed
back to all the clients as a basic model to optimize, along
with the feedback information of the global update u,_;. After
obtaining the local optimization and update’s significance from
each client in a parallel fashion, the central server gathers those
significant updates for aggregation, typically by averaging. We
summarize the global aggregation process as a procedure, called
GlobalOptimization, as shown in Algorithm 1.

Local optimization at the client-side devices. The client-side
optimization is executed by the local training based on the
local training data. Before uploading the local update wy 4,

1: procedure GLOBALOPTIMIZATION

2 Input: Client set C = (c1,...,cp)

3 Initialize the global model xo and the global update ug
4 for each iteration ¢t = 1,2, ... do

5: for all client ¢, € C do in parallel
6

7

8

(Sk,t, uk,t) < LocalUpdate (k,x¢—1,0:—1)
St «— {Uk,t|

= 1
Ut (51 Doy est Ukt

9: Xt — X¢—1 + Uy

Sk,¢ 1s True} > Significant updates

> global update

10: procedure LOCALUPDATE
11: Input: Client index k, Model x;—; and Update u;—;

12: Do the local training and obtain the local update uy ¢

13: sk, < CheckSignificance (i¢—1, ug,;)

14: if s; is False then

15: u, < NULL > eliminate the insignificant update

16: return (sg, ¢, Uk,t)

17: procedure CHECKSIGNIFICANCE
18: Input: Global update u;—; and Client-side update u ;

19: Calculate the parameter ratio ey, as shown in Eq. (9)

20 if ef < v(t) then

21: Skt < True

22: else

23: Sk, < False > identify the insignificant update

24: return sy .

CMFL checks its significance by calculating e, the ratio of
the trained parameters whose updates have the same sign with
the global update, as shown in Eq. (9). Any local optimization
with eF larger than a tuned threshold v(¢) will be identified as
insignificant, and thus be eliminated from uploading. We also
summarize the local optimization and significance identification
process in Algorithm 1 as two procedures, called LocalUpdate
and CheckSignificance, respectively.

Generally support existing designs. Although our algorithm
above is presented based on the basic federated learning
algorithm [6], [7], CMFL can be easily generalized to support
the follow-up federated learning designs, as long as the global
optimization is the aggregation of the local updates. For
example, MOCHA [16] employs the multi-task learning (MTL)
where distributed clients independently train their own learning
models instead of sharing a global model. Our proposed CMFL
can also support MOCHA by locally calculating the changing
of the global matrix based on the local update and the record
of the relationship matrix among clients. As we will show in
Sec. V, CMFL can not only reduce the communication cost
for MOCHA but also slightly improve its learning accuracy.

C. Convergence Guarantee

Our objective is to minimize the accumulated communication
rounds while guaranteeing the learning convergence, as shown
in Eq. (6). However, minimizing the required communication
rounds is essentially an open problem, given the non-IID
distribution of the client-side training data. Therefore, we only
do the theoretical analysis bout the convergence guarantee and



use our simulation and real-world testbed to justify our reduced
communication overhead. We next present that CMFL provides
convergence guarantee under offline case with some reasonable
assumptions.

Assumptions. In order to provide the convergence guarantee for
CMFL, we make two assumptions in the following discussion:
First, we assume that the loss function f(x) is a convex function,
which is a common practice: f(x) + f(y)/2 > f((x+Yy)/2).
Second, we assume that the global update in the previous itera-
tion can be used to approximately represent the corresponding
value in the current iteration, as discussed in Sec. IV-A.

Convergence Guarantee. Eq. (5) has defined the requirement
of the convergence in a machine learning algorithm. In order to
represent the identification of updates’ significance, we further
differentiate two kinds of global models in the ¢y, iteration: X,
refers to the model optimized by all the local updates regardless
their significance, whereas X; represents the actual global model
in CMFL, eliminating those insignificant updates. Formally,
we have the following theorem:

Theorem 1 (Convergence guarantee). Let 1, and vy be the
learning rate and significance threshold at step t, respectively.
For client set C = (c1,...,cp), its summarized loss function
RI[x] in Algorithm 1 can be bounded as follows:

T 1 T
=[O0 m) + OG-)+ o vl (10)

where O(.) is the big O notation that used in asymptotic
analysis.

We make two remarks on Theorem 1:

1) The convergence of Algorithm 1 relies on the setting
of the learning rate n; and significance threshold vy.
In order to guarantee the learning process finish in a
timely manner, these two parameters should be set as
time-deceased variables that make limp_, o 7 R[X] — 0.

2) There are diverse 1, and vy we can choose to guarantee
the convergence of the algorithm, each with differ-
ent convergence speed. For example, if we set 1, =
no/Vt and v, = vo/V/t, we have limp_,o 7 R[X] —

OWT/T) — 0.

We next give a proof sketch of Theorem 1. The complete

proof is deferred to our technical report [29] due to space
constraints.

limy_, o0

Proof Sketch. We start by considering the convex property of
the loss function f(x). We note that the convex function f(x)
has the following property: f(x) — f(y) < ((x — y), Vf(x)),
where (,) represents the inner product of two vectors. Ac-
cordingly, we have S;_, f(%) — f(x*) < S (% —
x*), Vf(x¢)). The latter part of this inequality can be further
transformed into three parts. The first two parts come together
to represent the difference between the optimal model x* and
the federated model including all the updates regardless of their
significance x, while the third part shows the additional loss
between x and X;, due to the elimination of the insignificant

updates. We execute the asymptotic analysis of these three
parts independently and obtain the bound of the summarized
loss function as shown in Eq. (10).

Proof. As a common practice, we assume that the loss function
f(x) is a convex function: w > f (%) According to
this definition, we could further get the following attribute of
function f(x), which will be used in the later part of the proof.
Specifically, the delta value of a convex function in to points
is equal or larger than the distance between these two points
multiplied by the gradient at the left point (V f(x)), i.e.,

fy) = F(x) + ((y = 2), VF(x)), (11)

where (,) represents the inner product of two vectors. Accord-
ingly, we further transform this inequation and have:

&) = f(y) < {(z =), VI(x).

Recall that our objective is to prove the limitation of the
accumulated loss function can be bounded when the number
of iterations approaches to infinite, i.e.,

(12)

13)

Notice that we use X; to represent the real model which
precludes those insignificant updates. According to Eq. (12),
we deduct the Regret function shown in Eq. (13) as:

T
Z f(xe) — Z (xe —x7), Vf(xe)). (14
t=1 t=1

Intuitively, we transfer the Regret function Z;‘F:l f(Xe)— f(x*)

to the product of the model difference and the gradient at the
current global model x;.

As the optimal model x* is unknowable, Eq. (14) could not
be further deducted directly. To address this, we separate the
sum of Zthl (X, —x*), Vf(X;)) into three parts, with the first
one and third on irrelevant to the optimal model x*, i.e.,

T
D (& —x), V(%))

=3 ol

[1x* — %2 — [[x* — K¢ [
+Z 2n;
+ Y (R = %), VI (Re))-

We next illustrate these three parts one by one, showing their
convergence property. The first part will be bounded easily,
since ||V f(x;)||? is bounded by its maximum value, and thus
we have:

5)

Z el [V f&)I* < Z Sl [V &) axe = © Zm

(16)



Recall that we use the notation of O(.) to do the asymptotic
analysis. As for the second part, we have:

ZHX* — %> — [|x* — Xy 4a]?
2m

.11
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The third part represents the sum of the update loss, due
to the elimination of those insignificant update. We use I; to
define the set of insignificant updates at step ¢, and have:

D (& —x0), VIE)) = (D ue, V().

us €1

(18)

As there are at most v, D clients providing insignificant
updates, and the update value could be bounded by its
maximum value, we further have:

D e —x0), V&) = (Y w, V(%))

T (19)
< D2 Y v = O w).
t=1
Combining Eq. (16) and Eq. (19), we draw the conclusion
as:

T
1 1 1
lim =R[x] = =[O o(—)+0 . (20
TI—I>IC1>OT X T[ (;nt)—i_ <77T)+ <;vt)] 0
Therefore, there are diverse 7; and v; we could choose
to guarantee the convergence of the algorithm, as shown in

Theorem 1.
O

V. EVALUATION

We evaluated CMFL through both simulations and real-world
implementations deployed with a 30-machine Amazon EC2
cluster. We highlight the following three points here:

o CMFL significantly reduces the accumulated communi-
cation rounds of basic federated learning. Specifically,
with CMFL, the communication efficiency is enhanced by
13.97x in terms of accumulated communication rounds.
CMFL also remarkably outperforms the state-of-the-art
Gaia by 11x in terms of the Speedup.

e CMFL generally supports existing follow-up designs of
federated learning, further reducing their communication
cost. In particular, when built under the recently proposed
Federate Multi-Task Learning, CMFL can not only in-
crease the communication efficiency by 5.7x but also
increase the learning accuracy by 1.04x.

e CMFL can be easily implemented in practice, with slight
additional computation overhead. In specific, checking the
updates’ significance takes less than 0.13% time of the
local training iteration.

A. Simulation of Basic Federated Learning

We start by comparing the communication overhead of
CMFL with basic federated learning [7] and Gaia [15].

Workload. In order to provide comparability with existing
works, we set up our first simulation using the similar
training models and datasets in [7]. In particular, we choose
two machine learning models to present the communication
improvement provided by CMFL:

1) MNIST digit recognition model using CNN. The training
model consists of a CNN with two 5 x 5 convolution
layers, a fully connected layer, and a final output layer
[25]. The dataset contains 60, 000 samples of handwritten
digits [?]. We sort these samples by their digit labels
and then divide them into 100 clients each receiving 600
examples, developing a non-1ID data distribution.

2) Next-Word-Prediction model using LSTM. We train a
2-layer LSTM language model (each with 256 nodes) at
the word-level, which after reading each word in a line,
predicts the next word [27]. Specifically, we develop the
training dataset from The Complete Works of William
Shakespeare [30]. The input is a 10-word sequence in
the dialogue, and the output is the predicted next word.
We construct the local dataset of each client with the
dialogue of a speaking role in the plays with at least 20
words. This produced a dataset with 100 clients. Totally,
there are 1675 vocabularies and 6630 training samples.

Baseline algorithms. We compare CMFL against two base-
lines: Basic federated learning [7] and Gaia [15].

Setup. In our simulations, the model architectures were built
upon TensorFlow [31]. We use a 100-client setting to mimic
the large volume of participating edge devices in practical
federated learning. Similar to previous works [6], [7], we set
the parameter F, i.e., the number of training passes each client
makes over its local dataset on each round, as 4. We also set
the parameter B, the local mini-batch size used for the client
updates as 2. For Gaia and CMFL, we set the learning rate
1 and the significance threshold v as two time variables that
decreases over time: 1; = 19/+/t and v; = vy /V/1.

Communication overhead. We measured the learning accu-
racy and accumulated communication rounds over time and
depict their relationship in Fig. 4. Those communications which
are eliminated from being uploaded will not be counted. In
order to do a thorough analysis for Gaia and CMFL despite
of the influence of the threshold, we tested various threshold
values to identify the significance of local updates and chose
the threshold with the best performance for plotting.

We can observe that in both training models, CMFL
significantly reduces communication rounds without losing the
learning correctness. In contrast, Gaia shows similar behavior
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TABLE I: Summary of Speedup for different learning accuracy

in MNIST CNN and Next-Word-Prediction LSTM.

Gaia | CMFL
MNIST CNN 60% Accuracy 1.25 3.45
MNIST CNN 80% Accuracy || 1.13 3.47
NWP LSTM 60% Accuracy 1.42 13.35
NWP LSTM 80% Accuracy 1.26 13.97

to the basic federated learning, decreasing only a slight number
of communication rounds.

Motivated by the visualized results above, we are curious to
know to what extent our CMFL outperforms Gaia in terms of
improving the communication efficiency for federated learning.
To this end, we compared CMFL against Gaia based on a
metric called Speedup. Speedup is defined, for a given learning
accuracy, as the number of required communication rounds
under the compared algorithm normalized by that under the
basic federated learning, i.e.,

Compared Commun. rounds

Speedup =

Intuitively, the greater the Speedup is, the more significantly

the compared algorithm improves the communication efficiency.

We measured the Speedup of both Gaia and CMFL in MNIST
CNN and Next-Word-Prediction LSTM under different leaning
accuracies. Table I gives a statistical summary the Speedup
for both algorithms when reaching the target accuracy of 60%
and 80%, respectively.

In particular, for the MNIST CNN model, when the learning
accuracy raises to 60%, the basic federated learning costs

Commun. rounds under basic federated learning *

500 communication rounds, while Gaia slightly reduces this
overhead to 400. On the other hand, our CMFL significantly
reduces the required communication rounds to 145, providing
Speedup of 3.45. Furthermore, when the learning accuracy
reaches nearly the highest value, i.e., 80%, the basic federated
learning and Gaia take 900 and 800 rounds, respectively. Our
CMFL uses only 259 rounds, increasing the communication
efficiency by 3.47x in terms of Speedup.

For the more complicated Next-Word-Prediction (NWP)
LSTM, the communication overhead obviously increases in all
of the three algorithms. Intuitively, the neural network in LSTM
is more complex and the real-world data from the dialogue
dataset is highly non-IID, making the training harder to be
converged. As shown in Fig. 4b, the basic federated learning
uses 40, 200 rounds to obtain a training model with the accuracy
of 60%. Setting the significance threshold as 0.25 provides
the best performance under Gaia, costing 31,900 rounds to
reach the same learning accuracy with the Speedup of 1.42.
CMFL provides the Speedup of 13.35 with the threshold tuned
as 0.7, reducing the required the number of communication
rounds to 2, 877. Moreover, our CMFL dramatically reduces
the communication rounds from 56, 600 to 4,241 when setting
the learning accuracy as 80%, enhancing the communication
efficiency by 13.97x, whereas the Speedup under Gaia is only
1.26. In summary, CMFL outperforms Gaia by more than 11X
in terms of the Speedup.

We attribute this to Gaia’s fixed threshold could not ef-
fectively identify the updates’ significance during the entire
training process. For example, in the Next-Word-Prediction
model in Fig. 4b, the threshold with the value of 0.25 will
identify almost all the updates before the 20,000 rounds as
significant, losing the potential opportunity to mitigate useless
updates. We make two remarks on these results:

1) CMFL consistently outperforms Gaia in improving the
communication efficiency for federated learning in both
training models under various learning accuracies. As
we can see in Table I, CMFL keeps outperforms Gaia by
more than 2.8 in MNIST CNN and more than 9.4x
in Next-Word-Prediction LSTM.

2) CMFL provides much more significant enhancement in
the communication efficiency under more complicated
training models. Intuitively, in the complex training
models such as the Next-Word-Prediction LSTM shown
in Fig. 4b where there is a huge number of training
parameters, employing CMFL to eliminate those useless
updates from being uploaded can provide obvious benefit.

B. Simulation of Federated Multi-Task Learning

CMFL can generally support the follow-up federated learning
designs and further increase their communication efficiencies.
To illustrate this, we built the recently proposed MOCHA
[16] upon CMFL and developed the following simulation.
Specifically, CMFL identifies local updates’ significance in
MOCHA’s Federated Multi-Task Learning by locally calculat-
ing the changing of the global matrix based on the local update
and the record of the relationship matrix among clients.
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Workload. Here we use two datasets to develop our simulation.

1) Human Activity Recognition dataset. The first is the
Human Activity Recognition dataset [32] the same as
[16]. The dataset contains 10299 samples each with a
561-length feature vector used to predict between sitting
and the other activities. We further randomly separate
the data into 142 clients each with 10 to 100 samples.

2) Semeion Handwritten Digit dataset. The second is the
Semeion Handwritten Digit dataset [33] containing 1593
samples with 256 features. We predict the digit between
zero and other numbers. These samples are randomly
divided into 15 clients each with 10 to 200 samples.

Setup. In our simulations, we use a 142-client cluster for
Human Activity Recognition to mimic a large-scale federated
learning setting and a 15-client cluster to behave as a small-
scale one in Semeion Handwritten Digit. We also set the number
of local training iteration within each communication round as
E = 10 and the local mini-batch size as B = 3. For simplicity,
we set a constant learning rate as n = 0.0001.
Communication overhead. Similarly, we plot the learning
accuracy and the accumulated communication rounds rela-
tionship over time in Fig. 5. We also choose the threshold
with the best performance to plot. Specifically, in the Human
Activity Recognition dataset, when setting the learning accuracy
as 91%, using MOCHA with the support of CMFL only
needs 4892 rounds, whereas directly implementing MOCHA
requires 28120 rounds, 5.7x of that with CMFL. For the
Semeion Handwritten Digit dataset, training the model to
reach the learning accuracy of 84% takes 1500 and 460 rounds
in MOCHA and MOCHA with CMFL, respectively. In this
dataset, CMFL improves the communication efficiency with
the Speedup of 3.3 x.

Learning accuracy. More impressively, as we can see in Fig. 5,
CMFL can even enhance the learning accuracy from 92.07%
t0 94.94% (1.03x) and 86.03% to 89.37% (1.04x) in the two
datasets, respectively.
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Fig. 6: Distribution of the Normalized Model Divergence (d;)
between outlier/non-outlier local models and the global model

in Human Activity Recognition, x-axis is in log scale.

We attribute this to CMFL’s elimination of those insignificant
updates which are essentially outliers that will harm the global
training. In order to illustrate this point, we dived into the
statistical summary of clients whose local updates are frequently
eliminated from being uploaded. We found that among all the
142 clients in the Human Activity Recognition dataset, there
are 37 clients the numbers of whose eliminated updates are
more than 2000. The sum of the eliminated updates in these 37
clients is up to 84.5% of the total number of local elimination.
This means the identified insignificant local updates mainly
come from a small subset of the clients.

Based on this observation, we separated the 142 local
optimized models into 37 outliers and 105 non-outliers. We
then use the metric of Normalized Model Divergence defined
in Eq. (7) and summarize the average global-local parameter
divergences in these two parts and plot their distributions
in Fig. 6, respectively. As we can see, the 105 non-outlier
clients show an obviously smaller model divergence of the
global model than that of the 37 outliers. Specifically, in
the 37 outliers, there are more than 50% of the parameters
whose model divergences are higher than 100%, whereas this
value is only 15% in the subset of those 105 non-outliers.
Uploading the local updates of these outliers will bring negative
influence to the model convergence, yet bringing unnecessary
communication cost. In summary, CMFL is able to efficiently
identify and eliminate those outliers, and thus not only reduce
the communication overhead but also enhance the global
learning accuracy.

C. EC2 Deployment

We next micro-benchmark the performance of CMFL using
our real-world implementation.

Using EC2 clusters to run the testbed. We used an EC2
cluster to prototype the client-side model training as well
as the cloud-side coordination. We did not use the real edge
devices suck as mobiles or tablets to emulate the scarce network
connections, due to the following two reasons: First, the slow
network connection along with the limited computation capacity
at the real edge-side devices will significantly slow down the
training convergence. Second, given our measurement of the
communication overhead in this paper is the accumulated
communication rounds, i.e., the uploaded data size, using



EC2 cluster with more stable and larger bandwidth network
connection will speed up the experiment without impacting
the size of the transmitted data.

Implementation. We have prototyped CMFL in Python with a
master-slave architecture. In particular, the master aggregates
the local optimizations and sends the new global model back
to clients in each learning iteration, as shown in Algorithm 1;
a slave performs as a client, running local training and
identifying the significance of its local updates before sending
them to the master.

In our implementation, the master executes the synchronous
global optimization based on the aggregation of all the local
updates in each training iteration. In particular, each slave
periodically sends its update to the master. If the local update
is identified as insignificant, the slave eliminates its uploading
by sending status information to the master, indicating the
completion of its local training and the elimination of its update
in the current iteration. The transferred data size of this status
information is negligible when compared with an entire local
update with all the parameters in the weight matrix. Once
receives all of the local updates or elimination information
from the 30 slaves, the master executes an aggregation by
averaging those significant updates and feeds the new global
model to all the clients for the next iteration.

Cluster deployment. We performed experiments in a 30-node
Amazon EC2 [34] cluster. For each node, we used a m4.xlarge
EC2 instance with 4 cores and 16 GB RAM.

Testbed-benchmark. To benchmark the behavior of CMFL
in a more controlled manner, we ran the same Next-Word-
Prediction LSTM in Sec. V-A, where we separated the training
data into 30 clients each with the dialogue of 3 roles. Similarly,
we plot the training process of Gaia and CMFL with the
threshold that produces the best performance in Fig. 7.

Communication overhead. Fig. 7a depicts the learning accu-
racy and communication costs over time. We can see a similar
trend to Fig. 4b, i.e., CMFL outperforms Gaia, significantly
reducing the uploading rounds. To better illustrate CMFL’s
efficiency, we measured the amount of uploaded data during the
learning procedure among these schemes, as shown in Fig. 7b.
Specifically, CMFL reduces the size of the uploaded data by
7.1x, 6.4x and 6.9% given the three learning accuracy values,
respectively.

Computation overhead. In our 30-client benchmark, the
computation of checking the significance of an update takes
less than 1.6 microseconds on average, while each client-side
learning iteration costs about 1.25 second in our m4.xlarge
EC2 instance with 16 GB RAM, 4 cores. In other words,
checking the updates’ significance takes less than 0.13% time of
the local training iteration. In summary, CMFL can be deployed
to real-world federate learning with only slight additional
computation overhead.
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Fig. 7: Real-world implementations of CMFL with a 30-
machine Amazon EC2 cluster. (a) Learning accuracy vs.
communication rounds for the Next-Word-Prediction LSTM.
(b) Communication cost with different learning accuracy.

VI. CONCLUSION

In this paper, we have studied improving the efficiency
of the underlying communication mechanism for federated
learning, which is orthogonal to the existing designs. We
for the first time have proposed to feed the information of
global updates back to participating clients as a reference
to identify and preclude the insignificant local updates from
being uploaded. We have also proposed a new communication
schema, called Communication-Mitigated Federated Learning
(CMFL), to identify the local update’s significance by the ratio
of its parameters whose value have the same sign with the
global update. CMFL outperforms existing Gaia by being aware
of whether the local updates follow the collaborative trend
among all the clients. We have shown that under some practical
assumptions, CMFL is guaranteed to approach the learning
convergence. Both simulations and EC2 deployments have
confirmed that CMFL outperforms state-of-the-art alternatives
and generally supports existing federated learning designs by
reducing the communication overhead.
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