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Abstract

Serverless computing offers a compelling paradigm for de-
ploying machine learning inference workflows composed
of heterogeneous CPU and GPU functions. However, exist-
ing data-passing solutions in serverless systems primarily
rely on host memory for data exchange (host-centric), lead-
ing to substantial data movement and salient I/O overhead.
Moreover, modern GPU communication libraries (e.g., NCCL,
NVSHMEM, UCX) are ill-suited to serverless environments,
suffering from redundant data copies, underutilized transfer
bandwidth, and inefficient temporary GPU storage.

In this paper, we present GROUTER, a GPU-centric data
plane system designed for serverless inference workflows.
GRouUTER first introduces a unified data passing framework
that abstracts host-to-GPU and GPU-to-GPU communication
while leveraging function placement to reduce redundant
copies. It then aggregates available bandwidth across PCle
links, NVLinks, and NICs to enable parallel transfers with
performance isolation between functions. GROUTER also im-
plements elastic GPU storage that adapts to idle memory
availability and varying data transfer demands. Evaluations
on real-world inference services show that GROUTER reduces
data passing latency by up to 87% and improves throughput
by up to 1.74x compared to state-of-the-art GPU communi-
cation libraries.
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Figure 1. A serverless workflow for traffic monitoring

The rapid advances of Machine Learning (ML) and its wide-
spread adoption have driven a growing demand for scalable,
cost-effective ML inference services in the cloud [7, 13, 15,
53]. Serverless computing has emerged as a promising par-
adigm for inference serving. It enables users to deploy ML
models as stateless functions while offloading resource pro-
visioning and scaling to the cloud platform [4, 19, 37, 47, 48,
50, 52]. It is also economically attractive as users are only
billed for the resources consumed during actual function
execution. This pay-per-use billing makes serverless infer-
ence particularly suitable for workloads with intermittent
or unpredictable traffic patterns [10, 50, 51].

Cloud-based inference services typically comprise com-
plex workflows that orchestrate GPU-accelerated ML model
executions alongside CPU-based data processing operations [3,
8, 11, 14]. Fig. 1 illustrates a real-world traffic monitoring
application [40], where video frames are first decoded and
preprocessed, followed by object detection using a YOLO
model; cropped images of pedestrians and vehicles are then
routed to specialized recognition models for behavior and
type analysis. These components—running in loosely cou-
pled GPU and CPU functions—are stitched together into a
unified serverless inference workflow.

Unlike traditional CPU-based function workflows [21, 26,
49], serverless inference involves a mix of GPU functions
(gFns) and CPU functions (cFns), where data exchanges can
occur between CPU functions (cFn-cFn), GPU functions
(gFn-gFn), or between GPU functions and the host system
(gFn-host)—in the latter case, GPU functions interact with
CPU functions running in the host or Input and Output (I/O)
via the host-side in-memory store. Developing an efficient
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Figure 2. Three data passing approaches for serverless infer-
ence system: Host-centric (latest), GPU-enabled (integrated
with NVSHMEM), and GPU-centric (our method)

serverless data plane to streamline these exchanges is there-
fore crucial for accelerating end-to-end inference workflows.

Existing serverless systems employ a host-centric approach
for data exchange between functions [20, 21, 23, 26, 49, 50],
where intermediate data is stored in an external storage—
deployed on the local or a remote host—before being con-
sumed by downstream functions. However, as illustrated
in Fig. 2(a), this approach creates an elongated data path
with frequent data copies between GPU devices and the
host, introducing significant delays in end-to-end workflow
execution (up to 92% in our experiment).

To avoid moving data through the slow host-side storage,
modern GPU communication libraries, such as NCCL [27],
UCX [43], and NVSHMEM [32], provide support for direct
communications across GPUs via high-speed interconnects
such as NVLink or GPU Direct RDMA (GDR) [31]. These li-
braries enable a GPU-side storage solution to accelerate data
exchange. For instance, with NVSHMEM, GPU functions can
directly store and retrieve intermediate data within a shared
GPU memory space, bypassing host memory (Fig. 2(b)).

However, this approach fails to achieve optimal perfor-
mance because existing GPU communication libraries are
not designed for serverless environments, resulting in three
major limitations. (1) Redundant data copies. In serverless
inference, GPU storage is typically deployed as a decoupled
service from function execution, rendering it agnostic to
function placement. Without knowledge of where functions
are instantiated, the storage cannot prioritize data locality.
This forces intermediate data to traverse non-local paths, in-
curring unnecessary duplication. As shown in Fig. 2(b), the
output data of the upstream function is first copied to a GPU
store on a remote device and then transferred again to the
GPU where the downstream function is located—doubling
data movement overhead. (2) Inefficient bandwidth utilization.
GPU clusters employ heterogeneous interconnects: high-
bandwidth NVLinks and lower-bandwidth PCle links within
servers, and Network Interface Cards (NICs) across servers.
An efficient serverless data plane should leverage these asym-
metric links for concurrent data transfers, aggregating avail-
able bandwidth between GPU functions. However, existing

GPU libraries restrict point-to-point communication to a sin-
gle path (e.g., NVLink-only), leaving multi-link bandwidth
harvesting untapped. (3) Lack of elastic memory manage-
ment. During inference workflow execution, intermediate
data must be temporarily stored in GPU memory. While
serverless systems inherently exhibit dynamic workloads
and on-demand function provisioning—which often leave
idle GPU memory available—this availability changes un-
predictably. Elastic GPU memory management, capable of
dynamically scaling allocations in response to runtime de-
mands, is thus critical. Yet, existing GPU libraries lack this
capability, resulting in memory contention and performance
degradation during traffic spikes.

To address these challenges, we propose GROUTER, a GPU-
centric data plane system designed for efficient data exchange
in serverless inference workflows. Unlike conventional host-
centric approaches, GROUTER explicitly leverages knowledge
of GPU topology and function placement to orchestrate con-
current data transfers across multiple links (e.g., NVLink,
PCle links, and NICs), aggregating available bandwidth and
memory resources across the GPU cluster. The design of
GRoUTER comprises four key components. (1) Unified data
passing framework. GROUTER introduces a programming in-
terface that abstracts heterogeneous data-passing patterns
(e.g., gFn-gFn, gFn-host). Internally, it dynamically detects
function placement and underlying GPU server topology to
enable transparent, locality-aware data transfers and stor-
age management, eliminating redundant copies. (2) Fine-
grained bandwidth harvesting. To fully utilize cluster band-
width, GROUTER enables multi-path data transfers by parti-
tioning and allocating idle GPU links (including NVLinks,
PCle links, and NICs), aggregating available bandwidth while
preventing resource contention among concurrent functions.
(3) Topology-aware transfer scheduling. For asymmetric GPU
topologies, GROUTER strategically selects assist GPUs with
optimal NVLink connectivity to target GPUs running in-
ference functions. It further exploits idle parallel NVLink
paths for point-to-point data transfers, achieving near-peak
throughput. (4) Elastic data storage. GROUTER dynamically
scales GPU memory allocations by monitoring real-time
storage demands and memory pressure. When a GPU device
has no enough memory to hold all storage data, it migrates
low-priority data to other idle GPUs or host memory while
retaining critical data (e.g., for upcoming high-priority func-
tions) in GPU memory, minimizing performance penalties
from host memory evictions.

We implement GROUTER as an extension to INFless [48],
a state-of-the-art serverless inference system, utilizing low-
level GPU Inter-Process Communication (IPC) mechanism for
direct data transfers between functions and GPU storage. Our
evaluation benchmarks GROUTER against two baselines: con-
ventional host-centric serverless systems and NVSHMEM-
enhanced systems optimized for GPU communication. Us-
ing real-world inference workflows and production request



traces from Azure cloud [39], we show that GROUTER re-
duces data transfer overhead by up to 65% and achieves
11X higher throughput than the best-performing baseline.
We also demonstrate the scalability and effectiveness of
GRouTER in LLM inference applications and large clusters.

2 Background
2.1 Serverless Inference Workflow

Cloud-based ML inference services have increasingly turned
to serverless technology to streamline the deployment of
the serving pipeline [10, 37, 47, 48, 50, 52, 54]. Serverless
inference allows users to deploy ML models and data pro-
cessing operations as stateless functions and lets the platform
to handle resource provisioning, autoscaling, logging, fault-
tolerance, and other infrastructure management tasks. Users
are only billed when functions are running, eliminating the
cost of idle resources.

Modern inference services typically orchestrate multi-
stage workflows that integrate ML models with data pro-
cessing operations. Fig. 1 illustrates this with a real-world
traffic monitoring application [40], which comprises one
CPU function for video decoding and five GPU functions for
pre-processing, object detection, post-processing, and per-
son and car recognition. These heterogeneous functions are
loosely coupled, composing a serverless inference workflow.
The diversity of these workflows is further demonstrated in
Fig. 12, which collects a suite of real-world inference services
from recent studies (3, 8, 11, 40, 54, 55]. The suite spans multi-
ple workflow patterns, including linear sequential pipelines,
conditional branching for dynamic decision-making, and fan-
in/fan-out parallelism for high-throughput data distribution.

2.2 Data Passing in Serverless Inference Workflow

Compared to traditional CPU-centric function orchestra-
tion [20, 21, 26], serverless inference workflows introduce
a new challenge—managing data exchanges across hetero-
geneous functions. These workflows involve GPU functions
(gFns) executing ML models and CPU functions (cFns) han-
dling data processing, with three distinct function interaction
patterns: cFn-cFn, gFn-gFn, and gFn-host, which includes
gFn-cFn or gFn-to-host-storage. Optimizing these interac-
tions demands a purpose-built serverless data plane.

Existing serverless systems rely on external storage (e.g.,
remote services like AWS S3 [1] or intra-node solutions like
Redis [20, 21, 26] and shared memory [16, 25, 49]) to facilitate
data passing between stateless functions—an approach we
call host-centric data passing. For GPU functions, however,
this forces all intermediate data through host memory via
PCle links—a design ill-suited to GPU workflows. As shown
in Fig. 2(a), each gFn-gFn transfer requires two PCle copies
(GPU to host to GPU).
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Figure 3. Performance analysis of host-centric data passing
approach: (a) Breaking down of overall latency. (b) Breaking
down of latency for Traffic workflow with various batch
sizes. Each bar is broken into three parts: the latencies of
gFn-host data passing (top), gFn-gFn data passing (middle),
and computation (bottom)

Table 1. Limitations of GPU-side storage using existing GPU
communication libraries

Data locality | Bandwidth Efficient tem-
harvesting porary storage
NCCL/UCX X X X
NVSHMEM X X X
DeepPlan [15] | X X X
GROUTER v v v

To quantify this overhead, we deploy real-world inference
workflows on INFless [48], a state-of-the-art serverless infer-
ence system, using a DGX-V100 cluster with host-memory
sharing [49]. As Fig. 3 illustrates, data passing accounts for
92% of end-to-end latency: 63% from gFn-gFn transfers and
29% from gFn-host interactions (see §6 for details). The PCle-
bound copies between GPUs and host memory dominate this
cost, while cFn-cFn transfers via shared host memory incur
negligible overhead. These results underscore the urgent
need for a GPU-native data plane to eliminate host-induced
bottlenecks.

3 Challenges

A simple fix to host-centric data passing is to replace the
host-side storage with a GPU-side storage using modern
GPU communication libraries, such as NCCL [27], NVSH-
MEM [32], and UCX [41]. While these libraries enable fast,
direct GPU-to-GPU communication via high-speed intercon-
nects like NVLink and GPUDirect RDMA (GDR) [31], their
design assumptions (i.e., collective or point-to-point com-
munication across long-running serverful processes) are not
aligned with the serverless environments, leading to many
limitations as summarized in Table 1.

To demonstrate these problems, we augment INFless [48],
a SOTA serverless inference system, with NVSHMEM to
create NVSHMEM-+, a prototype implementing GPU-side
storage. Using this setup, we expose fundamental challenges
in adapting GPU communication libraries to serverless work-
flows: redundant data copies (§3.1), bandwidth underutiliza-
tion (§3.2), and inefficient memory management (§3.3).
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GPUL1. (b) Comparison of gFn-host data transfer overhead
when running inference workflows alone and together.

3.1 Challenge #1: Redundant Data Copies

In serverless inference, GPU functions and data storage are
deployed as decoupled services running in isolated con-
tainers, making them unable to identify their own physi-
cal location (e.g., GPU device ID). This opacity stems from
two factors. First, GPU virtualization, where functions per-
ceive virtualized device IDs (e.g., a function on physical
GPUS3 sees it as GPUO0). Second, address mapping limitations
in GPU Inter-Process Communication (IPC), which under-
pins GPU communication libraries like NVSHMEM. When
a storage container retrieves GPU memory addresses via
cudaPointerGetAttributes(), it resolves them to its own
local GPU device rather than the physical GPU where the
source function is located.

Without knowledge of function placement, the storage
cannot provide data locality but blindly selects GPUs to store
intermediate data. This results in unnecessary relay copies
instead of direct transfers. Fig. 4 illustrates a chain workflow
where three functions exchange data across GPUs and nodes:
the first two functions (GPU1 and GPU3 on Node 1) relay
data through GPU2, requiring two copies (GPU1 to GPU2
and to GPU3) instead of a direct NVLink transfer; the last
two functions (GPU3 on Node 1 and GPUS5 on Node 2) force
data through two remote GPUs—because GPU functions can
only interact with local storage on the same node—tripling
copies versus a single GDR transfer. In total, NVSHMEM+
incurs 3 more data copies than the optimum scheme. This
inefficiency grows rapidly with workflow complexity, as each
hop introduces PCle or NIC bandwidth contention.
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Figure 6. The asymmetric GPU topology. (a) Point-to-point
bandwidth of different GPU pairs in a DGX-V100 GPU server.
(b) Bandwidth constraints in asymmetric GPU topology.

3.2 Challenge #2: Underutilized Link Bandwidth

In serverless inference, functions are encapsulated in con-
tainers [28], typically limiting their access to a single GPU.
Also, existing GPU communication libraries only use the
transfer link dedicated to the local GPU (e.g., a single PCle
link, NIC, or NVLink connection), failing to exploit node-
and cluster-wide bandwidth. By contrast, modern GPU in-
terconnects enable bandwidth harvesting—borrowing idle
links from peer GPUs for parallel transfers by three means:
Parallel PCle transfers. Existing libraries transfer data to
host memory exclusively via local GPU PCle link, which is
usually a bottleneck. As shown in Fig. 3, gFn-host transfers
contribute 29% of end-to-end latency. By contrast, routing
data via NVLink to peer GPUs and leveraging their PCle
links in parallel (Fig. 5) can achieve 2-4x higher aggregate
bandwidth.

Parallel NIC transfers. Instead of confining cross-node
transfers to the nearest NIC of the local GPU—the current
practice—forwarding data via NVLink to other GPUs and
utilizing their NICs in parallel (Fig. 5) enables multi-path
transmission, effectively enhancing inter-node throughput.
Parallel NVLink transfers. While existing libraries use
only direct NVLink paths for point-to-point transfers, the
mesh topology of NVLink allows routing through interme-
diate GPUs to exploit parallel links. For example, a two-hop
transfer across three GPUs can utilize twice the NVLink
bandwidth of a single direct path.

However, realizing these optimizations in serverless sys-
tems requires two key innovations. First, bandwidth parti-
tioning to prevent contention among concurrent functions
sharing links. Second, topology-aware path selection to iden-
tify optimal parallel routes across functions.

3.2.1 Bandwidth partitioning. Harvesting transfer links
from peer GPUs in multi-tenant environments can induce
bandwidth contention. To demonstrate this, we evaluate two
workflows from the benchmarking suite we collect (Fig. 12):
the driving and video workflows. To enable concurrent PCle
transfers, we augment NVSHMEM+ with parallel data load-
ing techniques from DeepPlan [15] (termed NVSHMEM+ w/



DeepPlan). We first run the two workflows alone. As illus-
trated in Fig. 5(b), transferring data over parallel PCle links
significantly reduces the gFn-host latency for both work-
flows. We next run the two workflows together in the same
node: we observe significant interference that increases the
gFn-host latency of the driving workflow by 3.65X com-
pared to running alone (orange bars). This degradation oc-
curs because the collocated video workflow is I/O-intensive,
grabbing most PCle bandwidth as its multiple functions load
video chunks simultaneously. Therefore, effective bandwidth
harvesting requires judicious partitioning of global GPU
links (e.g., PCle links, NICs) to ensure high throughput with-
out contention-induced latency spikes.

3.2.2 Topology-aware path selection. Effective parallel
transfer paths require careful planning to align with the un-
derlying GPU topology. Notably, GPUs sharing a PCle switch
(Fig. 5 (a)) connect to host memory via a single PCle link.
Selecting multiple such GPUs for parallel transfers likely
induces link contention and should be avoided. In addition,
NVLink topologies can be asymmetric. Cost-effective servers
like DGX-V100 (Fig. 6(a)) exhibit uneven NVLink bandwidth:
28% of GPU pairs (e.g., GPU1-GPU4) achieve only half the
expected bandwidth, while 42% lack direct NVLink (e.g.,
GPU1-GPU5) and must rely on slower PCle links. Such con-
figurations are prevalent in production environments [46].

While existing libraries [5, 36, 44] optimize collective com-
munication in asymmetric topologies, no optimization is
made for point-to-point transfers. This limitation creates bot-
tlenecks when upstream/downstream functions are placed
on weakly connected GPUs (Fig. 6(b))—a common scenario
in workflows with fan-in/fan-out patterns. Weak connectiv-
ity also undermines PCle harvesting: if GPU1 borrows PCle
link from GPU5 without a direct NVLink, data must traverse
the PClIe bus of GPU1 twice (GPU1 to host and to GPUS5),
congesting its local PCle bandwidth and degrading gFn-host
transfer performance.

3.3 Challenge #3: Inefficient Memory Management

Serverless functions rely on external storage for indirect data
exchange, where intermediate data is temporarily held until
consumed by downstream functions. Fig. 7(a) shows the GPU
memory usage of the driving workflow in our benchmark-
ing suite with simulated requests sampled from the Azure
trace [39] on a DGX-V100 server (16 GB per GPU). While
GPU memory is often underutilized in serverless inference—
due to on-demand function provisioning and small batch size
(<128) [53]—eflicient memory management remains critical.

However, existing GPU memory management for server-
less inference results in two inefficiencies. (1) Excessive mem-
ory reservation. To minimize allocation overhead, existing
systems pre-reserve GPU memory for storage. However,
methods like those in [12, 34] impose no usage constraints
but rely on manual reclamation, leading to memory bloat.
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Figure 7. (a) Available idle GPU memory in a serverless
inference system under Azure Function trace. (b) Forced
data eviction when available GPU memory diminishes.

Our experiments reveal GPU storage consumes 4X more
memory than actual demand, a significant waste. (2) Subopti-
mal data eviction. During traffic spikes or data accumulation,
GPU memory quickly exhausts, forcing eviction of inter-
mediate data to host memory (Fig. 7(b)). As a result, down-
stream functions have to retrieve data from host memory,
incurring significant gFn-host transfer overhead. Further-
more, traditional eviction polices (e.g., LRU) are designed for
intra-program access patterns (e.g., DNN training) without
considering function scheduling. Under these policies, data
scheduled for imminent use can be mistakenly evicted.

4 GROUTER System Design

In this section, we present GROUTER, a GPU-centric data
plane system designed for efficient data exchange in server-
less inference workflows. We start with a system overview
followed by the detailed descriptions of its key components.

4.1 Design Overview

Fig. 8 illustrates an architecture overview of GROUTER, which
comprises four key components: (1) Unified data passing
framework. GROUTER provides a unified put/get API that
abstracts heterogeneous data-passing patterns (e.g., gFn-gFn,
gFn-host). Under the hood, it dynamically tracks function
placement (physical GPU/CPU locations) and server topol-
ogy (i.e., the connectivity of NVLinks, PCle links, and NICs)
to orchestrate transfers. (2) Efficient parallel data transfers. To
fully utilize cluster-wide transfer bandwidth, GROUTER en-
ables multi-path data transfers by partitioning and allocating
idle GPU links (including NVLinks, PCIe links, and NICs), ag-
gregating available bandwidth while preventing contention
among concurrent functions. (3) Topology-aware transfer
scheduling. For asymmetric GPU topologies, GROUTER judi-
ciously selects route GPUs with optimal NVLink connectivity
to target GPUs running inference functions. It further ex-
ploits idle parallel NVLink paths to accelerate point-to-point
data transfers. (4) Elastic data storage. GROUTER dynamically
scales GPU memory allocation in storage by monitoring real-
time storage demands and memory pressure. When storage
space becomes limited, it evicts low-priority data to host
memory or remote idle GPUs while keeping critical data
(e.g., for upcoming high-priority functions) on local GPUs to
reduce performance penalties from host memory evictions.
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Figure 8. GROUTER system overview

4.2 Unified Data Passing Framework

4.2.1 Locality-aware transfers and library interface.
To avoid unnecessary data transfers across remote GPUs,
GRoUTER detects function placement and caches data locally
on the same GPU. It offers two simple data-passing APIs—
Put () for storing data and Get () for retrieving it—similar to
cloud storage services like AWS S3 [1]. When Put () is called
by a function, GROUTER identifies its resident GPU, allocates
local GPU memory to store the data, and returns a globally
unique identifier. This identifier can then be passed to down-
stream functions. When a function calls Get (), GROUTER
locates the data using the identifier and selects an appro-
priate GPU transfer method based on the placement of the
downstream function. As a result, each piece of data is trans-
ferred only once across GPUs during data exchange between
GPU functions.

4.2.2 Heterogeneous GPU data-passing patterns. Since
the required data of a GPU function may reside in different
locations (e.g., host memory, other GPUs, or remote nodes),
GROUTER supports three data-passing patterns. (1) Intra-
node gFn-gFn transfer. When the function and data reside on
different GPUs within a node, GROUTER allocates memory
on the GPU of functions, maps the address into the address
space of function via CUDA IPC [29], and then leverages
NVLink to transfer data into the mapped address. In case
that the function and data reside on the same GPU, GROUTER
shares the address of data with function directly, enabling
zero-copy data access. For asymmetric topologies, it exploits
parallel NVLink paths to maximize throughput (§4.3.3). (2)
Cross-node gFn-gFn transfer. For functions and data on sep-
arate nodes, GROUTER first allocates memory on the GPU
of the function and maps the address into function, then
employs GPUDirect RDMA (GDR) to directly write data into
that address over the network. It further exploits idle NICs
(if any) to accelerate transfer (§4.3.3). (3) gFn-host transfer.
When data resides in host memory, GROUTER stages it to the
target GPU via parallel PCle links (§4.3.3), then maps it into
the address space of the function.
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Figure 9. (a) Parallel data transfer for cross-node gFn—-gFn
transfer. (b) Parallel gFn-gFn data transfer on asymmetric
GPU topology.

To transparently manage GPU/host memory and cross-
node storage, GROUTER uses globally unified data identifiers.
It maintains mappings between data identifiers, memory
addresses, and data locations (node ID and GPU device ID).
For scalability, each node maintains a local mapping table,
while a centralized scheduler holds a global table. Lookups
and updates are first served by the local table, falling back
to the global table only on misses.

4.3 Efficient Parallel Data Transfers

4.3.1 Parallel transfer strategies. GROUTER maximizes
bandwidth utilization by orchestrating multi-path transfers
with strategies tailored to each data-passing pattern, leverag-
ing idle PCle, NIC, and NVLink resources across the cluster.

e gFn-host. For host-bound data, GROUTER distributes trans-
fers across idle PCle links from route GPUs. As shown in
Fig. 5(a), data from GPUL1 is first routed via NVLink to
peer GPUs (GPU3, GPU5, and GPU7), which concurrently
stage it to host memory through their PCle links. To avoid
contention, GPUs sharing a PCle switch (e.g., GPU2) are
excluded as route GPUs, as they share a single PCle link
to host memory.

o Cross-node gFn-gFn. For cross-node transfers, GROUTER
harnesses idle NICs from multiple GPUs. As illustrated in
Fig. 9(a), data from GPU1 (node 1) is split and routed via
NVLink to local route GPUs (GPU2-GPU4). These GPUs
then transmit chunks in parallel using their dedicated
NICs, targeting corresponding GPUs on the remote node
(e.g., GPU2—GPU2 on node 2) to minimize NUMA latency.
The data is finally aggregated on the destination GPU
(GPU1, node 2) via NVLink.

o Intra-node gFn-gFn. GROUTER exploits indirect NVLink
paths for intra-node transfers. In Fig. 9(b), data from GPU4
is split and routed through two parallel paths (GPU4—GPU1
and GPU4—GPU6—GPU7—GPU1), utilizing idle NVLinks
to bypass congested direct connections.

To coordinate these strategies, GROUTER splits data into
small chunks (2 MB by default) and precomputes a parallel
transfer plan. Chunks are pipelined across GPU streams,
with synchronization primitives ensuring in-order delivery.

To fully utilize cluster bandwidth and accommodate the
underlying GPU topology, GROUTER incorporates two key
mechanisms. First, fine-grained bandwidth harvesting (§4.3.2)
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Figure 10. SLO-aware PCle data transfer scheduling

to avoid contention among concurrent functions sharing the
same link—primarily for parallel PCIe and NIC transfers. Sec-
ond, topology-aware transfer scheduling (§4.3.3) to identify
optimal parallel paths based on GPU topology—primarily for
parallel NVLink transfers.

4.3.2 Fined-grained bandwidth harvesting. For PCle
and NIC transfers, where bandwidth is the main bottleneck,
GROUTER aggregates available bandwidth and applies fine-
grained partitioning to efficiently allocate it among concur-
rent functions. Fig. 10 shows the process of transfer sched-
uling in GROUTER. First, data from each function is divided
into smaller chunks to enable fine-grained transfer control.
GROUTER allocates bandwidth to meet the Service Level Ob-
Jjective (SLO) of each function and proportionally schedules
data chunk transfers. Consistent with prior inference sys-
tems [7, 53], the SLO is defined as 1.5-2X the average execu-
tion time of each inference service, based on measurements
from 10 runs.

Transfer rate control. GROUTER first calculates the mini-
mum required transfer rate Ratej.,s; for each function based
on its SLO and data size, representing the minimum band-
width necessary to meet the SLO of each function. Let Ly,
denote the SLO, and Ly, r., denote its inference computation
latency. The Ratejeqs; is defined as data_size/(Lgio — Linfer)-
Given that DNN inference execution exhibits a highly pre-
dictable pattern! [4, 7, 47, 54], offline profiling can effectively
guide transfer control to meet the latency SLOs for each func-
tions.

GROUTER monitors the transfer rate of the data block
from each function in real time to ensure it remains above
Ratej.qs;. GROUTER then calculates the idle transfer rate
(i.e., bandwidth) Rate; ., which reflects the remaining band-
width after meeting the minimum bandwidth requirements
of all functions. Let BW,;; denote the total bandwidth in the

GPU server, we have Rate;g;. = BW,;; — Z?zlf;fu"cs Rate!

least’
GRoUTER allocates this idle bandwidth to the function v&iftsh

1n serverless inference, functions running DNN models share GPU devices
in a time-multiplexed manner [47, 50], leading to minimum interference
with one another.

Algorithm 1: Contention-aware paths selection

Input: Func_id func; Source GPU gs; Destination GPU g4; The
real-time global bandwidth usage matrix BWj,x, The
topology matrix Toponxn

Output: The available parallel transfer paths Paths

1 while path == null do
path « next_shortest_path(BWpxp, gs, 9a);
if all edges in path is idle then

Paths < path;

Update(BWy,xp, path, func);

if BWyur(gs) == 0U BW;,(gq) == 0 then
7 L break;

(2 IS TR N

o

if BWyut(gs) # 0N BWin(ggq) # 0 then
9 while path == null do

o

10 path « next_busy_path(BWyxn, gs, 9a);

1 bandwidth_balancing(path, func, BWyxn);
12 Paths « path;

13 if BWyur(gs) == 0U BW;,(gq) == 0 then
14 L break;

15 return Paths;

the tightest SLO, enabling latency-sensitive functions to com-
plete their data transfers first without impacting other func-
tions.

Batched data transfer. Since initiated data chunk trans-
fers cannot be interrupted, launching all transfers simulta-
neously would block newly arrived functions from acquir-
ing bandwidth. Conversely, transferring individual chunks
incurs excessive connection setup overhead. GROUTER bal-
ances these tradeoffs with batched transfers, grouping chunks
into batches (default: 5 chunks per batch). This allows new
functions to inject their chunks into subsequent batches,
ensuring fair bandwidth preemption while amortizing per-
transfer costs. To further optimize PCle transfers, GROUTER
maintains a circular pinned memory buffer shared across
functions. By reusing this fixed buffer for multiple batches,
the system minimizes pinned memory allocation overhead
and reduces cache bloat.

4.3.3 Topology-aware transfer scheduling. To optimize
parallel NVLink transfers in asymmetric topologies, GROUTER
employs a topology-aware path selection algorithm that max-
imizes point-to-point bandwidth for weakly connected GPU
pairs by exploiting multiple NVLink paths, while avoiding
path overlap to prevent contention.

Once the function placement of a workflow is finalized
(function scheduler is described in §??), GROUTER prioritizes
direct NVLink paths between GPUs. If these paths are al-
ready occupied by other functions (as part of indirect routes),
GROUTER reassigns those functions to alternative routes
(i.e., prioritizing direct path over an indirect route). Then,
GROUTER searches for available free NVLink paths for each
inter-GPU data transfer in the serverless inference work-
flow, starting with the GPU pair having the least residual



bandwidth. GROUTER maintains a bandwidth usage matrix
BW (g, b), where g represents GPUs and b is the available
bandwidth between them. GROUTER continuously monitors
and updates global bandwidth usage in real-time on this
matrix, which is used to guide path selection.

As shown in Algorithm 1, the selection process involves:
GROUTER first searches for free paths to avoid contention
with other functions (lines 1-7). When a free path is found,
the bandwidth usage matrix BW (g, b) is updated. The band-
width occupied by the path determined by the NVLink with
the smallest bandwidth along the path, denoted as by,in (path).
Thus, the update to BW (g, b) subtracts b,,;, (path) from the
free bandwidth of each GPU pair on the path. If all free paths
are exhausted and the outgoing bandwidth of g5 and incom-
ing bandwidth of g4 are not saturated, GROUTER searches
busy paths to see if bandwidth can be balanced between the
current function and the one occupying the path (lines 8-14).
GROUTER compares the total bandwidth used by the running
function and the current function, and checks whether the
running function can switch to another path. If it is available,
the busy path is assigned to the current function. Because a
GPU server usually has 4-8 GPUs, after using path pruning
and other loop-free path search acceleration, the overhead
of path selection is less than 10us in our experiments.

Parallel NVLink transfers use the same pipelined method
as in PCIe/NICs transfers. However, to accommodate hetero-
geneous NVLink bandwidth (24 GB/s or 48 GB/s per link),
GROUTER dynamically sizes data chunks proportionally to
the capacity of each path. For example, a 48 GB/s link receives
twice the chunk size of a 24 GB/s link, ensuring balanced
utilization and minimizing transfer tail latency.

4.4 Elastic GPU Data Storage

We design elastic GPU data storage to reduce GPU mem-
ory usage and adapt to changes of available GPU memory.
GROUTER dynamically scales storage size based on actual
demand and migrates data when memory pressure arises.

4.4.1 GPU storage scaling. Temporary GPU memory al-
location incurs significant overhead, as native GPU alloca-
tions (e.g., cudaMalloc() and cudaFree()) incur millisecond-
level delays. To address this, existing memory management
systems [2, 12, 34] maintain pre-allocated memory blocks
as a reusable pool. However, these pooling mechanisms are
typically static. For example, in PyTorch [34], users must
manually reclaim memory pools, which releases all reserved
blocks at once. Therefore, applying static memory pooling
to GPU storage results in excessive memory usage from idle
reserved memory.

Our key idea is to enable GPU storage to scale the memory
pool dynamically based on actual demand. However, esti-
mating the required size is difficult because intermediate
data sizes vary with function inputs, batch sizes, and request
loads. GROUTER adopts a memory pre-warming strategy
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Figure 11. (a) Histogram policy characterizing both request
arrivals (blue), intermediate data size (orange), and data ac-
cumulation (green) of each function. (b) Illustration of the
inefficiency of LRU-based data migration (red line) vs. queue-
aware data migration (blue line).

inspired by function pre-warming [39, 48] in serverless sys-
tems, which tracks request intervals (R,,indow = Interval®®! hy
to estimate how long functions stay active in memory. Be-
yond this, GROUTER also monitors intermediate data sizes
(Rsize = Datagize®'?) and the degree of data accumula-
tion (Reon = Concurrencyggth) in GPU storage, as shown
in Fig. 11(a). After each function execution, memory reser-
vation is calculated as Data_size = Rg;ze - Reon. If no new
requests arrive within the reservation window, the reserved
memory is reclaimed. The total memory pool size is given by
MemPool_size = ), r,n. Data_size - 1(Rr, 4, N t#2}, Where
14 is an indicator function of events that returns 1 if event A
is true and 0 otherwise. To handle bursty requests, GROUTER
maintains a minimum memory pool (e.g., 300 MB) in idle
periods, when GPU memory is sufficient.

4.4.2 Proactive data migration. When GPU memory
pressure increases, available memory for storage becomes
limited, requiring intermediate data to be evicted to reduce
GPU storage usage. However, migrating data to host mem-
ory forces downstream functions to fetch it with additional
latency. An effective migration strategy is thus critical. Ex-
isting approaches [6, 17, 33] typically adopt an LRU strategy,
which evicts the least recently accessed data. However, LRU
ignores function scheduling and often migrates data that
will soon be accessed. For instance, as shown by the red line
in Fig. 11 (b), the LRU strategy tends to evict the output data
of function a; first, ignoring that b; (the downstream func-
tion of a;) is enqueued earlier, forcing b; to reload data from
host memory and introducing additional delays. To address
this, GROUTER uses a request queue-aware migration strat-
egy that prioritizes evicting data needed by functions at the
tail of the queue, ensuring that data required by imminent
function invocations remains in GPU storage. As shown by
the blue line in Fig. 11(b), the output data of function a, is
migrated before the output of a;.

Furthermore, GROUTER promptly removes intermediate
data that is no longer needed and proactively restores previ-
ously migrated data when sufficient GPU memory becomes
available. For instance, after the output of a; is processed,



the output of ay is reloaded into GPU memory. This proac-
tive migration approach ensures upcoming functions can
access data locally, minimizing performance degradation un-
der fluctuating available GPU memory. GROUTER triggers
data migration and restoration automatically based on avail-
able GPU memory, maintaining storage usage within a fixed
threshold (50% of free memory in our experiments) to avoid
contention with function execution while maximizing GPU
memory utilization.

5 Implementation

GROUTER is built on INFless [48], a state-of-the-art serverless
inference system. It comprises 5K lines of C++ code. Each
function runs in a container with on-demand CPU and GPU
allocation [28].

Data storage. GROUTER mounts a shared memory region to
each function for efficient data and message exchange. On
the host side, it attaches a host volume to each function. On
the GPU side, it maintains an elastic memory pool on each
GPU for data storage. When a function stores or retrieves
data, GROUTER allocates memory from the local pool and
maps it into the address space of functions using CUDA
IPC [29]. Each GPU runs an I/O thread to reclaim unused
memory and migrate data between GPU and host memory
based on available storage space.

Data transfer management. GROUTER launches a daemon
thread on each GPU to manage data transfers from functions.
Each thread uses multiple GPU streams to enable parallel
transfers in different directions and coordinates with other
threads based on pre-planned pipeline paths. Most parallel
transfer paths, such as PCle links and NIC routes, are fixed
and can be pre-generated during GROUTER initialization,
allowing real-time requests to use them directly.

Function scheduling. For function scheduling in GPU clus-
ters, GROUTER adopts a hierarchical control plane. Most data
transfers and scheduling decisions are handled by local con-
trol plane within a node, while the global plane is invoked
only for infrequent cross-node coordination, thereby mini-
mizing inter-node transfers and scheduling overhead. Within
a GPU node, GROUTER employs the MAPA strategy [36] max-
imize the utilization of GPU interconnects across functions.
To further mitigate the performance impact of cold starts,
GROUTER pre-warms necessary functions and models, simi-
lar to the approach used in SHEPHERD [53].

6 Evaluation

Setup. We evaluate GROUTER using two AWS GPU testbeds.
Testbed 1(DGX-V100) uses p3.16x1arge instances, each con-
taining 8 NVIDIA V100 GPUs connected via NVLinks, a Xeon
E5-2686 v4 CPU (32 vCPUs), 244 GB of memory, and 4x100
Gbps NICs. Testbed 2 (DGX-A100) uses p4d.24xlarge in-
stances, each having 8 NVIDIA A100 GPUs connected via
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Figure 12. Real-world inference workflows composed of
GPU functions (green) and CPU functions (yellow). They
are organized into four typical patterns: condition, sequence,
fan-in, and fan-out.

NVSwitch, a Xeon Plati. 8275CL CPU, 1152 GB of memory,
and 8x200 Gbps NICs.

Real-world inference workflows. We conduct experi-
ments using six inference workflows collected from the latest
studies, as detailed below and in Fig. 12. All pre-processing
and post-processing are performed on the GPU using NVIDIA
CV-CUDA [30]. The input datasets are from Adainf [40].

o Traffic (T). Following Boggard [3], we implement a traffic
monitoring workflow which first detects objects using the
Yolo-det model, and then performs feature recognition on
pedestrian and vehicle sub-images using ResNet models.

e Driving (D). Following Adainf [40], we implement a road
segmentation workflow for auto-driving. The process in-
volves denoising the image, applying a semantic segmen-
tation model, and outputting a colored image.

e Video (V). Following Aquatope [55], we implement a video
processing workflow that runs a face detection model on
video chunks in parallel, followed by a recognition model
to identify a specified actor.

o Image (I). Following Cocktail [11], we implement an image
classification workflow that first denoises the image, then
applies multiple classification models simultaneously, and
aggregates the results to improve accuracy.

o Mixture of Agent (MoA). Following MoA [45], we imple-
ment a layered agent workflow wherein each layer com-
prises multiple LLM agents. Each agent takes all the out-
puts from agents in the previous layer as auxiliary infor-
mation in generating its response.

Baselines. We compare GROUTER to the following baselines:

o [NFless+. This baseline represents a host-centric design that
extends INFless [48]—a state-of-the-art serverless infer-
ence system—by incorporating a host-side shared-memory
storage layer for efficient inter-function communication.
We denote this approach as INFless+.

o NVSHMEM-+. This baseline adopts NVSHMEM [32] to en-
able GPU-side storage layer (randomly assigned to one



GPU per data object). With NVSHMEM, GPU functions
can directly store and retrieve intermediate data through
a shared GPU memory space, bypassing host memory. We
refer to this approach as NVSHMEM-+.

e DeepPlan+. This baseline further enhances NVSHMEM+
by integrating PCle optimizations from DeepPlan, which
enables parallel data transfers across all available PCle
links in a GPU node. We refer to this approach as Deep-
Plan+. Note that parallel PCle transfers are handled by
the storage service, as other GPUs’ PCle are invisible to
functions.

Workloads. We simulate the invocation of inference work-
flows using production traces from Azure Function [39],
following the methodology of prior serverless inference sys-
tems [23, 48, 53]. The traces exhibit three characteristic re-
quest arrival patterns: sporadic, periodic, and bursty.

6.1 Data Passing Performance

We first evaluate the data passing latency between two func-
tions under various scenarios. Fig. 13 illustrates the data
passing latency between functions under varying data vol-
umes. The latency measures the time elapsed between the
upstream function sending the data and the downstream
function receiving it.

Intra-node gFn-gFn. When GPU functions are colocated
within the same node (Fig. 13(a)), GROUTER achieves the
lowest data passing overhead, reducing latency by 95%, 75%,
and 75% compared to INFless+, NVSHMEM+, and DeepPlan+,
respectively. INFless+ uses host memory for data exchange,
leading to large overhead. NVSHMEM+ lacks awareness of
function locations, leading to extra data copies with a remote
GPU. DeepPlan+ optimizes gFn-host transfers but neglects
gFn-gFn transfers. GROUTER detects function placement and
stores data on the local GPU to eliminate redundant data
copies. It further accelerates data transfer on DGX-V100
server by leveraging parallel NVLinks.

Host-gFn. For data passing between GPU functions and
host memory (Fig. 13(b)), GROUTER uses the global PCle
links, reducing latency by 63%, 63%, and 75% compared to
NFless+, NVSHMEM+, and DeepPlan+, respectively. INF-
less+ and NVSHMEM+ only use the PCle link of the local
GPU, leading to long delays. DeepPlan+ also uses parallel
PCle links, but it lacks topology awareness, leading to worse
performance than NVSHMEM+ on asymmetric topologies
(DGX-V100), as it selects route GPUs with limited NVLink
connectivity to the current GPU, causing PCle bandwidth
congestion. Moreover, since functions have limited access
to GPU resources, only the external storage can see the all
PCle links and underlying topology. The storage service of
DeepPlan+, however, cannot detect function placement, re-
sulting in redundant data copies—for instance, data is first
pulled to a remote GPU, then copied to the GPU device of
the target function.
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Inter-node gFn-gFn. For GPU functions distributed across
different nodes (Fig. 13(c)), GROUTER reduces data passing
latency by 91%, 87%, and 87% compared to INFless+, NVSH-
MEM+, and DeepPlan+, respectively. INFless+ incurs high
overhead by routing data through host memory. Both NVSH-
MEM-+ and DeepPlan+ use only a single NIC for cross-node
data transfers. In contrast, GROUTER enables locality-aware
data transfer between GPUs across nodes without redundant
data copies and leverages multiple NICs for parallel transfers.

6.2 Performance under Real-world Workloads

We next evaluate GROUTER using real-world inference work-
flows and production traces from Azure Function [39]. We
scale the traces to ensure effective resource utilization, align-
ing with prior studies [55].

End-to-end latency. Fig. 14 shows the P99 latency across
various applications under different production workloads.
On DGX-V100 servers, GROUTER reduces latency by 61%,
48%, and 54% compared to INFless+, NVSHMEM-+, and Deep-
Plan+, respectively. DeepPlan+ performs worse than NVSH-
MEM+ due to its lack of NVLink connectivity awareness. On
DGX-A100 servers, GROUTER reduces latency by 53%, 36%,
and 30% compared to INFless+, NVSHMEM+, and DeepPlan+.
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vesting in GROUTER

Compared to NVSHMEM+, GROUTER aggregates available
bandwidth and eliminates redundant data transfers. It also
optimizes GPU storage by keeping high-priority data (for
upcoming functions) in GPU memory, avoiding costly host-
memory fetches.

Throughput. Fig. 15 shows the maximum throughput of
these inference workflows within the same node and across
different nodes. When functions are colocated within the
same node, GROUTER surpasses INFless+, NVSHMEM+, and
DeepPlan+ by 2.1x, 1.74X, and 1.37X, respectively, by locality-
aware GPU data transfer and efficiently leveraging paral-
lel NVLink and PCle links. For functions distributed across
nodes, GROUTER outperforms INFless+, NVSHMEM+, and
DeepPlan+ by 2.73%, 1.55%, and 1.39X, respectively, through
direct inter-node GPU data transfers and utilization of mul-
tiple NICs.

6.3 Performance of Components in GROUTER

We next evaluate the effectiveness of each design in GROUTER.
Ablation study. We incrementally disable optimizations
in GROUTER to assess their impact on data passing latency,
including elastic storage (ES), topology-aware scheduling (TA),
GPU bandwidth harvesting (BH), and the unified data passing
framework (UF). Fig. 16 presents the average data passing
latency under a bursty workload. On DGX-V100 servers,
disabling all optimizations (rightmost bar) increases latency
by 1.57x-1.82X compared to GROUTER, with ES, TA, and UF
having the greatest effects. On DGX-A100 servers, latency
increases 1.30X-1.61X when all optimizations are removed,
with ES and BH having the greatest impact.

Bandwidth partitioning. To demonstrate the effectiveness
of the fine-grained bandwidth harvesting (BH) in achiev-
ing performance isolation between concurrent functions,
we conduct mixed workload experiments using two work-
flow pairs on DGX-V100 servers. Following GPUlet [7], the
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Figure 18. (a) Latency under 10% available GPU memory. (b)
End-to-end latency under different available memory ratios.
(c) Average gFn-gFn data passing latency.

SLO for each workflow is set to 1.5X its independent execu-
tion time. We compare GROUTER with GROUTER-BH, which
employs PCle bandwidth sharing as in DeepPlan+. Both
workflows run under bursty workload, consistent with pre-
vious experiments. Fig. 17(a) presents the results for a high-
contention case where the latency-critical driving workflow
is paired with a transfer-intensive video workflow, which
involves multiple functions loading video chunks simultane-
ously. Without bandwidth partitioning, the latency of driv-
ing workflow is increased due to interference from the video
workflow. In contrast, GROUTER controls PCle bandwidth
usage by the video workflow, allowing more bandwidth for
the driving workflow. This reduces driving workflow latency
by 32% and improves Service Level Objective (SLO) compli-
ance. Fig. 17(b) shows results for a low-contention scenario,
where driving workflow is paired with image workflow. In
this case, GROUTER and GROUTER-BH performes identically,
indicating that GROUTER introduces minimal overhead in
transfer scheduling.

Elasticity of GPU storage. To evaluate the efficiency of the
GPU storage of GROUTER, we measure latency under limited
available memory and compare it with INFless+, LRU (used
by NVSHMEM-+), and a request queue-aware approach (RQ)
without proactive data migration. Fig. 18(a) shows the end-
to-end latency distribution under a bursty workload with
GPU storage limited to 10% of the GPU memory. Compared
to INFless+, LRU, and RQ, GROUTER reduces tail latency by
46%, 27%, and 7%, respectively. RQ prioritizes keeping data
accessed earlier by downstream functions in GPU memory,
while GROUTER further reduces latency through proactive
data migration compared to RQ. As shown in Fig. 18(b), fur-
ther tests under different memory availability ratios show
that even with only 1% available memory, GROUTER re-
duces end-to-end latency by 24%, 14%, and 9%, respectively.
Fig. 18(c) shows the average data passing latency. Compared
to INFless, LRU, and RQ, GROUTER reduces delays by 83%,
72%, and 49%, respectively. These results demonstrate that
GPU storage management in GROUTER and proactive data
migration efficiently utilize available GPU memory and main-
tain performance under memory constraints. Despite severe
memory constraints (1%), parallel PCle transfers in GROUTER
mitigate the overhead of fetching data from host memory.
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6.4 Performance under Emerging LLM Applications

We evaluate the performance of GROUTER in Large Language
Model (LLM) workflows, using the Mixture-of-Agent [45]
(MoA) as an example. In this multi-stage workflow, multi-
ple LLMs optimize answers from the previous stage to im-
prove quality, passing the Key-Value Cache (KV cache) of
the prompt and response among stages to avoid recomputa-
tion. Different stages are deployed on separate 8xH800 GPU
nodes, with GPUs connected via 200 GB/s NVLink and nodes
connected by 200 Gbps networks. Due to the specialized
management of the KV cache, we select Mooncake [35]—a
state-of-the-art KV cache system—as the baseline and imple-
ment it on the serverless system, referred to as Mooncake+.
Following DroidSpeak [24], we report The First Token Time
(TFTT) of the receiver LLM.

Fig. 19(a) shows the TTFT for different input lengths. For
a 4K input length, GROUTER reduces TFTT by 66% and
57% compared to INFless+ and Mooncake+, respectively.
Fig. 19(b) further shows that GROUTER reduces TFTT by
36% and 28% under various models and Tensor Parallelism
(TP) settings, respectively. INFless+ transfers the KV cache
to host memory, incurring high overhead. Mooncake incurs
extra copies due to lack of function placement awareness
and utilization of single NIC. In contrast, GROUTER avoids
redundant copies and uses multiple NICs. As TP increases,
Mooncake begins using multiple NICs, narrowing the ad-
vantage of GROUTER. At TP=8, the advantage of GROUTER
mainly comes from locality-aware data transfers without
extra copies.

6.5 Applicability and System Overhead
Testbed without NVLink. Fig. 20(a) shows the data passing

latency between GPU functions on 4x10 GPU servers (with-
out NVLink). GRouTER reduces latency by 51% compared to

INFless+, NVSHMEM+, and DeepPlan+. NVSHMEM+ per-
forms similarly to INFless+ due to lack of function placement
awareness, leading to two peer-to-peer GPU data copies via
PCle. In contrast, GROUTER only requires one copy as it can
detect the location of functions. Therefore, GROUTER proves
to be highly effective in testbeds even without NVLink.
CPU overhead. We evaluate the system overhead in GROUTER.
Fig. 20(b) shows that the CPU resources used by GROUTER
are similar to those of the state-of-the-art serverless infer-
ence system, INFless+. While the control plane of GROUTER
introduces additional tasks, such as monitoring GPU link
usage and memory pressure, these operations are performed
periodically or triggered only by new requests or data, re-
sulting in negligible CPU overhead.

GPU memory overhead. Fig. 20(c) shows that GROUTER
uses the least GPU memory. In NVSHMEM, symmetric mem-
ory allocation [32] leads to significant waste, as all processes
allocate and release GPU memory simultaneously. The static
memory pooling method also lacks awareness of storage
needs, causing over-pooling. In contrast, GROUTER dynami-
cally scales storage space based on actual requirements.

7 Discussion and Related Work

Threat Model of GROUTER. GROUTER provides a unified
data storage service for functions while placing a strong
emphasis on data security, even in the presence of shared re-
sources such as transfer buffers and data storage. To achieve
this, GROUTER enforces two key forms of isolation: (1) Ad-
dress isolation. In GROUTER, both data storage and trans-
mission buffers are allocated in containers that are isolated
from the function itself, each with its own separate address
space (e.g., a dedicated CUDA context). Functions can only
access GPU storage through pre-mapped addresses (e.g., via
CUDA IPC with enforced alignment). Moreover, transmis-
sion buffers are never mapped into a function’s address space,
preventing any direct access by the function. These isolation
mechanisms ensure that functions cannot reach data outside
their designated boundaries, thereby mitigating the risk of
leakage through out-of-bounds accesses. (2) Access control.
Data items are exchanged across functions using data IDs,
which introduces the potential risk of ID leakage or attacks.
To address this, GROUTER authenticates the requesting func-
tion using both function_ID and workflow_ID on every access,
ensuring that only authorized functions can read or manip-
ulate specific data items. To minimize overhead, GROUTER
employs a hierarchical control plane: IDs and metadata are
synchronized to the local node at invocation time, avoiding
frequent cross-node lookups during execution.

In addition to these mechanisms, GROUTER provides a se-
curity level comparable to the latest serverless platforms [19,
20, 48] across functions. Each function operates within its
own independent container, with isolated host memory, NIC
buffers, and GPU runtime contexts (separate CUDA contexts



with private GPU address spaces). For workloads requiring
even stronger guarantees, GROUTER can also support mi-
croVMs [49].

GPU sharing supports in GROUTER. Existing GPU-enabled
serverless systems typically employ GPU sharing to maxi-
mize resource utilization, including temporal sharing (e.g.,
DGSF [9] and FaaSwap [50]) and spatial-sharing (e.g., Stream-
Box [47] and Llama [37]). While GRouTER adopts a temporal-
sharing model, its optimizations are orthogonal to GPU shar-
ing strategies. In fact, spatial GPU sharing inevitably incurs
more serious bandwidth and memory contention, which
makes optimizations in GRouTER—transfer bandwidth parti-
tioning and GPU storage management—even more critical.
Multi-GPU communication. Existing GPU communica-
tion libraries [5, 18, 27, 36, 38] leverage high-speed GPU
interconnects for collective communication such as allRe-
duces. Some multi-GPU inference systems also utilize these
interconnects to transfer embeddings (e.g., UGache [42]) or
KV caches (e.g., MoonCake [35]) for recommendation and
LLM workloads. However, these systems are not designed for
serverless environments, resulting in redundant data copies
and limiting each GPU to utilize only its own bandwidth
resources (e.g., a single PCle, NVLink, or NIC). In contrast,
GROUTER aggregates available bandwidth across GPUs via
multi-path transfers. Unlike collective communication meth-
ods that coordinate bandwidth globally, GROUTER can dy-
namically aggregate global bandwidth resources for GPU
functions running on a single GPU.

GPU memory management. Existing methods focus on
pooling memory and unifying multi-level memory. GM-
lake [12] uses CUDA virtual memory to reduce fragmenta-
tion in memory pooling, while CUDA UVM [33], HUVM [6],
and DeepUM [17] address GPU memory limits by swap-
ping data between GPU and host memory. However, these
methods lack elastic memory management and awareness
of request scheduling, which can lead to large memory occu-
pation and suboptimal data eviction. In contrast, GROUTER
dynamically scales GPU storage on demand and migrates
data when memory pressure arises.

Serverless workflow optimizations. Current research pri-
marily focuses on traditional CPU-based workflows. Sys-
tems such as Pheromone [49] and Unum [22] optimize func-
tion composition, while Dataflower [21] and Fuyao [23] im-
prove data transfer in host memory, Nightcore [16] min-
imizes runtime redundancy, and FaasFlow [20] enhances
function scheduling. Although these methods are orthogo-
nal to GROUTER, none addresses the need for efficient GPU
data transfer in serverless inference workflows. In contrast,
GRouTeR fully utilizes available GPU transfer links and mem-
ory across GPU cluster.

8 Conclusions

In this paper, we present GROUTER, a GPU-centric serverless
data plane that efficiently transfers data between heteroge-
neous CPU and GPU functions for ML inference through
three key innovations. First, a unified GPU memory storage
enabling direct GPU-to-GPU data exchange via topology-
aware transfers. Second, multi-link bandwidth harvesting
that aggregates PCle and NVLink interconnects for parallel
data movement. Third, elastic memory management adapt-
ing to dynamic workload demands. Evaluations show that
GROUTER reduces data passing latency by up to 87% and
improves throughput by up to 1.74X compared to state-of-
the-art GPU communication libraries.
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