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Abstract— Federated learning (FL) enables distributed clients
to collectively train a global model without revealing their
private data, and for efficiency clients synchronize their gra-
dients periodically. However, this can lead to the inaccuracy
in model convergence due to inconsistent data distributions
among clients. In this work, we find that there is a strong
correlation between FL accuracy loss and the synchronization
frequency, and seek to fine tune the synchronization frequency
at training runtime to make FL accurate and also efficient.
Specifically, aware that under the FL privacy requirement only
gradients can be utilized for making frequency tuning decisions,
we propose a novel metric called gradient consistency, which
can effectively reflect the training status despite the instability
of realistic FL scenarios. We further devise a feedback-driven
algorithm called Gradient-Instructed Frequency Tuning (GIFT),
which adaptively increases or decreases the synchronization
frequency based on the gradient consistency metric. We have
implemented GIFT in PyTorch, and large-scale evaluations show
that it can improve FL accuracy by up to 10.7% with a time
reduction of 58.1%.
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I. INTRODUCTION

FEDERATED learning (FL) [1], [2] emerges as a popular
paradigm that allows edge clients to collaboratively train

models without sharing their local private data. In typical FL
scenarios, the hardware resources on edge devices—especially
the network bandwidth—are usually quite limited. To reduce
the overall training cost, the de facto FL mechanism is FedAvg,
under which each client trains with its local dataset for multiple
iterations before performing a synchronization.

A well-known challenge for FL is that the local datasets on
clients are not identically and independently distributed (i.e.,
being non-IID). Recent works have empirically shown that,
FL with non-IID datasets would suffer remarkable accuracy
loss [2], [3], [4], [5], which correlates with the synchronization
frequency of FedAvg (also confirmed by us in §III). There is
thus a trade-off in setting up the FL synchronization frequency:
Less frequent synchronization can reduce the communication
cost, but in the meantime would compromise the accuracy
performance. To make FL accurate and also efficient, it is a
promising technique to dynamically adjust the synchronization
frequency during the training process.

Yet, it remains a largely-unexplored territory how to tune the
FL synchronization frequency at runtime: For FedAvg and its
cluster counterpart called local SGD [6], [7], [8], [9], existing
practices either assume a fixed frequency (which may be either
too high or too low as training proceeds), or consider IID data
only. In particular, we note that the distinct FL characteristics
impose three challenges for the design of an ideal frequency
tuning strategy. First, privacy is a primary concern for FL,
meaning that the frequency tuning decisions shall be made
only with gradients, not requiring additional information like
client loss or accuracy. Second, that frequency tuning strategy
shall work smoothly when facing dynamic and massive client
participations in realistic FL systems. Third, since a FL
framework may be used for many machine learning models,
the frequency tuning strategy shall be generally effective, not
relying on any specific model characteristics (i.e., knowledge
of the convexity or smoothness constant).

To quickly recap, our objective in this work is to design
a privacy-preserving, system-practical and model-generic
method to tune FL synchronization frequency at runtime.
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To make that, we propose Gradient-Instructed Frequency
Tuning (GIFT)—a feedback-driven frequency tuning algorithm
with gradient-based feedback signal. GIFT is tailor-made
respectively for the three challenges aforementioned.

To be privacy-preserving, GIFT perceives the training sta-
tus based purely on gradients. To bridge the gap between
training performance and gradient behavior, we conduct both
theoretical and experimental analysis on the root cause of
accuracy degradation when training models with non-IID data.
We find that, when insufficient synchronization occurs with
inconsistent data distribution, the global model parameters
would stagnate prematurely at sub-optimal positions, where
the model gradients from different clients conflict with each
other, i.e., exhibiting a bifurcating trend. Therefore, through
the level of such gradient bifurcation, we can gauge the
instantaneous FL training status without privacy violation.

To be system-practical, the GIFT signal to quantify the
gradient bifurcation level must work well affronting the system
challenges in realistic FL scenarios. That is, it should be robust
to dynamic client participation and mini-batch randomness,
and shall also be resource-efficient despite a vast number
of participating clients. We adopt a smoothing method to
address the system and mini-batch instability, and adopt a
pooling method to compress the computation and memory
consumption when handling massive client participation. Atop
those methods, we propose a novel metric called gradient
consistency, which would decrease towards zero when the
gradient bifurcation level gradually amplifies. It then works
as a feedback signal to instruct frequency tuning in FL.

Finally, to be model-generic, instead of deriving a subtle
formula linking the ideal synchronization frequency to the
gradient consistency metric (which requires rigid but risky
model property assumptions), in GIFT we adopt a feedback-
driven frequency-tuning heuristic: Once gradient consistency
stabilizes around zero (indicating premature training stagna-
tion), we increase the synchronization frequency by a fixed
factor; such a process repeats when the gradient consistency
stabilizes again under the new frequency. We further extend
GIFT to incorporate modest frequency relaxation in phases
where frequent synchronization is not necessary (e.g. at the
FL commencement).

We have implemented GIFT with PyTorch and evaluated
its performance in a 100-node Amazon EC2 cluster emulating
real-world FL setups. In addition to the privacy-preserving
benefit, our evaluations confirm that GIFT is a practical
and general algorithm that can substantially improve the FL
performance on both accuracy and resource efficiency: It can
improve the convergence accuracy of VGG-16 by 10.7% with
a time reduction of 58.1% (after the same amount of training
rounds); meanwhile, given a fixed accuracy target, GIFT can
save the training time by 28.9% when compared with existing
methods.

II. BACKGROUND AND MOTIVATION

A. A Primer on Federated Learning

Machine learning models are increasingly trained with a vast
amount of data samples under the SGD (Stochastic Gradient

Descent) algorithm [10], [11], [12]. In many real-world sce-
narios, the training samples are privacy-sensitive and dispersed
on distributed clients like IoT devices, cellphones [2], [13],
[14], [15]. To train models without centralizing such private
data, an increasingly popular technique is Federated Learning
(FL) [1], [2], under which each client locally refines the model
parameters and communicates the updates to the central server.

1) FedAvg: Compared to computing servers in production
clusters, FL clients like IoT devices or cellphones suffer
remarkable bandwidth limitations. To reduce the communi-
cation cost, FedAvg [1], [2] has become the de facto FL
mechanism, which dictates each client to perform multiple
(denoted by τ ) local iterations before synchronizing their
accumulated updates. As a distinct hyper-parameter in FL, τ ,
or equivalently the synchronization frequency, critically affects
the model training performance. With less frequent synchro-
nization, the communication overhead for processing a given
data amount can be reduced. Yet, local datasets on different
FL clients are usually not independently and identically dis-
tributed (i.e., being non-IID), and less frequent synchronization
would on the other hand compromise the model convergence
accuracy. This has been empirically observed in many existing
works [2], [3], [4], [5]. Given this trade-off, it is of urgent need
to make FL accurate and also efficient by properly setting up
the synchronization frequency.

B. Sync-Frequency Setup: Prior Arts and Their Limitations

While there do exist some related works [6], [7], [8],
[9], [16], [17], [18] on setting up the synchronization fre-
quency for distributed model training, we find that they
either work within an over-narrow solution space (e.g., static
frequency) or base their solutions on unrealistic assumptions
(e.g, IID data).

For FL scenarios, some research works [16], [17], [18] have
proposed to properly setup the synchronization frequency for
better resource efficiency. As a representative example, Wang
et al. [17] proposed Adaptive Federated Learning (hereafter
called by AFL by us), which estimates the best FL synchro-
nization frequency that can minimize the training loss under a
given resource budget. It derives a sophisticated formula rep-
resenting the best frequency, which involves the instantaneous
loss value, the concrete loss function characteristics (Lipschitz
parameter, smoothness parameter, gradient divergence bound)
and the data distribution of each worker. Yet, including AFL,
those works implicitly assume a fixed frequency without any
runtime dynamicity. This unnecessarily narrows down the
solution space by excluding the dynamic frequency-tuning
strategies, and may thus suffer suboptimal performance (As
shown later in §V, a fixed frequency may be either too high
or too low for different training phases).

For cluster scenarios, a training method called local SGD
(or periodical averaging) [6], [7], [8], [9] also allows workers
to proceed for multiple local iterations before one global
synchronization, and some works in this regard explored
how to dynamically change the synchronization frequency.
For example, AdaComm [7] formulated the best frequency
that can minimize the training error after a given time bud-
get; it further extended that static formula into a dynamic
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strategy by dividing the training process into short intervals
and estimating the best frequency in each interval. Nonethe-
less, those works did not consider non-IID data in their
solution design, rendering their applicability in FL scenarios
questionable.

1) Design Requirements: In particular, given the distinct FL
characteristics, we notice that there exist three key require-
ments that any effective frequency tuning method under FL
must comply with:

1) Privacy-Preserving Requirement. Data privacy is a
primary concern for FL, and a key principle of FL is that
only gradients (or equivalently the model parameters) can
be collected from the clients [13], [14]; collecting additional
information would increase the risk of privacy leakage. Prior
works base their solutions mainly on mathematical formulas,
and require client knowledge (e.g., loss values) as essential
components in their formulas. The AFL work [17] even
demands the information of local data distributions, which
would severely impair the client privacy. To be privacy-
preserving, we need to perceive the FL training status from
gradients. In standard FL, model gradients are the default
content collected from clients, and would be readily available
at the FL server.

2) Practicality Requirement. A well-known system char-
acteristic for FL is that clients may dynamically join or
leave training at random time [13], [19]. Meanwhile, for
commercial FL applications the number of clients may be
quite large [20]. Existing methods ignored such stability and
scalability challenges, and may suffer performance degradation
as well as large maintenance cost.

3) Generality Requirement. A FL framework may serve
various models without model-specific customization; hence,
frequency tuning strategies in FL shall not rely on any model-
specific characteristics. Yet, the aforementioned works build
their solutions with unrealistic model assumptions. For exam-
ple, AFL [17] derives its formulation by assuming convex
loss functions, which does not hold for deep learning models;
it also requires the smoothness constant, the Lipschitz-ness
constant and the gradient variance bound, which are hard
to obtain in reality. In fact, while such theoretical analysis
can yield inspiring insights, given the analytical complex-
ity of neural network models, it is however too risky to
directly work out the exact FL synchronization frequency
from them. To be model-generic, our solutions should be built
not on end-to-end formulations but with a feedback control
heuristic.

To summarize, in this work we seek to design a privacy-
preserving, system-practical and model-generic frequency tun-
ing strategy to make FL accurate and also efficient. The
remaining part of this paper is organized as follows. In §III,
we will analyze from the gradient perspective how FL per-
formance is affected by synchronization frequency, and then
describe a gradient pattern that can reflect the instantaneous
training status. In §IV, we give the definition of our feedback
signal, and elaborate our frequency tuning algorithm based on
that signal. We further evaluate the effectiveness of our GIFT
solution in §V. Finally, we introduce some additional related
work in §VI and conclude in §VII.

TABLE I
SUMMARY OF MAIN NOTATIONS

III. SYNC-FREQUENCY AND FL PERFORMANCE: A
GRADIENT POINT OF VIEW

In this section, we first theoretically and experimentally
analyze the impact of synchronization frequency on FL per-
formance, and then introduce an interesting phenomena called
gradient bifurcation, which can help to reflect the instanta-
neous training status.

A. Impact of Synchronization Frequency

To properly setup the FL synchronization frequency, we first
need to know the impact of a given frequency on the FL
training performance.

While a series of research works [17], [18], [21], [22] have
theoretically analyzed the FL convergence process, we find
that they are not suitable for our needs. Those works in
general follow a common methodology: first assume a constant
bound for the gradient variance, and then derive a formula
representing how fast the model parameters can converge.
Nonetheless, fast convergence rate does not necessarily mean
high accuracy; meanwhile, the gradient variance bound—as a
highly idealized ground-truth knowledge—has little relation-
ship with the instantaneous gradient behavior, thus yielding
little help for understanding runtime FL status.

In our analysis, we primarily want to understand why there
is an accuracy degradation when training models under FL
with non-IID data: What is the key factors behind? And can we
somehow probe the related training status with gradient-wise
characteristics at runtime? We resort to the following theoret-
ical analysis to find out the answers.

1) Symbol Description: In our FL setup, there are N clients
each with a local dataset Di (i = 1, 2, . . . , N ). Let l(s, ω)
be the loss value when predicting sample s with parameter
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ω, then the local loss function on client-i is Li(w) =
1
|Di|

∑
s∈Di

l(s, ω) and the global loss function as the true
optimization target is L⋆(ω) = 1

|∪Di
|
∑

s∈∪Di
l(s, ω). For

simplicity we assume balanced data such that L⋆(ω) =
1
N

∑N
i=1 Li(ω). Let ωi

k be the local model on client-i after
refined for k iterations from ω0, and ω⋆

k be the ideal model
when refined with a globally-shuffled IID dataset also for k
iterations from ω0. Table I has listed all the symbol notations
adopted in this paper.

To facilitate our analysis of gradient behavior, we seek to
decouple the local gradient into two components: a global
component and a local-error component. To start with,
we derive Lemma 1 based on the standard convexity1 and
smoothness assumptions.

Assumption 1 (Convexity): The loss function L⋆(ω) and
local loss functions Li(ω) (i = 1, 2, . . . , N ) are convex, i.e.,
L(y) ≥ L(x) +∇L(x)T (y − x).

Assumption 2 (β-Smoothness): The loss function L⋆(ω)
and each local loss function Li(ω) (i = 1, 2, . . . , N )
is β-smooth, i.e., ∥∇Li(x) − ∇Li(y)∥ ≤ β∥x − y∥.
It also means that ∇Li(ω) is β-Lipschitz, or equivalently
∥∇2Li(ω)∥ ≤ β.

Lemma 1 (Local Gradient Composition): Let ui
τ = ωi

τ −
ω0 be the accumulated gradient2 on client-i after τ iterations,
then ui

τ = u⋆
τ + ei

τ , where u⋆
τ is the ideal gradient attained

with IID data representing the global component, and ei
τ is

the local-error component:

ei
τ = −η

τ−1∑
k=0

[∇Li(ω⋆
k)−∇L⋆(ω⋆

k) + ⟨∇2Li(ω⋆
k), ωi

k − ω⋆
k⟩].

The proof of Lemma 1 can be found in Appendix. This
lemma implies that the gradient error of a FL client is related
to the gap between the local and global loss landscapes
(∇2Li(ω), i.e., the hessian matrix, or more straightforwardly,
the curvature). Moreover, regarding the aggregated gradient
after a synchronization round, with Lemma 1 we can further
get the following Theorem:

Theorem 1 (Gradient Error After Synchronization): Let
ūτ = 1

N

∑N
i=1 ui

τ and let d(τ) = ∥ūτ − u⋆
τ∥ be aggregated

gradient error after each client locally refines the parameter
for τ iterations from ω0, then

d(τ) ≥ (τ − 1)
η2

N
∥

N∑
i=1

⟨∇2Li(ω0),∇Li(ω0)−∇L⋆(ω0)⟩∥.

1This convexity assumption does not invalidate our solution applicability
for general models (which are mostly non-convex). Because our algorithm
proposed later is based on qualitative properties (instead of quantitative deriva-
tions), and the qualitative behaviors around the local minima of non-convex
models resemble that of convex ones.

2By gradient, we refer to the accumulated update over the entire round—
with the learning rate η integrated in. In this sense, our analysis in this work
is independent to the specific gradient generating scheme or learning rate
scheme, and can thus be extended to other SGD variants like Adam [23] and
AdaGrad [24]. Besides, for simplicity, in our analysis we ignore the impact of
random sample selection within each mini-batch, and focus on the expected
gradient of the local loss function. We will address mini-batch randomness
later in §IV.

Fig. 1. During local iterations each FL client may already reach its local
optimum (−2 and 10). With inaccurate gradient the parameter would be
refined to 4 instead of the expected 0.

Theorem 1 shows that the error of an aggregated gradi-
ent is determined by two factors: first by the heterogene-
ity among clients’ loss curvatures ({∇2Li(ω0)}), and sec-
ond by the synchronization frequency. In particular, since
by definition

∑N
i=1[∇Li(ω0) − ∇L⋆(ω0)] = 0, the item

∥
∑N

i=1⟨∇2Li(ω0),∇Li(ω0) −∇L⋆(ω0)⟩∥ can be viewed as
assigning different weights to a set of numbers whose sum
is zero. If the weights {∇2Li(ω0)} are homogeneous across
different clients, e.g., when training with IID data, then the
aggregated gradient has no error; otherwise the error would
augment with the heterogeneity level of {∇2Li(ω0)}.

From the above theorem, we learn that the error would
amplify with larger non-IID level or larger τ , consistent with
the empirical results in existing works [2], [3], [4], [5]. Atop
this per-round synchronization error, we can further derive
Theorem 2 that depicts the model convergence status:

Theorem 2 (Suboptimal Convergence): Suppose FL process
converges at parameter ω̄⋆, and ω⋆ is the ideal parameter
under IID dataset. Then

∥ω̄⋆ − ω⋆∥ ≥ (τ − 1)η
βN

∥
N∑

i=1

⟨∇2Li(ω̄⋆),∇Li(ω̄⋆)

−∇L⋆(ω̄⋆)⟩∥.

This theorem shows that, for cases with heterogeneous
{∇2Li(ω0)}, the FL process would stagnate prematurely at a
suboptimal position, with the error gap positively correlated to
τ . Obviously, training around this position is a severe resource
wastage with no accuracy benefit. To better understand the root
cause of suboptimal stagnation from the gradient perspective,
we resort to a toy example with quadratic loss functions.

Our example is shown in Fig. 1 where there are two clients
with respective loss function L1(ω) = (ω + 2)2 and L2(ω) =
1
5 (ω−10)2. The two loss functions exhibit different curvatures
and have different local optima −2 and 10, emulating a
non-IID setup. The global loss function to optimize is thus
L⋆(ω) = 1

2 [L1(ω) + L2(ω)] = 3
5ω2 + 12, with the optimal

parameter ω⋆ be 0. During the local iterations, each client is
essentially refining its parameter towards its local optimum;
in the first iteration of a round, the local gradients if averaged
can reflect the true optimal one, yet in later iterations, due
to heterogeneous curvatures, gradients from different clients
would decay in different rates, making the aggregated gradient
less accurate. For example, if the synchronization is so late
such that each client reaches its local optimum, the aggregated
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Fig. 2. When training with two clients over non-IID data, by increasing
the synchronization frequency (at epoch 20 for SVM and epoch 1000 for
LeNet-5), the sampled global parameter can get closer to the true optimum,
and the models can attain a higher accuracy. The dashed lines show the
variables without frequency change.

gradient would point to the optimum average 4 instead of to
the expected global optimum 0. The same phenomena would
repeat in later rounds, meaning that the FL process stagnates
at a suboptimal state. Thus, more frequent synchronization can
reduce the negative impact of gradient curvature and make the
aggregated gradient more accurate for the true global optimum,
which can be further verified by testbed measurements.

2) Testbed Verification: To empirically verify the impact of
synchronization frequency on FL training performance in a
microscopic manner, we experiment with both convex (SVM)
and non-convex (LeNet-5 [25]) models. The SVM model is
trained upon 50,000 randomly-generated points composed of
2 classes, with two clients each holding only 1 class; the
LeNet-5 model is trained upon CIFAR-10 dataset [26], also
with 2 clients each holding only 5 classes. The initial τ is 500,
and at epoch 20 (100) for SVM (LeNet-5) we change it to 1.
In Fig. 2, for each model we depict the instantaneous value of
a randomly-selected parameter as well as the model accuracy.
As suggested in the figure, with higher-quality gradients after
increasing the synchronization frequency, the parameters can
be refined out of suboptimal stagnation and reach a better
model accuracy.

Although in the above example a higher frequency can bring
remarkable accuracy performance benefit, we cannot directly
set τ = 1 for FL due to the prohibitively large communication
cost. To make FedAvg accurate and also efficient, we need
to strategically adjust the synchronization frequency during
the training process. Yet, how do we know the time to adjust
the synchronization frequency under the privacy constraint3?
Based on our previous analysis, we find an intriguing gradient
pattern being a great fit for that purpose.

B. Phenomenon of Gradient Bifurcation

During the model training process, while an individual
gradient may exhibit strong randomness, there actually exists
a clear statistical pattern for gradients across different clients.
In practice we have observed an interesting phenomena called
gradient bifurcation, meaning that gradients from different FL

3Validating accuracy or loss on the FL server is also inappropriate to work
as feedback signals. Because frequent validations would incur much overhead.
Besides, with the continuous evolution of realistic data, it is hard to maintain
an up-to-date validating dataset on the FL server.

Fig. 3. When training LeNet-5 with 2 clients, the gradients of two
randomly-chosen parameters gradually bifurcate.

clients are consistent in the beginning but conflicting later.
We elaborate on this phenomena with theoretical explanations
as well as testbed measurements.

1) Theoretical Insight: From Lemma 1, we learn that the
local gradient (ui

τ ) can be decoupled into a global component
(u⋆

τ ) and a local-error one (ei
τ ): The former is identical for all

the clients, while the latter is related to the heterogeneity of
clients’ local loss surfaces. At FL commencement, the model
parameters are usually far away from the optimum, thus u⋆

τ

dominates ui
τ and this yields a strong gradient consistency.

In contrast, when the model parameter ω moves close to the
optimal region, u⋆

τ would shrink (due to convexity) and it
is the error component ei

τ that dominates ui
τ . Consequently,

gradients from different clients would gradually bifurcate.
We further illustrate the gradient bifurcation phenomena

also with Fig. 1. When the initial parameter is far away
from the optima region (−2 to 10), say −100, the gradients
from both clients would be consistently positive. With a larger
curvature, gradient of L1(ω) would decay faster than that of
L2(ω): When the parameter moves across −2, the gradient
of client-1 would become negative, conflicting with that of
client-2. Finally the two gradients well counteract with each
other, and the model parameter stagnates.

2) Testbed Verification: We further verify gradient bifurca-
tion with testbed measurements. We train the LeNet-5 model
following the setup in Fig. 2b (two clients with non-IID
data), and measure the instantaneous gradient values of two
randomly-selected parameters on both clients. As depicted
in Fig. 3, the gradients for both parameters would bifurcate
after around round-100, the extent of which exhibits a clear
correlation with the model convergence status (measured by
accuracy): In the two figures, the training process stagnates
when the bifurcation level is approximately maximized.

To summarize, gradient bifurcation can effectively signal
the FL training status without compromising FL privacy. Yet,
it remains unclear how to quantify the gradient bifurcation
level and how to leverage it for tuning synchronization fre-
quency. We will answer this question in the next section.

IV. GRADIENT-INSTRUCTED FREQUENCY TUNING

In this section, we propose Gradient-Instructed Frequency
Tuning (GIFT), a frequency tuning algorithm for FL that is
privacy-preserving, system-practical and also model-generic.
We first propose a metric to quantify gradient bifurcation
level, and then devise a feedback-driven heuristic to adjust
synchronization frequency at runtime.
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A. Quantifying Gradient Bifurcation Level

To quantify the extent of gradient bifurcation, we first
propose an intuitive metric: C =

∑
i ui

τ∑
i ui

τ
. This metric depicts

the effective portion of the aggregated gradient that does help
the model to move towards the true optimum. Obviously, C
is 1 when all the gradients are of the same direction, and is
0 if they well counteract with each other, i.e., when suboptimal
stagnation occurs. Nonetheless, this metric is not practical for a
real-world FL setup. To be clear, we summarize the practicality
challenges of FL as follows:

1) Stability Challenge. Since samples processed in a SGD
iteration are chosen randomly, local gradients fluctuate
drastically, as can be seen in Fig. 3. This statistical
instability may inundate the expected bifurcation pattern
of gradient. Besides, in real-world FL setup the clients
are also unstable: FL clients may join or leave randomly
during training, and the FL server usually collects gradi-
ents from only a portion of the clients whoever reporting
the earliest, so as to avoid waiting for stragglers [13],
[19], [20]. A practical metric must be robust to such
statistical and systematical instability.

2) Scalability Challenge. Meanwhile, in realistic FL appli-
cations like GBoard [20], there may be hundreds or thou-
sands of clients participating simultaneously. Therefore,
our metric should scale well in computing or storage
overhead.

To tackle those challenges, we extend the previous metric
definition with smoothing and pooling techniques.

1) Smoothing: To address statistical instability, we smooth
the raw gradients with their historical values. To maintain low
storage overhead, instead of using a window-based smoothing
method, we calculate the gradients’ exponential moving aver-
age (EMA). Let ⟨·⟩θ denote an exponential moving average
with decay factor θ, and ui

τ,r be the local gradient of client-i
in rth round, then we maintain ũi

τ,r =
〈
ui

τ,r

〉
θ

= θ ∗ ũi
τ,r−1 +

(1− θ) ∗ ui
τ,r.

2) Pooling: Note that maintaining ũi
τ,r for each client is

memory-inefficient given the large client quantity, and is even
infeasible due to participant instability. To tackle that problem,
we further propose bilateral gradient pooling—the FL server
only maintains two EMA gradients: one to collect the positive
gradients from any client, and the other the negative ones.
When the local gradients bifurcate, the two EMA gradients
also bifurcate. This way, we can get a stable gradient statistics
pattern despite the unstable client participation.

3) Gradient Consistency: Combining the above smoothing
and pooling techniques, at round r, we define our customized
metric, gradient consistency, as:

C =
P̃r + Ñr

P̃r + Ñr

, where


P̃r =

〈∑
i
Relu(ui

τ,r)
〉

θ

Ñr =
〈∑

i
-Relu(-ui

τ,r)
〉

θ
.

(1)

Here P̃r collects the EMA values of all the positive gradient
components, and Ñr collects the EMA values of all the
negative gradient components (we use the Relu operation for

Algorithm 1 FL Workflow With GIFT
Require: τ, γ, δ, o ▷ τ : synchronization frequency; γ:
τ scale down divisor; δ: τ scale up addend; o: observation
window size to trigger τ scale up.

Client: i = 1, 2, . . . , N :
1: Procedure ClientIterate(k)
2: k ← k + 1 ▷ update iteration_id
3: ωi

k ← ωi
k−1 + ui

k ▷ ui
k: local update in iteration k

on client i
4: if k = ks then ▷ ks: next iteration_id for model

synchronization
5: ωi

k, τ ←FL_Server.aggregate(ωi
k)

▷ synchronize global parameters and update the sync
frequency

6: ks ← k + τ
FL Server:
7: Procedure Aggregate(ω1

k, ω2
k, . . . , ωN

k )
8: r ← r + 1 ▷ update round_id
9: ωr ← 1

n

∑n
i=1 ωi

k ▷ update global model
10: ui

r ← ωi
k − ωr−1, i = 1, 2, . . . , N. ▷ get local

accumulated update
11: calculate Cr from {ui

r} based on Eq. 1
12: if Cr ≥ Cr−1 then
13: τr ← τr−1/γ ▷ multiplicatively increase sync

frequency
14: else if Cm+1 < Cm and τm+1 = τm ∀m ∈ {r −

1, . . . , r − o}, then
15: τr ← τr−1 + δ ▷ additively decrease sync

frequency
16: Return ωr, τr

sign filtering). When the positive components and negative
components well counteract with each other, C would be
close to 0. Gradient consistency is thus a practical metric
that can represent how fast (in terms of the useful share out
of the aggregated gradient) the model is being refined to the
optimum. While ideally it shall decrease to zero when model
training stagnates, it is not so in practice because the impact
of random mini-batches cannot be completely eliminated by
smoothing; besides, for deep neural networks, there might be
irregular landscapes like flat minima [27], where the gradient
is not zero even at a local optimum. Therefore, we diagnose
training stagnation not by absolute value of the gradient
consistency but by its stabilizing behavior.

B. Tuning Frequency in a Feedback-Driven Manner

To be model-generic, instead of deriving a subtle formula
representing the best synchronization frequency, we propose
Gradient-Instructed Frequency Tuning (GIFT), a feedback-
driven frequency tuning method based on the proposed gra-
dient consistency metric. In GIFT, each time the gradient
consistency stabilizes—a feedback signal suggesting that the
model can no longer be effectively refined under the current
frequency (τ )—we would scale down τ by a fixed divisor
(e.g., 2). With such a higher frequency, it is expected that the
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aggregated gradient in each round can be more accurate and
the model can reach a higher accuracy.

Moreover, we also incorporate an extension that allows the
synchronization frequency to be modestly decreased at the
initial phase of the FL process. At FL commencement, the
global component u⋆

τ dominates ui
τ , rendering the gradient

quite consistent (as shown in Fig. 3), and it is not necessary to
conduct frequent synchronization. To exploit this optimization
opportunity, we tentatively increase τ in a linear manner every
a few rounds, until the gradient consistency metric signals that
the FL process stagnates. Yet, inflating τ is essentially trading
computation for communication efficiency, and to avoid the
risk of over-compromised computation efficiency, frequency
relaxation is not enabled by default.

Implementation: We have implemented GIFT with PyTorch,
and the detailed workflow is shown in Alg. 1. In Procedure
ClientIterate, lines 2-3 describe the regular local updat-
ing, and lines 4-6 mean that the client shall communicate with
the FL Server every τ iterations to get the latest model ω as
well as the updated synchronization frequency. In Procedure
Aggregate, the FL Server first updates the global model
with standard FedAvg (lines 8-9), and then calculates gradient
consistency metric (lines 10-11). In particular, if gradient con-
sistency no longer decreases, the synchronization frequency
represented by τ is divided by γ (lines 12-13); if otherwise the
gradient consistency metric keeps decreasing, τ is increased
with the addend δ (lines 14-15).

Regarding the algorithm complexity, with the pooling tech-
nique we need to maintain the EMA values of P̃r and Ñr, each
has the same size as the model (denoted by M ). Therefore,
the space complexity is O(M) (with a very small coefficient).
Similarly, since GIFT enforces identical operations for each
gradient coordinate, the computation complexity to calculate
gradient consistency C is also O(M).

V. EVALUATION

In this section, we evaluate GIFT performance with testbed
experiments. We first visually and quantitatively verify the
effectiveness of GIFT in a 100-node cluster emulating realistic
FL scenarios, and then justify the superiority of GIFT over
existing practices. We also examined the behavior of GIFT
under different levels of non-IID data, as well as the effective-
ness of frequency relaxation. Finally, we conduct sensitivity
analysis on the hyper-parameters involved.

A. Experimental Setup

1) Hardware Platform: We emulate real-world FL scenar-
ios with 100 m5.large instances on Amazon EC2, each with
2 vCPU cores and 8GB RAM (similar with that of a smart
phone). The client bandwidth is configured to be 5Mbps with
the wondershaper [28] tool. The FL server is a c5.9xlarge
instance with 10Gbps bandwidth.

2) Training Setup: Models trained in our evaluation are
LeNet-5 [25], VGG-16 [29] and a LSTM network (containing
2 recurrent layers with a hidden size of 64). LeNet-5 and
VGG-16 are trained on the CIFAR-10 dataset [26] and the
LSTM network is trained on the KeyWord Spotting (KWS)

Fig. 4. FL performance with and without GIFT (accompanied by the
frequency τ and gradient consistency C under GIFT).

TABLE II
TIME AND ACCURACY AFTER 1000 ROUNDS

dataset—a subset of the Speech Commands dataset [30]
including 10 key words. To be realistic, instead of partitioning
the initial dataset after label sorting, we let the samples on
each client independently follow a Dirichlet distribution [3],
[5], which controls label class composition via a concentration
parameter α. In our experiments we set α to 1, emulating
a modest non-IID level. The learning rates are set to 0.01
(LeNet-5), 0.1 (VGG-16) and 0.05 (KWS), with weight decay
of 0.01, 0.0005 and 0.01. The initial τ is set to 100. In GIFT,
the EMA smoothing factor θ is 0.9, and τ is divided by 2 once
gradient consistency no longer decreases.
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Fig. 5. Comparison between GIFT and existing methods.

B. GIFT Evaluation Under a Realistic FL Setup

We first evaluate the overall performance improvement of
GIFT over FedAvg in a realistic FL setup with dynamic client
participation at a relatively large scale. Our cluster contains
100 clients: We let each client delay for a random period
before reporting its gradient, and in each round the FL server
only collects 40% gradients reported the earliest.

In Fig. 4, we show the overall performance of GIFT
when training the three models, including the instantaneous
gradient consistency (C) and synchronization frequency (τ ).
As analyzed in §III-B, C does follow a decreasing pattern.4

Moreover, each time τ is halved under GIFT, in the next
moment there is a salient burst of C, indicating that a higher
frequency can reduce gradient error and make the aggregated
model closer to the true optimum.

We further make quantitative performance comparison
between GIFT and standard FedAvg in Table II, which lists
the time cost and accuracy attained when training each model
for 1000 rounds. By adaptively tuning the synchronization
frequency to ensure continuous model improvement, GIFT
enables each model to achieve a higher accuracy5 with less
time consumption. For example, GIFT can reduce LeNet-5
training time by 58.9% while improving the accuracy by 9%.
Additionally, thanks to our pooling technique in §IV, on the
FL server we did not observe noticeable CPU and memory
overhead after enabling GIFT.

C. Comparison With Existing Methods

We implement AFL [17] and AdaComm [7], two typical
methods discussed in §II-B, also in PyTorch. In our evalu-
ation, we obtain the ground-truth knowledge (e.g., Lipschitz
parameter, smoothness parameter, gradient divergence bound)
required by AFL via a trial run, and in AdaComm the initial

4For VGG-16 in Fig. 4b, C stagnates at a large value, because VGG-16 is
a large, over-parameterized model [31] with salient flat minima behavior [27].

5We accept near-optimal accuracy instead of pursuing for the optimal
accuracy because the latter requires training with τ = 1 for many (∼ 105)
rounds, which is cost-prohibitive even with GIFT.

frequency is selected via grid search. In particular, to address
loss saturation due to plateaus or noises, AdaComm adopts
a saturation fix that halves τ once the loss value no longer
decreases; to evaluate the true effectiveness of the formula-
based solution, we incorporate a pruned version of AdaComm
without that saturation fix. Additionally, since those methods
do not consider system challenges of FL, for fair comparison
we switch to a 20-node cluster with full client participation.

Fig. 5 shows the instantaneous accuracy and frequency
when training LeNet-5 and LSTM under different schemes.
It shows that, apart from the advantages of privacy preserving
and practicality, GIFT can also attain a better accuracy per-
formance over existing methods. Given a LeNet-5 accuracy
target of 0.6, time consumption under GIFT is 28.9% less
than AdaComm, and 61.2% less than AFL. We also note
that AdaComm without saturation fix fails to behave well for
both models, confirming the weakness of existing methods as
discussed in §II-B.

Regarding the reasons behind, for AFL, the fixed frequency
calculated is too small to be communication-efficient in the
beginning, and is on the other hand too large to attain high
accuracy in the end. For AdaComm, since its formulation is
based on IID label distribution, the formula on τ is actu-
ally inaccurate for realistic FL setup. Moreover, due to loss
plateaus problem (i.e., accuracy improved but the loss value
not so), the training loss is sometimes not an appropriate
indicator of the training status.6

D. Effect of Frequency Relaxation

We further evaluate the effectiveness of frequency relaxation
extension. To be specific, we additively increase τ by 5 once C
keeps decreasing for 10 consecutive rounds, and Fig. 7 depicts
the testing accuracy (against communication rounds) when
training LeNet-5 and LSTM with the 20-node cluster. For both
models, frequency relaxation can yield a prompter accuracy
improvement especially in the early stage. For example, after
training LeNet-5 for 500 rounds, it can achieve a test accuracy
of 0.55, 5.1% better than that without frequency relaxation.
Note that such benefit would be larger for cases with a smaller
τ initialization, as verified by the LSTM training results in
Fig. 7b where τ0 is set to 10.

E. GIFT Behavior Under Different Levels of Non-IID Data

So far, we are operating with a modest level of non-IID
data controlled by the hyper-parameter α = 1 (§V-A); yet,
how would GIFT behave if the data distribution is otherwise
IID or extremely non-IID? To further reveal that, we resort
to micro-benchmark experiments with different levels of non-
IID data. In the IID case, each worker has a full copy the
entire dataset; in the non-IID case, we separate the whole
dataset across 5 clients—each hosting 2 label classes with no

6It is well-known that the training loss in SGD may get stuck on plateaus
landscape or fluctuate due to mini-batch randomness [7]. Once that occurs
(i.e., the loss no longer decreases), AdaComm would degrade to naive
frequency scaling (i.e., having τ halved), which works as a boundary-case
remediation. Nonetheless, from Fig. 5 we find that the accuracy improvement
of AdaComm largely comes from such a boundary-case remediation.
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Fig. 6. GIFT Behavior under different levels of non-IID data.

overlap. In each case we record the instantaneous test accuracy,
gradient consistency and sync-frequency under GIFT as well
as the test accuracy under vanilla FedAvg.

From Fig. 6, we first learn that data distribution remarkably
affects the model training performance. When training LeNet
and LSTM with the extremely non-IID setup, there is an
accuracy loss of nearly 50%, and the training time required
towards model convergence is also hugely inflated—consistent
with previous measurements in [2], [3], [4], [5]. Regarding
the benefit of GIFT, for the IID case the GIFT performance
is similar with that under vanilla FedAvg (as implied by 2),
and for the non-IID case GIFT can achieve salient accu-
racy improvement. Regarding the gradient consistency metric,
we note that for the IID case there is also a decaying trend.
This is because in SGD the randomness incurred by mini-batch
sampling gradually dominates the local gradients; with the
pooling technique (§IV-A), the calculated gradient consistency
would also keep decreasing. Regarding the frequency-tuning
actions, we find that the frequency decaying paces in both IID
and non-IID cases are mostly similar. In general, GIFT can
work smoothly without particular requirements on the data
IID level.

F. Sensitivity Analysis

In Fig. 8 we further evaluate the impact of GIFT sync-
interval divisor, i.e., γ in Alg. 1. We change it—from the
default value 2—respectively to 3 and 10, and evaluate the
GIFT performance in the 20-node cluster. As shown in Fig. 8,
GIFT behavior is generally stable with different γ: The syn-
chronization interval τ is decreased to 1 at a similar time, and
the accuracy performance is also similar. This suggests that
our GIFT algorithm is robust to the γ hyper-parameter.

Fig. 7. Frequency relaxation can yield faster accuracy increase especially in
the earlier stage.

Fig. 8. GIFT Performance with different γ values (γ is used to divide τ
when increasing synchronization frequency).

Meanwhile, recall that when enabling frequency relaxation
(as in §V-D), the default addend δ to increase τ is set to 5;
here we also evaluate its sensitivity with Fig. 9. For each of
the experiments in Fig. 7, we change δ respectively to 2 and
10 and repeat the same training process. As shown in Fig. 9,
a larger δ can yield a faster accuracy improvement in the early
stage, although that speedup would be caught up by others
in the later stage when a smaller τ becomes more beneficial.
In general, the performance of GIFT is also stable with respect
to different δ values.

VI. ADDITIONAL RELATED WORK AND DISCUSSION

Recall that in §II-B we have introduced a series of
frequency-setup methods for FL; to improve FL accuracy
or efficiency, in the literature there have been some other
interesting directions not involving frequency-tuning. In this
section, we will briefly review those parallel directions and
further discuss the privacy-preserving property of GIFT.
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Fig. 9. GIFT Performance with different δ values (δ is used to increase τ
when relaxing synchronization frequency).

A. Improving FL Accuracy

To mitigate accuracy loss due to non-IID data in FL,
two typical methodologies other than frequency tuning are
data complementing and optimization rectifying. Data com-
plementing means to reduce data non-IID level by copying
a few common samples to each client [4], or by augmenting
clients’ local datasets with auxiliary samples generated from
GAN (Generative Adversarial Network) models [32]. Yet these
methods may incur large computation and communication
overheads. Optimization rectifying means to add an extra
regularizing term to the loss function [32], [33], or to add
a specific momentum to the optimizer [34]. These methods
are not transparent to models and require expert knowledge
to set up. Overall speaking, our GIFT method outperforms
those methods by being light-weight and also transparent to
end users, not requiring any modifications to the user-specified
loss function or optimizers.

B. Improving Communication Efficiency

To reduce communication cost of distributed training, quan-
tization and sparsification are two well-known methodolo-
gies in addition to frequency tuning. Quantization reduces
bandwidth consumption by transmitting low-precision updates,
balancing the trade-off between accuracy and gradient com-
pressing level [1], [35], [36]. Sparsification aims to synchro-
nizing only the important gradients under a given criterion like
normalized magnitude [37], [38], [39], [40]. These methods
have proven effective in reducing the communication amount,
yet they ignored the non-IID problem in FL, and may thus
suffer accuracy loss when applied in realistic FL scenarios.

C. Privacy-Preserving Characteristics of GIFT

Privacy is not an absolutely-defined conception. By privacy-
preserving, in this work we mean that GIFT does not com-
promise the accuracy level of vanilla FL, better than existing
practices based on loss values. Nonetheless, it has been shown
that certain user information can still be recovered from

gradients [41]. To solve this problem, differential privacy
(DP) [42], [43] is often adopted in FL to protect raw gradients
by injecting Gaussian noises to them. We note that applying
DP does not compromise the effectiveness of GIFT, because
the noises added by DP exhibit a similar impact with that of
mini-batch sample randomness, which is already solved with
the smoothing and pooling techniques (§IV).

VII. CONCLUSION

In this work, to attain better model accuracy and resource
efficiency in FL, we have proposed GIFT, a privacy-
preserving, system-practical and model-generic scheme to
adaptively tune the synchronization frequency at runtime.
GIFT gauges the model training status with a novel metric
called gradient consistency, based on which it then multi-
plicatively increases or linearly decreases the synchronization
frequency. Prototype evaluations in realistic FL setup have
demonstrated the superiority of GIFT in both accuracy and
efficiency over existing methods.

APPENDIX

Lemma 2: Let ωi
k be the local parameter on client-i (i =

1, 2, . . . , N ) after refined for k iterations from ω0, and ω⋆
k

be the ideal parameter when refined with IID dataset also
for k iterations from ω0. Under the Assumptions 1 and 2, let
ui

τ = ωi
τ−ω0 be the accumulated gradients on client-i after τ

iterations, then ui
τ = u⋆

τ + ei
τ , where u⋆

τ is the ideal gradient
with IID data and ei

τ is the local error component:

ei
τ = −η

τ−1∑
k=0

[∇Li(ω⋆
k)−∇L⋆(ω⋆

k) + ⟨∇2Li(ω⋆
k), ωi

k − ω⋆
k⟩].

Proof: Since u⋆
τ is the ideal gradient with IID data, i.e.,

u⋆
τ = −η

∑τ−1
k=0∇L⋆(ω⋆

k), and let ∆i
k = ∇Li(ωi

k)−∇L⋆(ω⋆
k)

be the gradient error in the kth iteration, we have

ei
τ = ui

τ − u⋆
τ = −η

τ−1∑
k=0

[∇Li(ωi
k)−∇L⋆(ω⋆

k)]

= −η

τ−1∑
k=0

∆i
k. (2)

Let vi(ω) = ∇Li(ω)−∇L⋆(ω), we have:

∆i
k = vi(ωi

k) + [∇L⋆(ωi
k)−∇L⋆(ω⋆

k)]. (3)

Regarding the first term vi(ωi
k), because Assumption 2

indicates that L⋆(ω) is upper-bounded by a quadratic function,
and ωi

k−ω⋆
k scaled by η can be arbitrarily small, we can skip

higher-order items and get:

vi(ωi
k) = vi(ω⋆

k) + ⟨∇vi(ω⋆
k), ωi

k − ω⋆
k⟩. (4)

Similarly, regarding the second term in Eq. (3) we can get

∇L⋆(ωi
k)−∇L⋆(ω⋆

k) = ∇L⋆(ω⋆
k + ωi

k − ω⋆
k)−∇L⋆(ω⋆

k)

= ⟨∇2L⋆(ω⋆
k), ωi

k − ω⋆
k⟩. (5)
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With Eq. (4) and Eq. (5), we can transfer Eq. (3) to

∆i
k = vi(ω⋆

k) + ⟨∇vi(ω⋆
k) +∇2L⋆(ω⋆

k), ωi
k − ω⋆

k⟩

= vi(ω⋆
k) + ⟨∇2Li(ω⋆

k), ωi
k − ω⋆

k⟩. (6)

Therefore, we can get

ei
τ = −η

τ−1∑
k=0

∆i
k = −η

τ−1∑
k=0

[vi(ω⋆
k) + ⟨∇2Li(ω⋆

k), ωi
k − ω⋆

k⟩]

= −η

τ−1∑
k=0

[∇Li(ω⋆
k)−∇L⋆(ω⋆

k) + ⟨∇2Li(ω⋆
k), ωi

k − ω⋆
k⟩].

This completes our proof. □
Theorem 3: Under the Assumptions 1 and 2, let ūτ =

1
N

∑N
i=1 ui

τ and let d(τ) = ūτ − u⋆
τ be aggregated gradient

error after each client locally refines the parameter for τ
iterations from ω0, then

d(τ) ≥ (τ − 1)
η2

N

N∑
i=1

⟨∇2Li(ω0),∇Li(ω0)−∇L⋆(ω0)⟩.

Proof: Since 1
N

∑N
i=1∇Li(ω⋆

k) = ∇L⋆(ω⋆
k), with

Lemma 2 we can get:

d(τ) =
1
N

N∑
i=1

ei
τ =
−η

N

τ−1∑
k=0

N∑
i=1

⟨∇2Li(ω⋆
k), ωi

k − ω⋆
k⟩. (7)

Let ∆k be the aggregated error in kth (k = 0, . . . , τ − 1)
iteration:

∆k =
−η

N

N∑
i=1

⟨∇2Li(ω⋆
k), ωi

k − ω⋆
k⟩ (8)

Next, we seek to prove ∆k+1 ≥ ∆k with mathematical
induction.

When k = 0, since ω⋆
0 = ωi

0 = ω0, we have ∆0 = 0.
When k = 1, since ωi

1 = ω0 − η∇Li(ω0) and ω⋆
1 = ω0 −

η∇L⋆(ω0), and also let vi(ω) = ∇Li(ω)−∇L⋆(ω), we have

∆1 =
−η

N

N∑
i=1

⟨∇2Li(ω⋆
1), ωi

1 − ω⋆
1⟩

=
η2

N

N∑
i=1

⟨∇2Li(ω⋆
1), vi(ω0)⟩. (9)

Since
∑

i vi(ω0) = 0, ∆1 can be viewed as the
summation of conflicting values {vi(ω0)} assigned with
respective weights {∇2Li(ω⋆

1)}. If with IID data such that
∀i,∇2Li(ω) ≡ ∇2L⋆(ω), we then have ∆1 = 0; other-
wise, if for non-IID data that usually yields heterogeneous
{∇2Li(ω)}, we have ∆1 ̸= 0, i.e., ∆1 > ∆0 = 0.

For clarity we focus on the case where there is only
one dimension in ω. Given that {Li(ω)} are convex and
smooth (the global optimum is optimal in each dimension),
the conclusion of single-dimension case can be extended to
multi-dimensional cases.

Given that ∆1 > 0, without loss of generality we can
assume that ∆1 > 0. With Eq. (8) the set of {i} can be divided

into two groups: {i+}—those such that ωi
1 > ω⋆

1 ; and {i−}—
those such that ωi

1 < ω⋆
1 . For simplicity, we assume there are

only two clients: i+ and i−. Given ∆1 > 0, under Eq. (9) and
with convexity we have:

∇2Li−(ω⋆
1) > ∇2Li+(ω⋆

1) > 0. (10)

Under mathematical induction, we assume that ∀k ∈
{0, 1, 2, . . . ,K − 1}, ∆k+1 > ∆k ≥ 0, and seek to prove
∆K+1 > ∆K . Based on the assumptions, we first have

ω̄K+1 − ω⋆
K+1 =

K∑
k=0

∆k >

K−1∑
k=0

∆k = ω̄K − ω⋆
K > 0 (11)

Given that ω̄k = ωi+
k +ωi−

k

2 , Eq. (11) translates to

(ωi+

K+1 − ω⋆
K+1)− (ω⋆

K+1 − ωi−

K+1)

> (ωi+

K − ω⋆
K)− (ω⋆

K − ωi−

K ) > 0. (12)

We next seek to prove ∆K+1 > ∆K . Comparing ∆K+1 and
∆K , we have

∆K+1 −∆K =
∑

i∈{i+,i−}

− η

N
∇2Li(ω⋆

K+1)(ω
i
K+1 − ω⋆

K+1)

−
∑

i∈{i+,i−}

− η

N
∇2Li(ω⋆

K)(ωi
K − ω⋆

K) (13)

Under Assumption 2 (i.e., ∇2Li(ω⋆
K+1) is bounded by a

constant) and with a small step size, we approximately have
∇2Li(ω⋆

K+1) = ∇2Li(ω⋆
K) = ∇2Li(ω⋆

0) (in fact ∇2Li(ω) is
a constant if Li(ω) are quadratic functions). We further have

∆K+1 −∆K

= − η

N

∑
i∈{i+,i−}

∇2Li(ω⋆
0)[(ωi

K+1 − ω⋆
K+1)− (ωi

K − ω⋆
k)]

= − η

N
∇2Li+(ω⋆

0)[(ωi+

K+1 − ω⋆
K+1)− (ωi+

K − ω⋆
K)]

+
η

N
∇2Li−(ω⋆

0)[(ω⋆
K+1 − ωi−

K+1)− (ω⋆
K − ωi−

K )]. (14)

Combining Eq. (10), Eq. (12) with Eq. (14), we can obtain
∆K+1 −∆K > 0, i.e., ∆K+1 > ∆K > 0.

Therefore for general case with τ > 1 we have,

d(τ) =
τ−1∑
k=0

∆k > (τ − 1)∆1

= (τ − 1)
η2

N

N∑
i=1

⟨∇2Li(ω0), vi(ω0)⟩.

Integrating the case of τ = 1 we complete the proof. □
Theorem 4 (Suboptimal Convergence): Suppose FL process

converges at a point ω̄⋆, and ω⋆ is the ideal parameter under
IID dataset. Then

ω̄⋆ − ω⋆ ≥ (τ − 1)η
βN

N∑
i=1

⟨∇2Li(ω̄⋆),∇Li(ω̄⋆)−∇L⋆(ω̄⋆)⟩.

Proof: Under Theorem 3, we treat ūτ , u⋆
τ and d as a

function of ω0, then we have dτ (ω) = ūτ (ω)− u⋆
τ (ω).
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When FL process stagnates at ω̄⋆, i.e., ūτ (ω̄⋆) = 0, we have

u⋆
τ (ω̄⋆) ≥ (τ − 1)η2

N

N∑
i=1

⟨∇2Li(ω̄⋆),∇Li(ω̄⋆)−∇L⋆(ω̄⋆)⟩.

(15)

Meanwhile, since u⋆
τ (ω⋆) = 0, with Assumption 2 we have:

u⋆
τ (ω̄⋆) = u⋆

τ (ω⋆ + ω̄⋆ − ω⋆)

= u⋆
τ (ω⋆) + ⟨∇u⋆

τ (ω⋆), ω̄⋆ − ω⋆⟩

= ⟨∇u⋆
τ (ω⋆), ω̄⋆ − ω⋆⟩ ≤ ηβω̄⋆ − ω⋆. (16)

Combining Eq. (15) and Eq. (16) our proof completes. □
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[1] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” 2016, arXiv:1602.05629.

[3] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” 2019,
arXiv:1909.06335.

[4] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582.

[5] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, T. N. Hoang,
and Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in Proc. ICML, 2019.

[6] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. R. Cadambe,
“Local SGD with periodic averaging: Tighter analysis and adaptive
synchronization,” in Proc. NIPS, 2019.

[7] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update SGD,” in Proc. SysML,
2019.

[8] P. Jiang and G. Agrawal, “Adaptive periodic averaging: A practical
approach to reducing communication in distributed learning,” 2020,
arXiv:2007.06134.

[9] A. Khaled, K. Mishchenko, and P. Richtárik, “Tighter theory for local
SGD on identical and heterogeneous data,” in Proc. AISTATS, 2020.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. NIPS, 2012.

[11] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach.
Learn. Res., vol. 12 pp. 2493–2537, Aug. 2011.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” 2014, arXiv:1409.3215.

[13] K. Bonawitz et al., “Towards federated learning at scale: System design,”
in Proc. SysML, 2019.

[14] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 1–19, 2019.

[15] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
Proc. USENIX ATC, 2020.

[16] S. Wang et al., “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” in Proc. IEEE
INFOCOM, Apr. 2018, pp. 63–71.

[17] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Mar. 2019.

[18] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in Proc. IEEE INFOCOM, May 2021,
pp. 1–10.

[19] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in Proc. USENIX
OSDI, 2021, pp. 1–18.

[20] T. Yang et al., “Applied federated learning: Improving Google keyboard
query suggestions,” 2018, arXiv:1812.02903.

[21] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-IID data,” 2019, arXiv:1907.02189.

[22] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objec-
tive inconsistency problem in heterogeneous federated optimization,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 7611–7623.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, no. 7, pp. 1–39, 2011.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[26] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Tech. Rep., 2009.

[27] S. Hochreiter and J. Schmidhuber, “Flat minima,” Neural Comput.,
vol. 9, no. 1, pp. 1–42, 1997.

[28] (2020). Wonder Shaper. [Online]. Available: https://github.com/m
agnific0/wondershaper

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[30] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018, arXiv:1804.03209.

[31] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “The role
of over-parametrization in generalization of neural networks,” in Proc.
ICLR, 2018.

[32] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated dis-
tillation and augmentation under non-IID private data,” 2018,
arXiv:1811.11479.

[33] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and
V. Smith, “Federated optimization in heterogeneous networks,” 2018,
arXiv:1812.06127.

[34] C. Li et al., “Gradient scheduling with global momentum for non-iid
data distributed asynchronous training,” 2019, arXiv:1902.07848.

[35] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in Proc. INTERSPEECH, 2014.

[36] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. NIPS, 2017.

[37] N. Strom, “Scalable distributed DNN training using commodity GPU
cloud computing,” in Proc. Interspeech, Sep. 2015.

[38] K. Hsieh et al., “Gaia: Geo-distributed machine learning approaching
LAN speeds,” in Proc. USENIX NSDI, 2017.

[39] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen, “Communication
quantization for data-parallel training of deep neural networks,” in Proc.
2nd Workshop Mach. Learn. HPC Environments (MLHPC), Nov. 2016,
pp.‘1–8.

[40] L. Wang, W. Wang, and B. Li, “CMFL: Mitigating communication
overhead for federated learning,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jul. 2019, pp. 954–964.

[41] Y. Aono et al., “Privacy-preserving deep learning via additively homo-
morphic encryption,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5,
pp. 1333–1345, 2017.

[42] M. A. Pathak, S. Rane, and B. Raj, “Multiparty differential privacy via
aggregation of locally trained classifiers,” in Proc. NIPS, 2010.

[43] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. 53rd Annu. Allerton Conf. Commun., Control, Comput. (Allerton),
Sep. 2015.

Chen Chen (Member, IEEE) received the B.Eng.
degree from Tsinghua University, Beijing, China,
in 2014, and the Ph.D. degree from the Depart-
ment of Computer Science and Engineering, The
Hong Kong University of Science and Technol-
ogy, in 2018. He was a Researcher at the Theory
Laboratory, Huawei Hong Kong Research Center.
He is currently an Associate Professor with the John
Hopcroft Center for Computer Science, Shanghai
Jiao Tong University. His recent research interests
include distributed deep learning, big data systems,
and networking.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 10,2023 at 15:04:00 UTC from IEEE Xplore.  Restrictions apply. 



914 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

Hong Xu (Senior Member, IEEE) received the
B.Eng. degree from The Chinese University of
Hong Kong (CUHK), Hong Kong, in 2007, and
the M.A.Sc. and Ph.D. degrees from the Univer-
sity of Toronto in 2009 and 2013, respectively.
From 2013 to 2020, he was with the City University
of Hong Kong. He is currently an Associate Profes-
sor with the Department of Computer Science and
Engineering, CUHK. His research interests include
computer networking and systems, particularly big
data systems and data center networks. He is a

Senior Member of ACM. He was a recipient of an Early Career Scheme
Grant from the Hong Kong Research Grants Council in 2014. He received
three best paper awards, including the IEEE ICNP 2015 Best Paper Award.

Wei Wang (Member, IEEE) received his B.Eng.
and M.Eng. degrees from the Department of Elec-
trical Engineering, Shanghai Jiao Tong University,
China, in 2007 and 2010, respectively, and the
Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Toronto,
Canada, in 2015. Since 2015, he has been with the
Department of Computer Science and Engineering,
The Hong Kong University of Science and Technol-
ogy (HKUST), where he is currently an Associate
Professor. He is also affiliated with the Big Data

Institute, HKUST. His research interests include distributed systems, with
focus on serverless computing, machine learning systems, and cloud resource
management. He has published extensively in the premier conferences and
journals of his fields. His research has won the Best Paper Runner Up Awards
of IEEE ICDCS 2021 and USENIX ICAC 2013.

Baochun Li (Fellow, IEEE) received the Ph.D.
degree from the Department of Computer Sci-
ence, University of Illinois at Urbana–Champaign,
Urbana, IL, USA, in 2000. Since then, he has
been with the Department of Electrical and Com-
puter Engineering, University of Toronto, where
he is currently a Professor. He has been the Bell
Canada Endowed Chair in computer engineering
since August 2005. His research interests include
large-scale distributed systems, machine learning,
security, cloud computing, and wireless networks.

He is a member of ACM.

Bo Li (Fellow, IEEE) received the B.Eng. degree
(summa cum laude) in computer science from
Tsinghua University, Beijing, and the Ph.D. degree
in electrical and computer engineering from the
University of Massachusetts at Amherst, Amherst,
MA, USA.

He was the Cheung Kong Visiting Chair Professor
at Shanghai Jiao Tong University from 2010 to 2016,
the Chief Technical Advisor at ChinaCache Corpo-
ration (NASDAQ:CCIH), a Leading CDN Provider,
and an Adjunct Researcher at Microsoft Research

Asia (MSRA) from 1999 to 2006 and Microsoft Advanced Technology Center
from 2007 to 2008. He is currently the Chair Professor with the Department
of Computer Science and Engineering, The Hong Kong University of Science
and Technology. He made pioneering contributions in multimedia communi-
cations and the internet video broadcast, in particular Coolstreaming system,
which was credited as first large-scale peer-to-peer live video streaming system
in the world. It attracted significant attention from both industry and academia
and received the Test-of-Time Best Paper Award from IEEE INFOCOM in
2015. He was the Co-TPC Chair of IEEE INFOCOM in 2004. He is an editor
or a guest editor of more than two dozen of IEEE and ACM journals and
magazines.

Li Chen (Member, IEEE) received the B.E., M.Phil.,
and Ph.D. degrees from The Hong Kong University
of Science and Technology (HKUST), Hong Kong,
in 2011, 2013, and 2018, respectively. He was a
Systems Researcher at the Huawei Theory Labora-
tory. He is currently working with the Zhongguancun
Laboratory. His research interests include data cen-
ter networks, distributed systems, vert computing,
machine learning, and OAM.

Gong Zhang (Member, IEEE) is currently a Prin-
cipal Researcher with Huawei 2012 Laboratories.
He has more than 18 years of research experience
in network communication and distributed systems,
and has contributed more than 90 patents globally.
He was in charge of Advance Network Technology
Research Department in 2009. He has been a Team
Leader for future internet and cooperative communi-
cation research since 2005 and led the System Group
in data mining and machine learning since 2012. His
recent research interests include network architecture

and large-scale distributed systems.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 10,2023 at 15:04:00 UTC from IEEE Xplore.  Restrictions apply. 


