
DTC-SpMM: Bridging the Gap in Accelerating General
Sparse Matrix Multiplication with Tensor Cores

Ruibo Fan
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

rfan404@connect.hkust-gz.edu.cn

Wei Wang
The Hong Kong University of Science

and Technology
Hong Kong SAR, China

weiwa@cse.ust.hk

Xiaowen Chu∗
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China
xwchu@ust.hk

Abstract
Sparse Matrix-Matrix Multiplication (SpMM) is a building-
block operation in scientific computing andmachine learning
applications. Recent advancements in hardware, notably Ten-
sor Cores (TCs), have created promising opportunities for ac-
celerating SpMM. However, harnessing these hardware accel-
erators to speed up general SpMM necessitates considerable
effort. In this paper, we undertake a comprehensive analysis
of the state-of-the-art techniques for accelerating TC-based
SpMM and identify crucial performance gaps. Drawing upon
these insights, we propose DTC-SpMM, a novel approach
with systematic optimizations tailored for accelerating gen-
eral SpMM on TCs. DTC-SpMM encapsulates diverse as-
pects, including efficient compression formats, reordering
methods, and runtime pipeline optimizations. Our exten-
sive experiments on modern GPUs with a diverse range of
benchmark matrices demonstrate remarkable performance
improvements in SpMM acceleration by TCs in conjunction
with our proposed optimizations. The case study also shows
that DTC-SpMM speeds up end-to-end GNN training by up
to 1.91× against popular GNN frameworks.

CCS Concepts: • Computing methodologies→ Shared
memory algorithms; • Computer systems organization
→ Single instruction, multiple data.

Keywords: Sparse Matrix-Matrix Multiplication, SpMM, un-
structured sparsity, GPU, Tensor Core
ACM Reference Format:
Ruibo Fan, Wei Wang, and Xiaowen Chu. 2024. DTC-SpMM: Bridg-
ing the Gap in Accelerating General Sparse Matrix Multiplication

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04
https://doi.org/10.1145/3620666.3651378

with Tensor Cores. In 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, Volume 3 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3620666.3651378

1 Introduction
Sparse Matrix-Matrix Multiplication (SpMM) is an opera-
tion that multiplies two matrices 𝐴 and 𝐵, where 𝐴 is sparse
and 𝐵 is dense, and gives a dense matrix 𝐶 . As a key ker-
nel in the level-3 Sparse BLAS, SpMM is implemented with
various computing libraries [2, 33, 37] and plays a pivotal
role in scientific computing (SC) [14, 52] and machine learn-
ing [1, 50, 58]. There is a large body of works that improve
SpMM performance on GPUs, with various optimization
techniques [6, 11, 17, 18, 22, 62], such as storage formats,
parallel strategies, reordering, and memory access optimiza-
tions. Most of these works are based on the general-purpose
computing units of GPUs, namely CUDA cores, whereas the
emergence of specialized GPU hardware, particularly Ten-
sor Cores (TCs), has enabled more promising opportuni-
ties for accelerating SpMM computations. Initially designed
for mixed-precision dense matrix multiplication in deep-
learning (DL), TCs offer significant computational power [48]
and can also be applied to SC workloads [39].

However, it remains challenging to fully unleash the power
of TCs to achieve substantial SpMM acceleration. TCs are de-
signed to operate on dense data structures: its dense-oriented
architecture may not be a natural fit to the sparse matrix op-
erations in SpMM. Consequently, the integration of TCs into
SpMM introduces additional intricacies that require careful
attention and resolution to fully exploit their computational
capabilities. Bridging this gap and effectively utilizing TCs
for SpMM acceleration continue to be pivotal areas of re-
search and optimization endeavors. Some prior research has
focused on introducing TC-based SpMM to accelerate sparse
DLworkloads [3, 4, 12, 36, 59, 66]. Theymainly target regular
and small sparse weight matrices generated through pruning
techniques, where non-zero elements follow strict distribu-
tion constraints (referred to as structured SpMM). However,
these approaches face challenges in efficiently accelerating
SpMM for larger, sparser, and highly irregular matrices (e.g.,
adjacency matrices in Graph Neural Networks (GNNs) [1]

https://doi.org/10.1145/3620666.3651378
https://doi.org/10.1145/3620666.3651378
https://doi.org/10.1145/3620666.3651378

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Ruibo Fan, Wei Wang, and Xiaowen Chu

and real-world matrices in SuiteSparse [32]), which we call
general SpMM. While the recent work, TC-GNN [57], uti-
lizes TCs for implementing general SpMM using various
novel techniques, experiments reveal that significant per-
formance improvements remain yet to be achieved. It has
been observed that SpMM in TC-GNN, when executed on
the recent RTX4090 GPU, achieves less than 8% utilization of
the Tensor Core Pipeline and demonstrates less competitive
performance compared to cuSPARSE’s CUDA-core-based
SpMM [37], especially on large matrices with long rows.
In this work, we focus on large and sparse matrices for

GNNs and scientific computing. Starting with a thorough
study of the state-of-the-art techniques for accelerating gen-
eral SpMM by TCs, we identify four key barriers that impede
the effective utilization of TCs. Drawing upon these obser-
vations, we propose DTC-SpMM1, a novel approach with
systematic techniques and optimizations designed for TCs.
Our techniques encompass various aspects, including the
development of novel memory-efficient formats that allevi-
ate the issue of high memory consumption. Furthermore,
we introduce a two-level hierarchical TCU-Cache-aware re-
ordering technique to improve the density of TC blocks. At
runtime, we propose shared-memory bypassing with PTX-
level instructions [43] and sparse double buffering to overlap
computations andmemory access, which largely improve the
TC pipeline utilization. Furthermore, we devise a strict-load-
balance strategy and a simulation-based Selector to tackle
input-adaptive workload imbalances.

We compare the efficacy of the proposed DTC-SpMMwith
TCGNN-SpMM [57], SparseTIR [63], Sputnik [11], Block-
SpMM [44], VectorSparse [4], Flash-LLM [59], SparTA [66]
and the widely-used SpMM in cuSPARSE library [37]. Exper-
imental results on recent RTX4090 (Ada Lovelace) [41] and
RTX3090 (Ampere) [40] GPUs demonstrate that DTC-SpMM
achieves significant average (geometric mean or geomean)
speedups over alternative approaches on diverse real-world
matrices. Furthermore, breakdown analyses validate the ef-
fectiveness of our proposed techniques in reducing memory
complexity, enhancing TC pipeline utilization, and alleviat-
ing load imbalance. A case study illustrates that DTC-SpMM
accelerates end-to-endGNN training by 1.22-1.91× compared
to DGL [53] and PyG [10], two widely used GNN training
frameworks.

We summarize our contributions as follows:
• We conduct an in-depth study on recent state-of-the-
art works that leverage Tensor Cores for general SpMM.
Through this investigation, we identify the major gaps
that hinder their ability to outperformhighly-optimized
CUDA-core-based counterparts.
• Building upon these insights, we propose DTC-SpMM,
which incorporates a memory-efficient compressed

1DTC-SpMM’s source code and datasets are publicly available at https:
//github.com/HPMLL/DTC-SpMM_ASPLOS24

format and a set of novel techniques explicitly tailored
for accelerating general SpMM via Tensor Cores.
• DTC-SpMM achieves significant speedups over state-
of-the-art TC-based and CUDA-core-based SpMM ap-
proaches, particularly on large matrices with diverse
structures.

2 Background and Related Work
2.1 NVIDIA GPU and Tensor Core
NVIDIA GPUs are highly parallel devices with multiple
streaming multiprocessors (SMs) that contain CUDA cores,
Tensor Cores, and other units. Kernels are launched with spe-
cific configurations of thread blocks and threads per block.
Each thread block is scheduled onto an SM and runs concur-
rently. Threads within a warp (32 threads) execute the same
instruction simultaneously in SIMT mode [42].

Tensor Cores (TCs) have been introduced since the Volta
architecture [38]. TCs deliver notable speedups compared
to CUDA cores and offer a wider range of precision options,
such as TF32, BF16, and FP8 [48]. We target TF32, a more
favorable alternative to FP32, as it offers superior numeri-
cal behaviors in both GNN and SC workloads [39, 48]. As
dedicated units for accelerating matrix multiplication, TCs
perform the computation 𝐷 𝑓 𝑟𝑎𝑔 = 𝐴𝑓 𝑟𝑎𝑔 × 𝐵𝑓 𝑟𝑎𝑔 + 𝐶𝑓 𝑟𝑎𝑔,
where 𝐴𝑓 𝑟𝑎𝑔 and 𝐵𝑓 𝑟𝑎𝑔 are input matrices of the shape𝑚 ×𝑘
and 𝑘 × 𝑛, respectively. 𝐶𝑓 𝑟𝑎𝑔 denotes the accumulator, and
𝐷 𝑓 𝑟𝑎𝑔 is the resulting matrix. Various matrix shapes are sup-
ported for each precision. In this paper, we use the notation
𝒎×𝒌 ×𝒏 to represent the matrix shape for TCs. To program
on TCs, CUDA provides warp-level APIs with the Matrix
Multiply-Accumulate (MMA) semantic. These APIs enable a
warp of 32 threads to collaboratively execute one or multiple
dense matrix multiplications and accumulate the outputs.
CUDA offers two sets of APIs for MMA, namely WMMA in
high-level C code [42] andmma in low-level PTX code [43].
List 1 gives some simple examples. While the assemblers
introduced in [60, 61] allow TC programming at the SASS
(assembly) level, they are unofficial and may not be stable.
Our work maintains its focus on the PTX level.

TheWMMA APIs manage registers using fragments. Users
only need to load tiles of data from global or shared memory
into fragments without concerning the specific distribution
of register variables across a warp (32 threads). In contrast,
mma APIs offer greater flexibility, but users need to manage
the registers themselves. With TF32 precision, mma APIs
require the matrix shape to be 16 × 8 × 8 or 16 × 4 × 8.

Listing 1. C-level WMMA APIs and PTX-level instructions
wmma::fragment <16, 16, 8, tf32 , row_major > A_frag;
wmma:: load_matrix_sync(A, A_frag , ldm);
wmma:: mma_sync(D_frag , A_frag , B_frag , C_frag);

.reg %Ra <2>, %Rb <1>, %Rc <4>, %Rd <4>;
mma.sync.aligned.m16n8k4.row.col.f32.tf32.tf32.f32

{%Rd0 , %Rd1 , %Rd2 , %Rd3},
{%Ra0 , %Ra1}, {%Rb0},
{%Rc0 , %Rc1 , %Rc2 , %Rc3};

https://github.com/HPMLL/DTC-SpMM_ASPLOS24
https://github.com/HPMLL/DTC-SpMM_ASPLOS24

DTC-SpMM: Accelerating General Sparse Matrix Multiplication with Tensor Cores ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

2.2 Related work
SpMM implements the following computation: 𝐶𝑀×𝑁 =

𝐴𝑀×𝐾 × 𝐵𝐾×𝑁 , where 𝐴, 𝐵, and 𝐶 denote the sparse matrix,
input dense matrix, and output dense matrix, respectively.
Let 𝑁𝑁𝑍 be the number of non-zero elements in 𝐴. With
the increasing adoption of GPUs, researchers have explored
various techniques to optimize SpMM on GPUs, targeting
both CUDA cores and TCs.

The widely-used NVIDIA cuSPARSE library [37] provides
high-performance CUDA-core SpMM kernels and supports
Compressed Sparse Row (CSR) and Coordinate (COO) for-
mats. Yang et al. [62] introduced row-split and merge-path al-
gorithms to hide global memory latency. Hong et al. proposed
RS-SpMM [17] and ASpT [18] which use adaptive tiling to
partition sparse matrices into dense and sparse parts to uti-
lize the shared memory. Some works focus on optimizing
SpMM for DLworkloads. Hidayetouglu et al. [15, 16], champi-
ons of the 2020 SpDNN challenge [29], employed register and
shared memory tiling to enhance global memory efficiency.
Their kernel is fused with the ReLU function to enhance the
inference performance. Gale et al. proposed Sputnik [11],
which introduces 1-Dimensional Tiling Scheme and reverse
offset memory alignment to efficiently handle sparse data
structures. Ye et al. proposed SparseTIR [63], which intro-
duces a sparse compilationmethodwith a composable format
and performance-tuning system. Huang et al. introduced GE-
SpMM [22], aiming at optimizing the memory efficiency of
SpMM for GNNs by reusing sparse data. Fan et al. presented
HP-SpMM [8], which employs a hybrid-parallel strategy to
address the load imbalance issue in GNNs, particularly in
graph-sampling training modes. Our DTC-SpMM is orthog-
onal to the CUDA-core-based works mentioned above, as
we focus on systematic optimization for integrating Tensor
Cores. Nevertheless, DTC-SpMM derives valuable insights
from the techniques and optimization principles established
in the aforementioned works.
Using TCs to accelerate SpMM has gained significant

traction in recent years. While some studies have focused
on TC-based Sparse GEneral Matrix-Matrix multiplication
(SpGEMM) where all input and output matrices are sparse,
they cannot be applied to SpMMdue to different computation
patterns [54, 65]. For TC-based SpMM, Gray et al. [12] devel-
oped a new block-sparse routine that allows exploiting TC for
nonzero sub-matrices. cuSPARSE implements this method
based on the Blocked-Ellpack (BELL) format, known as Block-
SpMM [44]. Chen et al. proposed VectorSparse [4] which is
more fine-grained compared with block sparsity for Volta
architecture under FP16 precision. Castro et al. proposed
CLASP [3], a column-vector pruning-aware implementation,
which extends VectorSparse to Ampere architecture. Li et
al. presented Magicube [36], which integrates a novel com-
pression format called SR-BCRS and several crucial online
optimizations. Although significant progress has been made,

these methods take advantage of the pruning techniques
and the generated regular sparse matrices with constraints
on the distribution of non-zero elements. Thus, they strug-
gle to accelerate general SpMM with irregular input sparse
matrices (unstructured) like those in SC and GNNs.
Sun et al. [49] and Dun et al. [7] split sparse weight ma-

trices into two segments: dense and sparse. They employed
a block-sparse routine to process dense parts with TCs and
CUDA cores for sparse segments, respectively. Our approach
is orthogonal to theirs and can enhance the performance of
their dense parts segment.
Zheng et al. introduced SparTA [66], which targets un-

structured weight sparsity in DNN models. SparTA is the
first to partition matrices into 2:4 structured sparse and un-
structured sparse components to harness both sparse TCs
and CUDA cores. Xia et al. presented Flash-LLM [59] target-
ing unstructured weight sparsity in the KV cache stage of
Large Language Model inference. Flash-LLM introduces the
Load-as-Sparse-Compute-as-Dense mode and employs dou-
ble buffering to overlap the reading of dense feature matrices
and TC computations. Our DTC-SpMM, in contrast, incorpo-
rates sparse double buffering to overlap sparse tile loading
with computation. Given the design of reducing memory
footprint rather than computation, Flash-LLM performs no-
tably well on low sparsity (60%-90%) and memory-bounded
tall-and-skinny SpMM (with N = 8, 16, and 32, etc.). Both
SparTA and Flash-LLM demonstrate effectiveness in han-
dling smaller weight matrices typical in DL, with thousands
to tens of thousands of rows and 60%-90% sparsity. Never-
theless, our focus in this study is on GNN and SC matrices,
which are notably larger, characterized by millions of rows
and over 95% sparsity. This poses challenges for both SparTA
and Flash-LLM.
Wang et al. proposed TC-GNN [57], the first work to ac-

celerate irregular GNN computation with TF32 TC. They fo-
cused on optimizing general SpMM (key in GNN workload).
As the state-of-the-art TC-based general SpMM implementa-
tion, TC-GNN has been integrated with SparseTIR [63]. We
refer to the SpMM from TC-GNN [57] as TCGNN-SpMM.

2.3 Overview of TCGNN-SpMM
Given the novel techniques it incorporates, understanding
TCGNN-SpMM’s original design is crucial.
SparseGraphTranslation and the storage format. Sparse
Graph Translation (SGT) employed in TC-GNN identifies
non-zero tiles and consolidates non-zero elements from those
tiles into a reduced number of “dense” tiles, known as TC
blocks. SGT transforms the irregular sparse matrices into
condensed ones so that they can be efficiently processed on
TCs. TC blocks are designed to have the same shape as the
matrix fragment using the C-levelWMMA API (i.e., 16 × 8).
As shown in Figure 1, the sparse matrix is first divided into
row windows and compressed towards the “left side”. This

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Ruibo Fan, Wei Wang, and Xiaowen Chu

Figure 1. Sparse Graph Translation and TCF format.

process assigns a new compressed column index to each non-
zero element. A specialized format is devised to store the
condensed sparse matrix. We call it TC-GNN-Compressed-
Format (TCF). In total, five arrays are required: blockparti-
tion, nodePointer, edgeList, edgeToColumn, and edgeToRow.
blockpartition records the number of TC blocks in each row
window. nodePointer denotes the starting index of each row,
analogous to the RowOffset in CSR. edgeList and edgeToCol-
umn store the original and compressed column indices of
the non-zero elements, respectively. edgeToRow contains the
row indices of the non-zero elements.
Parallel strategy and algorithm routine Figure 2 illus-
trates the TCGNN-SpMM scheme. TCGNN-SpMM operates
with a condensed sparse matrix. Independent thread blocks
are allocated to compute each output row window of matrix
𝐶 . Each thread block follows an iterative approach, where it
processes one TC block from the corresponding row window
of matrix 𝐴 in each iteration. The iterative process com-
prises three main steps: ❶FetchSparse, ❷ScatterFetchDense,
and ❸TCCompute. The threads within a thread block initially

Figure 2. Overview of the TCGNN-SpMM design.

fetch the row indices and compressed column indices of the
non-zero elements within a TC block (Figure 1). They then
reconstruct the sparse tile in shared memory and collaborate
to retrieve data from scattered positions of matrix 𝐵, corre-
sponding to the original column indices of this TC block as
it is compressed. The fetched data is firstly stored in shared
memory and then transferred to the register fragment for
TC computation. The warps within a thread block then call
the C-level WMMA APIs to leverage TCs for computation
and accumulation of partial results.

Table 1. 8 representative matrices. 1: from TC-GNN [57]; 2:
from SNAP [34]; 3: from OGB [20]; 4: from DGL [53].

Type Name Abbr. M&K NNZ AvgRowL

I

YeastH1 YH 3,138,114 6,487,230 2.07
OVCAR-8H1 OH 1,889,542 3,946,402 2.09

Yeast1 Yt 1,710,902 3,636,546 2.13
DD1 DD 334,925 1,686,092 5.03

web-BerkStan2 WB 685,230 7,600,595 11.09

II
reddit4 reddit 232,965 114,848,857 492.99
ddi3 ddi 4267 2,140,089 501.54

protein3 protein 132,534 79,255,038 598.00

3 Gaps and Opportunities
This section describes our methods for conducting a per-
formance analysis on the current state-of-the-art TC-based
general SpMM routine and highlights the observed perfor-
mance gaps. We first expand the dataset used in [57] based
on the following observations: while the number of rows in
the original matrices spans a wide range, reaching millions,
the number of non-zero elements is only in the millions.
Thus the average row length (AvgRowL) is relatively small,
ranging from 2 to 12. However, AvgRowL significantly affects
the SpMM efficiency [62]. Besides, the total floating-point
operation is 2×𝑁 ×𝑁𝑁𝑍 , which depends on the number of
non-zero elements. Therefore, we supplement several widely-
used benchmark matrices to extend non-zero elements to
the billions and expand AvgRowL to nearly 600.
The matrices in Table 1 represent the typical workload

of GNNs as they serve as benchmarking matrices in GNN-
related works [10, 21–23, 53, 55–57]. The matrices are cat-
egorized into two types for analysis: Type I, which has a
small AvgRowL, and Type II, which has a large AvgRowL.
We conduct an in-depth analysis covering both algorith-

mic and micro-architectural aspects. Our tests are performed
on RTX4090 (Ada Lovelace) and RTX3090 (Ampere) with
CUDA 12.1. We show the results of RTX4090, a newer gen-
eration GPU compared to RTX3090.

3.1 Observed performance gaps
We have identified four key performance gaps in the TC-
based SpMM routine, which can be attributed to the com-
plexities in incorporating TCs into SpMM.
Observation 1: High memory consumption due to the
inefficient storage format. SpMM can be implemented
with various storage formats that may result in significantly
different performance, particularly due to memory complex-
ity. As a memory-bound kernel, the theoretical performance
upper-bound of SpMM is mostly determined by memory ac-
cess efficiency [18]. Under the constraint of a fixed amount
of total floating-point operations, storage formats with lower
memory complexity imply higher computational density and
higher roofline performance upper-bound.
The TCF format in TC-GNN requires ⌈𝑀/16⌉ +𝑀 + 1 +

𝑁𝑁𝑍×3 elements to represent matrix𝐴, comprising ⌈𝑀/16⌉
for blockpartition,𝑀 + 1 for nodePointer, and 𝑁𝑁𝑍 each for

DTC-SpMM: Accelerating General Sparse Matrix Multiplication with Tensor Cores ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

edgeList, edgeToColumn, and edgeToRow. In comparison, CSR
requires𝑀 +1+𝑁𝑁𝑍 elements [17]. For the 8 matrices, TCF,
on average, consumes 168.41% more memory space than
CSR, which suggests that TCF is not memory-efficient and
may impact performance.
Observation 2: Low density of TC blocks. TC-GNN in-
troduces SGT to condense sparse matrices, reducing the
number of TC blocks by half. Condensing is crucial for ac-
celerating SpMM using TC, as it transforms unstructured
sparse matrices into a relatively structured form that can fit
the format required by TCs. We define an important metric
to measure the degree of condensing, namely the average
number of non-zero elements in TC blocks (MeanNnzTC).
A higher value of MeanNnzTC indicates a higher degree of
condensing. The value of MeanNnzTC has implications in
two aspects. First, it affects the total computational workload.
When using TC, the workload of SpMM is determined by
the number of TC blocks (NumTCBlocks) instead of NNZ.
With a fixed NNZ, a larger MeanNnzTC implies a smaller
workload. Second, it impacts data reuse efficiency. A TC
block (16 × 8) loads 8 corresponding rows from 𝐵. Non-zero
elements in the same column within a TC block can reuse
one global memory transaction. Therefore, a higher value of
MeanNnzTC indicates a higher data reuse rate, resulting in
fewer global transactions.

Table 2. Measured key indicator values for TCGNN-SpMM.

Dataset MeanNnzTC #IMAD/
#HMMA

TC Pipeline
Utilization

Type I
YH 9.79 13.72 4.19%
OH 9.66 13.69 4.31%
Yt 10.69 13.80 3.97%
DD 12.97 13.43 6.64%
WB 26.9 15.16 6.09%

Type II reddit 16.53 98.54 0.46%
ddi 25.88 46.67 0.90%

protein 14.80 63.90 1.47%

Table 2 shows the measured MeanNnzTC values after ap-
plying SGT. For most matrices, MeanNnzTC remains below
16. A MeanNnzTC value less than 16 indicates that, on aver-
age, each column in the TC blocks contains fewer than two
non-zero elements, leading to limited data reuse benefits.
The statistical outcomes suggest that SGT has not achieved
the expected level of condensation.
Observation 3: Low Tensor Core pipeline utilization.
TC pipeline utilization is crucial in assessing the effectiveness
of TCs [60]. We employed the NVIDIA Nsight Compute
(NCU) kernel profiler to obtain the utilization. The results
in Table 2 show that the pipeline utilization consistently
remains below 8%.

The significantly low utilization can be attributed to two
main factors. Firstly, there is redundancy in shared memory
utilization. Similar to TC-based GEMM [51], TCGNN-SpMM
loads data tiles from matrices 𝐴 and 𝐵 into shared memory
before transferring them to the register file. In TC-based

Figure 3. The relative execution and idle time of all 128 SMs
on RTX4090. We show two representative matrices.

GEMM, this enables data reuse in both the row-wise (for
matrix 𝐴) and column-wise direction (for matrix 𝐵), thereby
reducing the number of global memory transactions. How-
ever, due to the irregular and compressed nature of sparse
𝐴, column-wise reuse (i.e., reusing tiles of matrix 𝐵 through
shared memory) cannot be achieved. Secondly, there is a
huge amount of coordinate calculations involved. During
the FetchSparse and ScatterFetchDense stages, each thread
performs extensive computations to determine the memory
access indices. To quantify this, we measured the number of
executed instructions. Table 2 shows that TCGNN-SpMM ex-
ecutes over 10× more Integer Multiply-Add (IMAD) instruc-
tions (for coordinate computations) thanHMMA instructions
(for TC computations).
Observation 4: Input-adaptive workload imbalance.
Load imbalance on GPUs refers to the uneven distribution of
computation tasks among different processing units, such as
SMs or warps, which leads to some units being overloaded
while others remain idle [62]. Numerous studies show that
load imbalance greatly impacts the performance of CUDA-
core SpMM and propose various methods to mitigate this
issue [6, 8, 11, 62].
In CUDA-Core SpMM, tasks are divided based on rows

in the sparse matrix, where the non-zero elements serve as
the fundamental unit. With the introduction of TCs, tasks
are divided into row windows (16 rows), where the TC block
is the unit. This change highlights the need for further in-
depth research into load balancing, which is not considered
in TCGNN-SpMM. To assess the load situation, we collect
execution times for each SM (128 in total) on RTX4090 in
TCGNN-SpMM. Figure 3 depicts the results for two repre-
sentative matrices, YeastH and ddi. For ddi, many SMs are
idle, while this phenomenon is less prominent in YeastH. Our
statistical analysis reveals that load imbalance remains sig-
nificant, and it is closely related to the input sparse matrix.
Matrices with a significant disparity in the number of TC
blocks within their row windows often encounter severe
load imbalance.

4 Design of DTC-SpMM
4.1 Design overview
As shown in Figure 4, DTC-SpMM comprises several key
components to harness the computational power of TCs

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Ruibo Fan, Wei Wang, and Xiaowen Chu

Figure 4. The design overview of DTC-SpMM.

Figure 5. The design of Memory-efficient-TCF (ME-TCF).

effectively in SpMM. Firstly, DTC-SpMM introduces an of-
fline two-level ❶ TCU-Cache-Aware reordering module to
rearrange the input sparse matrix, enhancing the density of
TC blocks and improving data locality. Secondly, the ❷ for-
mat conversion module efficiently transforms the reordered
sparse matrix into the memory-efficient ME-TCF format de-
signed specifically for TCs. DTC-SpMM also includes a ❸
simulation-based Selector to automatically select the runtime
kernel for the current input matrix, including DTC-SpMM-
base and DTC-SpMM-balanced, addressing input-adaptive
workload imbalance issues. Finally, DTC-SpMM incorpo-
rates a highly optimized ❹ runtime SpMM kernel. A series of
techniques, including shared-memory bypassing and sparse
double buffering, are designed to optimize memory access
and increase the TC pipeline utilization. Modules ❶, ❷, and
❸ are accelerated by highly parallel CUDA kernels to reduce
overhead, and detailed discussions are provided in Section 6.

4.2 Memory-efficient storage format
As the foundation of DTC-SpMM, we design a memory-
efficient format for TC-based SpMM routine based on TC-
GNN’s SGT, which we call ME-TCF. ME-TCF utilizes a total
of four arrays to represent an SGT-condensed sparse ma-
trix (Figure 5). ❶RowWindowOffset indicates the starting
index of each row window in the TCOffset array, consist-
ing of ⌈𝑀/16⌉ + 1 elements. ❷TCOffset holds the starting
index of each TC block in the TCLocalId array, consisting
of 𝑁𝑢𝑚𝑇𝐶𝐵𝑙𝑜𝑐𝑘 + 1 elements. ❸ TCLocalId stores the local
index of each nonzero element in all TC blocks. We design

this array to utilize low-precision (8-bit) integers instead
of 32-bit integers, capitalizing on the small-size nature of
TC blocks (16 × 8). The largest local index (127) will remain
within the range of an unsigned 8-bit integer (255). This array
requires 𝑁𝑁𝑍/4 elements. ❹SparseAtoB holds the original
column indices of each column in TC blocks, necessitat-
ing 𝑁𝑢𝑚𝑇𝐶𝐵𝑙𝑜𝑐𝑘 × 8 elements. In total, ME-TCF requires
⌈𝑀/16⌉ + 𝑁𝑢𝑚𝑇𝐶𝐵𝑙𝑜𝑐𝑘 × 9 + 𝑁𝑁𝑍/4 + 2 elements to repre-
sent 𝐴. Compared to the three 32-bit integer arrays in TCF,
we utilize a single 8-bit array to store the indices of non-zero
elements, significantly reducing the storage overhead.

4.3 TCU-Cache-Aware reordering
As discussed in Obs.2, SGT’s effectiveness heavily depends
on the original distribution of nonzero elements in the sparse
matrix, which limits its condensing ability.

Reordering is a promising approach to enhance the perfor-
mance of CUDA-Core SpMM. Existing reordering techniques,
such as METIS [28] and Louvain [46], are designed to im-
prove cache behavior and are not specifically optimized for
computing SpMM on TCs, thereby limiting their effective-
ness. To address this issue, we propose a novel two-level
hierarchical reordering method called TCU-Cache-Aware
(TCA) reordering. Alg.1 shows the TCA algorithm, and Fig-
ure 6 provides an example. The first hierarchy groups similar
rows to increase the density of TC blocks, and the second
hierarchy performs reclustering of row clusters to enhance
cache performance.

Figure 6. The design of TCU-Cache-Aware reordering. Hi-
erarchy I groups rows into clusters that match the size of
TC blocks to improve density. Hierarchy II further groups
clusters to enhance L2 cache locality.

Hierarchy I (TCU-Aware). Inspired by [23, 26], we lever-
age the Jaccard index to measure the similarity between two
rows based on their non-zero elements’ column indices. We
first identify row pairs with high Jaccard similarity with
Locality-Sensitive Hashing (LSH) (line 2). The candidate row
pairs are first organized in a priority queue (line 3). Dur-
ing pair merging, the row pair with the highest similarity
is dequeued (line 6), and their clusters are merged (line 8).
Row pair merging continues until the queue becomes empty.
To maximize the density of TC blocks, we enforce a small
cluster size limit of 16 (BLOCK_HEIGHT), as it matches the
TC block size (16 × 8). A larger cluster size limit (e.g., 64

DTC-SpMM: Accelerating General Sparse Matrix Multiplication with Tensor Cores ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 1 TCU-Cache-Aware (TCA) reordering
Input: Sparse Matrix𝐴, BLOCK_HEIGHT, SM_NUM
Output: Sparse Matrix𝐴𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑

1: // Hierarchy I: group rows into clusters.
2: 𝑟𝑜𝑤_𝑝𝑎𝑖𝑟𝑠 = MinhashLSH(𝐴); ⊲ Row pairs with high Jaccard similarity.
3: 𝑄 = MakePriorityQueue(𝑟𝑜𝑤_𝑝𝑎𝑖𝑟𝑠);
4: 𝑅𝐶_𝑝𝑜𝑜𝑙 = InitCluster(𝐴); 𝑅𝐶_𝑠𝑒𝑡 = {};
5: while !𝑄.𝑒𝑚𝑝𝑡𝑦 () do
6: 𝑟𝑜𝑤𝑖 , 𝑟𝑜𝑤𝑗 = 𝑄.𝑔𝑒𝑡 () ; ⊲ Dequeue the most similar row pair.
7: 𝐶𝑖 ,𝐶 𝑗 = FindCluster(𝑟𝑜𝑤𝑖 , 𝑟𝑜𝑤𝑗); 𝑅𝐶_𝑝𝑜𝑜𝑙 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝐶𝑖 ,𝐶 𝑗) ;
8: 𝐶 = Merge(𝐶𝑖 ,𝐶 𝑗); ⊲ Merge the corresponding two row clusters.
9: if 𝐶.𝑠𝑖𝑧𝑒 () < 𝐵𝐿𝑂𝐶𝐾_𝐻𝐸𝐼𝐺𝐻𝑇 then
10: 𝑅𝐶_𝑝𝑜𝑜𝑙 .𝑎𝑑𝑑 (𝐶) ;
11: else
12: 𝑅𝐶_𝑠𝑒𝑡 .𝑎𝑑𝑑 (𝐶) ; ⊲ Limit the row cluster size to BLOCK_HEIGHT.
13: end if
14: end while
15: // Hierarchy II: regroup into cluster of clusters.
16: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑎𝑖𝑟𝑠 = MinhashLSH(𝑅𝐶_𝑠𝑒𝑡); ⊲ Candidate cluster pairs.
17: 𝑄𝑐 = MakePriorityQueue(𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑎𝑖𝑟𝑠);
18: 𝐶𝐶_𝑝𝑜𝑜𝑙 = InitCluster(𝑅𝐶_𝑠𝑒𝑡);𝐶𝐶_𝑠𝑒𝑡 = {};
19: while !𝑄𝑐 .𝑒𝑚𝑝𝑡𝑦 () do
20: 𝐶𝑖 ,𝐶 𝑗 = 𝑄𝑐 .𝑔𝑒𝑡 () ; ⊲ Dequeue the most similar cluster pair.
21: 𝐶𝐶𝑖 ,𝐶𝐶 𝑗 = FindCluster(𝐶𝑖 ,𝐶 𝑗);𝐶𝐶_𝑝𝑜𝑜𝑙 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝐶𝐶𝑖 ,𝐶𝐶 𝑗) ;
22: 𝐶𝐶 = Merge(𝐶𝐶𝑖 ,𝐶𝐶 𝑗); ⊲ Merge the two cluster of clusters.
23: if 𝐶𝐶.𝑠𝑖𝑧𝑒 () < 𝑆𝑀_𝑁𝑈𝑀 then
24: 𝐶𝐶_𝑝𝑜𝑜𝑙 .𝑎𝑑𝑑 (𝐶𝐶) ;
25: else
26: 𝐶𝐶_𝑠𝑒𝑡 .𝑎𝑑𝑑 (𝐶𝐶) ; ⊲ Limit the cluster size to SM_NUM.
27: end if
28: end while
29: 𝐴𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑 = 𝑅𝑒𝑖𝑑 (𝐴,𝐶𝐶_𝑠𝑒𝑡)

[23]) results in the grouping of low-similarity rows, thereby
decreasing the density of TC blocks. If a cluster has more
than 16 rows, it ceases to participate in pair merging and is
preserved (lines 9-13).
Hierarchy II (Cache-Aware). However, such a small clus-
ter size limit may adversely impact L2 cache efficiency. The
GPU’s L2 cache is shared among SMs, and a wave of thread
blocks is concurrently executed on the SMs. As discussed
in Section 2.3, a thread block is assigned to a row window
(i.e., a row cluster). However, neighboring clusters may have
significantly different nonzero element distributions, as ex-
emplified by C0 and C1 in Figure 6. The concurrent thread
blocks may access distinct positions in matrix 𝐵, resulting in
a low L2 cache hit rate. To address this problem, we propose
the cache-aware hierarchy to enhance the L2 cache locality.
We regroup the row clusters into clusters of clusters using
the same steps employed in the TCU-aware hierarchy (lines
19-28). We deduplicate the column indices of all nonzero
elements within a row cluster and calculate the Jaccard simi-
larity between row clusters with these indices. As depicted
in Figure 6, C0 and C3 are grouped together due to their
relatively high Jaccard similarity.

4.4 DTC-SpMM runtime kernel optimizations
The DTC-SpMM runtime kernel scheme is diagrammed in
Figure 4, and the CUDA pseudo-code is in Alg. 2. Our DTC-
SpMM kernel adopts a tiling-based approach, encompassing
three primary steps during each iteration. ❶ FetchSpAsync
asynchronously copies the sparse tile of A needed for the

Algorithm 2 DTC-SpMM runtime kernel pseudo code
Input: Sparse Matrix𝐴, Matrix 𝐵
Output: Matrix𝐶
1: RowWindowId = blockIdx .x;
2: Start = A.RowWindowOffset [RowWindowId];
3: End = A.RowWindowOffset [RowWindowId + 1];
4: __shared__𝐴𝑇𝑖𝑙𝑒 [2] [16 × 8]; ⊲ Sparse buffers in SHEM.
5: __shared__𝐴𝑡𝑜𝐵𝑇𝑖𝑙𝑒 [2] [8]; ⊲ Index buffers in SHEM.
6: // Pre loop.
7: FetchSp(𝐴,𝐴𝑇𝑖𝑙𝑒,𝐴𝑡𝑜𝐵𝑇𝑖𝑙𝑒, 0);
8: // Main loop.
9: for 𝑖 ← 𝑆𝑡𝑎𝑟𝑡 + 1 to 𝐸𝑛𝑑 step 1 do
10: // Vectorized fetch current 𝐵 data to registers.
11: 𝐵𝑓 𝑟𝑎𝑔 = VFetchDense(𝐵,𝐴𝑡𝑜𝐵𝑇𝑖𝑙𝑒, 𝑖 − 1);
12: // Prefetch next A tile to SHEM with cp.async.
13: FetchSpAsync(𝐴,𝐴𝑇𝑖𝑙𝑒,𝐴𝑡𝑜𝐵𝑇𝑖𝑙𝑒, 𝑖);
14: // Transfer current A tile from SHEM to register.
15: 𝐴𝑓 𝑟𝑎𝑔 = ATlieToAReg(𝐴𝑇𝑖𝑙𝑒, 𝑖 − 1);
16: // Tensor Core computation with mma.
17: 𝐶𝑓 𝑟𝑎𝑔 = TCCompute(𝐴𝑓 𝑟𝑎𝑔, 𝐵𝑓 𝑟𝑎𝑔,𝐶𝑓 𝑟𝑎𝑔);
18: cp.async.wait_group(0); ⊲ Asynchronous transaction barrier.
19: end for
20: // Epilogue loop.
21: 𝐵𝑓 𝑟𝑎𝑔 = VFetchDense(𝐵,𝐴𝑡𝑜𝐵𝑇𝑖𝑙𝑒, 𝐸𝑛𝑑 − 1);
22: 𝐴𝑓 𝑟𝑎𝑔 = ATlieToAReg(𝐴𝑇𝑖𝑙𝑒, 𝐸𝑛𝑑 − 1);
23: 𝐶𝑓 𝑟𝑎𝑔 = mma(𝐴𝑓 𝑟𝑎𝑔, 𝐵𝑓 𝑟𝑎𝑔,𝐶𝑓 𝑟𝑎𝑔);
24: StoreCRemapping(𝐶,𝐶𝑓 𝑟𝑎𝑔); ⊲ Write𝐶𝑓 𝑟𝑎𝑔 to𝐶 with register remapping.

next iteration. ❷ VFetchDense vectorizes the loading of cor-
responding data from B into registers. ❸ TCCompute utilizes
ptx-levelmma instructions for Tensor Core computation. We
introduce three unique optimizations to enhance execution
efficiency, addressing the low utilization issue observed in
TCGNN-SpMM.

4.4.1 Shared-Memory bypassing. Due to the irregular
and compressed nature, reusing data tiles ofmatrix𝐵 through
shared memory becomes infeasible. As a result, there is re-
dundancy in storing 𝐵 tiles in shared memory, harming the
TC pipeline utilization. Thus, we bypass the shared memory
and directly store 𝐵 tiles to the register file.
Necessity of low-level PTXprogramming. TCGNN-SpMM
relies on the C-levelWMMA APIs. In TCGNN-SpMM, as il-
lustrated in Figure 7, warps execute LDG.32 (Load Global)
and STS (Store within Local or Shared Window) instruc-
tions to perform scattered fetch operations and store in
shared memory (indicated by the gray line). Subsequently,
the wmma::load_matrix_sync function is employed to load
tiles from shared memory into register fragments. However,
the wmma::load_matrix_sync function is designed specifi-
cally for loading tiles stored in a contiguous memory layout
with regular stride values. Therefore, it does not directly
support scattered fetch operations from global memory.
To bypass the use of shared memory, we use lower-level

PTX programming techniques. As depicted in the orange line
in Figure 7, in our proposed design, warps directly execute
LDG.128 (vectorized) instructions to retrieve data from the
appropriate positions in matrix 𝐵 and store it directly into
the register file. This approach eliminates the need for STS
instructions and the wmma::load_matrix_sync function.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Ruibo Fan, Wei Wang, and Xiaowen Chu

Figure 7. Instruction pipeline and data movement of
TCGNN-SpMM and DTC-SpMM.

Original register distribution. Threads within a warp
collectively hold operand matrices, and their distribution
across the 32 threadsmust bemanaged explicitly before using
the mma instruction (see Section 2.1). For TF32 precision,
we usemma.m16n8k4. Figure 8(a) illustrates the register
distribution.
Vectorized global memory accesses and register remap-
ping. In many workloads, such as GNNs, Matrix 𝐵 is typi-
cally stored in the row-major order. However, the matrix
𝐵𝑓 𝑟𝑎𝑔 required for the mma instruction is stored in the
column-major order. As shown in Figure 8(b), there are two
thread arrangements in the VFetchDense stage that can en-
sure the column-major distribution of elements in 𝐵𝑓 𝑟𝑎𝑔:
strided-access and sequential-access.
With strided-access, threads directly access the corre-

sponding elements in 𝐵 according to the column-major dis-
tribution. In this case, neighboring threads access scattered
memory addresses. On the other hand, sequential-access
ensures that neighboring threads access adjacent addresses
within a row, but it requires an additional warp-transpose op-
eration (__shfl__sync) to exchange elements among threads
to satisfy the column-major distribution [36]. In our im-
plementation, we adopt strided-access. We performmicro-
benchmarking [25] on RTX4090 for global memory ac-
cesses and instruction latency. Results show that both strided
and sequential access achieve coalesced memory accesses
[42]. The granularity of global memory access (1 sector) on
RTX4090 remains 32 bytes (8 float elements). In both strided-
or sequential-access, 4 sectors are required. The latency of
the HMMA instruction and __shfl__sync is 16.0 and 10.7
cycles, respectively. Therefore, the online overhead intro-
duced by warp-transpose in sequential access is significant.

To enable vectorized instructions (e.g., float4) during 𝐵

fetching, we have devised a register remapping strategy,
illustrated in Figure 8(c). Although vectorized accesses en-
hance bandwidth utilization, integrating them with mma
instructions without using shared memory poses challenges.

Figure 8. (a) The original register distribution of
mma.m16n8k4, (b) Two thread arrangements to scattered
fetch 𝐵, and (c) Register remapping in DTC-SpMM kernel
with vectorized memory accesses to 𝐵. 0-31 are lane IDs of
threads in a warp.

For instance, in the case of float4, thread 0 would obtain four
consecutive values, contrary to the original distribution de-
picted in Figure 8(a), where thread 0, 4, 8, and 12 hold these
four consecutive values. To reconcile this distribution dis-
crepancy without introducing online overhead, we preserve
the distribution of 𝐵𝑓 𝑟𝑎𝑔 and perform a one-time remapping
when writing 𝐶𝑓 𝑟𝑎𝑔 back to 𝐶 at the end of the loop.

4.4.2 Sparse double buffering. We devise a pipeline ar-
rangement, as illustrated in Figure 9, to overlap memory and
TC pipelines, thereby further enhancing TC pipeline utiliza-
tion. Due to the absence of support for asynchronous copying
from global memory to registers in GPU architectures up
to Ada Lovelace, VFetchDense (i.e., fetching B) cannot be
prefetched (due to shared-memory bypassing). Hence, we
mitigate the overhead of FetchSparse by overlapping TC com-
putation with the subsequent FetchSparse phase (i.e., loading
sparse A tiles) through asynchronous prefetching. To im-
plement this arrangement, we design two buffers in shared
memory to store sparse A tiles, and we use the asynchronous
ptx instruction, cp.async to implement FetchSparseAsync.

4.4.3 Index-precomputing. We aim to reduce the num-
ber of IMAD instructions involved in coordinate calculations
during the FetchSparse and VFetchDense stages. By precom-
puting the indices as much as possible in advance, we can
eliminate the need for extensive computations during run-
time, thus reducing the overall number of instructions ex-
ecuted. This technique ensures that a larger portion of the
executed instructions is dedicated to HMMA (TC instruc-
tions), leading to increased pipeline utilization.

DTC-SpMM: Accelerating General Sparse Matrix Multiplication with Tensor Cores ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 9. Pipeline arrangements with sparse double buffer-
ing. We prefetch sparse A tile in shared memory buffers and
overlap FetchSparseAsync with TC computation.

4.5 Simulation-based Selector design
As highlighted in Obs.4, load imbalance remains a signifi-
cant issue. To address this challenge, we propose an input-
adaptive simulation-based Selector.

4.5.1 Balanced DTC-SpMM runtime kernel. Building
upon the runtime kernel discussed in Section 4.4, we devise
a corresponding balanced runtime version. Our design incor-
porates a strict-balance strategy, which aims to achieve an
evenly distributed workload among thread blocks by evenly
allocating TC blocks. This strategy ensures that each SM
receives a similar number of computation tasks. Figure 10
illustrates the comparison between the original workload
distribution and that under our strict-balance strategy. With-
out our strategy, each thread block is responsible for a single
row window and all the TC blocks within it, only writing the
final accumulation results to the global memory. In contrast,
with the strict-balance strategy, TC blocks assigned to a sin-
gle thread block (32 in our implementation) can originate
from different row windows, resulting in a complete balance
of computational workload. However, it introduces atomic
operations and additional global memory write operations,
leading to online overhead.

4.5.2 Simulation-based Selector. The Selector takes into
account various factors, including the properties of the input
sparse matrix and the underlying hardware architecture, to
determine the optimal utilization of the balanced runtime
kernel. We draw insights from the traditional Multiway
Number Partitioning (MNP) problem, which is known to
be NP-hard. The MNP problem involves partitioning a set of
jobs among multiple processors to minimize themakespan,
representing the finish time of the last job.

In the context of our work, we refine this concept by char-
acterizing the makespan as the maximum cumulative sum of
TC blocks. To effectively estimate the makespan, we initiate
our analysis by investigating the thread block (TB) schedul-
ing policy of the RTX4090. As the TB scheduler employed by
NVIDIA is proprietary and lacks publicly available informa-
tion, the specific policy remains undisclosed and presents an
intriguing area for exploration. Similar to previous studies

Figure 10. Diagram of (a) Strict-balance strategy, (b) thread
block (TB) scheduling policy model of RTX4090, and (c)
makespan calculation on one SM.

[11, 24, 35], we employ an acknowledged scheduling pol-
icy model, which is considered to be effective in modeling
NVIDIA GPUs’ TB scheduling strategy, expressed as follows:

𝑠𝑚_𝑖𝑑𝑥 = 2 (𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥 mod 64) + 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥
64

mod 2. (1)

With this scheduling policy model, we can compute the
makespan without executing the actual DTC-SpMM ker-
nel. Figure 10 provides an example of makespan calculation
on a single SM without the strict-balance strategy. The occu-
pancy of the DTC-SpMM kernel on RTX4090 is 6, meaning
that one SM can run 6 thread blocks concurrently. The first
6 thread blocks are scheduled on this SM, with each block’s
length representing the number of TC blocks in its corre-
sponding row window. As one thread block completes its
computation (e.g., block 128), the next block (e.g., block 768)
is scheduled. The final makespan is determined by taking
the maximum makespan among all 128 SMs. It is worth not-
ing that the makespan with the strict-balance strategy can
be calculated as 𝑁𝑢𝑚𝑇𝐶𝐵𝑙𝑜𝑐𝑘𝑠/(128 × 6). The Selector is
based on a crucial parameter, approximation ratio (AR), cal-
culated as the makespan without the strict-balance strategy
normalized by that with the strategy. The AR measures the
improvement achieved by the strict-balance strategy in re-
ducing the makespan. We have chosen a threshold value of
1.2 for the AR in the Selector, based on offline experimental
results with 1000 generated sparse matrices. These matrices
have uniformly distributed nonzeros, resulting in a naturally
balanced workload. Our observations show a 22.4% perfor-
mance degradation when using the strict-balance strategy.
Thus, the threshold of 1.2 is set accordingly. While the cho-
sen threshold value may not be universally optimal, we find
that it works effectively with our set of matrices. For every
input sparse matrix, we compute the AR; and if the calculated
AR exceeds 1.2, the balanced-DTC-SpMM runtime kernel is
launched.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Ruibo Fan, Wei Wang, and Xiaowen Chu

5 Performance Evaluation

Baselines. We compareDTC-SpMMwith❶ themostwidely
used cuSPARSESpMM [37] from the vendor’s cuSPARSE
library (v12.1); The algorithm is configured at CUSPARSE
_SPMM_ALG_DEFAULT, and the sparse format is CUSPARSE
_FORMAT_CSR; ❷ TCGNN-SpMM [57], the state-of-the-art
implementation that introduces TF32 TCs to general SpMM;
❸ Sputnik [11], a well-designed sparse library for sparsity in
DL; ❹ SparseTIR [63], a recent sparse tensor compiler with
TVM, targeting GNNs and sparse DNNs.

We also compare with recent TC-based SpMM implemen-
tations, including ❺ Block-SpMM from cuSPARSE (12.1)
which leverages TF32 TCs and targets structured SpMM; The
algorithm is configured asCUSPARSE_SPMM_ALG_DEFAULT,
and the sparse format is CUSPARSE_FORMAT_BLOCKED
_ELL; ❻ VectorSparse [4], which leverages fine-grained 1-D
vector sparsity; ❼ Flash-LLM [59] and ❽ SparTA [66] that
targets unstructured sparse weight matrices in DL.
Datasets. In addition to the 8 representative real-world
matrices detailed in Table 1, our testing extends to matrices
sourced from the SuiteSparse collection [32]—a widely ref-
erenced compilation of sparse matrix benchmarks derived
from diverse applications. We specifically consider matrices
with at least one million non-zeros. Due to Sputnik’s indices
computation relying on int32, certain matrices surpass the
limit, leading to a segmentation fault. Furthermore, TCGNN-
SpMM cannot handle non-square matrices. These matrices
are consequently excluded, resulting in a final set of 414
matrices. The comprehensive information of the matrices is
detailed in [19].
Environments. We test on two recent Nvidia GPU archi-
tectures: RTX4090 (Ada Lovelace with Compute Capability
8.9 and 24 GB of global memory) and RTX3090 (Ampere; 8.6;
24 GB). We use NVCC from CUDA 12.1 to compile the codes.
All experiments are executed 1000 times, and the average
results are reported.

5.1 Overall performance comparison
We measure the average performance with different 𝑁 set-
tings (the number of columns of matrix 𝐵), including 128,
256, and 512.

Figure 11 depicts the measured performance on RTX4090.
The speedup values are normalized to cuSPARSE-SpMM, rep-
resented by the red dashed line. Our DTC-SpMMachieves the
highest speedup on all 8 matrices, and the relative speedup
is even higher (up to 3.29×) on Type II matrices with higher
computational complexity. While TCGNN-SpMM is well-
optimized for Type I matrices (with small 𝐴𝑣𝑔𝑅𝑜𝑤𝐿), it fails
to achieve speedups on Type II matrices characterized by
long rows. Table 3 summarizes the geometric mean speedups
we achieved over baseline methods across the SuiteSparse
matrices. DTC-SpMM achieves significant speedups for most

matrices and experiences slowdown only for a small fraction
of the matrices. On RTX4090, DTC-SpMM achieves speedups
over TCGNN-SpMM across all matrices, and for cuSPARSE,
it achieves over 1.5× speedups on 79.5% of the matrices.
Compared to SparseTIR and Sputnik, DTC-SpMM also at-
tains speedups of 1.57× and 1.46×, respectively. On RTX3090,
the results exhibit a similar trend, but overall acceleration is
slightly lower than on the 4090, and DTC-SpMM experiences
a slowdown on a relatively higher proportion of matrices.

Table 3. Summary of performance comparison on two GPUs.
The percentage represents the portion of matrices out of the
total 414 from SuiteSparse.

GPU vs
cuSPARSE

vs
TCGNN

vs
SparseTIR

vs
Sputnik

RTX
4090

speedup

>1.5x 79.47% 79.71% 47.58% 38.65%
1.0-1.5x 16.43% 20.29% 47.10% 58.45%
0.9-1.0x 2.17% 0.00% 4.35% 1.21%
0.5-0.9x 1.93% 0.00% 0.97% 1.69%

Geomean speedup 2.16x 3.25x 1.57x 1.46x

RTX
3090

speedup

>1.5x 77.54% 91.55% 44.69% 19.81%
1.0-1.5x 18.36% 8.45% 28.74% 68.12%
0.9-1.0x 2.66% 0.00% 20.77% 8.70%
0.5-0.9x 1.45% 0.00% 5.80% 3.38%

Geomean speedup 1.98x 3.25x 1.48x 1.29x

5.2 Comparison with SpMM using TCs

Comparison with methods targeting structured spar-
sity. Figure 12 illustrates the speedup DTC-SpMM achieved
over Block-SpMM and VectorSparse. In Block-SpMM, sparse
matrices are organized in block-wise tiles and stored in the
Blocked-Ellpack (BELL) format. In VectorSparse, matrices
are organized in vector-wise tiles with Column Vector Sparse
Encoding (CVSE). We initially transform matrices into BELL
format with different block sizes (32 and 64) and CVSE for-
mat with different vector lengths (4 and 8). Across all matri-
ces, DTC-SpMM demonstrates significant advantages (i.e.,
1.14×-23.51× over Block-SpMM and 1.89×-4.95× over Vec-
torSparse). Additionally, the necessity to pad and fill all rows
of blocks in the BELL format can lead to out-of-memory
(OOM) issues when applied to large-scale matrices. Thus,
the state-of-the-art TC-based structured SpMM struggles to
efficiently handle the highly unstructured sparse matrices in
GNNs and scientific computing which we focused on.
Comparisonwithmethods targetingunstructuredweight
sparsity. Table 4 shows the execution time of Flash-LLM,
SparTA, and DTC-SpMM. Flash-LLM performs format con-
version on matrices stored in uncompressed form (dense
storage), making it prone to OOM issues when dealing with
large sparse matrices like YeastH. SparTA utilizes the SpMM
kernel from cuSPARSElt to leverage sparse TCs but is lim-
ited to matrices with row and column counts not exceeding
50,000. On larger datasets like reddit and protein, DTC-SpMM
significantly outperforms Flash-LLM (by more than 8 times).

DTC-SpMM: Accelerating General Sparse Matrix Multiplication with Tensor Cores ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 11. Performance comparison on RTX4090. (a) Speedups on 8 representative matrices (normalized to cuSPARSE-SpMM
(red dashed line)). (b) Measured throughputs on 414 matrices from SuiteSparse (sorted by GFLOPS of DTC-SpMM). SuiteSparse*
shows the geomean speedups across SuiteSparse matrices.

Table 4. The execution time of Flash-LLM, SparTA, and DTC-
SpMM on RTX4090 with 𝑁 = 128 (unit: ms). SparTA reports
“Not Supported” and Flash-LLM reports “OOM” on other
not-shown matrices.

Dataset
Flash-LLM
(v1)

Flash-LLM
(v2) SparTA Ours

ddi 0.070 0.113 0.049 0.068
protein 30.006 30.006 Not Supported 3.70
reddit 90.210 90.212 Not Supported 5.95

SparTA and Flash-LLM excel in handling small weight ma-
trices typical in DL, with thousands to tens of thousands
of rows and 60%-90% sparsity. However, due to the lack of
condensing design leading to lower TC block density, their
performance is hindered on larger and sparser matrices in
GNNs and SC scenarios, characterized by millions of rows
and over 95% sparsity.

5.3 Breakdown study

Effectiveness of ME-TCF storage format. As mentioned
in Obs.1, the TCF format in TCGNN-SpMM stores twice
the number of column coordinates of non-zero elements
compared to CSR, resulting in greater storage consumption
(168.41%more on average). In contrast, our designedME-TCF
format utilizes 8-bit low-precision integers to store the col-
umn coordinates of non-zero elements, effectively reducing
memory complexity. For the 8 original matrices, the storage
space with ME-TCF is slightly lower than that of the CSR
(6.42% less on average). However, after applying the TCU-
Cache-Aware reordering, the number of TC blocks decreases,
resulting in reduced space requirements for SparseAtoB in
ME-TCF, making it more memory-efficient than the CSR
format (30.10% less on average). As reordering methods gain
further attention in sparse computing, the memory com-
plexity of ME-TCF is expected to decrease further, while the
memory complexity of CSR remains unchanged.
Effectiveness of TCU-Cache-Aware reordering. We first
evaluate the detailed performance improvement provided
by TCU-Cache-Aware reordering. The results are shown

Figure 12. Speedups of DTC-SpMM over Block-SpMM and
VectorSparse on RTX4090 with 𝑁 = 128.

in Figure 13(b). With the reordered matrices, DTC-SpMM
demonstrates average performance gains of 23.23%. Note
that the improvement becomes more pronounced when the
average row length is larger. On the other hand, both cuS-
PARSESpMM and DTC-SpMM benefit from TCU-Cache-
Aware reordering, with DTC-SpMM achieving greater per-
formance gains. This validates that TCU-Cache-Aware re-
ordering is more effective and specifically designed for intro-
ducing TCs. The performance gains primarily come from the

Figure 13. Comparison on (a)MeanNnzTC, (b) detailed break-
down throughput improvement, and (c) L2 cache hit rate.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Ruibo Fan, Wei Wang, and Xiaowen Chu

increased density of TC blocks (MeanNnzTC). We compare
our approachwith three commonly used reorderingmethods,
including graph-partition-based METIS [28], modularity-
based Louvain [46], and LSH64 [23]. Figure 13(a) presents
the changes in MeanNnzTC. Compared to SGT from TC-
GNN, our approach largely improves MeanNnzTC (1.13×
and 1.72× for Type I and II, respectively), surpassing the im-
provements brought by METIS, Louvain, and LSH64. Figure
13(c) shows the L2 cache hit rate improvement brought by
our two-hierarchy design. Only with TCU-Aware hierarchy,
the hit rate is lower than LSH64 (1.36% lower on average).
Cache-Aware further improves L2 cache hit rate and sur-
passes LSH64 (0.01% higher on average).
Effectiveness of runtime kernel optimizations. In Figure
14, the TC pipeline utilization and the ratio of executed IMAD
to HMMA instructions (#IMAD/#HMMA) are illustrated. For
Type I and II matrices, DTC-SpMM demonstrates TC pipeline
utilization 11.35% and 1760.25% higher than TCGNN-SpMM,
respectively, while exhibiting a #IMAD/#HMMA ratio 38.39%
and 89.37% lower, respectively. Ablation studies reveal that
basic DTC-SpMM with only the ME-TCF format achieves
6.10% and 921.24% higher TC pipeline utilization than TCGNN-
SpMM. Further ablation experiments demonstrate that SMB
increases pipeline utilization by 12.16%, IP is effective, partic-
ularly for matrices with large average row lengths, SDB
enhances pipeline utilization by 4.83%, and VFD further
boosts utilization by 4.99%. Consequently, the detailed abla-
tion study confirms the effectiveness of individual runtime
kernel optimizations as well as their combined impact.

Figure 14. Comparison on TC pipeline utilization and exe-
cuted instructions. Base: Basic DTC-SpMMwith ME-TCF for-
mat and no optimizations; SMB: Shared-memory-bypassing;
IP: index-precomputing; SDB: sparse double buffering; VFD:
VectorizedFetchDense.

Effectiveness of workload balance design. Figure 15(b) il-
lustrates theworkload distribution among 128 SMs in RTX4090
of DTC-SpMM-base (i.e., without balancing design) and DTC-
SpMM-balanced on reddit and ddi. It can be observed that the
strict-balance strategy effectively mitigates the previously
severe workload imbalance. Furthermore, when applying the
strict-balance strategy, DTC-SpMM demonstrates remark-
able improvements of 15.82% and 54.31% on reddit and ddi
respectively, as shown in Figure 15. Hence, the strict-balance

strategy proves to be beneficial for addressing heavily imbal-
anced workloads.
For Type I matrices, represented by YeastH, where load

imbalance is less pronounced due to limited TC blocks in a
row window resulting from small row length, the benefits of
strict-balance are not as prominent. Our proposed Selector
can accurately differentiate between these scenarios and
select appropriate load distribution strategies for different
input matrices.

Figure 15. Effectiveness of workload balancing design. (a)
Enhancement in throughput due to the balancing design
on the reddit and ddi datasets. (b) Changes in workload dis-
tribution with and without workload balancing design. We
collect the relative execution and idle time of all 128 SMs on
RTX4090.

5.4 Case study: End-to-end GNN training
The Graph Convolutional Neural Network (GCN) model [31]
is one of the most widely used GNN models, consisting of
several GraphConv layers. The GraphConv layer performs
the following computation:

𝐻𝑙+1 = 𝜎 [(𝐴 × 𝐻𝑙) ×𝑤𝑙 + 𝑏𝑙] , (2)

where 𝜎 represents the activation function; 𝐴 denotes the
adjacency matrix; 𝐻 stands for the feature matrix; 𝑤 indi-
cates the weight matrix; and 𝑏 represents the bias term. The
operation 𝐴 × 𝐻 corresponds to a typical SpMM operation.

Leveraging PyTorch [45] and its CUDA Extension feature,
we implement a dual-layer GCN model using DTC-SpMM,
denoted as DTC-GCN. We evaluate the end-to-end training
time of the model across four graph datasets. In addition
to YeastH and protein, which are already used for analysis
in previous sections, we expand our evaluation to include
the Illinois Graph Benchmark (IGB) dataset [30]. IGB is a
recently released and valuable tool for GNN research, of-
fering a variety of graph structures, including both homo-
geneous and heterogeneous graphs, at different scales. We
specifically choose the homogeneous graph datasets IGB-
tiny and IGB-small [30]. We compare against three popu-
lar GNN training frameworks, Deep Graph Library (DGL)
[53], Pytorch-Geometric (PyG) [10] and TC-GNN [57]. For

DTC-SpMM: Accelerating General Sparse Matrix Multiplication with Tensor Cores ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Figure 16. End-to-end training time of GCN models (200
epochs). We excluded the format conversion time for TC-
GNN, as it does not utilize GPU acceleration, resulting in
relatively higher times.

PyG versions above 1.6.0, GNN training can be performed
in two modes: “Gather-Scatter” and “SparseTensor”. The
“SparseTensor”mode leverages SpMMkernels from the torch-
sparse library, resulting in lowermemory footprint and faster
execution times. The hidden layer dimensions are config-
ured at 128 and 256. Figure 16 shows the training time of
DTC-GCN, which includes the format conversion time. On
RTX4090, DTC-GCN achieves 1.26×, 1.91× and 2.21× geo-
metric mean speedups over DGL, PyG (w/ SparseTensor) and
TC-GNN, respectively. The geometric mean speedups are
1.22×, 1.81×, and 2.69× on RTX3090. When excluding the
results on the protein dataset (due to the weak performance
of TC-GNN’s SpMM kernel), DTC-GCN achieves geomet-
ric mean speedups of 1.16× and 1.19× over TC-GNN on
RTX4090 and RTX3090, respectively.

6 Overhead and Limitation
We assess the potential overheads in the design of DTC-
SpMM using two representative matrices (YeastH and pro-
tein) as examples. ❶ Format Conversion Overhead: Con-
verting matrices to ME-TCF from CSR format may introduce
overhead. To mitigate this, we develop GPU kernels to ac-
celerate this process. The conversion overhead is 1.48× and
14.50× of a single SpMM execution (𝑁 = 128), respectively.
Using highly-optimized GPU kernels, our format conver-
sion outperforms TC-GNN (which lacks GPU acceleration)
by 101.00× and 72.21×, respectively. ❷ Reordering Over-
head (Optional): TCU-Cache-Aware reordering, based on
[23, 26], achieves significant improvements but involves com-
putationally expensive Minhash and Jaccard calculations. We
compute them with GPU kernels from MinHashCuda and
[9], along with a batching technique to enhance GPU utiliza-
tion. These efforts reduce reordering time from hours [23]
to minutes. Reordering can be an offline preprocessing step,

and DTC-SpMM achieves significant speedups even without
it (Figure 11). ❸ Selector Overhead: The Selector execu-
tion time accounts for 42.0% and 24.8% of a single SpMM
execution time, respectively.

Many real-world applications require iterative SpMM ex-
ecution [5, 14, 58], where the sparse matrix 𝐴 remains un-
changed for thousands of SpMM operations. When applied
to these scenarios, both the format conversion and Selector
overhead of DTC-SpMM are negligible. Besides, for sparse
computing libraries (e.g., DGL [53] and PyG [10]) and sparse
matrix collections (e.g., IGB [30], OGB [20], SNAP [34], and
SuiteSparse [32]), all three overhead sources can be effec-
tively mitigated, enabling DTC-SpMM to achieve good accel-
eration. These libraries can perform reordering and format
conversion once on the stored sparse matrices, providing
significant performance benefits to numerous applications
built on them, such as sparse matrix factorization [27] and
GNN training and hyper-parameter tuning [47, 64]. However,
due to format conversion, DTC-SpMM may not be suitable
for a small number of scenarios with varying input sparse
matrices in each SpMM execution (e.g., graph sampling in
GNN [13]). Systems with lighter overhead, like cuSPARSE
[37] and HP-SpMM [8], are more suitable for such cases.

7 Conclusion
In this paper, we have examined the state-of-the-art tech-
niques to optimize general SpMM with TCs and identified
four key performance gaps. To close these gaps, we have
proposed DTC-SpMM, a novel approach with systematic op-
timizations tailored to harness TCs for accelerating general
SpMM. These optimizations encompass both high-level al-
gorithm design and low-level instruction pipeline and mem-
ory access optimizations. Extensive experiments on modern
GPUs have demonstrated that DTC-SpMM achieves remark-
able speedups compared to both state-of-the-art Tensor-Core
SpMM and the widely-used CUDA-core SpMM. While ini-
tially designed for NVIDIA GPUs and targeting TF32 pre-
cision, our insights and optimizations can be extended to
support other precisions, facilitating general SpMM acceler-
ation on parallel devices equipped with matrix computing
units.

Acknowledgments
We extend our thanks to the anonymous reviewers and our
shepherd, Vikram Sharma Mailthody, for their valuable feed-
back and support. This work was partially supported by
National Natural Science Foundation of China under Grant
No. 62272122, a Hong Kong RIF grant under Grant No. R6021-
20, and Hong Kong CRF grants under Grant No. C2004-21G
and C7004-22G.

https://github.com/rusty1s/pytorch_sparse
https://github.com/rusty1s/pytorch_sparse
https://github.com/src-d/minhashcuda

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Ruibo Fan, Wei Wang, and Xiaowen Chu

References
[1] Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and

Eduard Alarcón. Computing graph neural networks: A survey from
algorithms to accelerators. ACMComputing Surveys (CSUR), 54(9):1–38,
2021.

[2] AMD. AOCL: AMD optimizing CPU libraries, 2020. Accessed on July
26, 2023.

[3] Roberto L Castro, Diego Andrade, and Basilio B Fraguela. Probing
the efficacy of hardware-aware weight pruning to optimize the spmm
routine on ampere gpus. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, pages 135–147,
2022.

[4] Zhaodong Chen, Zheng Qu, Liu Liu, Yufei Ding, and Yuan Xie. Ef-
ficient tensor core-based gpu kernels for structured sparsity under
reduced precision. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages
1–14, 2021.

[5] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Gen-
erating long sequences with sparse transformers. arXiv preprint
arXiv:1904.10509, 2019.

[6] Guohao Dai, Guyue Huang, Shang Yang, Zhongming Yu, Hengrui
Zhang, Yufei Ding, Yuan Xie, Huazhong Yang, and Yu Wang. Heuristic
adaptability to input dynamics for spmm on gpus. In Proceedings of the
59th ACM/IEEE Design Automation Conference, pages 595–600, 2022.

[7] Ming Dun, Xu Zhang, Huawei Cao, Yuan Zhang, Junying Huang,
and Xiaochun Ye. Adaptive sparse deep neural network inference on
resource-constrained cost-efficient gpus. In 2023 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2023.

[8] Ruibo Fan, Wei Wang, and Xiaowen Chu. Fast sparse gpu kernels for
accelerated training of graph neural networks. In 2023 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages
501–511. IEEE, 2023.

[9] Alex Fender, Brad Rees, and Joe Eaton. Rapids cugraph. In Massive
Graph Analytics, pages 483–493. Chapman and Hall/CRC, 2022.

[10] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learn-
ing with PyTorch Geometric, May 2019.

[11] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu
kernels for deep learning. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–14.
IEEE, 2020.

[12] Scott Gray, Alec Radford, and Diederik P Kingma. Block-sparse gpu
kernels, 2017.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representa-
tion learning on large graphs. Advances in neural information process-
ing systems, 30, 2017.

[14] Mohammed Heyouni and Azeddine Essai. Matrix krylov subspace
methods for linear systems with multiple right-hand sides. Numerical
Algorithms, 40:137–156, 2005.

[15] Mert Hidayetoğlu, Carl Pearson, Vikram Sharma Mailthody, Eiman
Ebrahimi, Jinjun Xiong, Rakesh Nagi, and Wen-mei Hwu. At-scale
sparse deep neural network inference with efficient gpu implementa-
tion. In 2020 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7. IEEE, 2020.

[16] Mert Hidayetoglu, Carl Pearson, Vikram Sharma Mailthody, Eiman
Ebrahimi, Jinjun Xiong, Rakesh Nagi, and Wen-mei W Hwu. Efficient
inference on gpus for the sparse deep neural network graph challenge
2020. CoRR, 2020.

[17] Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay,
Jinsung Kim, Süreyya Emre Kurt, Israt Nisa, Shivani Sabhlok, Ümit V
Çatalyürek, Srinivasan Parthasarathy, and P Sadayappan. Efficient
sparse-matrix multi-vector product on gpus. In Proceedings of the 27th
International Symposium on High-Performance Parallel and Distributed
Computing, pages 66–79, 2018.

[18] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh,
and P Sadayappan. Adaptive sparse tiling for sparse matrix multipli-
cation. In Proceedings of the 24th Symposium on Principles and Practice
of Parallel Programming, pages 300–314, 2019.

[19] HPMLL. DTC-SpMM_ASPLOS24. https://github.com/HPMLL/DTC-
SpMM_ASPLOS24.git, 2024.

[20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu
Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

[21] Yuwei Hu, Zihao Ye, Minjie Wang, Jiali Yu, Da Zheng, Mu Li, Zheng
Zhang, Zhiru Zhang, and YidaWang. Featgraph: A flexible and efficient
backend for graph neural network systems. In SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–13. IEEE, 2020.

[22] Guyue Huang, Guohao Dai, Yu Wang, and Huazhong Yang. Ge-
spmm: General-purpose sparse matrix-matrix multiplication on gpus
for graph neural networks. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12.
IEEE, 2020.

[23] Kezhao Huang, Jidong Zhai, Zhen Zheng, Youngmin Yi, and Xipeng
Shen. Understanding and bridging the gaps in current gnn perfor-
mance optimizations. In Proceedings of the 26th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, pages 119–132,
2021.

[24] Muhammad Huzaifa, Johnathan Alsop, Abdulrahman Mahmoud, Gior-
dano Salvador, Matthew D Sinclair, and Sarita V Adve. Inter-kernel
reuse-aware thread block scheduling. ACM Transactions on Architec-
ture and Code Optimization (TACO), 17(3):1–27, 2020.

[25] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza.
Dissecting the nvidia volta gpu architecture via microbenchmarking.
arXiv preprint arXiv:1804.06826, 2018.

[26] Peng Jiang, Changwan Hong, and Gagan Agrawal. A novel data
transformation and execution strategy for accelerating sparse matrix
multiplication on gpus. In Proceedings of the 25th ACM SIGPLAN
symposium on principles and practice of parallel programming, pages
376–388, 2020.

[27] Ramakrishnan Kannan, Grey Ballard, and Haesun Park. A high-
performance parallel algorithm for nonnegative matrix factorization.
ACM SIGPLAN Notices, 51(8):1–11, 2016.

[28] George Karypis and Vipin Kumar. Metis: A software package for
partitioning unstructured graphs, partitioning meshes, and computing
fill-reducing orderings of sparse matrices. 1997.

[29] Jeremy Kepner, Simon Alford, Vijay Gadepally, Michael Jones, Lauren
Milechin, Ryan Robinett, and Sid Samsi. Sparse deep neural network
graph challenge. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2019.

[30] Arpandeep Khatua, Vikram Sharma Mailthody, Bhagyashree Taleka,
Tengfei Ma, Xiang Song, and Wen-mei Hwu. Igb: Addressing the gaps
in labeling, features, heterogeneity, and size of public graph datasets
for deep learning research. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 4284–4295,
2023.

[31] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[32] Scott P Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David,
Timothy A Davis, Matthew Henderson, Yifan Hu, and Read Sandstrom.
The suitesparse matrix collection website interface. Journal of Open
Source Software, 4(35):1244, 2019.

[33] Mariia Krainiuk, Mehdi Goli, and Vincent R Pascuzzi. oneapi open-
source math library interface. In 2021 International Workshop on Per-
formance, Portability and Productivity in HPC (P3HPC), pages 22–32.
IEEE, 2021.

https://github.com/HPMLL/DTC-SpMM_ASPLOS24.git
https://github.com/HPMLL/DTC-SpMM_ASPLOS24.git

DTC-SpMM: Accelerating General Sparse Matrix Multiplication with Tensor Cores ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[34] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analy-
sis and graph-mining library. ACM Transactions on Intelligent Systems
and Technology (TIST), 8(1):1–20, 2016.

[35] Ang Li, Shuaiwen Leon Song, Weifeng Liu, Xu Liu, Akash Kumar, and
Henk Corporaal. Locality-aware cta clustering for modern gpus. ACM
SIGARCH Computer Architecture News, 45(1):297–311, 2017.

[36] Shigang Li, Kazuki Osawa, and Torsten Hoefler. Efficient quantized
sparse matrix operations on tensor cores. In SC22: International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
pages 1–15. IEEE, 2022.

[37] Maxim Naumov, L Chien, Philippe Vandermersch, and Ujval Kapasi.
Cusparse library. In GPU Technology Conference, 2010.

[38] NVIDIA. NVIDIA volta gpu architecture whitepaper.
https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf, 2017. Accessed on July 27, 2023.

[39] NVIDIA. NVIDIA ampere GA102 GPU architecture whitepa-
per. https://images.nvidia.com/aem-dam/en-zz/Solutions/data-
center/nvidia-ampere-architecture-whitepaper.pdf, 2020. Accessed
on July 27, 2023.

[40] NVIDIA. NVIDIA ampere GA102 GPU architecture whitepa-
per. https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-
gpu-architecture-whitepaper-v2.pdf, 2020. Accessed on July 27, 2023.

[41] NVIDIA. NVIDIA ada gpu architecture whitepaper. https:
//images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-
gpu-architecture.pdf, 2023. Accessed on July 27, 2023.

[42] NVIDIA. NVIDIA CUDA C Programming Guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html, 2023. Accessed on
July 5, 2023.

[43] NVIDIA. PTX ISA: CUDA Toolkit documentation, 2023. Accessed on
July 27, 2023.

[44] NVIDIA. Accelerating matrix multiplication with block-sparse
format and NVIDIA tensor cores. https://developer.nvidia.com/blog/
accelerating-matrix-multiplication-with-block-sparse-format-and-
nvidia-tensor-cores/, Publication date not provided. Accessed on July
27, 2023.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information processing sys-
tems, 32, 2019.

[46] Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A Gunnels.
Scalable community detection with the louvain algorithm. In 2015
IEEE International Parallel and Distributed Processing Symposium, pages
28–37. IEEE, 2015.

[47] Min Shi, Yufei Tang, Xingquan Zhu, Yu Huang, David Wilson, Yuan
Zhuang, and Jianxun Liu. Genetic-gnn: Evolutionary architec-
ture search for graph neural networks. Knowledge-Based Systems,
247:108752, 2022.

[48] Wei Sun, Ang Li, Tong Geng, Sander Stuijk, and Henk Corporaal.
Dissecting tensor cores via microbenchmarks: Latency, throughput
and numeric behaviors. IEEE Transactions on Parallel and Distributed
Systems, 34(1):246–261, 2022.

[49] Yufei Sun, Long Zheng, Qinggang Wang, Xiangyu Ye, Yu Huang,
Pengcheng Yao, Xiaofei Liao, and Hai Jin. Accelerating sparse deep
neural network inference using gpu tensor cores. In 2022 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE,
2022.

[50] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient
transformers: A survey. ACM Comput. Surv., 55(6), dec 2022.

[51] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket Shivam, Honghao
Lu, Ethan Yan, Jack Kosaian, Mark Hoemmen, Haicheng Wu, Andrew
Kerr, Matt Nicely, Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr
Majcher, Paul Springer, Markus Hohnerbach, Jin Wang, and Manish
Gupta. CUTLASS, January 2023.

[52] F Vazquez, EM Garzon, and JJ Fernandez. A matrix approach to to-
mographic reconstruction and its implementation on gpus. Journal of
Structural Biology, 170(1):146–151, 2010.

[53] Minjie Yu Wang. Deep graph library: Towards efficient and scalable
deep learning on graphs. In ICLR workshop on representation learning
on graphs and manifolds, 2019.

[54] Yang Wang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and
Jingwen Leng. Dual-side sparse tensor core. In 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architecture (ISCA), pages
1083–1095. IEEE, 2021.

[55] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan
Xie, and Yufei Ding. GNNAdvisor: An adaptive and efficient runtime
system for GNN acceleration on GPUs. In 15th USENIX symposium on
operating systems design and implementation (OSDI 21), pages 515–531,
2021.

[56] Yuke Wang, Boyuan Feng, Zheng Wang, Tong Geng, Kevin Barker,
Ang Li, and Yufei Ding. {MGG}: Accelerating graph neural networks
with {Fine-Grained}{Intra-Kernel}{Communication-Computation}
pipelining on {Multi-GPU} platforms. In 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), pages
779–795, 2023.

[57] Yuke Wang, Boyuan Feng, Zheng Wang, Guyue Huang, and Yufei
Ding. TC-GNN: Bridging sparse GNN computation and dense tensor
cores on GPUs. In 2023 USENIX Annual Technical Conference (USENIX
ATC 23), pages 149–164, 2023.

[58] Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. Thun-
dersvm: A fast svm library on gpus and cpus. The Journal of Machine
Learning Research, 19(1):797–801, 2018.

[59] Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou,
Xiafei Qiu, Yong Li, Wei Lin, and Shuaiwen Leon Song. Flash-llm:
Enabling cost-effective and highly-efficient large generative model
inference with unstructured sparsity. arXiv preprint arXiv:2309.10285,
2023.

[60] Da Yan, Wei Wang, and Xiaowen Chu. Demystifying tensor cores to
optimize half-precision matrix multiply. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 634–643.
IEEE, 2020.

[61] Da Yan, Wei Wang, and Xiaowen Chu. Optimizing batched winograd
convolution on gpus. In Proceedings of the 25th ACM SIGPLAN sympo-
sium on principles and practice of parallel programming, pages 32–44,
2020.

[62] Carl Yang, Aydın Buluç, and John D Owens. Design principles for
sparse matrix multiplication on the gpu. In European Conference on
Parallel Processing, pages 672–687. Springer, 2018.

[63] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. Sparse-
tir: Composable abstractions for sparse compilation in deep learning.
In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
ASPLOS 2023, page 660–678, New York, NY, USA, 2023. Association
for Computing Machinery.

[64] Yingfang Yuan, Wenjun Wang, George M Coghill, and Wei Pang. A
novel genetic algorithm with hierarchical evaluation strategy for hy-
perparameter optimisation of graph neural networks. arXiv preprint
arXiv:2101.09300, 2021.

[65] Orestis Zachariadis, Nitin Satpute, Juan Gómez-Luna, and Joaquín
Olivares. Accelerating sparse matrix–matrix multiplication with gpu
tensor cores. Computers & Electrical Engineering, 88:106848, 2020.

[66] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma, Yuqing Yang,
Fan Yang, Yang Wang, Mao Yang, and Lidong Zhou. SparTA: Deep-
Learning model sparsity via Tensor-with-Sparsity-Attribute. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), pages 213–232, 2022.

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/ada/nvidia-ada-gpu-architecture.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 NVIDIA GPU and Tensor Core
	2.2 Related work
	2.3 Overview of TCGNN-SpMM

	3 Gaps and Opportunities
	3.1 Observed performance gaps

	4 Design of DTC-SpMM
	4.1 Design overview
	4.2 Memory-efficient storage format
	4.3 TCU-Cache-Aware reordering
	4.4 DTC-SpMM runtime kernel optimizations
	4.5 Simulation-based Selector design

	5 Performance Evaluation
	5.1 Overall performance comparison
	5.2 Comparison with SpMM using TCs
	5.3 Breakdown study
	5.4 Case study: End-to-end GNN training

	6 Overhead and Limitation
	7 Conclusion
	Acknowledgments
	References

