
Semi-Dynamic Load Balancing: Efficient Distributed
Learning in Non-Dedicated Environments
Chen Chen

HKUST

cchenam@connect.ust.hk

Qizhen Weng

HKUST

qwengaa@cse.ust.hk

Wei Wang

HKUST

weiwa@cse.ust.hk

Baochun Li

University of Toronto

bli@ece.toronto.edu

Bo Li

HKUST

bli@cse.ust.hk

ABSTRACT
Machine learning (ML) models are increasingly trained in

clusters with non-dedicated workers possessing heteroge-

neous resources. In such scenarios, model training efficiency

can be negatively affected by stragglers—workers that run

much slower than others. Efficient model training requires

eliminating such stragglers, yet for modern ML workloads,

existing load balancing strategies are inefficient and even

infeasible. In this paper, we propose a novel strategy called

semi-dynamic load balancing to eliminate stragglers of dis-

tributed ML workloads. The key insight is that ML workers

shall be load-balanced at iteration boundaries, being non-

intrusive to intra-iteration execution. We develop LB-BSP

based on such an insight, which is an integrated worker

coordination mechanism that adapts workers’ load to their

instantaneous processing capabilities by right-sizing the sam-

ple batches at the synchronization barriers. We have custom-

designed the batch sizing algorithm respectively for CPU and

GPU clusters based on their own characteristics. LB-BSP has

been implemented as a Python module for ML frameworks

like TensorFlow and PyTorch. Our EC2 deployment confirms

that LB-BSP is practical, effective and light-weight, and is

able to accelerating distributed training by up to 54%.

CCS CONCEPTS
•Computingmethodologies→Distributed computing
methodologies; Machine learning.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8137-6/20/10.

https://doi.org/10.1145/3419111.3421299

KEYWORDS
Distributed Learning, Load Balancing, Synchronization

ACM Reference Format:
Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li.

2020. Semi-Dynamic Load Balancing: Efficient Distributed Learn-

ing in Non-Dedicated Environments. In ACM Symposium on Cloud
Computing (SoCC ’20), October 19–21, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3419111.

3421299

1 INTRODUCTION
Machine learning (ML) models, such as deep neural net-

works, are widely used for a range of applications to attain

state-of-the-art performance [23, 36, 53, 76]. Owing to their

compute-intensive nature, ML models are often trained in

a distributed manner [11, 22, 30, 57]: many worker threads

iteratively process small subsets of the training data (i.e.,

sample batches), and use the computed updates to refine the

global model parameters.

With the surge of ML training demands, it has become

increasingly common to serve ML jobs in non-dedicated en-

vironments, e.g., with heterogeneous hardware from spot

markets [2], or with time-varying resources from shared

production clusters [42, 46, 81]. In such cases, workers with

less capable resources would progress slower and become

stragglers. Under the popular Bulk Synchronous Parallel (BSP)

scheme, fast workers have to wait for slow ones at the end of

each iteration, and stragglers would thus impair the model

training efficiency.

To mitigate the negative effect of stragglers, a large num-

ber of mechanisms have been developed in the literature.

For example, some [26, 30, 44] have proposed to relax the

synchronization barriers to avoid end-of-iteration resource

wastage, yet this negatively affects the update quality and re-

quires more iterations for models to converge. In fact, strag-

glers in non-dedicated clusters are mainly caused by the

mismatch between workers’ load and their processing capa-

bility. In response, the most effective strategy to eliminate

https://doi.org/10.1145/3419111.3421299
https://doi.org/10.1145/3419111.3421299
https://doi.org/10.1145/3419111.3421299

SoCC ’20, October 19–21, 2020, Virtual Event, USA Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li

stragglers is to balance the load of workers according to their

instantaneous processing capability.

Nonetheless, ML workloads pose new challenges to the

load balancing community. Existing load balancing schemes

designed for traditional multi-core or big data scenarios

can be broadly classified into two categories: static and dy-
namic load balancing (§2.2.3). Yet, different from those tradi-

tional workloads such as HPC processing [17, 34] or MapRe-

duce [31], ML computations are highly structured (with thou-

sands of short iterations) and also tensor-based (samples in

each iteration are packaged into a non-divisible matrix for

fast processing). Static load balancing approaches [51, 73, 78]

are not aware of runtime resource variations, and dynamic

approaches [13, 41, 82], which are mainly based onwork steal-
ing [12, 17, 34], are also deficient for ML workloads. First,

work stealing usually requires fine-grained worker progress

monitoring and runtime load migration, which is inefficient

for an iterative model training process. Second, runtime load

migration assumes that samples are processed one by one,
which is indeed incompatible with the style of tensor-based
processing in modern ML frameworks [9, 11, 21].

In this paper, we design a new load balancing strategy for

distributed model training workloads, called semi-dynamic
load balancing. In broad strokes, the high-level idea is to per-

form all load balancing actions—worker monitoring, strag-

gler identification and load redistribution—on the iteration

boundaries, with load adjustment enforced by tuning each

worker’s sample batch size. Following such a high-level idea,

we propose Load-Balanced Bulk Synchronous Parallel (LB-

BSP), a composite scheme atop BSP that seeks to equalize all

the workers’ batch processing times by speculatively config-

uring their batch sizes at the synchronization barriers. An

immediate question is then how to set the batch size at the

synchronization barriers for the best load balancing effect in

the upcoming iteration. This evolves into different challenges

for CPU and GPU clusters that are two typical platform types

for distributed learning.

For a CPU worker, our profiling work (§3.2.1) shows that

its batch processing time is proportional to its batch size, with

the proportion coefficient representing the instantaneous

sample processing capability. In shared clusters, such a coef-

ficient may vary drastically with the temporal resources [42,

71], and thus shall be predicted prior to each iteration. For

this purpose, we employ a special kind of recurrent neu-

ral network called NARX [33], which can make accurate

performance predictions by taking into account the driving

resources such as CPU and memory.

In multi-tenant GPU clusters [39, 46, 67, 81], a GPU is

usually dedicated to one worker without sharing. But the

relationship between a GPU worker’s batch processing time

and batch size is not proportional and difficult to profile at

runtime (§3.3.1). Therefore, instead of the profiling-based

analytical methods, we propose an iterative batch size tuning

algorithm that can efficiently approximate the load-balanced

state without prior knowledge.

Furthermore, while our method of worker-adaptive batch

sizing can effectively eliminate stragglers, it inevitably re-

sults in non-uniform batch sizes among different workers,

which may negatively affect the training accuracy. To ensure

that model training process can still converge correctly even

with inconsistent batch sizes, we further propose weighted
gradient aggregation, in which the batch size of each worker

is used as the weight of its gradient in aggregation.

We have implemented LB-BSP with a Python module that

can be easily integrated into existing ML frameworks like

TensorFlow [11], PyTorch [9] and MXNet [21]. Our exper-

iments on Amazon EC2 with popular benchmark training

workloads show that LB-BSP can effectively eliminate strag-

glers in non-dedicated clusters, achieving near-optimal train-

ing efficiency with negligible overhead. In particular, in a

16-node heterogeneous GPU cluster, LB-BSP outperforms

existing worker coordination schemes by over 54%; and in

a 32-node shared CPU cluster, it attains an improvement

of up to 38.7% over state-of-the-art straggler mitigating ap-

proaches.

2 BACKGROUND AND MOTIVATION
2.1 Research Background
Basics of Machine Learning. Given a machine learning

(ML) model, the objective of model training process is to find

the model parameters ω⋆
that can minimize the loss function

L(ω) over the labeled training dataset S , i.e.,

ω⋆ = argmin

ω
L(ω) = argmin

ω

1

|S |

∑
s ∈S

l (s,ω). (1)

Here, l (s,ω) is the loss value for a data sample s in S .

A popular training algorithm is mini-batch Stochastic Gra-
dient Descent [30, 58], or simply SGD

1
. Its basic idea is to

iteratively refine model parameters ω with the gradients д
calculated from the sample batches, i.e.,

ωk+1 = ωk − ηдk , where дk =
1

|Bk |

∑
s ∈Bk

∇l (s,ωk). (2)

Here, k is the iteration number, Bk is a batch randomly sam-

pled from the training dataset S , and η is the learning rate.
Such training iterations would repeat until the model param-

eters ω finally converge.

Given the stochastic nature of SGD, the relationship be-

tween training completion (i.e., model convergence) and

the sample processing amount is not deterministic, and the

1
For simplicity, we focus on standard SGD in this paper. Yet our LB-BSP

solution can also be applied to all SGD variants (e.g., Adam or RMSProp,

which make use of model gradients in different manners), because LB-BSP

itself does not compromise the aggregated gradients (§3.4).

Semi-Dynamic Load Balancing: Efficient Distributed Learning in Non-Dedicated Environments SoCC ’20, October 19–21, 2020, Virtual Event, USA

model training efficiency is usually decoupled into two parts:

hardware efficiency—how fast each iteration can be finished,

and statistical efficiency—how many iterations it takes to-

wards model convergence. Therefore, efficient model training

requires both high hardware efficiency and high statistical

efficiency.

DistributedModel Training.To accelerate the model train-

ing process, it has been increasingly common to train ML

models in a distributed manner, with a pool of parallel work-

ers. Those workers typically collaborate in a synchronous

mode (i.e., BSP) [27, 38, 89], under the Parameter Server
(PS) [27, 44, 57] or All-Reduce [38] architecture.

With the widespread adoption of ML techniques, distributed

model training is now conducted in various cluster environ-

ments, and we broadly classify them into two types: dedicated
and non-dedicated clusters.

(1) Dedicated clusters implies that the clusters are homo-

geneous, and are composed of cutting-edge GPUs dedicated

to one training job. For example, Facebook’s well-known

work of training ImageNet in one hour [38] is conducted in

such a dedicated cluster with 256 Tesla P100 GPUs. While

dedicated clusters can yield high training efficiency, they are

expensive to maintain and not widely accessible [38, 47].

(2) Non-dedicated clusters refer to the clusters that are

composed of heterogeneous hardware or shared by multiple

tenants. Since newer CPU or GPU generations get released

at a rapid pace, a budget-limited user may choose to train

models with a set of heterogeneous hardware (e.g., GPUs)

from the local inventory [59, 66] or from spot markets such

as Amazon EC2 [2, 4, 49] or FloydHub [5]. Meanwhile, large

companies [42, 46] may host multiple ML jobs in their produc-

tion clusters with mixed hardware types; for fairness, users

may be allocated heterogeneous hardware [19, 63, 64], and

their resource allocation may also be dynamically adjusted

by cluster schedulers for resource packing purpose [39, 81].

While model training in non-dedicated clusters is increas-

ingly common, it is far less efficient than training in dedicated

clusters due to the straggler problem, which is more severe in

non-dedicated clusters. For clarity, we classify stragglers into

two groups: non-deterministic and deterministic stragglers.

(1) Non-deterministic stragglers are caused by tempo-

rary disturbance like OS jitter or garbage collection, usually

being transient and slight. They occur and vanish naturally

in both dedicated and non-dedicated clusters.

(2) Deterministic stragglers are caused by the hetero-

geneity of worker resource quality or quantity, and are often

severe and long-lasting. They occur only in non-dedicated

clusters.

Compared with non-deterministic stragglers, determinis-

tic stragglers are more harmful to distributed model training,

by forcing fast workers to always wait for the slowest one

in each iteration if under the popular BSP scheme. With the

increasing prevalence of non-dedicated clusters, it is thus in

urgent need to tame such deterministic stragglers.

2.2 Related Work
Stragglers have long been a thorny problem in distributed

computing systems, and in the research literature there have

been many attempts to tackle such a problem.

2.2.1 Bypassing Stragglers with Relaxed Synchronization.
To exempt fast workers from waiting for stragglers, two

worker coordinating schemes with the synchronization con-

straint compromised have been proposed: ASynchronous

Parallel (ASP), and Stale Synchronous Parallel (SSP).

ASP. In ASP [30], workers can independently proceed to

the next iteration without waiting for others. In this way,

ASP wastes no compute cycles and attains high hardware

efficiency. However, the price paid is low statistical efficiency:

without global synchronization, the gradient computation

often uses stale parameters, which yields low-quality updates

and requires more iterations to converge [44, 54].

SSP. SSP [26, 44] comes as a middle ground between BSP

and ASP. In SSP, fast workers wait for the stragglers only
when the parameter staleness reaches a particular threshold.

SSP can then accelerate ML iterations while providing a

convergence guarantee. Nonetheless, SSP focuses primarily

on non-deterministic stragglers, expecting the straggling

workers to catch up soon in later iterations. This works for

homogeneous clusters, but in non-dedicated clusters the

deterministic stragglers may persist across many consecutive

iterations, and the staleness quota of SSP can be quickly used

up. After the quota is used up, fast workers will have to wait

for the slowest ones in almost every iteration, leading to low
hardware efficiency.

2.2.2 Mitigating Stragglers by Redundant Execution.
Redundant execution [15, 87] is widely adopted to miti-

gate stragglers in traditional data analytics frameworks like

MapReduce [31] and Spark [85]. It launches multiple copies

of a straggling task and accepts results only from the one

that finishes first. It has also been recently introduced to the

context of distributed machine learning: Chen et al. [20] pro-

posed to train deep neural models with extra backup workers

and to use gradients from those workers finishing the earli-

est. However, redundant execution is merely a suboptimal

solution: it mitigates some worst-case stragglers but fails to

eliminate all of the stragglers completely. Even worse, backup

workers themselves would consume additional resources.

2.2.3 Eliminating Stragglers by Load Balancing.
The solutions we have discussed so far are agnostic to the

root causes of stragglers, and they do not seek to prevent

SoCC ’20, October 19–21, 2020, Virtual Event, USA Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li

stragglers from occurring. As we mentioned, efficiency loss

in non-dedicated clusters is primarily caused by determinis-

tic stragglers, whose root cause is very clear—the mismatch

between the workers’ loads and their processing capabili-

ties (existing ML frameworks [11, 21, 48] blindly assign a

uniform batch load to all the workers). Therefore, to funda-

mentally eliminate such deterministic stragglers related to

load-resource mismatching, we should resort to load bal-
ancing techniques. Load balancing is a classical research

topic [14] in the parallel processing community, and existing

solutions can be broadly classified into two types: static and

dynamic load balancing.

Static Load Balancing. Static load balancing strategies [51,

73, 78, 79] set a constant load for each worker—as the execu-

tion commences—under a given scheme like Round-Robin [73]

or with some static knowledge of the worker status [78, 79].

It does not require real-time progress measurements or cross-

worker communication, but cannot react to resource varia-

tions that are common in non-dedicated clusters.

Dynamic Load Balancing. Dynamic load balancing strate-

gies use work-stealing or work-shedding to redistribute load

from heavily-loaded workers to lightly-loaded ones at run-

time [12, 13, 17, 34, 82]. They are mostly developed for tra-

ditional task-based parallel programming models in multi-

core or HPC systems. Recently, FlexRR [41] adopted such

a dynamic strategy to tackle (non-deterministic) stragglers

for ML workloads. It measures the workers’ instantaneous

progress at a fine granularity (100 checks per iteration); once

a straggling worker lags behind others over a given thresh-

old, it would yield certain sample processing load to a faster

worker. Responding to dynamic changes of resources, dy-

namic load balancing schemes usually outperform static ones,

but the cost paid is much higher computation and communi-

cation overhead (for progress monitoring, status collection

and workload migration), which is not desirable in resource-

intensive ML training. To reduce such overhead, FlexRR con-

ducts straggler detection and load migration within desig-

nated worker groups, which nonetheless leads to suboptimal

load balancing performance due to its lack of global coordi-

nation.

Moreover, a key assumption of dynamic load balancing

strategies is that, workloads shall be processed in a sequential
manner so that they can be arbitrarily split and transferred

at runtime. However, this is not true for modern ML work-

loads. Training ML models is compute-intensive, and parallel-

processing accelerators like GPUs are commonly used in

practice, for which sequential processing is highly inefficient

(§3.3.1). To fully exploit the power of such accelerators, main-

stream ML frameworks wrap all the samples in a batch as a

tensor matrix (e.g., a Tensor in TensorFlow/PyTorch, or an

NDArray in MXNet), which is concurrently processed in a

single round. Given such all-or-nothing processing, it is hard

to measure fine-grained worker progress or adjust its load

in the midst of an iteration, making dynamic load balancing

simply infeasible.

2.3 Semi-Dynamic Load Balancing
Objectives. Based on our discussions so far, our objective is

to develop a load balancing strategy for ML workloads with

the following properties:

(1) Practicality. It should be compatible with the style of

tensor-based processing in existing ML frameworks.

(2) Effectiveness. It should be aware of the instantaneous

worker execution status, and adjust the workers’ load in a

coordinated manner to attain the best load balancing effect.

(3) Efficiency. It should not interfere with regular process-

ing within each iteration, and should try to be light-weight

by avoiding cross-worker data movement.

Design Philosophy. To meet these objectives, we propose

a new load balancing strategy called semi-dynamic load bal-
ancing. Tailored for ML workloads, its basic idea is to have

workers’ load be static within each iteration but dynamic
across different iterations. In particular, we offload all load

balancing operations—status measurements, straggler detec-

tion and load adjustment—at the iteration boundaries of BSP,

using the batch size as a tool for load tuning. This strategy is

feasible and can satisfy all of our design objectives, which

we rationalize from the following three aspects:

(1) Measuring worker status at iteration boundaries.
Training iterations in modern ML frameworks are relatively

short (in seconds or even sub-seconds, as we show later in

Fig. 1 and Fig. 4), and these iterations share a high similarity

because an identical computation graph is used in each iter-

ation. Therefore, the execution status in recent iterations is

a valuable reference for that of the near future, relieving the

need for costly intra-iteration progress measurements.

(2) Detecting stragglers at BSP iteration boundaries.
Under BSP there is a synchronization barrier at the end of

each iteration, offering a natural opportunity to centralize all

the workers’ status information and optimize, with a global

view, their load for the best load balancing effect.

(3) Adjusting load by tuning the batch size at itera-
tion boundaries. The batch size is a hyper-parameter that,

as each iteration commences, dictates how many samples

should be encapsulated into a tensor batch for processing in

that iteration. It accurately controls a worker’s load because

each sample consumes identical compute cycles. Besides,

given the stochastic (i.e., sample-insensitive) nature of SGD,

load migration can be realized by increasing the batch size of

one worker and reducing that on another. This can avoid the

communication overhead without compromising the train-

ing convergence.

Semi-Dynamic Load Balancing: Efficient Distributed Learning in Non-Dedicated Environments SoCC ’20, October 19–21, 2020, Virtual Event, USA

t batch processing time xi batch size on worker-i
tp computation time ẋ initial batch size

tm communication time X nẋ (n is worker number)

Γ (·) function between tp and x v sample processing speed

Table 1: Summary of important notations.

In the next section, we show how the philosophy of semi-

dynamic load balancing can be implemented in practice.

3 LB-BSP
In this section, we present Load-Balanced Bulk Synchronous
Parallel (LB-BSP), an integrated scheme atop BSP, for effi-

cient distributed learning in non-dedicated clusters. We start

with the problem formulation of LB-BSP, and then elaborate

our solutions for CPU and GPU clusters, respectively.

3.1 Problem Formulation
In each model training iteration, given the sample batch, a

worker first calculates a local gradient and then remotely

refines the global model. Here we refer to the entire duration

as the batch processing time, denoted by t . It can be divided

into two parts: computation time (tp), which measures the

time taken to compute the gradient, and communication time2

(tm), which measures the time taken for data transmission.

In a nutshell, LB-BSP seeks to equalize t on different work-

ers by rightsizing their sample batches at the synchronization

barriers. This can be formulated as an optimization problem.

Given n workers with the initial batch size ẋ, we want to find

the worker batch sizes x⃗ = (x1,x2, ...,xn) that can minimize

the longest batch processing time among all workers, i.e.,

min

x⃗=(x1,x2, ...,xn)
max

i ∈{1,2, ...n }
ti ,

s.t. ti = t
p
i + t

m
i , i = 1, . . . ,n;

t
p
i = Γi (xi), i = 1, . . . ,n;∑n

i=1
xi = X = nẋ.

(3)

Here Γi (·) is the function between worker-i’s computation

time t
p
i and its batch size xi . The last constraint ensures

that the total number of samples processed in each iteration

remains the same as that in BSP. Table 1 summarizes the

important notations used in the paper.

Solution Overview. Solving problem (3) poses different

challenges to CPU and GPU clusters. In shared CPU clus-

ters, ti increases linearly with xi , but that ratio varies with

the temporal resources. In GPU clusters, the relationship

between ti and xi is non-linear and hard to profile at run-

time. Based on their respective characteristics, we design an

analytical method that directly configures the optimal x⃗ for

2
Communication and computation are partially overlapped [27, 38, 89] in

existing ML frameworks (e.g., TensorFlow, MXNet); for clarity, communica-

tion time in our definition excludes the overlapped periods.

Figure 1: The relationship between computation time
and batch size for different EC2 CPU instances.

CPU clusters (§3.2), and a numerical method that iteratively

approaches the optimal x⃗ for GPU clusters (§3.3).

3.2 LB-BSP in CPU Clusters
We summarize some typical scenarios where models are

trained in CPU clusters without accelerators like GPUs:

(1) Non-neural-network Model Training. Many tradi-

tional ML applications like Support Vector Machines (SVM)

or Logistic Regression (LR) demand less computing resources

than neural networks. They are usually trained in CPU clus-

ters [41, 42, 49, 88].

(2) Non-urgent Model Training. Non-urgent ML tasks

may also be trained in CPU clusters opportunistically with

leftover resources [42, 55]. For example, to improve cluster

utilization, Facebook trains some peripheral face recognition

models with the off-peak portions of CPU servers in the

diurnal cycle, where the CPU resources would otherwise be

wasted [42].

We next present the techniques to fully exploit available

resources in such non-dedicated CPU clusters to attain the

best model training efficiency.

3.2.1 Performance Characterization of CPU Workers.

Static Characteristics. To solve problem (3) for CPU clus-

ters, we first characterize the static properties of CPU work-

ers by measuring their performance against different batch

size configurations when there is no resource contention.

(1) Negligible Communication Time: tp ≫ tm (t ≈
tp). Model training is a compute-intensive task for CPU

workers, and with built-in optimizations [89] of modern

ML frameworks, communication can be hidden by the long

computation time (tp). In our measurements on EC2, when

training the Inception-V3 model on ImageNet dataset (in-

troduced later in §5.1) with 32 workers and one separate PS

(c5.2xlarge instances with ≤ 10Gbps bandwidth), tp takes

more than 99% of the batch processing time t .
(2) Linear Relationship: Γ (x) = x/v . As batch size quan-

tifies the iteration load, for CPU processors the computation

time tp is proportional to the batch size x . To confirm that,

we respectively train the ResNet-32 and Inception-V3 model

with different types of EC2 instances. We vary x and record

SoCC ’20, October 19–21, 2020, Virtual Event, USA Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized CPU Usage

1

2

3

4

5

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

ResNet32 [CIFAR-10]
Inception-V3 [ImageNet]

0.6 0.7 0.8 0.9 1.0
Normalized RAM Usage

1

3

5

7

N
or

m
al

iz
ed

 It
er

at
io

n
Ti

m
e

ResNet32 [CIFAR-10]
Inception-V3 [ImageNet]

Figure 2: Sample processing speed is affected by CPU
or memory resources. Measurements are conducted
with the stress-ng tool [1] on a c5.2xlarge instance
(with swap spaces enabled). The resource usage and it-
eration time are normalized by themonopolizing case.
Each point is an average of 100 iterations.

the corresponded computation time tp in Fig. 1, which in

each case exhibits strong linearity between x and tp . Let v
be the ratio of x to tp , i.e., the sample processing speed, we

then have t ≈ tp = Γ (x) = x/v .

Given the characteristics above, we solve optimization

problem (3) with xi =
vi∑n
j=1 vj

X . Note that such an analytical

method essentially merges straggler detection and elimina-

tion together. In a nutshell, to set the worker batch size for

an upcoming iteration, we only need to know their sample

processing speed in that iteration.

Challenges for LB-BSP in sharedCPUclusters.Although

a CPU worker’s batch size can be determined with its sample

processing speed, when training with resource contention

in shared clusters, that sample processing speed may vary

dynamically. Therefore, to load-balance workers with adjust-

ments only at the iteration boundaries, we need to predict

their sample processing speed before the start of an itera-

tion. As stragglers in non-dedicated CPU clusters can be

deterministic and non-deterministic, an ideal prediction ap-

proach should be robust to non-deterministic perturbations

to avoid over-reaction or oscillation. It should also react to

deterministic resource variations quickly.

3.2.2 Predicting Sample Processing Speed.

Potential Approaches. A simple solution is to use the last

iteration’s speed or the Exponential Moving Average (EMA)

speed as the predicted one. However, the former is not ro-

bust to temporary perturbations, and the latter cannot react

quickly to drastic resource variations.

Speed prediction belongs to a classical research problem—

time series prediction, for which many statistical or learning-
based techniques have been proposed. As a statistical ap-

proach, Autoregressive Integrated Moving Average (ARIMA)

[35] makes predictions with statistics like average and devia-

tion. Meanwhile, models based on Recurrent Neural Network
(RNN) [24] (like plain RNN and LSTM [45]), with the ability

Feedforward Network

z-1 z-1z-1z-1 z-1z-1

ck

vk

ck-1 cck-d

mk
mk-1 mk-dm vk-1vk-dv

Figure 3: NARX architecture.

to maintain inner memory, have been applied in forecast-

ing real-world time series like stock price [70] or transport

flow [68].

However, the prediction performance of all the above ap-

proaches is limited by their blindness to the underlying re-

sources. In fact, variations of the driving resources like CPU

and memory
3

closely relate to the instantaneous worker

processing capability.

This is supported by Fig. 2, in which the model training

processes are slowed down after we restrict their resource

usage. Such driving resources can help to distinguish the

deterministic straggling factors from random perturbations

and make more accurate prediction. To this end, we find that

Nonlinear AutoRegressive eXogenous (NARX) model [33, 37]

is a good fit for the prediction of sample processing speed.

NARX Approach. The NARX model we use is basically an

extended recurrent neural network that takes three series as

inputs: past values of sample processing speed (v), current

and past values of the two driving resources—CPU and mem-

ory usage (c/m). Essentially, NARX aims to learn a nonlinear
function F (·) between the predicted speed and a limited view

(specified with a look-back window size) of the input series:

vk = F (vk−1, ...,vk−dv , ck , ..., ck−dc ,mk , ...,mk−dm). (4)

Here vk , ck and mk
represent the value of speed, CPU and

memory usage in iteration k , respectively; dv , dc and dm
represent the corresponded look-back window size of each

series. Fig. 3 shows the unfolded architecture of the NARX

model, in which the input series are fed into a feedforward
neural network.

The batch size adjusting process with NARX is elaborated

in Alg.1. In practice, to ensure high prediction accuracy, we

maintain a NARX model for each worker, which is trained

with the historical execution information (i.e.,v , c andm).

To avoid high model complexity, as in existing prediction

works [16, 18], the look-back window sizes for all the three

input series are set to 2, and we include only one hidden

layer in the feedforward network. Such a simple model can

3
Other resources (e.g., disk I/O, heat) may also impact sample processing

speed. Yet instead of exhaustively exploring all the potential impact factors,

our goal here is to show the benefits of including the driving resources in

prediction, and CPU and memory are two easy-to-measure factors for that.

Semi-Dynamic Load Balancing: Efficient Distributed Learning in Non-Dedicated Environments SoCC ’20, October 19–21, 2020, Virtual Event, USA

Algorithm 1 Batch Size Updating in CPU clusters

Input: {xk−1i }, {tk−1i }, {cki }, {m
k
i } ▷ last batch size, last batch processing

time, current cpu & memory usage of all the workers (i=1,2,...,n)
Require: past values of {vi }, {ci }, {mi }, i = 1, 2, ...,n;

Fi (·), i = 1, 2, ...,n. ▷ NARX model for each worker

1: procedure CPU UpdateBatchSize(k)

2: vk−1i ← xk−1i /tk−1i , i=1, 2, ...,n.

3: vki =Fi (v
k−1
i , ...,v

k−dv
i , cki , ...,c

k−dc
i ,mk

i , ...,m
k−dm
i), i=1, ...,n.

4: X ←
∑n
i=1 x

k−1
i

5: xki =
vki∑n
j=1 v

k
j
· X , i = 1, 2, ...,n.

6: round xki (i = 1, ...,n) to integers with

∑n
i=1 x

k
i = X .

7: return {xki }

avoid over-fitting and converge fast. Our later evaluation

(§5.4) confirms that such a NARX-based approach can make

better predictions than other approaches we surveyed.

3.3 LB-BSP in GPU Clusters
With strong parallel processing capability, GPUs are the

workhorse hardware for training deep neural networks [38,

46, 89]. As elaborated in §2.1, neural network models may be

trained in non-dedicated GPU clusters: with heterogeneous

GPU instances from the spot markets [2, 5], or in shared GPU

clusters [39, 46, 67, 81] where workers may inter-connect at

different locality levels and be migrated across machines for

resource consolidation. Nonetheless, implementing LB-BSP

in non-dedicated GPU clusters renders a challenge different

with that in CPU clusters. In this part, we first character-

ize the performance of standalone GPU workers, and then

present our LB-BSP algorithm for GPU clusters.

3.3.1 Performance Characterization of GPU Workers.

Static Characteristics. To solve problem (3) for GPU clus-

ters, we first profile the static properties of GPU workers.

(1) Non-negligible Communication Time: tp 4 tm

(t 0 tp). Computations on GPU workers are usually or-

ders of magnitude faster than CPU workers. Therefore, the

communication time in each iteration is no longer negligible

when compared with the computation time [89].

(2) Non-negligible GPU Launching Overhead: Γ (0) >
0. Fig. 4 shows the relationship

4 Γ (·) between tp and x for

different GPU types. Even for a very small batch, we find

that the GPU computation time could still be considerable.

This is because a GPU needs to do a series of preparation

work [60] to process each batch (e.g., exchanging parameters

4
To eliminate network interference, the curve for each GPU type is obtained

with a TensorFlow worker process and a collocated PS process. The models

we run are CifarNet (a CNN-based neural network [52] designed to classify

CIFAR-10 dataset) and Inception-V3.

between GPU and CPU memory, launching processing ker-

nels), which incurs considerable time overhead regardless of

the batch size, and that overhead is particularly salient for

large models like Inception-V3. In particular, the existence

of GPU launching overhead confirms that sequential sample
processing is highly inefficient: it is unacceptable to sustain

such an overhead when processing each sample.

(3) GPU Saturation Effect: Γ (x) = C,∀x < xs . For ad-

vanced GPUs like Tesla V100, the batch computation time tp

would be almost a constant if the sample batch is too small

(less than the saturation threshold xs) to saturate all the pro-

cessing kernels [56, 62]. Reducing batch size under xs does

not help to reduce the computation time and would cause

GPU underutilization.

(4) GPUMemory Limitation: x < xo . During each train-

ing iteration, the input sample batch, model parameters and

intermediate results shall all reside in GPU memory. There-

fore, the GPU memory size imposes a limit xo on the maxi-

mum batch size (as marked in the legends of Fig. 4), which,

to avoid OOM (out-of-memory) error, must be complied with

when adjusting the batch size of a GPU worker.

Challenges for LB-BSP in GPU clusters. The challenges

for realizing LB-BSP in GPU clusters are quite different from

that in CPU clusters. First, fine-grained GPU sharing is quite

rare (due to the technical difficulty and overhead [40, 46]),

and auxiliary resources (e.g., CPU, memory, network connec-

tivity) provisioned in GPU clusters fluctuate less often than in

CPU clusters [39, 46, 67, 81], leaving it unnecessary to make

real-time performance predictions for GPU workers. Second,

however, statically profiling the non-linear relationship Γ (·)
incurs non-trivial programming and time overhead, and is

particularly inconvenient for shared GPU clusters where the

workers of a ML job may be migrated from time to time.

Third, Fig. 4 implies that batch processing time increases

monotonically with the batch size; meanwhile, compared

with the huge number of seconds-level short iterations in

the long training process, the occurrence of job migration

is much fewer, suggesting that the worker performance is

stable in most consecutive iterations.

Therefore, instead of analytically solving problem (3) based

on static profiling, for GPU clusters it is more appropriate to

employ a numerical approximation method.

3.3.2 A Drop-in Algorithm for LB-BSP in GPU Clusters.

In this part, we devise a drop-in algorithm to iteratively

approximate the equilibrium where the gap among all the

workers’ batch processing time is minimized.

The whole batch size adjusting algorithm is elaborated

in Alg. 2. After each training iteration, we identify two

GPU workers: a leader—the GPU worker with the short-
est batch processing time, and a straggler—the GPU worker

SoCC ’20, October 19–21, 2020, Virtual Event, USA Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li

0 300 600 900 1200
Batch Size

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pu
ta

tio
n

Ti
m

e
(s

)

CifarNet [CIFAR-10]
K520 (xo :2750)
M60 (xo :5660)
V100 (xo :10900)

0 16 32 48 64
Batch Size

0

1

2

3

4

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Inception-V3 [ImageNet]
K80 (xo :116)
M60 (xo :71)
V100 (xo :152)

Figure 4: The relationship between computation time
and batch size of different GPU types.

with the longest batch processing time. If the leader has

consecutively preceded the straggler during an observation
window (observation window is introduced for robustness

to non-deterministic random variations), we respectively in-

crease (reduce) the leader (straggler)’s batch size by a certain

amount called step size. Note that any GPU worker with less

than 5% available memory would, to avoid OOM error, be

excluded from being identified as the leader. Moreover, if

with Alg. 2 a worker’s batch size is to be reduced below 0,

we should restart the training process without that worker,

and the resultant setup is actually more efficient.

Moreover, to reduce resource wastage, the equilibrium

should be approached efficiently with minimum oscillation.

To this end, we introduce two phases: a fast-approach phase

and a fine-tune phase. Initially the algorithm enters the fast-

approach phase, where we set a relatively large step size and

short observation window; then, once oscillation—a former

leader now identified as a straggler or vice versa—is detected,

we switch to the fine-tune phase by reducing the step size

(e.g., to 1) and increasing the observation window size.

Remarks. While Alg. 2 is designed for GPU clusters, it also

applies to other accelerators like TPU or FPGA. Existing

measurements have shown that TPU [50] and FPGA [69] also

exhibit a non-linear, monotonically-increasing relationship

between tp and x , making it feasible to adopt LB-BSP in

heterogeneous clusters with those hardware.

3.4 Weighted Gradient Aggregation
By tuning the worker batch size with Alg. 1 and Alg. 2, we

can effectively eliminate deterministic stragglers and achieve

high hardware efficiency. Yet, the resultant batch sizes on

different workers would be inconsistent, which may affect

the statistical efficiency. In this part, we first elaborate that

problem and then give our solution.

Problem of Naive Aggregation under LB-BSP. Under

BSP, the aggregated global gradientд for parameter updating

is the naive average of the gradients from all the workers.

Suppose there are n workers and дi is the gradient calculated

Algorithm 2 Batch Size Updating in GPU Clusters

Input: {xk−1i }, {tk−1i }, {mk
i } ▷ last batch size, last batch processing time

& current GPU memory usage of all workers (i =1, ..., n)
Require: past values of {ti }, i = 1, 2, ...n;

∆←5, D←5 ▷ ∆: step size; D : observation window size

1: procedure GPU UpdateBatchSize(k)

2: leader ← argmini {t
k−1
i | mk

i ≤ 0.95}

3: straggler ← argmaxi {t
k−1
i }

4: xki ← xk−1i , i = 1, 2, ...,n

5: if xk−1straggler ≤ ∆ then

6: return {xki } ▷ print warning: remove this straggler!

7: if ∀h ∈ {k − D, ..., k − 1}, thleader < thstraggler then
8: xkleader ← xk−1leader + ∆ ; xkstraggler ← xk−1straggler − ∆

9: else if ∃h ∈ {1, ..., k − 1}, thleader > thstraggler then
10: ∆ ← 1, D ← 20 ▷ switch to fine-tune phase

return {xki }

on worker-i (i=1, 2, ...,n), then

д =
1

n

n∑
i=1

дi , where дi =
1

|Bi |

∑
s ∈Bi

∇l (s,ω). (5)

Here Bi is the batch on worker-i . Getting rid of дi , we have

д =
1

n

n∑
i=1

1

|Bi |

∑
s ∈Bi

∇l (s,ω) =
n∑
i=1

∑
s ∈Bi

1

n |Bi |
·∇l (s,ω). (6)

This implies that, when workers have different batch sizes

(|Bi |), the significance of different samples, i.e.,
1

n |Bi |
, is also

different. Thus д is biased to samples in small batches, which

may harm the statistical efficiency. To verify that, we train the

Inception-V3 model under Alg. 2 in a 16-node heterogeneous

GPU cluster (i.e., Cluster-A in §5.1). After traversing the

ImageNet dataset for 20 epochs, the training accuracy only

reaches 43%, much worse than that under BSP (59%).

Weighted Gradient Aggregation. To avoid biased gradi-

ent, we proposeweighted gradient aggregation—using a worker’s

batch size as the weight when aggregating gradients. Sup-

pose the total batch size is

∑n
j=1 |Bj |=X , then we have

д =
1∑n

j=1 |Bj |

n∑
i=1

|Bi | · дi =
n∑
i=1

∑
s ∈Bi

1

X
· ∇l (s,ω). (7)

Obviously, now each sample plays an equal role in param-

eters updating, regardless of the batch size inconsistency.

After that fix, for i.i.d. dataset, i.e., samples being indepen-
dent and identically distributed, LB-BSP can achieve identical

statistical efficiency with BSP, which is known to be optimal.

3.5 Discussion on Data Access Frequency
In this paper, we focus on cases where each worker can access

the entire dataset via local storage or Network File System

Semi-Dynamic Load Balancing: Efficient Distributed Learning in Non-Dedicated Environments SoCC ’20, October 19–21, 2020, Virtual Event, USA

(NFS) [6, 74, 75]. In shared production clusters, it has become

almost a norm to store data in NFS (the access delay can be

made negligible via pre-fetching), which largely facilitates

data management and job migration [39, 42, 46, 81].

Nonetheless, there may still exist some cases that each

worker can only access a local partition of the training dataset.

Under LB-BSP where faster workers iterate with larger batches,

this means that samples on faster workers would be accessed

more frequently. Such a problem of uneven sample access
frequency may lead to inaccurate training results, especially

when the dataset is not well shuffled before being partitioned

and there are huge gaps on worker processing capability. To

address uneven sample access frequency with transparency

to the upper level training process, we suggest an iterative

SSP-style data scheduling scheme: once the traversal times

of one partition exceed another over a given threshold, we

launch a background process to migrate certain amount of

samples from the slower worker to the faster one. We have

prototyped
5

this method atop PyTorch, and verified that it

could make ideal accuracy even under non-i.i.d. data dis-

tribution. Such a kind of data migration method is indeed

light-weight in GPU clusters, because in GPU clusters the

worker speed is relatively stable and data migration is done-

once-and-working-forever, with the overhead amortized.

4 IMPLEMENTATION
We implement LB-BSP with BatchSizeManager6

, a Python

module that can be integrated into existing ML frameworks

including TensorFlow [11], PyTorch [9] and MXNet [21].

Architecture Overview. The overall workflow of LB-BSP

is described in Alg. 3 and Fig. 5. In the beginning of iteration

k , each worker pushes its latest execution information (⟨

batch processing time tk−1, CPU usage ck , memory usage

mk ⟩ for CPU clusters, or ⟨tk−1,mk ⟩ for GPU clusters) to the

BatchSizeManager, and then pulls back the updated batch

size xk . Note that LB-BSP is also applicable if the gradients

are aggregated with the All-Reduce architecture.

5
We develop a Python module called DataPartitionManager to periodi-

cally collect each partition’s traversal status and launch peer-to-peer data

transmission when appropriate, where all the communications are in Thrift

RPC calls. Once a data shifting process finishes, we reset the input stream

(e.g., DataLoader in PyTorch) and partition-traversal statistics on all the

workers. In our verification, we train the ResNet-32 model with 5 workers;

each worker hosts two classes of the CIFAR-10 dataset and their batch sizes

are 64, 96, 128, 160 and 192, respectively. With the DataPartitionManager
and the gap of traversal times bounded by 2, we obtain the same test accu-

racy (0.92) as training with i.i.d dataset.

6
While LB-BSP can be integrated into the engines of ML frameworks, this

would lose generality, mess the decoupled programming logic of input and

graph propagation modules, and also lose the flexibility to switch to All-

Reduce communication backend (Operations in Alg. 1 and Alg. 2 are hard

to be realized with All-Reduce semantics).

Algorithm 3 LB-BSP Workflow

Worker: i=1, 2, …, n:
1: procedure WorkerIterate(k)

2: xi←BatchSizeManager.UpdateBatchSize(<states>)

▷ blocking in CPU clusters and non-blocking in GPU clusters

3: load the next data batch Bki such that |Bki | = xi

4: pull wk
from PS

5: calculate local gradient дki
6: push д̄ki ←

nxi
X дki to PS ▷ д̄ki : weighted gradient

Parameter Server (PS):
1: procedure ParameterServerIterate(k)

2: aggregate gradient дk ← 1

n
∑n
i=1 д̄

k
i =

1

X
∑n
i=1 |B

k
i |д

k
i

3: update parameters wk+1 ←wk − ηдk ▷ η: learning rate

BatchSizeManager:
1: procedure UpdateBatchSize(<states>)

2: Refer to Alg. 1 (CPU cluster) or Alg. 2 (GPU cluster).

In particular, for CPU clusters the batch size updating

process is blocking so that the BatchSizeManager can get

the latest state information for speed prediction; yet for GPU

clusters, it is non-blocking because GPU workers’ state is

more stable (§3.3), and non-blocking interaction can avoid

prolonging the very short GPU iterations. To that end, on

each GPU worker we launch a separate thread to update

batch size in the background.

Enabling Variable Batch Size. In existing ML frameworks,

batch size is set as a constant when defining the computation

graph, with no direct APIs to configure it during the training

process. To enable variable batch size, in TensorFlow we de-

couple the batch size from the symbolic dataflow graph, and

specify it as a tensor value passed to TensorFlow session
through the feed dict API. For MXNet and PyTorch, we

respectively customize the DataIter and BatchSampler so

that they can accept a user-specified batch size at runtime

and generate a corresponded sample batch.

Measuring Worker Execution Status. To implement LB-

BSP, at the worker side, we need to obtain the batch process-

ing time t and state information (e.g., CPU or memory usage).

Acquiring t is easy in dynamic-graph based frameworks like

PyTorch, but is challenging for static-graph based frame-

works like TensorFlow or MXNet. In TensorFlow, each itera-

tion (forward or backward propagation and synchronization)

is executed as a whole with tf.Session(), which cannot

be decomposed with simple instructions. We choose to pro-

file the batch processing time from the Timeline log once

each iteration finishes. Instead of respectively measuring

the communication time and computation time which might

overlap with each other, we directly calculate batch pro-

cessing time as the iteration time minus the synchronization
waiting time (i.e., duration of the sync token q Dequeue

SoCC ’20, October 19–21, 2020, Virtual Event, USA Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li

�t , c , m
����t , m �

1
k-1

1
k

worker-1worker-1

	

worker-1

(Logical) Parameter Server

g
����

1
k
 �

BatchSize
Manager

� x

1
k

k-1
1
k

1

1
k

k

-

Sample Input Stream

B k
1 � (|B |=)k

1 x1
k

Figure 5: LB-BSP workflow in iteration k (the circled
numbers represent the execution order). The logical
PS can be in the form of distributed shards, or be re-
placed by the All-Reduce architecture.
operation). Besides, to measure the CPU or memory usage

we resort to the Python psutil [8] library, and to measure

the GPU memory usage we adopt the tf.contrib.memory -
stats.BytesInUse() operation.

Thrift RPC Protocol. The BatchSizeManager can be lo-

cated in a dedicated machine or co-located with the PS pro-

cess on an existing server of the cluster. For efficient com-

munication between the BatchSizeManager and workers,

we employ Apache Thrift [3], a lightweight RPC protocol

developed by Facebook, and we create a thread pool to serve

the worker requests in parallel.

Online NARX Training. The NARX models we use for

CPU clusters are written in Keras [7], a high-level neural

network API. Accurate NARX training requires collecting

enough samples, so we enable NARX prediction only after

the first 500 iterations. In practice we find that 500 samples

are enough for accurately training our NARX models, which

are quite simple (§3.2.2). Within the first 500 iterations, we

can use EMA or, if that training job is recurring, the past

NARX models trained in former runs. For fast convergence,

we initialize NARX models by model reusing [83]—with the

models trained even for other workers or ML jobs. Besides,

we also adopt early stopping [84] and in practice we found

that most training processes terminate within 10 steps.

5 EVALUATION
In this section we systematically evaluate the performance of

LB-BSP in non-dedicated clusters. We start with the end-to-

end (§5.1) and micro-benchmark (§5.2) evaluations in GPU

clusters. Then we resort to model training with leftover re-

sources in production CPU clusters (§5.3), with a deep dive

analysis of the NARX prediction approach (§5.4). Finally we

evaluate the overhead of our LB-BSP solution in §5.5.

5.1 End-to-End Result in GPU Cluster
Experimental Setup. As elaborated in §2.1, there do exist

some scenarios (e.g., due to budget limitation or fairness

policy) where model training has to be conducted in hetero-

geneous GPU clusters. To emulate such scenarios, we build

Cluster-A, a heterogeneous GPU cluster with 16 Amazon

EC2 instances: four p3.2xlarge instances (each with one

Tesla V100 GPU), four g3.4xlarge instances (each with one

Tesla M60 GPU), four p2.xlarge instances (each with one

Tesla K80 GPU), and four g2.2xlarge instances (each with

one GRID K520 GPU). On each instance we run a worker

process and a collocated PS shard under TensorFlow 1.4.0.

With Cluster-A, we train the CifarNet [52] and ResNet-

32 [43] model on CIFAR-10 dataset, and Inception-V3 [77]

model on ImageNet dataset [72] (containing 1.28 million of

training images of 1000 classes). For simplicity each worker

locally hosts a full dataset copy. The initial batch size of each

worker is set to 128 for CIFAR-10, and 32 for ImageNet. The

initial learning rate is set to 0.01. The schemes evaluated

in this part are BSP, ASP, SSP
7

and LB-BSP, and we defer

the comparisons with FlexRR and redundant execution to

CPU clusters
8
. We measure the overall training efficiency as

well as the hardware and statistical efficiency. The results

are summarized in Fig. 6, where BSP is the baseline and all

the values displayed are normalized by that under BSP.

Hardware Efficiency. The metric we use for hardware ef-

ficiency is per-update time—the average time it takes for

the PS to receive one gradient update. For BSP and LB-BSP,

per-update time is the average iteration time divided by the

number of workers. Fig. 6a shows that LB-BSP remarkably

outperforms BSP and SSP, and this is consistent with our

analysis in §2.2. Interestingly, LB-BSP is even 15% better than

ASP in hardware efficiency when training Inception-V3 —we

will explain that with micro-benchmark evaluations in §5.2.

Statistical Efficiency. Statistical efficiency is measured as

the number of updates required to reach the target accuracy.

We set different near-optimal accuracy targets for different

models: 0.80 for CifarNet, 0.86 for ResNet-32, and 0.65 for

Inception-V3. As shown in Fig. 6b, for each model under

LB-BSP, the number of updates required to reach the target

accuracy is almost identical with that under BSP. In contrast,

ASP and SSP require up to 4.76× and 2.05× the number of

BSP to make that accuracy.

Moreover, ASP and SSP fall behind not only in the con-

vergence speed, but also in the the ultimate accuracy at-

tained. Fig. 7 shows the convergence curves of ResNet-32

and Inception-V3, where an epoch is a full pass of all the

7
By default, TensorFlow does not support SSP. We implemented it with a

worker-coordinator module over the Thrift RPC protocol, which enforces

fast workers to wait if the slowest one is 5 iterations behind.

8
We exclude FlexRR from GPU evaluations because it is not compatible

with the tensor-based processing style of GPUs, and redundant execution

is also excluded because its behavior in heterogeneous GPU clusters is

trivial—always ignoring the most inferior GPU worker(s).

Semi-Dynamic Load Balancing: Efficient Distributed Learning in Non-Dedicated Environments SoCC ’20, October 19–21, 2020, Virtual Event, USA

CifarNet
(BSP:8:4ms)

ResNet-32
(BSP:0:02s)

Inception-v3
(BSP:0:23s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

-u
pd

at
e

Ti
m

e

0.72

0.54 0.56

0.98 0.99 0.99

0.80

0.63

0.46

ASP SSP LB-BSP

(a) Hardware Efficiency

CifarNet
(BSP:4:1£105)

ResNet-32
(BSP:5:3£104)

Inception-v3
(BSP:1:1£106)

0.0

1.0

2.0

3.0

4.0

5.0

N
or

m
al

iz
ed

 N
um

be
r o

f
U

pd
at

es
 to

 C
on

ve
rg

en
ce

1.29

4.76

1.91

1.06

2.05

1.251.02 0.97 0.99

ASP SSP LB-BSP

(b) Statistical Efficiency

CifarNet
(BSP:3:5£103s)

ResNet-32
(BSP:1:1£103s)

Inception-v3
(BSP:72:1h)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 C
on

ve
rg

en
ce

 T
im

e

0.98

2.56

1.071.04

2.03

1.24

0.82
0.61

0.46

ASP SSP LB-BSP

(c) Overall Convergence Efficiency
Figure 6: Training efficiency under different worker coordination schemes in Cluster-A.

0 640 1280 1920 256075

80

85

90

95

V
al

id
at

io
n

A
cc

ur
ac

y
(%

) ResNet-32 [CIFAR-10]

BSP
ASP
SSP
LB-BSP

0 15 30 45 60
Epoch

0

20

40

60

80

To
p-

1
V

al
id

at
io

n
A

cc
ur

ac
y

(%
)

Inception-V3 [ImageNet]

BSP
ASP
SSP
LB-BSP

Figure 7: Test accuracy against training epochs.

0 50 100 150 200 250
Iteration Number

0
16
32
48
64
80
96

B
at

ch
 S

iz
e

0 50 100 150 200 250
Iteration Number

1.0

1.5

2.0

2.5

3.0

3.5

B
at

ch
 P

ro
ce

ss
in

g
Ti

m
e

(s
)

Tesla V100
Tesla M60
Tesla K80
GRID K520

Figure 8: Instantaneous batch size and batch process-
ing time of the four heterogeneous GPU workers un-
der LB-BSP. At iteration 30, Alg. 2 enters the fine-tune
phase, and batch sizes of the four workers stabilize at
(89, 21, 12, 6). Later at iteration 150, bandwidth of the
M60 GPU worker is reduced to emulate a migration-
caused locality degradation, and the four workers
then enter a new equilibrium.

samples in the CIFAR-10 or ImageNet dataset. For ResNet-32,

we find that the accuracy made by ASP or SSP gets stuck be-

low 0.88, while BSP and LB-BSP successfully make the ideal

accuracy of 0.92. Also, for Inception-V3, BSP and LB-BSP

already surpass ASP and SSP even for reaching a sub-optimal

accuracy target 0.659
.

Overall Convergence Efficiency. Fig. 6c shows the overall

time required to reach the target accuracy, where LB-BSP

surpasses the second best by up to 54%. Therefore, it’s highly

9
Inception-V3 is not trained to the ideal accuracy (78.8%) due to our budget

limitation. For reference an existing work [20] has confirmed that BSP can

yield a higher final accuracy than ASP even in homogeneous clusters.

rewarding to employ LB-BSP in such heterogeneous GPU

clusters. We further train ResNet-32 in a 12-node GPU cluster

without the p3.2xlarge instances, and the iteration speedup

of LB-BSP over BSP reduces (from 37% in Fig. 6a) to 28%. Thus,

the more heterogeneous the cluster is, the more necessary it

is to adopt LB-BSP for load balancing.

5.2 Micro-benchmark in GPU Cluster
To further understand LB-BSP behavior from the micro level,

we scale down Cluster-A to contain only 4 GPU instances

each of a distinct type, and measure the instantaneous worker

batch size and batch processing time when training Inception-

V3. As shown in Fig. 8, LB-BSP gradually increases the batch

size of the most powerful worker (i.e., the one with the Tesla

V100 GPU), with the batch sizes of the other workers cor-

respondingly decreased. Finally an equilibrium is reached

where all the workers share almost the same batch process-

ing time. Note that after iteration 30, the LB-BSP algorithm

(Alg. 2) enters the fine-tune phase, where the batch sizes of

the four workers gradually stabilize at (89, 21, 12, 6).
Fig. 8 also helps to elaborate why LB-BSP can even out-

perform ASP in hardware efficiency. By yielding 26 samples

(from 32 to 6), the worker with K520 GPU has its batch pro-

cessing time reduced by nearly 2s; in contrast, the worker

with V100 GPU, after incorporating as many as 57 sam-

ples, only suffers an increase of 0.5s. Therefore, by allowing

advanced workers to process more samples and achieve a

higher utilization with negligible slowdown, LB-BSP can re-

duce the average cost to process one sample and improve

the hardware efficiency
10

.

Furthermore, we evaluate LB-BSP applicability in shared

GPU clusters, and emulate the network variation caused by

locality degradation when conducting cross-machine(rack)

worker migration. In Fig. 8, at iteration 150 we bound the

bandwidth of the worker with M60 GPU to 2.5Gbps (from

EC2-provisioned 10Gbps, with the wondershaper [10] tool).

10
This also holds for CifarNet and ResNet-32 in Fig. 6a, but their itera-

tions are shorter and the GPU random perturbations are more significant,

rendering ASP still better than LB-BSP in hardware efficiency.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li

Instance
Type

CPU, Mem
(core, GiB) Num

m4.2xlarge (8, 32) 17

c5.2xlarge (8, 16) 10

r4.2xlarge (8, 61) 2

m4.4xlarge (16, 64) 2

m4.xlarge (4, 16) 1

Table 2: Cluster-B composition.

SVM
(BSP:0:18s)

ResNet-32
(BSP:1:21s)

0.0

0.5

1.0

A
vg

. I
te

ra
tio

n
Ti

m
e

(N
or

m
al

iz
ed

 b
y

B
SP

)

0.86 0.890.82 0.78
0.62 0.56

0.38 0.42

R-E(2)
SSP

FlexRR
LB-BSP

Figure 9: Iteration time with dif-
ferent schemes in Cluster-B.

1200 1220 1240 1260 1280 1300
Iteration

60

70

80

90

100

Sa
m

pl
e

Pr
oc

es
si

ng
 S

pe
ed

(s
am

pl
es

/s
)

ResNet-32 [CIFAR-10]
Actual
Predicted

Figure 10: NARX prediction re-
sult on an m4.2xlarge instance.

The LB-BSP algorithm learns that shortly and then gradually

adjusts workers’ batch size to reach another equilibrium.

This confirms that LB-BSP can work well in multi-tenant

GPU clusters with job migrations from time to time.

5.3 Evaluation in Shared CPU Cluster
Experimental Setup. As elaborated in §3.2, non-neural-

network or not-so-urgent models may be trained in non-

dedicated CPU clusters. To evaluate LB-BSP performance in

such scenarios, we manually created Cluster-B, a hetero-

geneous CPU cluster that emulates the shared production

environment where ML models are trained with the dynamic

leftover resources [25, 42, 59, 71]. Cluster-B is built based on a

one-hour snapshot of Google Trace [71]. That trace discloses

the machine configurations (CPU/Memory capacities in nor-
malized form) of a production cluster from Google, together

with the information of all the involved jobs/tasks during a

selected month—including their resource consumptions and

start/end times.

More specifically, we scale down the totally 12,583 ma-

chines to 32 EC2 instances, with the former’s hardware het-
erogeneity proportionally preserved—by accordingly select-

ing the instance types and the quantity of each type, as

summarized in Table 2. Meanwhile, resource dynamicity of

that Google cluster is also emulated: we randomly map each

instance to a machine in the Google cluster, and launch a

set of faked tasks sharing identical behaviors (i.e., start/end

times & CPU/memory consumptions) with those submitted

to that Google machine.

Regarding the models, we train SVM on a malicious URL

dataset [61], and ResNet-32 on CIFAR-10 dataset. The batch

size for SVM training is 10% of the whole URL dataset (as in

[49]), and is 128 for ResNet-32.

The schemes evaluated are Redundant Execution (R-E),

SSP, LB-BSP and FlexRR. The first three schemes are im-

plemented in TensorFlow. For R-E, we add two c5.2xlarge
instances (also in resource contention with some faked tasks)

to Cluster-B as the backup worker, and only collect 32 gradi-

ents returned the earliest in each iteration. R-E is supported

in TensorFlow with the replicas to aggregate parame-

ter. In SSP, the bound of iteration gap is still set to 5, as in

§5.1. Regarding FlexRR, since it is not open-sourced and its

sequential sample processing manner is not supported in

current ML frameworks (§2.2.3), we choose to emulate it in

PyTorch. We generate tiny batches each containing only one

sample, and then encapsulate them into logical batches of

designated size; such a logical batch can then be processed

in a sequential manner. Meanwhile, each worker’s helper

group is set to be all the remaining workers, and for the other

setups (e.g., progress check frequency, trigger condition of

load reassignment), we follow the suggested values in [41].

Hardware Efficiency. Fig. 9 shows the average iteration

time when training SVM and ResNet-32 under different

schemes in Cluster-B. For fair comparison, each value in

Fig. 9 is normalized by the BSP performance in the corre-

sponded framework (sequential-processing-style PyTorch

for FlexRR, and TensorFlow for the others). As in Fig. 9, R-E

and SSP speed up the training iterations only marginally,

because they focus on either worst-case or transient strag-

glers, but the stragglers in Cluster-B span a wide range of

degrees and durations. Meanwhile, regarding FlexRR, its per-

formance is better but not the best, because its decentralized

load balancing decisions are not optimal, and meanwhile it

suffers non-negligible measurement, negotiation and load

reassignment overheads (§2.2.3). In contrast, LB-BSP can

bring a speedup of 62% for SVM and 58% for ResNet-32 over

BSP, outperforming the second best (FlexRR) by up to 38.7%.

Thus, given that LB-BSP can also make the optimal statistical

efficiency (§5.1), it can surely lead to the best convergence

efficiency among all the schemes evaluated.

5.4 NARX Performance Deep Dive
In this part, we further evaluate the prediction performance

of the NARX model (§3.2.2) we use in Cluster-B.

Visual Analysis. To get a visual understanding of the NARX

prediction performance, we randomly select a period (itera-

tion 1200∼1300) from the ResNet-32 training process on one

m4.2xlarge instance of Cluster-B; the actual and predicted
sample processing speeds are presented in Fig. 10. From it

we observe that the benefit of NARX is twofold. On the one

hand, NARX is robust to non-deterministic transient pertur-

bations: when there are “spikes” (like the sharp wave around

Semi-Dynamic Load Balancing: Efficient Distributed Learning in Non-Dedicated Environments SoCC ’20, October 19–21, 2020, Virtual Event, USA

Method Configuration RMSE Avg. Iteration Time
(Normalized by BSP)

Memoryless - 11.85 0.58

EMA α=0.2 7.85 0.48

ARIMA (p ,d ,q)=(2,2,1) 9.67 0.52

SimpleRNN look-back=2 8.34 0.49

LSTM look-back=2 9.19 0.51

NARX look-back=2 4.78 0.42

Table 3: RMSE and iteration speedup when applying
different prediction approaches in LB-BSP.

iteration 1206) in the actual speed curve, the predicted curve

fluctuates much less. This is because NARX predicts also with

the worker’s available memory and CPU amounts, which are

relatively stable during those “spikes”. On the other hand,

when the actual speed increases not for randomness but for

non-transient deterministic factors like increased CPU or

memory resources (e.g., around iteration 1270), the predicted

speed can promptly catch up.

Comparison with Other Approaches. We further com-

pare NARX with other approaches surveyed in §3.2.2, as

listed in Table 3. The memoryless method means to take last

iteration’s sample processing speed as the predicted one. Re-

garding the EMA approach, the smoothing factor α (weight

of the latest observation) is set to be 0.2. As for the statistical

prediction approach—ARIMA, its order of the autoregressive
model (p), degree of differencing (d), and order of the mov-
ing average (q) are respectively set to 2, 2 and 1, based on

the model selection techniques [65]. Finally, for SimpleRNN

(plain RNN) and LSTM, their look-back window size is set to

2, the same as in NARX.

Then, we replace the NARX approach with those candi-

date prediction approaches, and re-train ResNet-32 model

under LB-BSP in Cluster-B. For each approach, we record the

average root-mean-square error (RMSE) of the prediction re-

sults and the corresponded iteration time (normalized by the

iteration time under BSP). From Table 3, the NARX approach,

with the ability to perceive CPU/memory resource variations,

attains the best performance—it surpasses the second best

by around 40% in RMSE and 15% in average iteration time.

5.5 System Overhead and Scalability
In TensorFlow, LB-BSP introduces two extra procedures: first

to extract batch processing time from execution logs (e.g., the

Timeline object), and second to conduct RPC communica-

tion between the BatchSizeManager and workers. Yet, they

won’t slow down GPU workers because of our non-blocking

design (§4), and here we measure the slowdown caused by

those two extra procedures in CPU clusters.

We respectively train ResNet-32 and Inception-V3 model

for 1000 iterations in three CPU clusters—a homogeneous

32-node 64-node 96-node0.0

0.2

0.4

0.6

0.8

1.0

1.2

%
 o

f
Ite

ra
tio

n
Ti

m
e

ResNet-32 [CIFAR-10]

Batch size updating
Log processing

32-node 64-node 96-node0.0

0.2

0.4

0.6

0.8

%
 o

f
Ite

ra
tio

n
Ti

m
e

Inception-V3 [ImageNet]

Batch size updating
Log processing

Figure 11: LB-BSP overheads in CPU clusters.

cluster with 33 c5.2xlarge instances (32 worker nodes and

1 separate node hosting both the PS and BatchSizeManager),

and then its enlarged version with a doubled/tripled number

of workers. Fig. 11 shows the average time respectively spent

on log processing and batch size updating, normalized by the

iteration time (error bars show the 5
th

/95
th

percentile). Even

in the largest cluster with 96 workers, the total overheads

are less than 1.1% of the iteration time for both models. This

indirectly confirms that, performance of the PS is almost not

affected by the co-located BatchSizeManger.

6 ADDITIONAL RELATEDWORK
Besides the related work in §2.2, in this part we discuss some

additional related work on batching. Batching is necessary

when processing long-lasting streaming inputs or training

models with large datasets. For big data streaming systems

[80, 86], some works [28, 90] have explored how to adaptively

adjust the batching interval when faced with dynamic data

rates or operating conditions. For iterative model training,

some [29, 32] have proposed to adaptively increase batch

size during the training process to yield faster convergence.

Yet, those works don’t involve workload allocation among

parallel workers, and are thus orthogonal to LB-BSP.

7 CONCLUSION
In this work, we propose LB-BSP to load-balance distributed

model training workloads in a semi-dynamic manner, by

speculatively apportioning the load on the workers accord-

ing to their temporal processing capability. LB-BSP is tailor-

made respectively for both CPU and GPU clusters, and our

experiments on Amazon EC2 have shown clear evidence

that it can effectively eliminate stragglers in non-dedicated

clusters, speeding up model convergence by over 50%.

ACKNOWLEDGMENT
The research was supported in part by RGC GRF grants un-

der the contracts 16206417, 16207818 and 26213818. Qizhen

Weng was supported in part by the Hong Kong PhD Fellow-

ship Scheme.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li

REFERENCES
[1] 2019. Stress-ng: a tool to load and stress a computer system. http:

//manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html.

[2] 2019. Train Deep Learning Models on GPUs using Amazon EC2 Spot

Instances. https://aws.amazon.com/en/blogs/machine-learning/train-

deep-learning-models-on-gpus-using-amazon-ec2-spot-instances/.

[3] 2020. Apache Thrift. https://thrift.apache.org/.

[4] 2020. EC2 Spot Instances. https://aws.amazon.com/ec2/spot/.

[5] 2020. FloydHub. https://floydhub.com/.

[6] 2020. GlusterFS. https://docs.gluster.org/en/latest/.

[7] 2020. Keras. https://keras.io/.

[8] 2020. Python Psutil. https://psutil.readthedocs.io/en/latest/.

[9] 2020. PyTorch. https://pytorch.org/.

[10] 2020. Wonder Shaper. https://github.com/magnific0/wondershaper.

[11] Martı́n Abadi et al. 2016. TensorFlow: A System for Large-Scale Ma-

chine Learning. In USENIX OSDI.
[12] Umut A Acar, Arthur Charguéraud, and Mike Rainey. 2013. Schedul-

ing parallel programs by work stealing with private deques. In ACM
SIGPLAN Notices.

[13] Bilge Acun and Laxmikant V Kale. 2016. Mitigating processor variation

through dynamic load balancing. In IEEE IPDPSW.

[14] Klaithem Al Nuaimi, Nader Mohamed, Mariam Al Nuaimi, and Jameela

Al-Jaroodi. 2012. A survey of load balancing in cloud computing:

Challenges and algorithms. In IEEE NCA.

[15] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica.

2013. Effective Straggler Mitigation: Attack of the Clones.. In USENIX
NSDI.

[16] Dimitrios Argyropoulos, Dimitris S Paraforos, Rainer Alex, Hans W

Griepentrog, and Joachim Müller. 2016. NARX neural network

modelling of mushroom dynamic vapour sorption kinetics. IFAC-
PapersOnLine 49, 16 (2016), 305–310.

[17] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multi-

threaded computations by work stealing. JACM 46, 5 (1999), 720–748.

[18] Erasmo Cadenas, Wilfrido Rivera, Rafael Campos-Amezcua, and

Roberto Cadenas. 2016. Wind speed forecasting using the NARX

model, case: La Mata, Oaxaca, México. Neural Computing and Applica-
tions 27, 8 (2016), 2417–2428.

[19] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu,

Nipun Kwatra, and Srinidhi Viswanatha. 2020. Balancing efficiency and

fairness in heterogeneous GPU clusters for deep learning. Proceedings
of the Fifteenth European Conference on Computer Systems (2020).

[20] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.

2016. Revisiting distributed synchronous SGD. arXiv preprint
arXiv:1604.00981 (2016).

[21] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,

Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet:

A flexible and efficient machine learning library for heterogeneous

distributed systems. arXiv preprint arXiv:1512.01274 (2015).

[22] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-

naraman. 2014. Project adam: Building an efficient and scalable deep

learning training system. In USENIX OSDI.
[23] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing

(almost) from scratch. J. Mach. Learn. Res. 12, Aug (2011), 2493–2537.

[24] Jerome T Connor, R Douglas Martin, and Les E Atlas. 1994. Recurrent

neural networks and robust time series prediction. IEEE Trans. on
Neural Networks 5, 2 (1994), 240–254.

[25] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus

Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-

ing and Predicting Workloads for Improved Resource Management in

Large Cloud Platforms.

[26] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee,

Abhimanu Kumar, Jinliang Wei, Wei Dai, Gregory R Ganger, Phillip B

Gibbons, et al. 2014. Exploiting Bounded Staleness to Speed Up Big

Data Analytics. In USENIX ATC.

[27] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and

Eric P Xing. 2016. GeePS: Scalable deep learning on distributed gpus

with a gpu-specialized parameter server. In ACM Eurosys.
[28] Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adap-

tive stream processing using dynamic batch sizing. In ACM SoCC.

[29] Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. 2017. Au-

tomated inference with adaptive batches. In Artificial Intelligence and
Statistics. 1504–1513.

[30] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, and

Andrew Ng. 2012. Large scale distributed deep networks. In NIPS.

[31] Jeffrey Dean and Sanjay Ghemawat. 2010. MapReduce: a flexible data

processing tool. Commun. ACM 53, 1 (2010), 72–77.

[32] Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2017.

AdaBatch: Adaptive Batch Sizes for Training Deep Neural Networks.

arXiv preprint arXiv:1712.02029 (2017).

[33] Eugen Diaconescu. 2008. The use of NARX neural networks to predict

chaotic time series. Wseas Transactions on computer research 3, 3 (2008),

182–191.

[34] James Dinan, D Brian Larkins, Ponnuswamy Sadayappan, Sriram Kr-

ishnamoorthy, and Jarek Nieplocha. 2009. Scalable work stealing. In

IEEE/ACM SC.

[35] Volkan Ş Ediger and Sertac Akar. 2007. ARIMA forecasting of primary

energy demand by fuel in Turkey. Energy Policy 35, 3 (2007), 1701–

1708.

[36] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun.

2013. Learning hierarchical features for scene labeling. IEEE Trans.
Pattern Anal. Mach. Intell. 35, 8 (2013), 1915–1929.

[37] Yang Gao and Meng Joo Er. 2003. NARMAX-model-based time series

modeling and prediction: feedforward and recurrent fuzzy neural

network approaches. In WSEAS CSECS.

[38] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz

Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming

He. 2017. Accurate, Large Minibatch SGD: Training ImageNet in 1

Hour. arXiv preprint arXiv:1706.02677 (2017).

[39] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-

jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.

Tiresias: A GPU Cluster Manager for Distributed Deep Learning. In

USENIX NSDI.
[40] Jiazhen Gu, Huan Liu, Yangfan Zhou, and Xin Wang. 2017. DeepProf:

Performance Analysis for Deep Learning Applications via Mining GPU

Execution Patterns. arXiv preprint arXiv:1707.03750 (2017).

[41] Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Gregory R Ganger,

Phillip B Gibbons, Garth A Gibson, and Eric P Xing. 2016. Addressing

the straggler problem for iterative convergent parallel ML. In ACM
SoCC.

[42] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku

Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,

Aditya Kalro, et al. 2018. Applied Machine Learning at Facebook: A

Datacenter Infrastructure Perspective. In IEEE HPCA.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In IEEE CVPR.

[44] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,

Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.

2013. More effective distributed ML via a stale synchronous parallel

parameter server. In NIPS.

[45] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term

memory. Neural computation 9, 8 (1997), 1735–1780.

http://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
http://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://aws.amazon.com/en/blogs/machine-learning/train-deep-learning-models-on-gpus-using-amazon-ec2-spot-instances/
https://aws.amazon.com/en/blogs/machine-learning/train-deep-learning-models-on-gpus-using-amazon-ec2-spot-instances/
https://thrift.apache.org/
https://aws.amazon.com/ec2/spot/
https://floydhub.com/
https://docs.gluster.org/en/latest/
https://keras.io/
https://psutil.readthedocs.io/en/latest/
https://pytorch.org/
https://github.com/magnific0/wondershaper

Semi-Dynamic Load Balancing: Efficient Distributed Learning in Non-Dedicated Environments SoCC ’20, October 19–21, 2020, Virtual Event, USA

[46] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian, Amar Phan-

ishayee, Wencong Xiao, and Fan Yang. 2018. Multi-tenant GPU Clus-

ters for Deep Learning Workloads: Analysis and Implications. MSR
Technical Report 2018-13 (2018).

[47] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,

Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu,

et al. 2018. Highly Scalable Deep Learning Training System with

Mixed-Precision: Training ImageNet in Four Minutes. arXiv preprint
arXiv:1807.11205 (2018).

[48] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.

Caffe: Convolutional architecture for fast feature embedding. In ACM
Multimedia.

[49] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-

aware distributed parameter servers. In ACM SIGMOD.

[50] Yuriy Kochura, Yuri Gordienko, Vlad Taran, Nikita Gordienko,

Alexandr Rokovyi, Oleg Alienin, and Sergii Stirenko. 2018. Batch

Size Influence on Performance of Graphic and Tensor Processing Units

during Training and Inference Phases. arXiv preprint arXiv:1812.11731
(2018).

[51] T Kokilavani, Dr DI George Amalarethinam, et al. 2011. Load balanced

min-min algorithm for static meta-task scheduling in grid computing.

International Journal of Computer Applications 20, 2 (2011), 43–49.

[52] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers

of features from tiny images. Technical report, University of Toronto
(2009).

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Im-

ageNet classification with deep convolutional neural networks. In

NIPS.

[54] John Langford, Alexander J Smola, and Martin Zinkevich. 2009. Slow

learners are fast. In NIPS.

[55] Tan Le, Xiao Shu Sun, Mosharaf Chowdhury, and Zhenhua Liu. 2020.

AlloX: compute allocation in hybrid clusters. Proceedings of the Fif-
teenth European Conference on Computer Systems (2020).

[56] Ang Li. 2016. GPU performance modeling and optimization. Ph.D.

Dissertation. Technische Universiteit Eindhoven.

[57] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr

Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing

Su. 2014. Scaling Distributed Machine Learning with the Parameter

Server. In USENIX OSDI.
[58] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. 2014. Effi-

cient mini-batch training for stochastic optimization. In ACM KDD.

[59] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease. ml:

towards multi-tenant resource sharing for machine learning workloads.

VLDB (2018).

[60] Daniel Lustig and Margaret Martonosi. 2013. Reducing GPU offload

latency via fine-grained CPU-GPU synchronization. In IEEE HPCA.

[61] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker.

2009. Identifying suspicious URLs: an application of large-scale online

learning. In ACM ICML.

[62] Alberto Magni, Christophe Dubach, and Michael O’Boyle. 2014. Ex-

ploiting GPU hardware saturation for fast compiler optimization. In

ACM GPGPU.

[63] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram

Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.

2020. Themis: Fair and Efficient GPU Cluster Scheduling. In NSDI.
[64] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar

Phanishayee, and Matei Zaharia. 2020. Heterogeneity-Aware Cluster

Scheduling Policies for Deep Learning Workloads. In USENIX OSDI.
[65] T Ozaki. 1977. On the order determination of ARIMA models. Applied

Statistics (1977), 290–301.

[66] Jay H Park, Gyeongchan Yun, Chang M Yi, Nguyen T Nguyen, Seung-

min Lee, Jaesik Choi, Sam H Noh, and Young-ri Choi. 2020. HetPipe:

Enabling Large DNN Training on (Whimpy) Heterogeneous GPU Clus-

ters through Integration of Pipelined Model Parallelism and Data

Parallelism. In USENIX ATC.

[67] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong

Guo. 2018. Optimus: an efficient dynamic resource scheduler for deep

learning clusters. In ACM Eurosys.
[68] Nicholas G Polson and Vadim O Sokolov. 2017. Deep learning for short-

term traffic flow prediction. Transportation Research Part C: Emerging
Technologies 79 (2017), 1–17.

[69] Thorbjörn Posewsky and Daniel Ziener. 2018. Throughput optimiza-

tions for FPGA-based deep neural network inference. Microprocessors
and Microsystems 60 (2018), 151–161.

[70] Akhter Mohiuddin Rather, Arun Agarwal, and VN Sastry. 2015. Re-

current neural network and a hybrid model for prediction of stock

returns. Expert Systems with Applications 42, 6 (2015), 3234–3241.

[71] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and

Michael A Kozuch. 2012. Heterogeneity and dynamicity of clouds at

scale: Google trace analysis. In ACM SoCC.

[72] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet

Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV) 115, 3 (2015), 211–252. https://doi.org/10.1007/

s11263-015-0816-y.

[73] Pooja Samal and Pranati Mishra. 2013. Analysis of variants in Round

Robin Algorithms for load balancing in Cloud Computing. Interna-
tional Journal of computer science and Information Technologies 4, 3

(2013), 416–419.

[74] Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File

System for Large Computing Clusters.. In USENIX FAST.

[75] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. 2010. The hadoop distributed file system. In IEEE MSST.

[76] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to

sequence learning with neural networks. In NIPS.

[77] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and

Zbigniew Wojna. 2016. Rethinking the inception architecture for

computer vision. In IEEE CVPR.

[78] Xueyan Tang and Samuel T Chanson. 2000. Optimizing static job

scheduling in a network of heterogeneous computers. In IEEE ICPP.

[79] Asser N Tantawi and Don Towsley. 1985. Optimal static load balancing

in distributed computer systems. Journal of the ACM (JACM) 32, 2

(1985), 445–465.

[80] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,

Jignesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,

Maosong Fu, Jake Donham, et al. 2014. Storm@ twitter. In ACM
SIGMOD.

[81] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian

Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,

Hanyu Zhao, Quanlu Zhang, et al. 2018. Gandiva: introspective cluster

scheduling for deep learning. In USENIX OSDI.
[82] Jixiang Yang and Qingbi He. 2018. Scheduling parallel computations by

work stealing: A survey. International Journal of Parallel Programming
46, 2 (2018), 173–197.

[83] Yang Yang, De-Chuan Zhan, Ying Fan, Yuan Jiang, and Zhi-Hua Zhou.

2017. Deep Learning for Fixed Model Reuse.. In AAAI. 2831–2837.

[84] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. 2007. On early

stopping in gradient descent learning. Constructive Approximation 26,

2 (2007), 289–315.

[85] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and

https://doi.org/10.1007/s11263-015-0816-y.
https://doi.org/10.1007/s11263-015-0816-y.

SoCC ’20, October 19–21, 2020, Virtual Event, USA Chen Chen, Qizhen Weng, Wei Wang, Baochun Li, and Bo Li

Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant ab-

straction for in-memory cluster computing. In USENIX NSDI.
[86] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott

Shenker, and Ion Stoica. 2013. Discretized streams: Fault-tolerant

streaming computation at scale. In ACM SOSP.

[87] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and

Ion Stoica. 2008. Improving MapReduce performance in heterogeneous

environments.. In USENIX OSDI.

[88] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J Freedman.

2017. SLAQ: quality-driven scheduling for distributed machine learn-

ing. In ACM SoCC.

[89] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan

Liang, Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017.

Poseidon: An Efficient Communication Architecture for Distributed

Deep Learning on GPU Clusters. In USENIX ATC.

[90] Quan Zhang, Yang Song, Ramani R Routray, and Weisong Shi. 2016.

Adaptive block and batch sizing for batched stream processing system.

In IEEE ICAC.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Research Background
	2.2 Related Work
	2.3 Semi-Dynamic Load Balancing

	3 LB-BSP
	3.1 Problem Formulation
	3.2 LB-BSP in CPU Clusters
	3.3 LB-BSP in GPU Clusters
	3.4 Weighted Gradient Aggregation
	3.5 Discussion on Data Access Frequency

	4 Implementation
	5 Evaluation
	5.1 End-to-End Result in GPU Cluster
	5.2 Micro-benchmark in GPU Cluster
	5.3 Evaluation in Shared CPU Cluster
	5.4 NARX Performance Deep Dive
	5.5 System Overhead and Scalability

	6 Additional Related Work
	7 Conclusion
	References

