
Efficient Data Passing for Serverless Inference

Workflows: A GPU-Centric Approach

Hao Wu
1,2∗

, Yaochen Liu
1
, Minchen Yu

3
, Qizhen Weng

4
, Junxiao Deng

1
, Yue Yu

1
, Hao Fan

1
, Song

Wu
1
, Wei Wang

2
, and Hai Jin

1

1
National Engineering Research Center for Big Data Technology and System,

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,

School of Computer Science and Technology, Huazhong University of Science and Technology, China

2
Hong Kong University of Science and Technology, Hong Kong, China

3
The Chinese University of Hong Kong (Shenzhen), Shenzhen, China

4
Institute of Artificial Intelligence (TeleAI), China Telecom, China

{wuhao5,u202115348}@hust.edu.cn,yuminchen@cuhk.edu.cn,wengqzh@chinatelecom.cn
{dengjunxiao,yuyue18,haofan,wusong}@hust.edu.cn,weiwa@cse.ust.hk,hjin@hust.edu.cn

Abstract

Serverless computing offers a compelling paradigm for de-

ploying machine learning inference workflows composed

of heterogeneous CPU and GPU functions. However, exist-

ing data-passing solutions in serverless systems primarily

rely on host memory for data exchange (host-centric), lead-

ing to substantial data movement and salient I/O overhead.

Moreover, modern GPU communication libraries (e.g., NCCL,

NVSHMEM, UCX) are ill-suited to serverless environments,

suffering from redundant data copies, underutilized transfer

bandwidth, and inefficient temporary GPU storage.

In this paper, we present GRouter, a GPU-centric data

plane system designed for serverless inference workflows.

GRouter first introduces a unified data passing framework

that abstracts host-to-GPU and GPU-to-GPU communication

while leveraging function placement to reduce redundant

copies. It then aggregates available bandwidth across PCIe

links, NVLinks, and NICs to enable parallel transfers with

performance isolation between functions. GRouter also im-

plements elastic GPU storage that adapts to idle memory

availability and varying data transfer demands. Evaluations

on real-world inference services show that GRouter reduces

data passing latency by up to 87% and improves throughput

by up to 1.74× compared to state-of-the-art GPU communi-

cation libraries.

CCS Concepts: • Computer systems organization →
Cloud computing.

ACM Reference Format:

Hao Wu, Yaochen Liu, Minchen Yu, Qizhen Weng, Junxiao Deng,

Yue Yu, Hao Fan, Song Wu, Wei Wang, and Hai Jin. 2026. Efficient

Data Passing for Serverless Inference Workflows: A GPU-Centric

Approach. In European Conference on Computer Systems (EUROSYS
’26), April 27–30, 2026, Edinburgh, Scotland Uk. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3767295.3769336

1 Introduction

1
Work done during an internship at HKUST and TeleAI.

Pre-process YOLO

Person
recognition

Car
recognition

Decode Post-process

130MB 150MB 180MB

input

140MB

frames
resized
frames

detection
output

cropped
windows

CPU function (cFn) GPU function (gFn)

output

Figure 1. A serverless workflow for traffic monitoring

The rapid advances of Machine Learning (ML) and its wide-

spread adoption have driven a growing demand for scalable,

cost-effective ML inference services in the cloud [7, 13, 15,

53]. Serverless computing has emerged as a promising par-

adigm for inference serving. It enables users to deploy ML

models as stateless functions while offloading resource pro-

visioning and scaling to the cloud platform [4, 19, 37, 47, 48,

50, 52]. It is also economically attractive as users are only

billed for the resources consumed during actual function

execution. This pay-per-use billing makes serverless infer-

ence particularly suitable for workloads with intermittent

or unpredictable traffic patterns [10, 50, 51].

Cloud-based inference services typically comprise com-

plex workflows that orchestrate GPU-accelerated ML model

executions alongside CPU-based data processing operations [3,

8, 11, 14]. Fig. 1 illustrates a real-world traffic monitoring

application [40], where video frames are first decoded and

preprocessed, followed by object detection using a YOLO

model; cropped images of pedestrians and vehicles are then

routed to specialized recognition models for behavior and

type analysis. These components—running in loosely cou-

pled GPU and CPU functions—are stitched together into a

unified serverless inference workflow.

Unlike traditional CPU-based function workflows [21, 26,

49], serverless inference involves a mix of GPU functions
(gFns) and CPU functions (cFns), where data exchanges can
occur between CPU functions (cFn-cFn), GPU functions

(gFn-gFn), or between GPU functions and the host system

(gFn-host)—in the latter case, GPU functions interact with

CPU functions running in the host or Input and Output (I/O)
via the host-side in-memory store. Developing an efficient

https://doi.org/10.1145/3767295.3769336

G
P

U
s

storage

H
o

st

storagef

P
C
Ie

P
C
Ie

(a) Existing host-side
storage

(b) GPU-side storage
with NVSHMEM

(c) Harvest available
links and memory

f f f

NVLink

input Intermediate data output f f

f f

P
C
Ie

P
C
Ie

NIC

Figure 2. Three data passing approaches for serverless infer-

ence system: Host-centric (latest), GPU-enabled (integrated

with NVSHMEM), and GPU-centric (our method)

serverless data plane to streamline these exchanges is there-

fore crucial for accelerating end-to-end inference workflows.

Existing serverless systems employ a host-centric approach

for data exchange between functions [20, 21, 23, 26, 49, 50],

where intermediate data is stored in an external storage—

deployed on the local or a remote host—before being con-

sumed by downstream functions. However, as illustrated

in Fig. 2(a), this approach creates an elongated data path

with frequent data copies between GPU devices and the

host, introducing significant delays in end-to-end workflow

execution (up to 92% in our experiment).

To avoid moving data through the slow host-side storage,

modern GPU communication libraries, such as NCCL [27],

UCX [43], and NVSHMEM [32], provide support for direct

communications across GPUs via high-speed interconnects

such as NVLink or GPU Direct RDMA (GDR) [31]. These li-

braries enable a GPU-side storage solution to accelerate data

exchange. For instance, with NVSHMEM, GPU functions can

directly store and retrieve intermediate data within a shared

GPU memory space, bypassing host memory (Fig. 2(b)).

However, this approach fails to achieve optimal perfor-

mance because existing GPU communication libraries are

not designed for serverless environments, resulting in three

major limitations. (1) Redundant data copies. In serverless

inference, GPU storage is typically deployed as a decoupled

service from function execution, rendering it agnostic to

function placement. Without knowledge of where functions

are instantiated, the storage cannot prioritize data locality.

This forces intermediate data to traverse non-local paths, in-

curring unnecessary duplication. As shown in Fig. 2(b), the

output data of the upstream function is first copied to a GPU

store on a remote device and then transferred again to the

GPU where the downstream function is located—doubling

data movement overhead. (2) Inefficient bandwidth utilization.
GPU clusters employ heterogeneous interconnects: high-

bandwidth NVLinks and lower-bandwidth PCIe links within

servers, and Network Interface Cards (NICs) across servers.
An efficient serverless data plane should leverage these asym-

metric links for concurrent data transfers, aggregating avail-

able bandwidth between GPU functions. However, existing

GPU libraries restrict point-to-point communication to a sin-

gle path (e.g., NVLink-only), leaving multi-link bandwidth

harvesting untapped. (3) Lack of elastic memory manage-
ment. During inference workflow execution, intermediate

data must be temporarily stored in GPU memory. While

serverless systems inherently exhibit dynamic workloads

and on-demand function provisioning—which often leave

idle GPU memory available—this availability changes un-

predictably. Elastic GPU memory management, capable of

dynamically scaling allocations in response to runtime de-

mands, is thus critical. Yet, existing GPU libraries lack this

capability, resulting in memory contention and performance

degradation during traffic spikes.

To address these challenges, we propose GRouter, a GPU-
centric data plane system designed for efficient data exchange

in serverless inference workflows. Unlike conventional host-

centric approaches, GRouter explicitly leverages knowledge

of GPU topology and function placement to orchestrate con-

current data transfers across multiple links (e.g., NVLink,

PCIe links, and NICs), aggregating available bandwidth and

memory resources across the GPU cluster. The design of

GRouter comprises four key components. (1) Unified data
passing framework. GRouter introduces a programming in-

terface that abstracts heterogeneous data-passing patterns

(e.g., gFn-gFn, gFn-host). Internally, it dynamically detects

function placement and underlying GPU server topology to

enable transparent, locality-aware data transfers and stor-

age management, eliminating redundant copies. (2) Fine-
grained bandwidth harvesting. To fully utilize cluster band-

width, GRouter enables multi-path data transfers by parti-

tioning and allocating idle GPU links (including NVLinks,

PCIe links, and NICs), aggregating available bandwidth while

preventing resource contention among concurrent functions.

(3) Topology-aware transfer scheduling. For asymmetric GPU

topologies, GRouter strategically selects assist GPUs with
optimal NVLink connectivity to target GPUs running in-

ference functions. It further exploits idle parallel NVLink

paths for point-to-point data transfers, achieving near-peak

throughput. (4) Elastic data storage. GRouter dynamically

scales GPU memory allocations by monitoring real-time

storage demands and memory pressure. When a GPU device

has no enough memory to hold all storage data, it migrates

low-priority data to other idle GPUs or host memory while

retaining critical data (e.g., for upcoming high-priority func-

tions) in GPU memory, minimizing performance penalties

from host memory evictions.

We implement GRouter as an extension to INFless [48],

a state-of-the-art serverless inference system, utilizing low-

level GPU Inter-Process Communication (IPC) mechanism for

direct data transfers between functions andGPU storage. Our

evaluation benchmarks GRouter against two baselines: con-

ventional host-centric serverless systems and NVSHMEM-

enhanced systems optimized for GPU communication. Us-

ing real-world inference workflows and production request

traces from Azure cloud [39], we show that GRouter re-

duces data transfer overhead by up to 65% and achieves

11× higher throughput than the best-performing baseline.

We also demonstrate the scalability and effectiveness of

GRouter in LLM inference applications and large clusters.

2 Background

2.1 Serverless Inference Workflow

Cloud-based ML inference services have increasingly turned

to serverless technology to streamline the deployment of

the serving pipeline [10, 37, 47, 48, 50, 52, 54]. Serverless

inference allows users to deploy ML models and data pro-

cessing operations as stateless functions and lets the platform

to handle resource provisioning, autoscaling, logging, fault-

tolerance, and other infrastructure management tasks. Users

are only billed when functions are running, eliminating the

cost of idle resources.

Modern inference services typically orchestrate multi-

stage workflows that integrate ML models with data pro-

cessing operations. Fig. 1 illustrates this with a real-world

traffic monitoring application [40], which comprises one

CPU function for video decoding and five GPU functions for

pre-processing, object detection, post-processing, and per-

son and car recognition. These heterogeneous functions are

loosely coupled, composing a serverless inference workflow.

The diversity of these workflows is further demonstrated in

Fig. 12, which collects a suite of real-world inference services

from recent studies [3, 8, 11, 40, 54, 55]. The suite spans multi-

ple workflow patterns, including linear sequential pipelines,

conditional branching for dynamic decision-making, and fan-

in/fan-out parallelism for high-throughput data distribution.

2.2 Data Passing in Serverless Inference Workflow

Compared to traditional CPU-centric function orchestra-

tion [20, 21, 26], serverless inference workflows introduce

a new challenge—managing data exchanges across hetero-

geneous functions. These workflows involve GPU functions
(gFns) executing ML models and CPU functions (cFns) han-
dling data processing, with three distinct function interaction

patterns: cFn-cFn, gFn-gFn, and gFn-host, which includes

gFn-cFn or gFn-to-host-storage. Optimizing these interac-

tions demands a purpose-built serverless data plane.

Existing serverless systems rely on external storage (e.g.,

remote services like AWS S3 [1] or intra-node solutions like

Redis [20, 21, 26] and sharedmemory [16, 25, 49]) to facilitate

data passing between stateless functions—an approach we

call host-centric data passing. For GPU functions, however,

this forces all intermediate data through host memory via

PCIe links—a design ill-suited to GPU workflows. As shown

in Fig. 2(a), each gFn-gFn transfer requires two PCIe copies

(GPU to host to GPU).

computation

Pe
rc

en
ta

ge

Pe
rc

en
ta

ge

0%

50%

100%

0%

50%

100%

1 2 4 8 16 32 64

gFn-host data passing gFn-gFn data passing

Batch size

Figure 3. Performance analysis of host-centric data passing

approach: (a) Breaking down of overall latency. (b) Breaking

down of latency for Traffic workflow with various batch

sizes. Each bar is broken into three parts: the latencies of

gFn-host data passing (top), gFn-gFn data passing (middle),

and computation (bottom)

Table 1. Limitations of GPU-side storage using existing GPU

communication libraries

Data locality Bandwidth

harvesting

Efficient tem-

porary storage

NCCL/UCX × × ×
NVSHMEM × × ×
DeepPlan [15] × × ×
GRouter ✓ ✓ ✓

To quantify this overhead, we deploy real-world inference

workflows on INFless [48], a state-of-the-art serverless infer-

ence system, using a DGX-V100 cluster with host-memory

sharing [49]. As Fig. 3 illustrates, data passing accounts for

92% of end-to-end latency: 63% from gFn-gFn transfers and

29% from gFn-host interactions (see §6 for details). The PCIe-

bound copies between GPUs and host memory dominate this

cost, while cFn-cFn transfers via shared host memory incur

negligible overhead. These results underscore the urgent

need for a GPU-native data plane to eliminate host-induced

bottlenecks.

3 Challenges

A simple fix to host-centric data passing is to replace the

host-side storage with a GPU-side storage using modern

GPU communication libraries, such as NCCL [27], NVSH-

MEM [32], and UCX [41]. While these libraries enable fast,

direct GPU-to-GPU communication via high-speed intercon-

nects like NVLink and GPUDirect RDMA (GDR) [31], their

design assumptions (i.e., collective or point-to-point com-

munication across long-running serverful processes) are not

aligned with the serverless environments, leading to many

limitations as summarized in Table 1.

To demonstrate these problems, we augment INFless [48],

a SOTA serverless inference system, with NVSHMEM to

create NVSHMEM+, a prototype implementing GPU-side

storage. Using this setup, we expose fundamental challenges

in adapting GPU communication libraries to serverless work-

flows: redundant data copies (§3.1), bandwidth underutiliza-

tion (§3.2), and inefficient memory management (§3.3).

picked by storage

ff f
1

1 2 3 4
2

3

4

5

Node 1 Node 2 ff f

NVLink

NIC

1 2 3 4

picked by storageContainer

Figure 4. GPU data passing in serverless inference with

NVSHMEM

PCIe

GPUs

NIC

Host memory

Running alone

0

18

La
te

n
cy

 (
m

s)

driving video driving video

Running together

NVSHMEM+
NVSHMEM+ w/DeepPlan

PCIe
switch

NVLinkf
1 2 3 4 5 6 7 8

Figure 5. (a) Parallel PCIe and NIC transfers for function on

GPU1. (b) Comparison of gFn-host data transfer overhead

when running inference workflows alone and together.

3.1 Challenge #1: Redundant Data Copies

In serverless inference, GPU functions and data storage are

deployed as decoupled services running in isolated con-

tainers, making them unable to identify their own physi-

cal location (e.g., GPU device ID). This opacity stems from

two factors. First, GPU virtualization, where functions per-

ceive virtualized device IDs (e.g., a function on physical

GPU3 sees it as GPU0). Second, address mapping limitations

in GPU Inter-Process Communication (IPC), which under-

pins GPU communication libraries like NVSHMEM. When

a storage container retrieves GPU memory addresses via

cudaPointerGetAttributes(), it resolves them to its own

local GPU device rather than the physical GPU where the

source function is located.

Without knowledge of function placement, the storage

cannot provide data locality but blindly selects GPUs to store

intermediate data. This results in unnecessary relay copies

instead of direct transfers. Fig. 4 illustrates a chain workflow

where three functions exchange data across GPUs and nodes:

the first two functions (GPU1 and GPU3 on Node 1) relay

data through GPU2, requiring two copies (GPU1 to GPU2

and to GPU3) instead of a direct NVLink transfer; the last

two functions (GPU3 on Node 1 and GPU5 on Node 2) force

data through two remote GPUs—because GPU functions can

only interact with local storage on the same node—tripling

copies versus a single GDR transfer. In total, NVSHMEM+

incurs 3 more data copies than the optimum scheme. This

inefficiency grows rapidly with workflow complexity, as each

hop introduces PCIe or NIC bandwidth contention.

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1

48GB/s 24GB/s 7.9GB/s

P
C

Ie
 li

n
k

h
ar

ve
st

in
g

N
V

Li
n

k
P

2
P

f

f

f

f
f f

ff

f

1 3 5 7

2 4 6 8

1 3 5 7

2 4 6 8

Figure 6. The asymmetric GPU topology. (a) Point-to-point

bandwidth of different GPU pairs in a DGX-V100 GPU server.

(b) Bandwidth constraints in asymmetric GPU topology.

3.2 Challenge #2: Underutilized Link Bandwidth

In serverless inference, functions are encapsulated in con-

tainers [28], typically limiting their access to a single GPU.

Also, existing GPU communication libraries only use the

transfer link dedicated to the local GPU (e.g., a single PCIe

link, NIC, or NVLink connection), failing to exploit node-

and cluster-wide bandwidth. By contrast, modern GPU in-

terconnects enable bandwidth harvesting—borrowing idle

links from peer GPUs for parallel transfers by three means:

Parallel PCIe transfers. Existing libraries transfer data to

host memory exclusively via local GPU PCIe link, which is

usually a bottleneck. As shown in Fig. 3, gFn-host transfers

contribute 29% of end-to-end latency. By contrast, routing

data via NVLink to peer GPUs and leveraging their PCIe

links in parallel (Fig. 5) can achieve 2–4× higher aggregate
bandwidth.

Parallel NIC transfers. Instead of confining cross-node

transfers to the nearest NIC of the local GPU—the current

practice—forwarding data via NVLink to other GPUs and

utilizing their NICs in parallel (Fig. 5) enables multi-path

transmission, effectively enhancing inter-node throughput.

Parallel NVLink transfers. While existing libraries use

only direct NVLink paths for point-to-point transfers, the

mesh topology of NVLink allows routing through interme-

diate GPUs to exploit parallel links. For example, a two-hop

transfer across three GPUs can utilize twice the NVLink

bandwidth of a single direct path.

However, realizing these optimizations in serverless sys-

tems requires two key innovations. First, bandwidth parti-

tioning to prevent contention among concurrent functions

sharing links. Second, topology-aware path selection to iden-

tify optimal parallel routes across functions.

3.2.1 Bandwidth partitioning. Harvesting transfer links

from peer GPUs in multi-tenant environments can induce

bandwidth contention. To demonstrate this, we evaluate two

workflows from the benchmarking suite we collect (Fig. 12):

the driving and video workflows. To enable concurrent PCIe

transfers, we augment NVSHMEM+ with parallel data load-

ing techniques from DeepPlan [15] (termed NVSHMEM+ w/

DeepPlan). We first run the two workflows alone. As illus-

trated in Fig. 5(b), transferring data over parallel PCIe links

significantly reduces the gFn-host latency for both work-

flows. We next run the two workflows together in the same

node: we observe significant interference that increases the

gFn-host latency of the driving workflow by 3.65× com-

pared to running alone (orange bars). This degradation oc-

curs because the collocated video workflow is I/O-intensive,

grabbing most PCIe bandwidth as its multiple functions load

video chunks simultaneously. Therefore, effective bandwidth

harvesting requires judicious partitioning of global GPU

links (e.g., PCIe links, NICs) to ensure high throughput with-

out contention-induced latency spikes.

3.2.2 Topology-aware path selection. Effective parallel

transfer paths require careful planning to align with the un-

derlying GPU topology. Notably, GPUs sharing a PCIe switch

(Fig. 5 (a)) connect to host memory via a single PCIe link.

Selecting multiple such GPUs for parallel transfers likely

induces link contention and should be avoided. In addition,

NVLink topologies can be asymmetric. Cost-effective servers

like DGX-V100 (Fig. 6(a)) exhibit uneven NVLink bandwidth:

28% of GPU pairs (e.g., GPU1–GPU4) achieve only half the

expected bandwidth, while 42% lack direct NVLink (e.g.,

GPU1–GPU5) and must rely on slower PCIe links. Such con-

figurations are prevalent in production environments [46].

While existing libraries [5, 36, 44] optimize collective com-

munication in asymmetric topologies, no optimization is

made for point-to-point transfers. This limitation creates bot-

tlenecks when upstream/downstream functions are placed

on weakly connected GPUs (Fig. 6(b))—a common scenario

in workflows with fan-in/fan-out patterns. Weak connectiv-

ity also undermines PCIe harvesting: if GPU1 borrows PCIe

link from GPU5 without a direct NVLink, data must traverse

the PCIe bus of GPU1 twice (GPU1 to host and to GPU5),

congesting its local PCIe bandwidth and degrading gFn-host

transfer performance.

3.3 Challenge #3: Inefficient Memory Management

Serverless functions rely on external storage for indirect data

exchange, where intermediate data is temporarily held until

consumed by downstream functions. Fig. 7(a) shows the GPU

memory usage of the driving workflow in our benchmark-

ing suite with simulated requests sampled from the Azure

trace [39] on a DGX-V100 server (16 GB per GPU). While

GPU memory is often underutilized in serverless inference—

due to on-demand function provisioning and small batch size

(≤128) [53]—efficient memory management remains critical.

However, existing GPU memory management for server-

less inference results in two inefficiencies. (1) Excessive mem-
ory reservation. To minimize allocation overhead, existing

systems pre-reserve GPU memory for storage. However,

methods like those in [12, 34] impose no usage constraints

but rely on manual reclamation, leading to memory bloat.

0

8

16

1 41 81 121 161

Data
store

Host

GPU 1

F1
put

GPU 2

F2
get

migrationsqueeze

d3 d2 d1 d1

d1

G
P

U
 m

em
 (

G
B

)

Func usage data storage

Time (s)

mem capacity

Figure 7. (a) Available idle GPU memory in a serverless

inference system under Azure Function trace. (b) Forced

data eviction when available GPU memory diminishes.

Our experiments reveal GPU storage consumes 4× more

memory than actual demand, a significant waste. (2) Subopti-
mal data eviction. During traffic spikes or data accumulation,

GPU memory quickly exhausts, forcing eviction of inter-

mediate data to host memory (Fig. 7(b)). As a result, down-

stream functions have to retrieve data from host memory,

incurring significant gFn-host transfer overhead. Further-

more, traditional eviction polices (e.g., LRU) are designed for

intra-program access patterns (e.g., DNN training) without

considering function scheduling. Under these policies, data

scheduled for imminent use can be mistakenly evicted.

4 GRouter System Design

In this section, we present GRouter, a GPU-centric data

plane system designed for efficient data exchange in server-

less inference workflows. We start with a system overview

followed by the detailed descriptions of its key components.

4.1 Design Overview

Fig. 8 illustrates an architecture overview of GRouter, which

comprises four key components: (1) Unified data passing
framework. GRouter provides a unified put/get API that
abstracts heterogeneous data-passing patterns (e.g., gFn-gFn,

gFn-host). Under the hood, it dynamically tracks function

placement (physical GPU/CPU locations) and server topol-

ogy (i.e., the connectivity of NVLinks, PCIe links, and NICs)

to orchestrate transfers. (2) Efficient parallel data transfers. To
fully utilize cluster-wide transfer bandwidth, GRouter en-

ables multi-path data transfers by partitioning and allocating

idle GPU links (including NVLinks, PCIe links, and NICs), ag-

gregating available bandwidth while preventing contention

among concurrent functions. (3) Topology-aware transfer
scheduling. For asymmetric GPU topologies, GRouter judi-

ciously selects route GPUswith optimal NVLink connectivity

to target GPUs running inference functions. It further ex-

ploits idle parallel NVLink paths to accelerate point-to-point

data transfers. (4) Elastic data storage. GRouter dynamically

scales GPU memory allocation in storage by monitoring real-

time storage demands and memory pressure. When storage

space becomes limited, it evicts low-priority data to host

memory or remote idle GPUs while keeping critical data

(e.g., for upcoming high-priority functions) on local GPUs to

reduce performance penalties from host memory evictions.

data data datadata

F1

data

Node 0 Node 1

GPU 1 GPU 2 GPU 1

PCIe links/NICs
harvesting

Elastic data
storage

Unified data passing framework

F3F2 F4 F5
i i i i

Router Router Router Router

D
a
ta

 P
la

n
e

C
o

n
tro

l P
la

n
e

Topo-aware
NVLink scheduling

Host

1

2 3 4

PCIe links NVLinks GDR

Figure 8. GRouter system overview

4.2 Unified Data Passing Framework

4.2.1 Locality-aware transfers and library interface.

To avoid unnecessary data transfers across remote GPUs,

GRouter detects function placement and caches data locally

on the same GPU. It offers two simple data-passing APIs—

Put() for storing data and Get() for retrieving it—similar to

cloud storage services like AWS S3 [1]. When Put() is called
by a function, GRouter identifies its resident GPU, allocates

local GPU memory to store the data, and returns a globally

unique identifier. This identifier can then be passed to down-

stream functions. When a function calls Get(), GRouter
locates the data using the identifier and selects an appro-

priate GPU transfer method based on the placement of the

downstream function. As a result, each piece of data is trans-

ferred only once across GPUs during data exchange between

GPU functions.

4.2.2 HeterogeneousGPUdata-passing patterns. Since

the required data of a GPU function may reside in different

locations (e.g., host memory, other GPUs, or remote nodes),

GRouter supports three data-passing patterns. (1) Intra-
node gFn-gFn transfer. When the function and data reside on

different GPUs within a node, GRouter allocates memory

on the GPU of functions, maps the address into the address

space of function via CUDA IPC [29], and then leverages

NVLink to transfer data into the mapped address. In case

that the function and data reside on the same GPU, GRouter
shares the address of data with function directly, enabling

zero-copy data access. For asymmetric topologies, it exploits

parallel NVLink paths to maximize throughput (§4.3.3). (2)

Cross-node gFn-gFn transfer. For functions and data on sep-

arate nodes, GRouter first allocates memory on the GPU

of the function and maps the address into function, then

employs GPUDirect RDMA (GDR) to directly write data into

that address over the network. It further exploits idle NICs

(if any) to accelerate transfer (§4.3.3). (3) gFn-host transfer.
When data resides in host memory, GRouter stages it to the

target GPU via parallel PCIe links (§4.3.3), then maps it into

the address space of the function.

Host mem Host memnode 1 node 2
PCIe

NVLink

NIC

f f

ff

ff
1 2 3 4 1 2 3 4

1 3 5 7

2 4 6 8

Figure 9. (a) Parallel data transfer for cross-node gFn–gFn

transfer. (b) Parallel gFn–gFn data transfer on asymmetric

GPU topology.

To transparently manage GPU/host memory and cross-

node storage, GRouter uses globally unified data identifiers.

It maintains mappings between data identifiers, memory

addresses, and data locations (node ID and GPU device ID).

For scalability, each node maintains a local mapping table,

while a centralized scheduler holds a global table. Lookups

and updates are first served by the local table, falling back

to the global table only on misses.

4.3 Efficient Parallel Data Transfers

4.3.1 Parallel transfer strategies. GRouter maximizes

bandwidth utilization by orchestrating multi-path transfers

with strategies tailored to each data-passing pattern, leverag-

ing idle PCIe, NIC, and NVLink resources across the cluster.

• gFn-host. For host-bound data, GRouter distributes trans-

fers across idle PCIe links from route GPUs. As shown in

Fig. 5(a), data from GPU1 is first routed via NVLink to

peer GPUs (GPU3, GPU5, and GPU7), which concurrently

stage it to host memory through their PCIe links. To avoid

contention, GPUs sharing a PCIe switch (e.g., GPU2) are

excluded as route GPUs, as they share a single PCIe link

to host memory.

• Cross-node gFn-gFn. For cross-node transfers, GRouter
harnesses idle NICs from multiple GPUs. As illustrated in

Fig. 9(a), data from GPU1 (node 1) is split and routed via

NVLink to local route GPUs (GPU2–GPU4). These GPUs

then transmit chunks in parallel using their dedicated

NICs, targeting corresponding GPUs on the remote node

(e.g., GPU2→GPU2 on node 2) to minimize NUMA latency.

The data is finally aggregated on the destination GPU

(GPU1, node 2) via NVLink.

• Intra-node gFn-gFn. GRouter exploits indirect NVLink

paths for intra-node transfers. In Fig. 9(b), data from GPU4

is split and routed through two parallel paths (GPU4→GPU1

andGPU4→GPU6→GPU7→GPU1), utilizing idle NVLinks

to bypass congested direct connections.

To coordinate these strategies, GRouter splits data into

small chunks (2 MB by default) and precomputes a parallel

transfer plan. Chunks are pipelined across GPU streams,

with synchronization primitives ensuring in-order delivery.

To fully utilize cluster bandwidth and accommodate the

underlying GPU topology, GRouter incorporates two key

mechanisms. First, fine-grained bandwidth harvesting (§4.3.2)

p1 host->1
p2 host->3->1
p3 host->5->3->4->1
p4 host->7->1

Fine-grained transfer scheduler

func 1
(20 ms)

transfer quota

Transfer queue per
PCIe/NIC

Traffic monitor Transfer buffer

parallel transfer pipelines

transfer batch

func 2
(50 ms)

func 3
(90 ms)

func 4
(90 ms)

rate1

rate2
rate3,4

GPU mem

Figure 10. SLO-aware PCIe data transfer scheduling

to avoid contention among concurrent functions sharing the

same link—primarily for parallel PCIe and NIC transfers. Sec-

ond, topology-aware transfer scheduling (§4.3.3) to identify

optimal parallel paths based on GPU topology—primarily for

parallel NVLink transfers.

4.3.2 Fined-grained bandwidth harvesting. For PCIe

and NIC transfers, where bandwidth is the main bottleneck,

GRouter aggregates available bandwidth and applies fine-

grained partitioning to efficiently allocate it among concur-

rent functions. Fig. 10 shows the process of transfer sched-

uling in GRouter. First, data from each function is divided

into smaller chunks to enable fine-grained transfer control.

GRouter allocates bandwidth to meet the Service Level Ob-
jective (SLO) of each function and proportionally schedules

data chunk transfers. Consistent with prior inference sys-

tems [7, 53], the SLO is defined as 1.5–2× the average execu-

tion time of each inference service, based on measurements

from 10 runs.

Transfer rate control. GRouter first calculates the mini-

mum required transfer rate 𝑅𝑎𝑡𝑒𝑙𝑒𝑎𝑠𝑡 for each function based

on its SLO and data size, representing the minimum band-

width necessary to meet the SLO of each function. Let 𝐿𝑠𝑙𝑜
denote the SLO, and 𝐿𝑖𝑛𝑓 𝑒𝑟 denote its inference computation

latency. The 𝑅𝑎𝑡𝑒𝑙𝑒𝑎𝑠𝑡 is defined as 𝑑𝑎𝑡𝑎_𝑠𝑖𝑧𝑒/(𝐿𝑠𝑙𝑜 − 𝐿𝑖𝑛𝑓 𝑒𝑟).
Given that DNN inference execution exhibits a highly pre-

dictable pattern
1
[4, 7, 47, 54], offline profiling can effectively

guide transfer control to meet the latency SLOs for each func-

tions.

GRouter monitors the transfer rate of the data block

from each function in real time to ensure it remains above

𝑅𝑎𝑡𝑒𝑙𝑒𝑎𝑠𝑡 . GRouter then calculates the idle transfer rate

(i.e., bandwidth) 𝑅𝑎𝑡𝑒𝑖𝑑𝑙𝑒 , which reflects the remaining band-

width after meeting the minimum bandwidth requirements

of all functions. Let 𝐵𝑊𝑎𝑙𝑙 denote the total bandwidth in the

GPU server, we have 𝑅𝑎𝑡𝑒𝑖𝑑𝑙𝑒 = 𝐵𝑊𝑎𝑙𝑙 −
∑𝑎𝑙𝑙_𝑓 𝑢𝑛𝑐𝑠

𝑖=0
𝑅𝑎𝑡𝑒𝑖

𝑙𝑒𝑎𝑠𝑡
.

GRouter allocates this idle bandwidth to the function with

1
In serverless inference, functions running DNN models share GPU devices

in a time-multiplexed manner [47, 50], leading to minimum interference

with one another.

Algorithm 1: Contention-aware paths selection

Input: Func_id 𝑓 𝑢𝑛𝑐 ; Source GPU 𝑔𝑠 ; Destination GPU 𝑔𝑑 ; The

real-time global bandwidth usage matrix 𝐵𝑊𝑛𝑥𝑛 , The

topology matrix𝑇𝑜𝑝𝑜𝑛𝑥𝑛

Output: The available parallel transfer paths 𝑃𝑎𝑡ℎ𝑠

1 while 𝑝𝑎𝑡ℎ == 𝑛𝑢𝑙𝑙 do

2 𝑝𝑎𝑡ℎ ← next_shortest_path(𝐵𝑊𝑛𝑥𝑛 , 𝑔𝑠 , 𝑔𝑑);

3 if all edges in 𝑝𝑎𝑡ℎ is idle then
4 𝑃𝑎𝑡ℎ𝑠 ← 𝑝𝑎𝑡ℎ;

5 Update(𝐵𝑊𝑛𝑥𝑛, 𝑝𝑎𝑡ℎ, 𝑓 𝑢𝑛𝑐);

6 if 𝐵𝑊𝑜𝑢𝑡 (𝑔𝑠) == 0 ∪ 𝐵𝑊𝑖𝑛 (𝑔𝑑) == 0 then

7 break;

8 if 𝐵𝑊𝑜𝑢𝑡 (𝑔𝑠) ≠ 0 ∩ 𝐵𝑊𝑖𝑛 (𝑔𝑑) ≠ 0 then

9 while 𝑝𝑎𝑡ℎ == 𝑛𝑢𝑙𝑙 do

10 𝑝𝑎𝑡ℎ ← next_busy_path(𝐵𝑊𝑛𝑥𝑛 , 𝑔𝑠 , 𝑔𝑑);

11 bandwidth_balancing(𝑝𝑎𝑡ℎ, 𝑓 𝑢𝑛𝑐, 𝐵𝑊𝑛𝑥𝑛);

12 𝑃𝑎𝑡ℎ𝑠 ← 𝑝𝑎𝑡ℎ;

13 if 𝐵𝑊𝑜𝑢𝑡 (𝑔𝑠) == 0 ∪ 𝐵𝑊𝑖𝑛 (𝑔𝑑) == 0 then

14 break;

15 return 𝑃𝑎𝑡ℎ𝑠 ;

the tightest SLO, enabling latency-sensitive functions to com-

plete their data transfers first without impacting other func-

tions.

Batched data transfer. Since initiated data chunk trans-

fers cannot be interrupted, launching all transfers simulta-

neously would block newly arrived functions from acquir-

ing bandwidth. Conversely, transferring individual chunks

incurs excessive connection setup overhead. GRouter bal-

ances these tradeoffs with batched transfers, grouping chunks
into batches (default: 5 chunks per batch). This allows new

functions to inject their chunks into subsequent batches,

ensuring fair bandwidth preemption while amortizing per-

transfer costs. To further optimize PCIe transfers, GRouter

maintains a circular pinned memory buffer shared across

functions. By reusing this fixed buffer for multiple batches,

the system minimizes pinned memory allocation overhead

and reduces cache bloat.

4.3.3 Topology-aware transfer scheduling. To optimize

parallel NVLink transfers in asymmetric topologies, GRouter

employs a topology-aware path selection algorithm that max-

imizes point-to-point bandwidth for weakly connected GPU

pairs by exploiting multiple NVLink paths, while avoiding

path overlap to prevent contention.

Once the function placement of a workflow is finalized

(function scheduler is described in §??), GRouter prioritizes

direct NVLink paths between GPUs. If these paths are al-

ready occupied by other functions (as part of indirect routes),

GRouter reassigns those functions to alternative routes

(i.e., prioritizing direct path over an indirect route). Then,

GRouter searches for available free NVLink paths for each

inter-GPU data transfer in the serverless inference work-

flow, starting with the GPU pair having the least residual

bandwidth. GRouter maintains a bandwidth usage matrix

𝐵𝑊 (𝑔,𝑏), where 𝑔 represents GPUs and 𝑏 is the available

bandwidth between them. GRouter continuously monitors

and updates global bandwidth usage in real-time on this

matrix, which is used to guide path selection.

As shown in Algorithm 1, the selection process involves:

GRouter first searches for free paths to avoid contention

with other functions (lines 1-7). When a free 𝑝𝑎𝑡ℎ is found,

the bandwidth usage matrix 𝐵𝑊 (𝑔,𝑏) is updated. The band-
width occupied by the 𝑝𝑎𝑡ℎ determined by the NVLink with

the smallest bandwidth along the path, denoted as𝑏𝑚𝑖𝑛 (𝑝𝑎𝑡ℎ).
Thus, the update to 𝐵𝑊 (𝑔,𝑏) subtracts 𝑏𝑚𝑖𝑛 (𝑝𝑎𝑡ℎ) from the

free bandwidth of each GPU pair on the path. If all free paths

are exhausted and the outgoing bandwidth of 𝑔𝑠 and incom-

ing bandwidth of 𝑔𝑑 are not saturated, GRouter searches

busy paths to see if bandwidth can be balanced between the

current function and the one occupying the path (lines 8-14).

GRouter compares the total bandwidth used by the running

function and the current function, and checks whether the

running function can switch to another path. If it is available,

the busy path is assigned to the current function. Because a

GPU server usually has 4-8 GPUs, after using path pruning

and other loop-free path search acceleration, the overhead

of path selection is less than 10us in our experiments.

Parallel NVLink transfers use the same pipelined method

as in PCIe/NICs transfers. However, to accommodate hetero-

geneous NVLink bandwidth (24 GB/s or 48 GB/s per link),

GRouter dynamically sizes data chunks proportionally to

the capacity of each path. For example, a 48 GB/s link receives

twice the chunk size of a 24 GB/s link, ensuring balanced

utilization and minimizing transfer tail latency.

4.4 Elastic GPU Data Storage

We design elastic GPU data storage to reduce GPU mem-

ory usage and adapt to changes of available GPU memory.

GRouter dynamically scales storage size based on actual

demand and migrates data when memory pressure arises.

4.4.1 GPU storage scaling. Temporary GPU memory al-

location incurs significant overhead, as native GPU alloca-

tions (e.g., cudaMalloc() and cudaFree()) incurmillisecond-

level delays. To address this, existing memory management

systems [2, 12, 34] maintain pre-allocated memory blocks

as a reusable pool. However, these pooling mechanisms are

typically static. For example, in PyTorch [34], users must

manually reclaim memory pools, which releases all reserved

blocks at once. Therefore, applying static memory pooling

to GPU storage results in excessive memory usage from idle

reserved memory.

Our key idea is to enable GPU storage to scale the memory

pool dynamically based on actual demand. However, esti-

mating the required size is difficult because intermediate

data sizes vary with function inputs, batch sizes, and request

loads. GRouter adopts a memory pre-warming strategy

54

Fr
eq

ue
nc

y

Request queue

…a1 a2 …n0 n1 a1

n0 n1 b1

a3

a1

b2

a2

Request queue

G
PU

1

G
PU

2

Host memory

a1 a2 a3

a b

store

1

2

1 2

Req intervals Data size Concurrency

99
th

pe
rc

en
til

e

99
th

pe
rc

en
til

e

99
th

pe
rc

en
til

e

fetch

Figure 11. (a) Histogram policy characterizing both request

arrivals (blue), intermediate data size (orange), and data ac-

cumulation (green) of each function. (b) Illustration of the

inefficiency of LRU-based data migration (red line) vs. queue-

aware data migration (blue line).

inspired by function pre-warming [39, 48] in serverless sys-

tems, which tracks request intervals (𝑅𝑤𝑖𝑛𝑑𝑜𝑤 = 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙99𝑡ℎ)

to estimate how long functions stay active in memory. Be-

yond this, GRouter also monitors intermediate data sizes

(𝑅𝑠𝑖𝑧𝑒 = 𝐷𝑎𝑡𝑎𝑠𝑖𝑧𝑒
99𝑡ℎ

) and the degree of data accumula-

tion (𝑅𝑐𝑜𝑛 = 𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦99𝑡ℎ) in GPU storage, as shown

in Fig. 11(a). After each function execution, memory reser-

vation is calculated as 𝐷𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 = 𝑅𝑠𝑖𝑧𝑒 · 𝑅𝑐𝑜𝑛 . If no new

requests arrive within the reservation window, the reserved

memory is reclaimed. The total memory pool size is given by

𝑀𝑒𝑚𝑃𝑜𝑜𝑙_𝑠𝑖𝑧𝑒 =
∑

𝑓 𝑢𝑛𝑐 𝐷𝑎𝑡𝑎_𝑠𝑖𝑧𝑒 · 1{𝑅𝑤𝑖𝑛𝑑𝑜𝑤

⋂
𝑡≠∅} , where

1𝐴 is an indicator function of events that returns 1 if event 𝐴

is true and 0 otherwise. To handle bursty requests, GRouter

maintains a minimum memory pool (e.g., 300 MB) in idle

periods, when GPU memory is sufficient.

4.4.2 Proactive data migration. When GPU memory

pressure increases, available memory for storage becomes

limited, requiring intermediate data to be evicted to reduce

GPU storage usage. However, migrating data to host mem-

ory forces downstream functions to fetch it with additional

latency. An effective migration strategy is thus critical. Ex-

isting approaches [6, 17, 33] typically adopt an LRU strategy,

which evicts the least recently accessed data. However, LRU

ignores function scheduling and often migrates data that

will soon be accessed. For instance, as shown by the red line

in Fig. 11 (b), the LRU strategy tends to evict the output data

of function 𝑎1 first, ignoring that 𝑏1 (the downstream func-

tion of 𝑎1) is enqueued earlier, forcing 𝑏1 to reload data from

host memory and introducing additional delays. To address

this, GRouter uses a request queue-aware migration strat-

egy that prioritizes evicting data needed by functions at the

tail of the queue, ensuring that data required by imminent

function invocations remains in GPU storage. As shown by

the blue line in Fig. 11(b), the output data of function 𝑎2 is

migrated before the output of 𝑎1.

Furthermore, GRouter promptly removes intermediate

data that is no longer needed and proactively restores previ-

ously migrated data when sufficient GPU memory becomes

available. For instance, after the output of 𝑎1 is processed,

the output of 𝑎2 is reloaded into GPU memory. This proac-

tive migration approach ensures upcoming functions can

access data locally, minimizing performance degradation un-

der fluctuating available GPU memory. GRouter triggers

data migration and restoration automatically based on avail-

able GPU memory, maintaining storage usage within a fixed

threshold (50% of free memory in our experiments) to avoid

contention with function execution while maximizing GPU

memory utilization.

5 Implementation

GRouter is built on INFless [48], a state-of-the-art serverless

inference system. It comprises 5K lines of C++ code. Each

function runs in a container with on-demand CPU and GPU

allocation [28].

Data storage. GRouter mounts a shared memory region to

each function for efficient data and message exchange. On

the host side, it attaches a host volume to each function. On

the GPU side, it maintains an elastic memory pool on each

GPU for data storage. When a function stores or retrieves

data, GRouter allocates memory from the local pool and

maps it into the address space of functions using CUDA

IPC [29]. Each GPU runs an I/O thread to reclaim unused

memory and migrate data between GPU and host memory

based on available storage space.

Data transfer management. GRouter launches a daemon

thread on each GPU to manage data transfers from functions.

Each thread uses multiple GPU streams to enable parallel

transfers in different directions and coordinates with other

threads based on pre-planned pipeline paths. Most parallel

transfer paths, such as PCIe links and NIC routes, are fixed

and can be pre-generated during GRouter initialization,

allowing real-time requests to use them directly.

Function scheduling. For function scheduling in GPU clus-

ters, GRouter adopts a hierarchical control plane. Most data

transfers and scheduling decisions are handled by local con-

trol plane within a node, while the global plane is invoked

only for infrequent cross-node coordination, thereby mini-

mizing inter-node transfers and scheduling overhead.Within

a GPU node, GRouter employs theMAPA strategy [36] max-

imize the utilization of GPU interconnects across functions.

To further mitigate the performance impact of cold starts,

GRouter pre-warms necessary functions and models, simi-

lar to the approach used in SHEPHERD [53].

6 Evaluation

Setup. We evaluate GRouter using two AWS GPU testbeds.

Testbed 1 (DGX-V100) uses p3.16xlarge instances, each con-
taining 8 NVIDIA V100 GPUs connected via NVLinks, a Xeon

E5-2686 v4 CPU (32 vCPUs), 244 GB of memory, and 4×100
Gbps NICs. Testbed 2 (DGX-A100) uses p4d.24xlarge in-

stances, each having 8 NVIDIA A100 GPUs connected via

Pre-p Object-det
Face-ID

Car-ID

Pre-p image-seg

decode

decode

Traffic
(T)

Post-p

Pre-p

Pre-p

Pre-p

Driving
(D)

Image
(I)

decode

decode

decode

Pre-pdecode Obj-ID Obj-ID Obj-ID

Face-IDVideo
(V)

Face-det

Face-det

Face-det

Post-p

Blurring

Final aggregator

LLM rewriter LLM rewriter

LLM rewriter LLM rewriterMixture
of

agent

… …

Figure 12. Real-world inference workflows composed of

GPU functions (green) and CPU functions (yellow). They

are organized into four typical patterns: condition, sequence,

fan-in, and fan-out.

NVSwitch, a Xeon Plati. 8275CL CPU, 1152 GB of memory,

and 8×200 Gbps NICs.
Real-world inference workflows. We conduct experi-

ments using six inference workflows collected from the latest

studies, as detailed below and in Fig. 12. All pre-processing

and post-processing are performed on theGPUusingNVIDIA

CV-CUDA [30]. The input datasets are from Adainf [40].

• Traffic (T). Following Boggard [3], we implement a traffic

monitoring workflow which first detects objects using the

Yolo-det model, and then performs feature recognition on

pedestrian and vehicle sub-images using ResNet models.

• Driving (D). Following Adainf [40], we implement a road

segmentation workflow for auto-driving. The process in-

volves denoising the image, applying a semantic segmen-

tation model, and outputting a colored image.

• Video (V). Following Aquatope [55], we implement a video

processing workflow that runs a face detection model on

video chunks in parallel, followed by a recognition model

to identify a specified actor.

• Image (I). Following Cocktail [11], we implement an image

classification workflow that first denoises the image, then

applies multiple classification models simultaneously, and

aggregates the results to improve accuracy.

• Mixture of Agent (MoA). Following MoA [45], we imple-

ment a layered agent workflow wherein each layer com-

prises multiple LLM agents. Each agent takes all the out-

puts from agents in the previous layer as auxiliary infor-

mation in generating its response.

Baselines.We compare GRouter to the following baselines:

• INFless+. This baseline represents a host-centric design that
extends INFless [48]—a state-of-the-art serverless infer-

ence system—by incorporating a host-side shared-memory

storage layer for efficient inter-function communication.

We denote this approach as INFless+.

• NVSHMEM+. This baseline adopts NVSHMEM [32] to en-

able GPU-side storage layer (randomly assigned to one

GPU per data object). With NVSHMEM, GPU functions

can directly store and retrieve intermediate data through

a shared GPU memory space, bypassing host memory. We

refer to this approach as NVSHMEM+.

• DeepPlan+. This baseline further enhances NVSHMEM+

by integrating PCIe optimizations from DeepPlan, which

enables parallel data transfers across all available PCIe

links in a GPU node. We refer to this approach as Deep-

Plan+. Note that parallel PCIe transfers are handled by

the storage service, as other GPUs’ PCIe are invisible to

functions.

Workloads. We simulate the invocation of inference work-

flows using production traces from Azure Function [39],

following the methodology of prior serverless inference sys-

tems [23, 48, 53]. The traces exhibit three characteristic re-

quest arrival patterns: sporadic, periodic, and bursty.

6.1 Data Passing Performance

We first evaluate the data passing latency between two func-

tions under various scenarios. Fig. 13 illustrates the data

passing latency between functions under varying data vol-

umes. The latency measures the time elapsed between the

upstream function sending the data and the downstream

function receiving it.

Intra-node gFn-gFn. When GPU functions are colocated

within the same node (Fig. 13(a)), GRouter achieves the

lowest data passing overhead, reducing latency by 95%, 75%,

and 75% compared to INFless+, NVSHMEM+, andDeepPlan+,

respectively. INFless+ uses host memory for data exchange,

leading to large overhead. NVSHMEM+ lacks awareness of

function locations, leading to extra data copies with a remote

GPU. DeepPlan+ optimizes gFn-host transfers but neglects

gFn-gFn transfers. GRouter detects function placement and

stores data on the local GPU to eliminate redundant data

copies. It further accelerates data transfer on DGX-V100

server by leveraging parallel NVLinks.

Host-gFn. For data passing between GPU functions and

host memory (Fig. 13(b)), GRouter uses the global PCIe

links, reducing latency by 63%, 63%, and 75% compared to

NFless+, NVSHMEM+, and DeepPlan+, respectively. INF-

less+ and NVSHMEM+ only use the PCIe link of the local

GPU, leading to long delays. DeepPlan+ also uses parallel

PCIe links, but it lacks topology awareness, leading to worse

performance than NVSHMEM+ on asymmetric topologies

(DGX-V100), as it selects route GPUs with limited NVLink

connectivity to the current GPU, causing PCIe bandwidth

congestion. Moreover, since functions have limited access

to GPU resources, only the external storage can see the all

PCIe links and underlying topology. The storage service of

DeepPlan+, however, cannot detect function placement, re-

sulting in redundant data copies—for instance, data is first

pulled to a remote GPU, then copied to the GPU device of

the target function.

2
5

23.8

1.2 4
16

1.2

4 16

0.5
0.9 1.95

0.01

1

100

1MB 10MB 100MB

0.4 0.8

8.1

0.4 0.8

8.1
0.9 1.5

10

0.15 0.3

3

0.01

1

100

1MB 10MB 100MB

1.2
2.4

11.9

0.5
1

4.7

0.5
1

4.7

0.2
0.4

1

0.01

1

100

1MB 10MB 100MB

0.15
0.4

4

0.15
0.4

4

0.24
0.18

1.8

0.15 0.1

0.9

0.01

1

100

1MB 10MB 100MB

 (a) Intra-node gFn-gFn (b) Host-gFn (c) Inter-node gFn-gFn

0.2

1.6

16

0.04

0.8

8.1

0.04

0.8

8.1

0.02

0.2

2

0.01

1

100

1MB 10MB 100MB

0.3
0.8

8

0.04
0.08

0.72

0.04
0.08

0.72

0.02
0.04

0.36

0.01

1

100

1MB 10MB 100MB

DGX-V100

DGX-A100

INFless+ NVSHMEM+ DeepPlan+ GRouter

La
te

n
cy

(m
s)

La
te

n
cy

(m
s)

Figure 13. Comparison of the data passing latencyP99 latency

0

500

T D V I
0

500

T D V I
0

500

T D V I

0

200

T D V I

INFless+ NVSHMEM+ DeepPlan+ GRouter

La
te

n
cy

(m
s)

La
te

n
cy

(m
s)

0

200

T D V I
0

200

T D V I

DGX-V100

DGX-A100

(periodic) (bursty) (sporadic)

Figure 14. Comparison of the end-to-end latency
Th

ro
u

gh
p

u
t

(R
P

S)
Throughput inter-node和intra-node

0

200

400

600

T D V I

0

200

400

600

T D V I

DGX-A100

INFless+ NVSHMEM+ DeepPlan+ GRouter

(a) Intra-node (b) Inter-node

DGX-A100

Figure 15. Comparison of the maximum throughput

Inter-node gFn-gFn. For GPU functions distributed across

different nodes (Fig. 13(c)), GRouter reduces data passing

latency by 91%, 87%, and 87% compared to INFless+, NVSH-

MEM+, and DeepPlan+, respectively. INFless+ incurs high

overhead by routing data through host memory. Both NVSH-

MEM+ and DeepPlan+ use only a single NIC for cross-node

data transfers. In contrast, GRouter enables locality-aware

data transfer between GPUs across nodes without redundant

data copies and leverages multiple NICs for parallel transfers.

6.2 Performance under Real-world Workloads

We next evaluate GRouter using real-world inference work-

flows and production traces from Azure Function [39]. We

scale the traces to ensure effective resource utilization, align-

ing with prior studies [55].

End-to-end latency. Fig. 14 shows the P99 latency across

various applications under different production workloads.

On DGX-V100 servers, GRouter reduces latency by 61%,

48%, and 54% compared to INFless+, NVSHMEM+, and Deep-

Plan+, respectively. DeepPlan+ performs worse than NVSH-

MEM+ due to its lack of NVLink connectivity awareness. On

DGX-A100 servers, GRouter reduces latency by 53%, 36%,

and 30% compared to INFless+, NVSHMEM+, and DeepPlan+.

La
te

n
cy

(m
s)

Ablation study

DGX-A100

0

50

T D V I
0

50

T D V I

GRouter-UFGRouter-BHGRouter-TAGRouter-ESGRouter

DGX-V100 DGX-A100

Figure 16. The average data passing latency when disen-

abling each optimization in GRouter one by one

scalability

0

0.5

1

40 60 80 100 120
0

0.5

1

40 50 60 70 80

driving image

C
D

F

C
D

F

Latency (ms) Latency (ms)

video
GRouter-BH
GRouter

driving
GRouter-BH
GRouter

SLO-d SLO-v SLO-i SLO-d

Figure 17. The effectiveness of fine-grained bandwidth har-

vesting in GRouter

Compared to NVSHMEM+, GRouter aggregates available

bandwidth and eliminates redundant data transfers. It also

optimizes GPU storage by keeping high-priority data (for

upcoming functions) in GPU memory, avoiding costly host-

memory fetches.

Throughput. Fig. 15 shows the maximum throughput of

these inference workflows within the same node and across

different nodes. When functions are colocated within the

same node, GRouter surpasses INFless+, NVSHMEM+, and

DeepPlan+ by 2.1×, 1.74×, and 1.37×, respectively, by locality-
aware GPU data transfer and efficiently leveraging paral-

lel NVLink and PCIe links. For functions distributed across

nodes, GRouter outperforms INFless+, NVSHMEM+, and

DeepPlan+ by 2.73×, 1.55×, and 1.39×, respectively, through
direct inter-node GPU data transfers and utilization of mul-

tiple NICs.

6.3 Performance of Components in GRouter

Wenext evaluate the effectiveness of each design inGRouter.

Ablation study. We incrementally disable optimizations

in GRouter to assess their impact on data passing latency,

including elastic storage (ES), topology-aware scheduling (TA),
GPU bandwidth harvesting (BH), and the unified data passing
framework (UF). Fig. 16 presents the average data passing

latency under a bursty workload. On DGX-V100 servers,

disabling all optimizations (rightmost bar) increases latency

by 1.57×–1.82× compared to GRouter, with ES, TA, and UF

having the greatest effects. On DGX-A100 servers, latency

increases 1.30×–1.61× when all optimizations are removed,

with ES and BH having the greatest impact.

Bandwidth partitioning. To demonstrate the effectiveness

of the fine-grained bandwidth harvesting (BH) in achiev-

ing performance isolation between concurrent functions,

we conduct mixed workload experiments using two work-

flow pairs on DGX-V100 servers. Following GPUlet [7], the

C
D

F

INFless+

0

0.5

1

50 250

Latency (ms)

10%
available

mem
0

30

1% 5% 10% 15%

0

200

400

1% 5% 10% 15%

GRouter(LRU) GRouter(RQ) GRouter

Available mem Available mem

La
te

n
cy

 (
m

s) P99 E2E Avg. transfer

Figure 18. (a) Latency under 10% available GPU memory. (b)

End-to-end latency under different available memory ratios.

(c) Average gFn-gFn data passing latency.

SLO for each workflow is set to 1.5× its independent execu-

tion time. We compare GRouter with GRouter-BH, which

employs PCIe bandwidth sharing as in DeepPlan+. Both

workflows run under bursty workload, consistent with pre-

vious experiments. Fig. 17(a) presents the results for a high-

contention case where the latency-critical driving workflow

is paired with a transfer-intensive video workflow, which

involves multiple functions loading video chunks simultane-

ously. Without bandwidth partitioning, the latency of driv-

ing workflow is increased due to interference from the video

workflow. In contrast, GRouter controls PCIe bandwidth

usage by the video workflow, allowing more bandwidth for

the driving workflow. This reduces driving workflow latency

by 32% and improves Service Level Objective (SLO) compli-

ance. Fig. 17(b) shows results for a low-contention scenario,

where driving workflow is paired with image workflow. In

this case, GRouter and GRouter-BH performes identically,

indicating that GRouter introduces minimal overhead in

transfer scheduling.

Elasticity of GPU storage. To evaluate the efficiency of the

GPU storage of GRouter, we measure latency under limited

available memory and compare it with INFless+, LRU (used

by NVSHMEM+), and a request queue-aware approach (RQ)

without proactive data migration. Fig. 18(a) shows the end-

to-end latency distribution under a bursty workload with

GPU storage limited to 10% of the GPU memory. Compared

to INFless+, LRU, and RQ, GRouter reduces tail latency by

46%, 27%, and 7%, respectively. RQ prioritizes keeping data

accessed earlier by downstream functions in GPU memory,

while GRouter further reduces latency through proactive

data migration compared to RQ. As shown in Fig. 18(b), fur-

ther tests under different memory availability ratios show

that even with only 1% available memory, GRouter re-

duces end-to-end latency by 24%, 14%, and 9%, respectively.

Fig. 18(c) shows the average data passing latency. Compared

to INFless, LRU, and RQ, GRouter reduces delays by 83%,

72%, and 49%, respectively. These results demonstrate that

GPU storage management in GRouter and proactive data

migration efficiently utilize available GPUmemory andmain-

tain performance under memory constraints. Despite severe

memory constraints (1%), parallel PCIe transfers in GRouter

mitigate the overhead of fetching data from host memory.

0

100
Llama 7B

(1k)

TP=1 TP=2 TP=4 TP=8
0

100

1K 2k 3k 4k

Llama 7B, TP=1
INFless+ MoonCake+ GRouter

TT
FT

 (
m

s) Llama 70B
(1k)

Figure 19. (a) TTFT under different input lengths. (b) TTFT

under different models and tensor parallelism (TP).

INFless+
GRouterC

P
U

 c
o

re
s

0

2

4

0 100 200 300 400 500 600

0

3

0 200 400 600

NVSHMEM+
GRouter(static)
GRouter

M
em

o
ry

 (
G

B
)

8.7 8.5 8.9 4.2
0

5

10

15

100MB

La
te

n
cy

(m
s) INFless+

NVSHM+
DeepPlan+
GRouter

Data passing on A10 RPS RPS

Figure 20. (a) Data passing latency in 4xA10 GPU server.

(b) Comparison of CPU overhead. (c) Comparison of GPU

memory overhead.

6.4 Performance under Emerging LLM Applications

We evaluate the performance of GRouter in Large Language
Model (LLM) workflows, using the Mixture-of-Agent [45]
(MoA) as an example. In this multi-stage workflow, multi-

ple LLMs optimize answers from the previous stage to im-

prove quality, passing the Key-Value Cache (KV cache) of

the prompt and response among stages to avoid recomputa-

tion. Different stages are deployed on separate 8×H800 GPU
nodes, with GPUs connected via 200 GB/s NVLink and nodes

connected by 200 Gbps networks. Due to the specialized

management of the KV cache, we select Mooncake [35]—a

state-of-the-art KV cache system—as the baseline and imple-

ment it on the serverless system, referred to as Mooncake+.

Following DroidSpeak [24], we report The First Token Time
(TFTT) of the receiver LLM.

Fig. 19(a) shows the TTFT for different input lengths. For

a 4K input length, GRouter reduces TFTT by 66% and

57% compared to INFless+ and Mooncake+, respectively.

Fig. 19(b) further shows that GRouter reduces TFTT by

36% and 28% under various models and Tensor Parallelism
(TP) settings, respectively. INFless+ transfers the KV cache

to host memory, incurring high overhead. Mooncake incurs

extra copies due to lack of function placement awareness

and utilization of single NIC. In contrast, GRouter avoids

redundant copies and uses multiple NICs. As TP increases,

Mooncake begins using multiple NICs, narrowing the ad-

vantage of GRouter. At TP=8, the advantage of GRouter

mainly comes from locality-aware data transfers without

extra copies.

6.5 Applicability and System Overhead

Testbed without NVLink. Fig. 20(a) shows the data passing

latency between GPU functions on 4×10 GPU servers (with-

out NVLink). GRouter reduces latency by 51% compared to

INFless+, NVSHMEM+, and DeepPlan+. NVSHMEM+ per-

forms similarly to INFless+ due to lack of function placement

awareness, leading to two peer-to-peer GPU data copies via

PCIe. In contrast, GRouter only requires one copy as it can

detect the location of functions. Therefore, GRouter proves

to be highly effective in testbeds even without NVLink.

CPUoverhead.We evaluate the system overhead inGRouter.

Fig. 20(b) shows that the CPU resources used by GRouter

are similar to those of the state-of-the-art serverless infer-

ence system, INFless+. While the control plane of GRouter

introduces additional tasks, such as monitoring GPU link

usage and memory pressure, these operations are performed

periodically or triggered only by new requests or data, re-

sulting in negligible CPU overhead.

GPU memory overhead. Fig. 20(c) shows that GRouter

uses the least GPU memory. In NVSHMEM, symmetric mem-

ory allocation [32] leads to significant waste, as all processes

allocate and release GPU memory simultaneously. The static

memory pooling method also lacks awareness of storage

needs, causing over-pooling. In contrast, GRouter dynami-

cally scales storage space based on actual requirements.

7 Discussion and Related Work

Threat Model of GRouter. GRouter provides a unified

data storage service for functions while placing a strong

emphasis on data security, even in the presence of shared re-

sources such as transfer buffers and data storage. To achieve

this, GRouter enforces two key forms of isolation: (1) Ad-
dress isolation. In GRouter, both data storage and trans-

mission buffers are allocated in containers that are isolated

from the function itself, each with its own separate address

space (e.g., a dedicated CUDA context). Functions can only

access GPU storage through pre-mapped addresses (e.g., via

CUDA IPC with enforced alignment). Moreover, transmis-

sion buffers are never mapped into a function’s address space,

preventing any direct access by the function. These isolation

mechanisms ensure that functions cannot reach data outside

their designated boundaries, thereby mitigating the risk of

leakage through out-of-bounds accesses. (2) Access control.
Data items are exchanged across functions using data IDs,

which introduces the potential risk of ID leakage or attacks.

To address this, GRouter authenticates the requesting func-

tion using both function_ID andworkflow_ID on every access,

ensuring that only authorized functions can read or manip-

ulate specific data items. To minimize overhead, GRouter

employs a hierarchical control plane: IDs and metadata are

synchronized to the local node at invocation time, avoiding

frequent cross-node lookups during execution.

In addition to these mechanisms, GRouter provides a se-

curity level comparable to the latest serverless platforms [19,

20, 48] across functions. Each function operates within its

own independent container, with isolated host memory, NIC

buffers, and GPU runtime contexts (separate CUDA contexts

with private GPU address spaces). For workloads requiring

even stronger guarantees, GRouter can also support mi-

croVMs [49].

GPU sharing supports inGRouter. ExistingGPU-enabled

serverless systems typically employ GPU sharing to maxi-

mize resource utilization, including temporal sharing (e.g.,

DGSF [9] and FaaSwap [50]) and spatial-sharing (e.g., Stream-

Box [47] and Llama [37]). While GRouter adopts a temporal-

sharing model, its optimizations are orthogonal to GPU shar-

ing strategies. In fact, spatial GPU sharing inevitably incurs

more serious bandwidth and memory contention, which

makes optimizations in GRouter—transfer bandwidth parti-

tioning and GPU storage management—even more critical.

Multi-GPU communication. Existing GPU communica-

tion libraries [5, 18, 27, 36, 38] leverage high-speed GPU

interconnects for collective communication such as allRe-

duces. Some multi-GPU inference systems also utilize these

interconnects to transfer embeddings (e.g., UGache [42]) or

KV caches (e.g., MoonCake [35]) for recommendation and

LLMworkloads. However, these systems are not designed for

serverless environments, resulting in redundant data copies

and limiting each GPU to utilize only its own bandwidth

resources (e.g., a single PCIe, NVLink, or NIC). In contrast,

GRouter aggregates available bandwidth across GPUs via

multi-path transfers. Unlike collective communication meth-

ods that coordinate bandwidth globally, GRouter can dy-

namically aggregate global bandwidth resources for GPU

functions running on a single GPU.

GPU memory management. Existing methods focus on

pooling memory and unifying multi-level memory. GM-

lake [12] uses CUDA virtual memory to reduce fragmenta-

tion in memory pooling, while CUDA UVM [33], HUVM [6],

and DeepUM [17] address GPU memory limits by swap-

ping data between GPU and host memory. However, these

methods lack elastic memory management and awareness

of request scheduling, which can lead to large memory occu-

pation and suboptimal data eviction. In contrast, GRouter

dynamically scales GPU storage on demand and migrates

data when memory pressure arises.

Serverless workflow optimizations. Current research pri-

marily focuses on traditional CPU-based workflows. Sys-

tems such as Pheromone [49] and Unum [22] optimize func-

tion composition, while Dataflower [21] and Fuyao [23] im-

prove data transfer in host memory, Nightcore [16] min-

imizes runtime redundancy, and FaasFlow [20] enhances

function scheduling. Although these methods are orthogo-

nal to GRouter, none addresses the need for efficient GPU

data transfer in serverless inference workflows. In contrast,

GRouter fully utilizes available GPU transfer links andmem-

ory across GPU cluster.

8 Conclusions

In this paper, we present GRouter, a GPU-centric serverless
data plane that efficiently transfers data between heteroge-

neous CPU and GPU functions for ML inference through

three key innovations. First, a unified GPU memory storage

enabling direct GPU-to-GPU data exchange via topology-

aware transfers. Second, multi-link bandwidth harvesting

that aggregates PCIe and NVLink interconnects for parallel

data movement. Third, elastic memory management adapt-

ing to dynamic workload demands. Evaluations show that

GRouter reduces data passing latency by up to 87% and

improves throughput by up to 1.74× compared to state-of-

the-art GPU communication libraries.

9 Acknowledgement

This work was supported in part by the National Key Re-

search and Development Program of China under grant

2022YFB4500704, the National Science Foundation of China

under grants 62032008 and 62572204, RGC CRF Grant (Ref.

#C6015-23G), RGCGRFGrants (Ref. #16217124 and #16210822),

NSFC/RGC CRS Grants (#CRS_HKUST601/24), HUST Kun-

peng&Ascend Center of Cultivation, CCF-Huawei Populus

Grove Fund. Hao Fan, Minchen Yu, Song Wu, and Wei Wang

are the corresponding authors.

References

[1] 2007. ZeroMQ. https://aws.amazon.com/s3/.
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry

Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,

Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-

flow: a system for large-scale machine learning. In Proceedings of the
USENIX Conference on Operating Systems Design and Implementation,
pages 265–283, 2016.

[3] Neil Agarwal and Ravi Netravali. Boggart: towards general-purpose

acceleration of retrospective video analytics. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation,
pages 933-951, 2023.

[4] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Batch:

machine learning inference serving on serverless platforms with adap-

tive batching. In Proceedings of the International Conference for High
Performance Computing, pages 123–135, 2020.

[5] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd

Mytkowicz, Jacob Nelson, and Olli Saarikivi. Synthesizing optimal

collective algorithms. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 62–75, 2021.

[6] Sangjin Choi, Taeksoo Kim, Jinwoo Jeong, Rachata Ausavarungnirun,

Myeongjae Jeon, Youngjin Kwon, and Jeongseob Ahn. Memory har-

vesting in multi-gpu systems with hierarchical unified virtual memory.

In Proceedings of the USENIX Annual Technical Conference, pages 625-
638, 2022.

[7] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin

Kwon, and Jaehyuk Huh. Serving heterogeneous machine learning

models on multi-gpu servers with spatio-temporal sharing. In Pro-
ceedings of the USENIX Annual Technical Conference, pages 199-216,
2022.

https://aws.amazon.com/s3/

[8] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion

Stoica, Joseph Gonzalez, and Alexey Tumanov. Inferline: latency-

aware provisioning and scaling for prediction serving pipelines. In

Proceedings of the ACM Symposium on Cloud Computing, pages 477–491,
2020.

[9] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett

Witchel, and Christopher J. Rossbach. Dgsf: disaggregated gpus for

serverless functions. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, pages 739-750, 2022.

[10] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii

Ustiugov, Yuvraj Patel, and Luo Mai. Serverlessllm: low-latency server-

less inference for large language models. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, pages
135-153, 2024.

[11] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-

nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R. Das.

Cocktail: a multidimensional optimization for model serving in cloud.

In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation, pages 1041-1057, 2022.

[12] Cong Guo, Rui Zhang, Jiale Xu, Jingwen Leng, Zihan Liu, Ziyu Huang,

Minyi Guo, Hao Wu, Shouren Zhao, Junping Zhao, and Ke Zhang.

Gmlake: efficient and transparent gpu memory defragmentation for

large-scale dnn training with virtual memory stitching. In Proceed-
ings of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 450–466, 2024.

[13] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen.

Microsecond-scale preemption for concurrent gpu-accelerated dnn

inferences. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, pages 539-558, 2022.

[14] Yitao Hu, Rajrup Ghosh, and Ramesh Govindan. Scrooge: a cost-

effective deep learning inference system. In Proceedings of the ACM
Symposium on Cloud Computing, pages 624–638, 2021.

[15] Jinwoo Jeong, Seungsu Baek, and Jeongseob Ahn. Fast and efficient

model serving using multi-gpus with direct-host-access. In Proceedings
of the ACM European Conference on Computer Systems, pages 249–265,
2023.

[16] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable

serverless computing for latency-sensitive, interactive microservices.

In Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
152–166, 2021.

[17] Jaehoon Jung, Jinpyo Kim, and Jaejin Lee. Deepum: tensor migration

and prefetching in unified memory. In Proceedings of the ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, pages 207-221, 2023.

[18] Heehoon Kim, Junyeol Ryu, and Jaejin Lee. Tccl: discovering better

communication paths for pcie gpu clusters. In Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 999–1015, 2024.

[19] Jie Li, Laiping Zhao, Yanan Yang, Kunlin Zhan, and Keqiu Li. Tetris:

memory-efficient serverless inference through tensor sharing. In Pro-
ceedings of the USENIX Annual Technical Conference, pages 125-142,
2022.

[20] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli

Zheng, and Minyi Guo. Faasflow: enable efficient workflow execu-

tion for function-as-a-service. In Proceedings of the ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 782-796, 2022.

[21] Zijun Li, Chuhao Xu, Quan Chen, Jieru Zhao, Chen Chen, and Minyi

Guo. Dataflower: exploiting the data-flow paradigm for serverless

workflow orchestration. In Proceedings of the ACM International Con-
ference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 57–72, 2024.

[22] David H. Liu, Amit Levy, Shadi Noghabi, and Sebastian Burckhardt.

Doing more with less: orchestrating serverless applications without

an orchestrator. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, pages 1505-1519, 2023.

[23] Guowei Liu, Laiping Zhao, Yiming Li, Zhaolin Duan, Sheng Chen,

Yitao Hu, Zhiyuan Su, and Wenyu Qu. Fuyao: dpu-enabled direct

data transfer for serverless computing. In Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 431–447, 2024.

[24] Yuhan Liu, YuyangHuang, Jiayi Yao, ZhuohanGu, Kuntai Du, Hanchen

Li, Yihua Cheng, Junchen Jiang, Shan Lu, Madan Musuvathi, and Esha

Choukse. Droidspeak: kv cache sharing for cross-llm communication

and multi-llm serving. arXiv preprint arXiv:2411.02820 , 2024.
[25] Fangming Lu, Xingda Wei, Zhuobin Huang, Rong Chen, Minyu Wu,

and Haibo Chen. Serialization/Deserialization-free state transfer in

serverless workflows. In Proceedings of the European Conference on
Computer Systems, pages 132–147, 2024.

[26] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra, Ana Klimovic, So-

mali Chaterji, and Saurabh Bagchi. Sonic: application-aware data pass-

ing for chained serverless applications. In Proceedings of the USENIX
Annual Technical Conference, pages 285-301, 2021.

[27] Nvidia Collective Communications Library NCCL. https://developer.
nvidia.com/nccl.

[28] Nvidia Container Toolkit. https://github.com/NVIDIA/nvidia-
container-toolkit?tab=readme-ov-file.

[29] Nvidia CUDA IPC. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

[30] Nvidia CV-CUDA. https://github.com/CVCUDA/CV-CUDA.
[31] Nvidia GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-

rdma/.
[32] Nvidia NVSHMEM. https://docs.nvidia.com/nvshmem/api/index.

html.
[33] Nvidia Unified Memory. https://developer.nvidia.com/blog/unified-

memory-cuda-beginners/.
[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: an im-

perative style, high-performance deep learning library. In Proceedings
of the Advances in Neural Information Processing Systems, 8024-8035,
2019.

[35] Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing

Zhang, Yongwei Wu, Weimin Zheng, and Xinran Xu. Mooncake: trad-

ing more storage for less computation — a kvcache-centric architecture

for serving llm chatbot. In Proceedings of the USENIX Conference on
File and Storage Technologies, pages 155-170, 2025.

[36] Kiran Ranganath, Joshua D. Suetterlein, Joseph B. Manzano, Shuai-

wen Leon Song, and Daniel Wong. Mapa: multi-accelerator pattern

allocation policy for multi-tenant gpu servers. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1-14, 2021.

[37] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos

Kozyrakis. Llama: a heterogeneous & serverless framework for auto-

tuning video analytics pipelines. In Proceedings of the ACM Symposium
on Cloud Computing, pages 1–17, 2021.

[38] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki,

Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and

Rachee Singh. Taccl: guiding collective algorithm synthesis using

communication sketches. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation, pages 593-612, 2023.

[39] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://github.com/NVIDIA/nvidia-container-toolkit?tab=readme-ov-file
https://github.com/NVIDIA/nvidia-container-toolkit?tab=readme-ov-file
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/CVCUDA/CV-CUDA
https://docs.nvidia.com/cuda/gpudirect-rdma/
https://docs.nvidia.com/cuda/gpudirect-rdma/
https://docs.nvidia.com/nvshmem/api/index.html
https://docs.nvidia.com/nvshmem/api/index.html
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Russinovich, and Ricardo Bianchini. Serverless in the wild: characteriz-

ing and optimizing the serverless workload at a large cloud provider. In

Proceedings of the USENIX Annual Technical Conference, pages 205-218,
2020.

[40] Sudipta Saha Shubha and Haiying Shen. Adainf: data drift adaptive

scheduling for accurate and slo-guaranteed multiple-model inference

serving at edge servers. In Proceedings of the ACM SIGCOMM Confer-
ence, pages 473–485, 2023.

[41] Amirhossein Sojoodi, Yiltan Hassan Temucin, and Ahmad Afsahi. En-

hancing intra-node gpu-to-gpu performance in MPI+UCX through

multi-path communication. In Proceedings of the International Work-
shop on Extreme Heterogeneity Solutions, pages 9-14, 2024.

[42] Xiaoniu Song, Yiwen Zhang, Rong Chen, and Haibo Chen. Ugache: a

unified gpu cache for embedding-based deep learning. In Proceedings of
the Symposium on Operating Systems Principles, pages 627–641, 2023.

[43] Unified Communication X. https://openucx.readthedocs.io/en/
master/.

[44] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil

Devanur, Jorgen Thelin, and Ion Stoica. Blink: fast and generic col-

lectives for distributed ML. In Proceedings of Machine Learning and
Systems, pages 172-186, 2020.

[45] Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou.

Mixture-of-agents enhances large language model capabilities. arXiv
preprint arXiv:2406.04692 , 2024.

[46] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,

Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. Mlaas in the

wild: workload analysis and scheduling in large-scale heterogeneous

gpu clusters. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, pages 945-960, 2022.

[47] Hao Wu, Yue Yu, Junxiao Deng, Shadi Ibrahim, Song Wu, Hao Fan,

Ziyue Cheng, and Hai Jin. Streambox: a lightweight gpu sandbox for

serverless inference workflow. In Proceedings of the USENIX Annual
Technical Conference, pages 59-73, 2024.

[48] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang

Zhao, Xingzhen Chen, and Keqiu Li. Infless: a native serverless system

for low-latency, high-throughput inference. In Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 768–781, 2022.

[49] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. Following

the data, not the function: rethinking function orchestration in server-

less computing. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, pages 1489-1504, 2023.

[50] Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xiaonan Luo, Zhuo-

hao Li, Wei Wang, Ruichuan Chen, Dapeng Nie, and Haoran Yang.

Torpor: GPU-enabled serverless computing for low-latency, resource-

efficient inference. In Proceedings of the USENIX Annual Technical
Conference, pages 125-142, 2025.

[51] Minchen Yu, Rui Yang, Chaobo Jia, Zhaoyuan Su, Sheng Yao, Tingfeng

Lan, Yuchen Yang, Yue Cheng, Wei Wang, Ao Wang, and Ruichuan

Chen. 𝜆Scale: enabling fast scaling for serverless large language model

inference. arXiv preprint arXiv:2502.09922 , 2025.
[52] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. Mark:

exploiting cloud services for cost-effective, slo-sware machine learn-

ing inference serving. In Proceedings of the USENIX Annual Technical
Conference, pages 1049-1062, 2019.

[53] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. Shep-

herd: serving dnns in the wild. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation, pages 787-808, 2023.

[54] Wei Zhang, Quan Chen, Kaihua Fu, Ningxin Zheng, Zhiyi Huang, Jing-

wen Leng, and Minyi Guo. Astraea: towards qos-aware and resource-

efficient multi-stage gpu services. In Proceedings of the ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, pages 570-582, 2022.

[55] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou.

Aquatope: qos-and-uncertainty-aware resource management for multi-

stage serverless workflows. In Proceedings of the ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1-14, 2022.

https://openucx.readthedocs.io/en/master/
https://openucx.readthedocs.io/en/master/

	Abstract
	1 Introduction
	2 Background
	2.1 Serverless Inference Workflow
	2.2 Data Passing in Serverless Inference Workflow

	3 Challenges
	3.1 Challenge #1: Redundant Data Copies
	3.2 Challenge #2: Underutilized Link Bandwidth
	3.3 Challenge #3: Inefficient Memory Management

	4 GRouter System Design
	4.1 Design Overview
	4.2 Unified Data Passing Framework
	4.3 Efficient Parallel Data Transfers
	4.4 Elastic GPU Data Storage

	5 Implementation
	6 Evaluation
	6.1 Data Passing Performance
	6.2 Performance under Real-world Workloads
	6.3 Performance of Components in GRouter
	6.4 Performance under Emerging LLM Applications
	6.5 Applicability and System Overhead

	7 Discussion and Related Work
	8 Conclusions
	9 Acknowledgement
	References

