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Abstract—Coflow scheduling improves the networking perfor-
mance at the application level in datacenters. Ideally, a coflow
scheduler should provide tenants with isolation guarantees to
achieve predictable networking performance. Existing works in
this regard (e.g., DRF [1] and HUG [2]) are limited to the
clairvoyant scheduling, in that the complete knowledge of coflow
sizes is assumed to be available before the communication starts.
However, this assumption does not hold for many applications
with pipelined computation, in which clairvoyant coflow sched-
ulers become inapplicable.

To bridge this gap, we develop a new non-clairvoyant coflow
scheduler, called Non-Clairvoyant DRF (NC-DRF), which pro-
vides isolation guarantees between contending coflows without
prior knowledge of coflow size. We show that NC-DRF achieves
provable isolation guarantees in the long run. Cluster deployment
and trace-driven simulations show that with NC-DRF, coflows
are only delayed by 68% on average as compared with the
clairvoyant, isolation-optimal DRF [1]. NC-DRF also outperforms
existing alternatives (e.g., per-link fairness [3]) by 1.7× in terms
of the average coflow completion time.

I. INTRODUCTION

Communications in data-parallel applications typically in-
volve a collection of parallel flows between groups of machines
(e.g., shuffle phase in a MapReduce job)—known as coflows [4].
The coflow abstraction exposes the application-level semantics
to the network and captures the all-or-nothing communication
requirement of data-parallel jobs: a coflow is not considered
complete until all its constituent flows have completed. As the
network bandwidth in the datacenter is increasingly contended
by coflows of different tenants and applications, it is critical
for a network scheduler to schedule these coflows in a fair and
efficient manner to improve the application-level networking
performance.

Achieving optimal isolation guarantees between contending
coflows arises as the top requirement in shared cloud environ-
ments [3], [5]–[9]. Ideally, a scheduler should provide each
coflow with the isolation guarantees on the minimum bandwidth
allocation, so as to achieve predictable coflow completion time
(CCT).

Many coflow schedulers have been proposed in this regard
by means of fair network sharing. The state-of-the-art solutions
include the recently proposed HUG [2] and its variant [9], under
which coflows expect the optimal isolation guarantees. Central
to these schedulers is to enforce the DRF-like (Dominant
Resource Fairness [1]) bandwidth allocation among coflows,
which critically requires the prior knowledge of coflow sizes
before the data transfer begins. In this sense, existing fair
coflow schedulers are all clairvoyant.

Unfortunately, prior work [10] shows that in many data-
parallel applications, it is impossible to obtain the coflow
knowledge a priori, mainly due to the pipelined computation,
the wave-based job executions and the presence of task
failures. Consequently, clairvoyant coflow schedulers, such
as HUG [2], remain inapplicable in many practical scenarios.
To our knowledge, the development of a non-clairvoyant coflow
scheduler towards the optimal isolation guarantees has so far
received little attention in the literature.

However, achieving isolation guarantees without prior knowl-
edge of coflows can be challenging. In the non-clairvoyant
setting, the conventional definition of isolation guarantees (i.e,
the minimum progress across all coflows [2]) is no longer
feasible. In fact, the coflow progress, defined as the minimum
demand-normalized allocation across links, cannot be computed
without knowing the data transfer demand (i.e., coflow size).
On the other hand, existing non-clairvoyant network schedulers
are unable to optimize the networking performance at the
application level. For example, network schedulers based on
per-flow fairness (TCP) provides no isolation for data-parallel
applications [3]; tenant-level schedulers based on per-link
fairness [3], [11] fall short as they are agnostic to coflow
demand correlations and can only provide suboptimal isolation
guarantee [2].

In this paper, we aim at addressing these challenges while
making the following two contributions.

First, unlike existing clairvoyant coflow schedulers [2], [9],
we for the first time put forward the definition of isolation
guarantee under non-clairvoyant coflow scheduling. Specifically,
we use the fair scheduler with complete coflow information
(e.g., DRF [1] or HUG [2]) as a baseline. We say that a coflow
scheduler provides optimal isolation guarantee if each coflow
is guaranteed no longer CCT than it would otherwise have had
under the baseline scheme. Our definition is based on the fact
that the effect of isolation guarantee can only be observed by
an application when the coflow completes.

Second, we propose a new non-clairvoyant coflow sched-
uler, called Non-Clairvoyant DRF (NC-DRF), which provides
isolation guarantees between contending coflows without prior
knowledge of coflow size. Our key insight is to use the flow
count on each link in a coflow as an indication of the data
transfer demand, based on which we employ the isolation-
optimal Dominant Resource Fairness (DRF) [1] algorithm for
bandwidth allocation between coflows. We find this approach
is effective for two reasons. First, even though the flow size is
often unavailable, the flow count on each link in a coflow can
be easily obtained through either the scheduler API [10] or the
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Fig. 1: Design space for coflow scheduling.

machine learning techniques [12]. Second, according to the
load balancing principle followed by most of the data-parallel
applications [13]–[15], the disparity of flow sizes within a
coflow is usually small. Meaning, the flow count on each link
has a strong correlation to the amount of data transferred
on that link, and can hence be used to identify the coflow
demand correlation across multiple links. This provides us
an opportunity to employ the isolation-optimal scheduling
algorithms (e.g., DRF [1]) through non-clairvoyant coflow
scheduling.

We show that NC-DRF provides provable long-term isolation
guarantee under some practical assumptions. We evaluated our
proposed NC-DRF through a real-world deployment on a 60-
machine Amazon EC2 [16] cluster, as well as in simulations
over production traces collected from a 3000-machine cluster
at Facebook [17]. Our evaluation results confirm that NC-DRF
provides long-term fairness with guaranteed isolation between
contending coflows. In particular, with NC-DRF, coflows are
only delayed by 68% on average as compared with the isolation-
optimal DRF [1]. NC-DRF also outperforms PS-P [3] by 1.7×
in terms of the average CCT.

Fig. 1 surveys the design space for coflow schedulers (details
in Sec. II-B), in which our proposed NC-DRF is placed in
context by the thick lines. In particular, NC-DRF strives to
isolate coflow completions without prior knowledge about the
coflow size, while still being aware of the coflow demand
correlations.

II. MODEL AND BACKGROUND

In this section, we describe our models for both datacenter
fabric and coflow scheduling problem. We also survey the
background information of existing works and motivate the
need for a new non-clairvoyant coflow scheduling policy
striving to isolate coflow completions.
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Fig. 2: An m × m non-blocking datacenter fabric with
ingress/egress ports connecting to m machines.

A. System Model

Datacenter network model. Thanks to the recent efforts in
datacenter (DC) fabrics [18]–[20], full bisection bandwidth
network is now available in production datacenters [21]. This
allows us to model the DC network as one non-blocking switch
where the edges—machine uplinks and downlinks—are the
only sources of contention [4], [22]. Fig. 2 illustrates the m×m
non-blocking DC fabric connecting m machines through full-
duplex links, where link-i and link-(i + m) correspond to the
uplink and downlink of machine-i, respectively. Without loss
of generality, we assume that all links are of equal capacity
normalized to one.

Coflow abstraction. A coflow includes a collection of parallel
flows transferring data between two computation stages in the
BSP (Bulk-Synchronous Parallel) model [4], which is used to
convey the application-level communication requirement. Cen-
tral to coflow scheduling is the all-or-nothing communication
requirement of data-parallel jobs: not until all constituent flows
have completed will a coflow complete.

Formally, we characterize coflow-k by its demand vector
dk = 〈d1k, . . . , d2mk 〉, where dik denotes the amount of data
transferred on link-i. In order to capture the most heavily
loaded one among all the 2m links, we identify the link with
the largest transferred data size as the bottleneck link, i.e., bk =
arg maxi d

i
k, and let d̄k = maxi d

i
k be the bottleneck demand.

In addition, to better characterize the demand correlation across
links, we define correlation vector ck = 〈c1k, . . . , c2mk 〉, where
cik is the total amount of data transferred on link-i normalized
by the bottleneck demand, i.e., cik = dik/d̄k. Meaning, for every
bit coflow-k transfers on the bottleneck link, at least cik bits
should be transferred on link-i.

Given demand and correlation vectors (i.e., dk and ck),
the network scheduler determines, for each coflow-k, the
bandwidth allocation ak = 〈a1k, . . . , a2mk 〉, where aik is the
share of bandwidth on link-i. Once the allocation has been
given, the coflow transmission progress is bottlenecked on the
slowest link. Formally, we measure the progress of a coflow as
the minimum demand-normalized allocation across links, i.e.,

Pk = mini:cik>0 a
i
k/c

i
k. (1)

Intuitively, a coflow progress captures the attainable transmis-
sion rate on the slowest link, which critically determines the
coflow completion time (CCT).



B. Prior Art

Non-Clairvoyant Coflows Scheduling. Even though the
amount of data each flow transfers can be known a priori
in some data-parallel applications such as MapReduce, prior
work [10] reveals that fully characterizing the coflow sizes in
advance is infeasible in many cases.

First, multi-stage applications such as Apache Tez [23] and
MapReduce Online [13] allow data to be pipelined between
subsequent computation stages and transferred as soon as it
is generated. In this case, it is hard to know the coflow size
before the communication completes. Second, the wave-based
execution [24] leads to variance in the start time of different
flows within a coflow, and the count of flows changes over time.
Finally, the presence of task failures and straggler mitigation
techniques [15], [25], [26] result in redundant flows, making
it hard to know the exact count of flows or their endpoints a
priori.

Given these observations, clairvoyant schedulers assuming
complete prior knowledge of coflows remain inapplicable in a
large count of application scenarios.

Prior art of coflow scheduling. As shown in Fig. 1, coflow
scheduling has been extensively studied in recent years, among
which the existing works could be broadly categorized into
two approaches, depending on the objectives of the scheduling
policy: performance-optimal heuristics and isolation-optimal
fair network sharing. Both approaches could be further divided
into two categories: clairvoyant coflow scheduling, which
assumes complete prior information (e.g., the count of flows,
their sizes and endpoints) of coflow, and non-clairvoyant coflow
scheduling, which assumes no prior coflow knowledge.

1) Performance-optimal heuristics: To speed up job com-
pletion, network operators need to finish as many coflows
as possible, each in its fastest possible way. A performance-
optimal scheduler should therefore strive to minimize the
average coflow completion time (CCT).

• Clairvoyant schedulers: The state-of-art coflow scheduler
settling for minimizing the average CCT goes to Varys
[22], which is arguably of the best performance. Varys
employs the Smallest-Effective-Bottleneck-First heuristic,
which generalizes the Shortest-Job-First (SJF) heuristic
to the context of coflow scheduling to prioritize small
coflows. Besides, Orchestra [27] and Baraat [28] use FIFO-
based scheduling to reduce the average CCT. The former
is a centralized scheduler, while the latter is decentralized
and avoids head-of-line blocking by means of fair sharing.

• Non-clairvoyant schedulers: Aalo [10] improves its clair-
voyant predecessor Varys in that the prior knowledge
about the coflow size is no longer needed. To minimize
the average CCT without knowing the coflow sizes,
Aalo proposes Discretized Coflow-Aware Least-Attained
Service (D-CLAS). D-CLAS divides coflows into multiple
priority queues and schedules them in the FIFO order
within each queue. Aalo achieves comparable performance
to Varys. While Aalo needs to modify data-parallel
applications to identify coflows, the recently proposed

CODA [12] takes a step forward to automatically identify
coflows without modifying applications.

2) Isolation-optimal fair network sharing: On the other
hand, many schedulers turn to fair network sharing to provide
optimal isolation between coflows. In a shared datacenter,
coflows expect guarantees on the minimum bandwidth to
achieve predictable performance. Specifically, given an alloca-
tion, the isolation guarantee is defined as the minimum progress
across all coflows, i.e., mink Pk, where Pk is given by Eq. (1).
A coflow scheduler optimizes the isolation guarantee if the
minimum progress is maximized.

• Clairvoyant schedulers: Assuming complete coflow knowl-
edge, fair schedulers [1], [2], [9] allocate each coflow
a fair share of network bandwidth in the datacenter
fabric, hence isolating the completion of each coflow from
another. The state-of-the-art fair schedulers include the
recently proposed HUG [2] and its variant [9], under
which coflows expect the optimal isolation guarantee.
Specifically, HUG [2] employs a two-stage bandwidth
allocation algorithm. In the first stage, it enforces a DRF
[1] allocation to achieve the maximum isolation guarantee,
i.e., maximize mink Pk. In the second stage, it strives to
attain the highest-possible network utilization by allocating
spare bandwidth under the constraint that no coflow is
allocated more bandwidth in a link than its progress.

• Non-clairvoyant schedulers: Unfortunately, the isolation-
optimal algorithms like DRF [1] and HUG [2] are inappli-
cable for non-clairvoyant coflow scheduling: without the
knowledge of coflow size, the coflow progress cannot be
computed. In fact, the design of non-clairvoyant coflow
scheduler towards optimal isolation guarantees has so far
received little attention in the literature. To our knowledge,
without the flow size knowledge, flow-level fairness (TCP)
and per-link fairness [3], [11] are the only two non-
clairvoyant policies for fair network sharing. However,
both approaches fall short: the former fails to isolate
coflow completions [3]; the latter can only achieve sub-
optimal isolation guarantee due to its unawareness of the
coflow demand correlation.

To summarize, clairvoyant coflow scheduling [2], [9], [22],
[28] has been well studied in the literature, including both
performance-optimal heuristics and isolation-optimal fair net-
work sharing. However, achieving isolation guarantees through
non-clairvoyant coflow scheduling remains an open research
topic.

III. OBJECTIVE AND CHALLENGE

In this section, we first justify that for a coflow, the number
of flows on each link can be obtained a priori. We then clarify
the objective of our proposed non-clairvoyant coflow scheduler.
Finally, we discuss the non-trivial challenges to achieve this
objective.



A. Objective

Availability of flow counts. Given the recent advances in non-
clairvoyant coflow scheduling [10], [12], we note that even
though the coflow size is often unavailable beforehand [10],
the count of flows on each link can still be obtained a priori.

In particular, for each single flow, the information of which
coflow it belongs to and its endpoints could be directly ob-
tained if the data-parallel applications implement the specially
designed API provided by coflow schedulers, as shown in the
work of Aalo [10]. Alternatively, this knowledge could be
measured by the automatically identifying techniques, such
the clustering-based machine learning algorithm proposed by
CODA [12].

Scheduling objective. Given this observation, in this paper, our
objective is to design a new non-clairvoyant coflow scheduler
without prior knowledge of coflow sizes (i.e, the amount of
data transferred in each flow), while still providing isolation
between contending coflows in a shared network. In other
words, the only information we assume for each coflow is the
count of flows transferred on each link.

B. Challenges

1) Definition of the isolation guarantee: The first challenge
is how should we quantify the isolation guarantee provided by
a non-clairvoyant coflow scheduler.

It is well known that in clairvoyant coflow scheduling,
we measure the attainable transmission rate of a coflow
by its progress, based on which the isolation guarantee is
correspondingly defined as the minimum progress across all
coflows, i.e., mink Pk.

Given this definition, the optimal isolation guarantee in
clairvoyant coflow scheduling is usually achieved by means
of fair network sharing [1], [2]. In particular, the fair coflow
scheduler equally increases the progress of all the coflows to
the maximum level, i.e.,

P ∗ = 1
maxi

∑
k cik

. (2)

Unfortunately, this definition of isolation guarantee is infea-
sible in non-clairvoyant coflow scheduling. Specifically, for
each coflow-k, without the prior knowledge of coflow size, the
normalized demand on link-i (i.e., cik) will not be revealed until
the coflow’s completion. Therefore, the instantaneous coflow
progress can not be measured. Meaning, it is impossible to seek
the isolation guarantee by enforcing the equal instantaneous
coflow progress in non-clairvoyant coflow scheduling.

To address this challenge, we for the first time put forward
a new definition of the isolation guarantee in non-clairvoyant
coflow scheduling.

We note that from the perspective of applications or tenants,
the effect of isolation guarantee can only be observed in the long
run upon the coflow competition, since the users only care about
the completion of the coflows rather than the instantaneous
bandwidth sharing. Given this observation, if we use the fair
scheduling (e.g., DRF [1] or HUG [2]) as a baseline algorithm,
from an application’s view, as long as its coflow completes

no later than it would have had in the baseline scheme, its
isolation is guaranteed in the long run. This motivates us to seek
a long-term isolation guarantee with the following definition.

Definition 1 (Long-term isolation guarantee): For coflow-
k, let Fk be its CCT under scheduler S, and FD

k be the CCT
in a fair scheme that enforces instantaneous fair allocation
with the optimal isolation guarantee P ∗, e.g., DRF [1]. We
say scheduler S provides long-term isolation guarantee if
it completes each coflow-k with CCT no longer than FD

k

multiplied by a constant ratio R, i.e.,

Fk ≤ RFD
k . (3)

As the long-term isolation guarantee above is defined based
on the coflow completion time instead of the coflow progress, it
is naturally suitable for the non-clairvoyant coflow scheduling.
Our objective in this paper is to achieve the long-term isolation
guarantee with a relatively small constant ratio.

2) Hardness in capturing coflow-level communication pat-
terns: Given the definition presented in (3), the second chal-
lenge is how to achieve such isolation guarantee. Particularly,
without the knowledge of coflow size, how to bound the CCT of
each coflow with a constant ratio compared with the clairvoyant
fair schedulers (DRF or HUG).

To our knowledge, when assuming no prior information of
coflow size, flow-level fairness and tenant-level per-link fairness
[3] are the only two choices in order to isolate network services.
However, both these policies fail in efficiently leveraging the
coflow-level communication pattern.

Prior work [3] shows that traditional flow-level network
scheduling policies, such as per-flow fairness (TCP), source-
destination pairs, and sources alone, are unaware of the coflow
abstraction, providing no application-level isolation guarantee.
Making things worse, under TCP, a tenant could take an
arbitrarily high share of network bandwidth by initiating more
flows or creating more communication endpoints, which will
inevitably drag down the share of its contenders.

Tenant-level policy which is aware of the abstraction of
coflow turns to be a better alternative that can avoid the
problem above. In particular, FairCloud’s Proportional Sharing
on Proximate Links (PS-P) policy [3] based on per-link fairness
achieves the service isolation at coflow-level by equally dividing
the bandwidth among tenants. Unfortunately, PS-P captures
no coflow-level communication pattern, i.e., coflow demand
correlation, providing only suboptimal isolation guarantees [2].
A coflow has correlated bandwidth demand across multiple
links, and a coflow scheduler must deal with multi-resource
scheduling with coupled constraints on uplinks/downlinks.
Therefore, schedulers ignoring the inherent coflow demand
correlation will inevitability delay the coflow completions.

Example. To illustrate this point, we refer to a simple example
as shown in Fig. 3, where two coflows contend on four 1-Gbps
links. In particular, coflow-A consists of two flows, transferring
100 Mb data from link-1 and link-2 to link-4, respectively,
hence has demand dA = 〈100, 100, 0, 200〉; similarly, coflow-
B has dB = 〈0, 200, 100, 100〉. We illustrate the network
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Fig. 3: Illustration of the suboptimal isolation guarantee of
per-link fairness. Two coflows contend on four 1-Gbps links:
coflow-A with demand vector dA = 〈100, 100, 0, 200〉 and
coflow-B with dB = 〈0, 200, 100, 100〉.
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Fig. 4: Illustration of the network bandwidth sharing and coflow
CCTs for the example shown in Fig. 3. (a) Bandwidth share
under PS-P. (b) Bandwidth share under DRF.

bandwidth sharing and coflow CCTs under both PS-P and
DRF in this example, as shown in Fig. 4.

Under PS-P policy, both coflows will equally share link-2
and link-4 with the same bandwidth of 0.5 Gbps. However, for
coflow-A, due to the agnosticism to coflow demand correlation,
PS-P can only by default choose to allocate its obtained 0.5
Gbps on link-4 evenly to the two flows from link-1 and link-2,
each with transferring rate of 0.25 Gbps, respectively, wasting
0.25 Gbps obtained on link-2. As a posterior knowledge, link-2
is actually the bottleneck link of coflow-B, and the wasted
0.25 Gbps would have sped its completion. Similarly, coflow-
B wastes 0.25 Gbps bandwidth on link-4, which would have
sped the completion of coflow-A, as shown in Fig. 4a. Such
bandwidth wasting will inevitably delay the coflow completions
as opposed to the DRF scheme depicted in Fig. 4b.

Unnecessary bandwidth wasting in PS-P. We attribute the
root cause of this bandwidth wasting to PS-P ignoring the
coflow-level communication pattern, especially the coupled
constraints between each uplink/downlink and its correspond-
ing downlinks/uplinks. Specifically, after the inter-coflow
scheduling stage where the scheduler evenly divides the
bandwidth on each link among coflows, a coflow’s obtained

bandwidth, though allocated, may not be fully utilized due to
the flow conservation constraint [29], i.e., the total amount
of uplink/downlink bandwidth must match that of its coupled
downlinks/uplinks. In other words, more bandwidth allocation,
either on uplink or downlink, will be wasted.

To summarize, achieving isolation guarantee without prior
knowledge of coflow size is challenging, while existing
alternatives are problematic. This motivates us to seek a new
fair scheduling policy that is able to efficiently leverage the
coflow-level communication pattern.

IV. NON-CLAIRVOYANT DRF

In this section, we first illustrate our intuition to reveal
the coflow demand correlation, which is to use the flow
count on each link in a coflow as an important indication
of the actual coflow demand. Based on this intuition, we then
present a new non-clairvoyant network scheduler, called Non-
Clairvoyant DRF (NC-DRF), achieving isolation guarantee
between contending coflows. We further show that our proposed
NC-DRF provides provable long-term isolation guarantee.

A. Key Intuition

Flow count as an indication. Our discussion above reveals
that the key to seek network service isolation in the non-
clairvoyant coflow scheduling is to be aware of coflow-level
communication pattern. We argue the flow count on each link in
a coflow can be used to efficiently describe the coflow demand
correlation across multiple links.

Intuitively, when the amount of data to be transferred in
in each single flow does not differ a lot from each other,
it is reasonable to say that the count of flows on each
uplink/downlink could approximately represent the demand
correlation between these links.

Consider an extreme condition where a coflow consists of
flows with identical flow size, i.e., all the flows in a coflow have
the same amount of data to transfer. In this scenario, although
we assume that the flow size is unknown by the underlying
network scheduler, the isolation-optimal algorithms, such as
DRF [1], can still be implemented. Specifically, DRF requires
no information about the exact value of coflow demand on
each link, but the demand correlation, i.e., ck = 〈c1k, . . . , c2mk 〉
of each coflow. When assuming identical flow size, the flow
count on each link can definitely characterize the demand
correlation, based on which the scheduler is able to enforce
the isolation-optimal DRF allocation.

Flow size disparity in a coflow. While applications in practice
are less likely to transfer all the data with flows of identical
sizes, we argue that the disparity of flow sizes within a
particular coflow could not be arbitrarily high.

In order to identify the flow size disparity within coflow Ck,
we use ek to denote the differential degree of transmission
demand among all the utilized links, i.e.,

ek = d̄k/mini d
i
k. (4)



Intuitively, the larger ek is, the higher the differential degree
of transmission demand will Ck have.

Considering the efficiency in the production datacenters,
most data-parallel applications, such as MapReduce [15] and
streaming applications [13], [14], widely follow the load
balancing principle. Specifically, when a data-parallel job is
running on a homogeneous cluster, load balancing is critical, as
the overall computation speed is gated by the slowest performer.
Given this observation, it is reasonable to say that in most
practical cases, applications are less likely to generate flows with
sizes of sparse distribution. In other words, in these scenarios,
the flow count on each link has strong correlation with the
amount of data to be transferred, thus could be considered as
an indication of the coflow demand correlation.

Admitting the limited disparity of coflow demand across
links, the isolation-optimal scheduling policies such as DRF
[1] can be implemented even without the prior knowledge
of coflow size, while providing us an opportunity to convey
the coflow-level communication requirement to the underlying
network scheduler.

Key Insight. Following this observation, our key insight is
to enforce the Dominant Resource Fairness (DRF) allocation
based on the flow count on each link in a coflow.

Compared with prior works [3], [11], this simple approach
can potentially provides following three benefits:

1) It enables a non-clairvoyant network scheduler to employ
the advanced isolation-optimal scheduling algorithms
(e.g., DRF). Unlike PS-P which naively enforces an
equal bandwidth sharing on each link to all the coflows,
our intuition provides a global view of communication
demands inter and intra coflows, breaking the limitation
of the applicability for isolation-optimal policies under
non-clairvoyant coflow scheduling.

2) It avoids the bandwidth wasting problem arises during
the intra-coflow scheduling stage. As shown in Fig. 4a,
evenly dividing the bandwidth on each link to coflows
will inevitably lead to bandwidth wasting. In contrast,
employing our intuition can avoid such wasting as
much as possible, as a coflow’s bandwidth allocation
on each link is proportional to the flow count on
this link, ensuring the allocated bandwidth on each
uplink/downlink can be more effectively utilized by its
coupled downlinks/uplinks.

3) It allocates bandwidth in each coflow with a bias
towards small flows, which will potentially speed the
coflow completion. In more general cases where a coflow
consists of flows with various flow sizes, a scheduler
implementing our intuition will allocate flows with small
size more bandwidth than they would have had under
DRF. In other words, it imitates the Shortest-Flow-First
heuristic in the performance-optimal coflow schedulers
[22], hence potentially reduces the average CCTs.

B. Non-Clairvoyant DRF
Based on the insight above, we next illustrate our proposed

new coflow scheduler, Non-Clairvoyant DRF (NC-DRF).

Algorithm 1 Non-Clairvoyant DRF
1: procedure ALLOCBANDWIDTH(Coflows C)
2: Initialize remaining b/w Ri ← 1 on all link-i
3: for k = 1 to |C| do . Intra-coflow statistics
4: for all link-i do
5: Count up flow counts on this link, i.e, ni

k

6: n̄k ← maxi n
i
k

7: for all link-i do
8: ĉik ← ni

k/n̄k

9: P̂ ∗ ← 1/maxi

∑
k ĉ

i
k . Inter-coflow fair sharing

10: for k = 1 to |C| do . Intra-coflow allocation
11: rk ← P̂ ∗/n̄k

12: for all flow f ij
k ∈ Ck do

13: rijk ← rk . Bandwidth for each flow
14: Ri ← Ri − rijk
15: Rj ← Rj − rijk

16: procedure NC-DRFOFFLINE(Coflows C)
17: allocBandwidth(C)
18: Distribute unused bandwidth to all C ∈ C
19: procedure NC-DRFONLINE(Coflow C, Bool isArrival)
20: if isArrival then
21: C← C ∪ {C} . Coflow C arrives
22: else
23: C← C \ {C} . Coflow C completes
24: NC-DRFOffline(C)

Offline Scheduling. As a starting point, we consider a schedul-
ing problem with N coflows C1, C2, . . . , CN contending the
network resources in an offline scenario, where all coflows
arrived at time 0. We therefore obtain a scheduling scheme
C = (C1, . . . , CN ).

Bandwidth Allocation. Given scheduling scheme above, our
algorithm allocates bandwidth based on DRF policy which
employs the flow count to describe the demand correlation
across multiple links. We summarize the entire allocating
process as a procedure, called allocBandwidth(C), as shown
in Algorithm 1.

Formally, let f ij
k represent an individual flow in Ck trans-

ferring data from uplink-i to downlink-j in the fabric, and rijk
be the bandwidth allocation to this flow. We also maintain the
amount of available (remaining) bandwidth on link-i using a
parameter Ri, which is initialized to 1.

We start by capturing the demand correlation for each Ck ∈
C. In particular, for each link-i, we collect the count of flows
with which coflow Ck transferring data on link-i, denoted by
nk
i . After getting the flow count vector contained all the 2m

links, i.e., nk = 〈n1
k, . . . , n

2m
k 〉, we identify the largest flow

count as the flow-count bottleneck, i.e., n̄k = maxi n
i
k and

the corresponding link as flow-count-bottleneck link, i.e., b̂k =
arg maxi n

i
k. Similar to the characterization of a clairvoyant

coflow, we further calculate the flow-count correlation vector
ĉk = 〈ĉ1k, . . . , ĉ2mk 〉, where ĉik = ni

k/n̄k.
Given the flow-count correlation above, we adopt the

DRF algorithm in the following inter-coflow scheduling stage.
Formally, we increase the equal sharing on each flow-count-



bottleneck link to the maximum level, denoted by P̂ ∗, i.e.,

P̂ ∗ = 1
maxi

∑
k ĉik

. (5)

Considering the flow count, i.e., ni
k as an indication of the

data transferring demand, i.e., dik, NC-DRF achieves gener-
alized max-min fairness in multi-resource coflow scheduling
problem by enforcing such maximized equal sharing on flow-
count-bottleneck links.

Based on P̂ ∗ obtained by Eq. (5), we next allocate bandwidth
to each coflow Ck ∈ C. Specifically, on each link-i, coflow
Ck is allocated bandwidth proportional to its flow count on
this link, i.e., aik = ĉikP̂

∗.
After getting aik for each coflow, we step into the intra-

coflow scheduling stage, where the scheduler has to decide,
for each coflow, how to distribute the obtained bandwidth on
each link-i, i.e., aik, to individual flows on this link. Due to the
agnosticism to the flow size, NC-DRF follows the same intro-
coflow allocation method as PS-P, which is to evenly divides
the bandwidth allocation on link-i to all the flows on this
link, i.e., rijk = aik/n

i
k. This intra-coflow scheduling method

enforces an equal transferring speed for all the individual flows
within a coflow. This identical speed could be calculated by
rk = P̂ ∗/n̄k, where rk denotes this equal flow transferring
bandwidth in coflow Ck, as shown in Algorithm 1 line 11.

For each round of allocating bandwidth to flow f ij
k , our

algorithm also updates the remaining bandwidth on both its
uplink and downlink, which is used in the following work-
conserving technique.

Retaining Work Conservation. To achieve work-conserving
allocations, after the DRF-style allocation presented above,
we further distribute the remaining bandwidth on each link,
if any, to coflows. For simplicity, we adopt the backfilling
strategy which evenly allocates the unused bandwidth on each
link to all the active flows within all the coflows, subject
to the capacity constraints in the coupled links, i.e., wij

k =

min{ ui∑
k ni

k

, uj∑
k nj

k

}, where wij
k refers to the work-conserving

allocation to flow f ij
k , while ui and uj denote the unused

bandwidth on the uplink and downlink of this flow, respectively.
We illustrate the entire offline scheduling in NC-DRF to a

procedure NC-DRFOffline(C), as shown in Algorithm 1.

From offline to online. In order to handle dynamic coflow
arrivals (departures) in online scheduling scenarios, we maintain
a list of active coflows, denoted by C. Upon an arrival
(departure) of a coflow C, we insert (remove) it into (from) the
list, followed by allocation update, summarized as a procedure
NC-DRFOnline in Algorithm 1.

Example. To better illustrate the algorithmic behaviors of NC-
DRF, we refer back to the previous example in Fig. 3, where
two coflows contending on four 1-Gbps links. In this case
where all the flows in a coflow has identical flow size, our
proposed NC-DRF provides the same scheduling behavior as
the isolation-optimal DRF policy, as shown in Fig. 4b.

Particularly, coflow-A has one flow transferring data from
link-1 to link-4, and another flow from link-2 to link-4, therefore

has flow count correlation vector ĉA = 〈0.5, 0.5, 0, 1〉; coflow-
B has ĉB = 〈0, 1, 0.5, 0.5〉. Therefore, the maximum equal
sharing on the flow-count-bottleneck links is calculated by
P̂ ∗ = 1/maxi

∑
k ĉ

i
k = 2/3. Since the flow-count bottleneck

of both coflows is 2, i.e., n̄A = n̄B = 2, all the four flows
in this example will get transferring bandwidth of 1/3 Gbps,
speeding the completion of both coflows by 25%.

We highlight two points from this toy example:
• Even without further work-conserving allocation, in this

example, our proposed NC-DRF can fully utilize the
bandwidth resources on both link-2 and link-4, which
is actually the bottleneck link of coflow-B and coflow-A,
respectively.

• In such scenarios where a coflow consists of flows with
identical flow size, our NC-DRF shows the same schedul-
ing behavior as the isolation-optimal DRF algorithm, yet
requiring no information of coflow size.

NC-DRF vs. Per-link Fairness. Given the discussion above,
regardless the work-conserving allocation, PS-P leads to worse
scheduling performance compared with NC-DRF, unnecessarily
delaying the coflow completion. This is due to the bandwidth
wasting in the intra-coflow scheduling stage.

In contrast, NC-DRF will never encounter such wasting.
Actually, due to the agnosticism to the flow sizes, both PS-P and
NC-DRF adopt a naive equalized allocation policy during intra-
coflow scheduling stage, which evenly distributes a coflow’s
obtained bandwidth to all the flows on each link. However,
under NC-DRF, a coflow’s allocated bandwidth on each link-
i is in proportion to its flow count, i.e., aik = ni

kP̂
∗/n̄k,

which definitely matches the allocations on its coupled links.
We attribute this to NC-DRF’s awareness of coflow demand
correlations.

C. Long-time Isolation Guarantee
We next present that NC-DRF provides long-term isolation

guarantee defined in Sec. III-B under offline case with some
reasonable assumptions.

Assumptions. Without loss of generality, let coflows be indexed
in ascending order of their bottleneck demands d̄k, i.e.,d̄1 ≤
d̄2 . . . d̄N . For each coflow Ck ∈ C, we identify the count of
its used uplinks and downlinks as Mk and Rk, respectively.
We make two assumptions in the following discussion:

First, we assume that for each coflow Ck ∈ C, it uses more
uplinks than downlinks, i.e., Rk < Mk.

Second, we assume that each downlink used in Ck has
flows with identical sizes from all the Mk uplinks, i.e., d1jk =

d2jk · · · = dMkj
k , where dijk denotes the flows size of f ij

k . This
assumption is reasonable, as most data-parallel applications
follow the load balancing principle, avoiding flows within a
coflow have arbitrarily high flow size disparity, as we have
discussed above.

Isolation Guarantee. Eq. (4) has defined the flow size disparity
within a coflow. We further denote the largest ek among all
the coflows by emax, i.e., emax = maxk ek. Formally, we have
the following theorem:



Theorem 1 (Long-term isolation guarantee): Assume that
coflows C arrived at time 0. For coflow Ck ∈ C, let Fk be its
CCT in Algorithm 1, and FD

k its CCT in DRF. We bound the
maximum completion delay beyond DRF as follows:

Fk ≤ emaxF
D
k , (6)

where emax is the maximum demand disparity in a coflow.
We make two remarks on Theorem 1:
1) The ratio bound emax is a small constant in production

datacenters. As we have discussed above, Given the
load balancing principle followed by most data-parallel
applications, the demand disparity among multiple links
in a coflow will not be arbitrarily large.

2) The ratio bound is established as a worst-case guarantee,
but coflows usually complete faster with much shorter
average CCT. In fact, as we shall show in Sec. V, with
NC-DRF, coflows are only delayed by 68% on average
as compared with DRF.

We next give a proof sketch of Theorem 1. The complete
proof is deferred to our technical report [30] due to space
constraints.

Proof Sketch. We start by considering the completion time
of coflow Ck under DRF. We note that all the coflows will
complete in the ascending order of their bottleneck demands,
since DRF policy enforces an equal progress among coflows.
We consider each time interval between two sequential coflows’
completion, i.e., the time interval of [FD

t−1, F
D
t ] and derive an

lower bound of the coflow progress during this interval under
DRF. Specifically, we have P ∗

t ≤ emax/Nt, where Nt denotes
the largest count of coflows that share a common link within the
coflow set of C = (Ct, . . . , CN ). Based on this, for each coflow
Ck, we derive an lower bound of its CCT under DRF, i.e.,
FD
k ≥ [d̄1N1 + N2(d̄2 − d̄1) + . . . Nk(d̄k − d̄k−1)]/emax.
We further consider the CCTs under NC-DRF. We also note

that, under our assumptions, the coflow completions under NC-
DRF also follow the same order as that under DRF. Similarly,
we consider the time interval of [Ft−1, Ft] and derive a upper
bound of the coflow progress under NC-DRF, i.e., Fk ≤ d̄1N1+
N2(d̄2− d̄1)+. . . Nk(d̄k− d̄k−1). We therefore obtain the CCT
bound as shown in Theorem 1, i.e.,

Fk ≤ d̄1N1 + N2(d̄2 − d̄1) + . . . Nk(d̄k − d̄k−1)

≤ emaxF
D
k .

(7)

V. EVALUATION

We evaluated NC-DRF through both trace-driven simulations
and real-world implementations deployed with a 60-machine
EC2 [16] cluster. We highlight following three points here:

• NC-DRF provides long-term fairness with guaranteed
isolation between contending coflows. Specifically, with
NC-DRF, coflows are only delayed by 68% on average
as compared with the isolation-optimal DRF.

• NC-DRF dominates existing alternatives in long-term
fairness, speeding the coflow completion. In particular, NC-
DRF outperforms PS-P by 1.7× in terms of the average
CCT.
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Fig. 5: Characteristics of instantaneous fairness. (a) Distribution
of coflow progress disparity, x-axis is in log scale. (b) Average
utilization out of 300 Gbps availability.

• NC-DRF also dominates existing policies in terms of
instantaneous fairness, providing smaller progress disparity
across coflows. NC-DRF outperforms PS-P by 3.7× in
terms of the maximum coflow progress disparity.

A. Trace-Driven Simulations

Workload. We use the production workload traces with 526
coflows in Coflow-Benchmark [17], which captures a realistic
workload based on a one-hour Hive/MapReduce trace collected
from a 3000-machine, 150-rack Facebook cluster. Particularly,
the benchmark [17] reduces the original trace to rack level by
combining all mappers (reducers) belonging to the same tenant
in a rack into one rack-level mapper (reducer).

Setup. We abstract out the datacenter fabric as a 150×150
non-blocking switch, where an ingress (egress) port corresponds
to a 1 Gbps uplink (downlink) of a rack. Therefore, the
total bandwidth availability in the fabric is 300 Gbps. We
compare NC-DRF against four scheduling schemes: per-flow
fairness (TCP), FairCloud’s PS-P policy [3] that seeks per-
link fairness, DRF [1] and the performance-optimal scheduler
Aalo [10]. We implemented these schemes along with NC-
DRF on top of CoflowSim [31], the de facto simulator for
coflow scheduling, comparing their instantaneous and long-
term isolation of network service.

1) Instantaneous Isolation: We start by comparing the
instantaneous isolation achieved by different policies. In
particular, at each time instant, we calculate the progress
disparity across all the coflows, as well as the entire bandwidth
allocation in the fabric under each scheduler. Fig. 5 depicts
the instantaneous performance comparisons in detail.

Coflow progress disparity. We have shown in Sec. IV that
our proposed NC-DRF provides long-term isolation guarantees
between contending coflows. A natural question is: How
does NC-DRF perform when considering the instantaneous
coflow progress? To answer this question, we measure the
instantaneous isolation based on a metric called coflow progress
disparity, which is defined, at each time instant, as the ratio
between the maximum progress and the minimum progress
across all the coflows, i.e.,

Coflow progress disparity = maxk Pk

mink Pk
,
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TABLE I: Coflows binned by their lengths (Short or Long)
and widths (Narrow or Wide) in the Coflow-Benchmark [17].

Bin SN LN SW LW
% of Coflows 60% 16% 12% 12%

where Pk represents the progress of coflow Ck given by Eq. (1).
Intuitively, the smaller the coflow progress disparity, the better
instantaneous isolation the policy can achieve. Particularly, the
isolation-optimal DRF consistently keeps the coflow progress
disparity equal to 1.

We measured the coflow progress disparity under NC-DRF
and PS-P over time and depict the distribution in Fig. 5a. Here,
we exclude TCP and Aalo from comparison due to their poor
performance. We can observe that NC-DRF outperforms PS-
P in terms of instantaneous fairness. Specifically, the coflow
progress disparity under NC-DRF is less than 50 at 95% of
time instants, whereas the corresponding value is more than
184 under PS-P.

Besides, the coflow progress disparity under both PS-P and
Aalo shows a long-tail distribution. Specifically, the maximum
coflow progress disparity under PS-P is more than 200, while
it is less than 55 under NC-DRF. These results clearly indicate
NC-DRF achieves better instantaneous isolation guarantee com-
pared with PS-P, minimizing the progress differences between
contending coflows. To summarize, NC-DRF outperforms PS-P
by 3.7× in terms of the maximum coflow progress disparity.

Network Utilization. As we have illustrated in Sec. III,
PS-P leads to unnecessary bandwidth wasting. We confirm
this by measuring the total bandwidth utilization by all the
coflows over time under different schemes. Fig. 5b compares
the average bandwidth allocation out of 300 Gbps availability
over time. First, we see that TCP is able to achieve the highest
network utilization, as it performs scheduling at flow level
and is not restricted by the coflow-level limitations. Second,
PS-P performs the worst, resulting in the lowest average
network utilization, even though it is work conserving [3].
We attribute this to its agnosticism to the coflow demand
correlation, as the bandwidth in PS-P is assigned separately
on each link, inevitably resulting in the mismatching of
bandwidth allocation between each uplink (downlink) and its
corresponding downlinks (uplinks). In contrast, NC-DRF is able

TABLE II: Statistical summary of slowdown.

TCP PS-P NC-DRF DRF Aalo
Min 1.00 1.00 1.00 1.00 1.00

Mean 117.94 9.47 5.75 3.36 5.40
95th 757 20.80 11.14 5.89 6.2416
Std. 246 6.75 3.64 1.52 57.67

to avoid this bandwidth wasting, providing average bandwidth
utilization close to DRF policy.

2) Long-Term Isolation: We next evaluate the long-term
performance of different schedulers in achieving isolation
guarantees. In particular, we replayed 526 coflows in the
trace [17] and used two metrics throughout our evaluation:
normalized CCT and shuffle slowdown.

• Normalized CCT is defined, for each coflow, as the CCT
under the compared scheduler normalized by that under
DRF:

Normalized CCT =
Compared CCT
CCT under DRF .

Intuitively, the smaller the normalized CCT, the faster
coflows will complete under the compared scheduler, and
hence the better long-term isolation guarantee it achieves.

• Shuffle slowdown is defined, for each coflow, as the CCT
under the compared scheduler normalized by the minimum
CCT, i.e., its bottleneck’s completion time when running
alone in the fabric:

Slowdown =
Compared CCT
Minimum CCT .

Additionally, to better understand the performance impact on
different coflows, we categorize coflows into four bins based
on their shuffle types. Specifically, we say a coflow is small
(long) if its largest flow is less (greater) than 5 MB, and narrow
(wide) if it consists of less (more) than 50 flows [2], [10], [22].
Table I summarizes the distribution of binned coflows.

Normalized CCT. Fig. 6a depicts the distribution of nor-
malized CCT under different schemes. We can see that TCP
performs worst, arbitrarily delaying the coflow completion.
We also observe that the performance-optimal Aalo can
dramatically speed the coflow completion, however, provides
no isolation guarantee, resulting in normalized CCT more than
100. More importantly, NC-DRF outperforms PS-P in that it
leads to shorter normalized CCT.

To better illustrate the difference between NC-DRF and PS-
P, we compare the average normalized CCT between these
two schemes in four coflow bins as shown in Table I and
plot the results in Fig. 6b. We see that NC-DRF consistently
outperforms PS-P, with smaller normalized CCT in all the bins.
Moreover, NC-DRF outperforms PS-P by 1.7× in terms of
the average normalized CCT. It is worth noticing that with
NC-DRF, coflows are only delayed by 68% on average as
compared with the isolation-optimal DRF—a strong evidence
that NC-DRF is able to achieve long-term isolation guarantee.

Shuffle slowdown. Table II gives the minimum, average,
and the 95th percentile slowdown, as well as the standard
deviation measured under different schedulers. We can see
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that NC-DRF consistently outperforms PS-P under all the four
metrics. To summarize, in terms of the shuffle slowdown, NC-
DRF outperforms PS-P by 1.65× on average, and by 1.87×
at the 95th percentile.

B. EC2 Deployment

Implementation. We have prototyped NC-DRF in Python
with a master-slave architecture. In particular, the master
identifies coflows and makes scheduling decisions following
the logic of Algorithm 1; a slave runs in a cluster machine as
a daemon program and enforces the specified flow transmission
rate using Linux’s tc and htb qdisc tools to shape the
flow rates. Specifically, upon arrival, a coflow registers to
the master and indicates the amount of data in each flow
through a public NC-DRF API. The master, after receiving
this registration, runs Algorithm 1 and provides a new allocation
for active coflows and notifies the flow transmission rates to
the corresponding slaves for local enforcement. Each slave
also updates its status as heartbeat messages with the master
periodically, which allows the master to quickly respond to
coflow.

Cluster deployment. We performed experiments in a 60-
node Amazon EC [16] cluster. For each node, we used a
t2.large EC2 instance with 2 cores and 8 GB RAM. For
simplicity, we configured 200 Mbps as the bandwidth capacity
to each uplink/downlink.

Micro-benchmark. To micro-benchmark the behavior of
NC-DRF in a more controlled manner, we ran three coflows,
each having endpoints on all 60 machines with different com-
munication patterns. Table III summarizes the configurations
of three coflows. Particularly, for coflow-A, we evenly divide
its endpoints into 10 groups. Each group performs an all-to-all
shuffle, performing 6× 6 communication. In total, coflow-A
consists of 360 flows. Coflow-B has 60 flows following a
pairwise one-to-one communication pattern between machine
i and machine i + 30, where 1 ≤ i ≤ 30. Coflow-C also

TABLE III: Summary of coflow information in testbed.

Commun. Pattern # of Flows Arrival Time
coflow-A all-to-all 360 0 s
coflow-B pairwise one-to-one 60 10 s
coflow-C pairwise one-to-one 60 20 s

has 60 flows following the same communication pattern,
where machine j communicates with machine j + 15, for
all 1 ≤ j ≤ 15 and 30 ≤ j ≤ 45. In total, we have 480 flows
in three coflows, each randomly configured its transferred data
size between 30 MB and 100 MB. In this setting, coflow-
A represents a large job, whereas the other two coflows are
considered small. Coflow-A, B, and C arrive at 0 s, 10 s, and
20 s, respectively.

1) Coflow Completion Time: Fig. 7 illustrates the CCTs
of three coflows under three schedulers. We can observe that
NC-DRF consistently outperforms the alternative TCP and
PS-P, resulting in shorter CCTs of all the three coflows. Even
compared with the isolation-optimal HUG and DRF which
assume complete coflow knowledge a priori, NC-DRF still
provides shorter CCT for coflow-B.

2) Coflow Progress: In Fig. 8, we depict the progress of
each coflow under TCP, PS-P and NC-DRF over time. We see
that NC-DRF provides nearly equal progress between coflow-
A and coflow-B during 10-20 second, as well as coflow-A and
coflow-C during 20-47 second. In other words, NC-DRF can
not only achieve the long-term isolation by reducing the coflow
completion time, but also strive for the instantaneous equal
progress across coflows. Notably, in our testbed experiment,
we do not enforce the equal size of flows, we instead randomly
choose the flow size. On the other hand, we can clearly observe
that neither TCP nor PS-P can enforce such equal progress
between coflows. We attribute this advantage to NC-DRF’s
awareness of the coflow demand correlation, with which the
scheduler can expect long-term isolation guarantee.

VI. CONCLUSION

In this paper, we have studied non-clairvoyant coflow
scheduling to isolating their completions, which has insofar
received little attention. We for the first time have clarified
the definition of isolation guarantee for non-clairvoyant coflow
scheduling. We have also proposed a new coflow scheduler,
called Non-Clairvoyant DRF (NC-DRF), to provide isolation
guarantees between contending coflows, without prior knowl-
edge of coflow size. NC-DRF outperforms the alternatives by
being aware of the coflow-level communication patterns. We
have shown that under some practical assumptions, with NC-
DRF, the CCT of each coflow is bounded by a small constant
factor of that under DRF. Both trace-driven simulations and
EC2 deployments have confirmed that NC-DRF outperforms
existing alternatives and achieves long-term isolation guarantee.

We recognize that NC-DRF does not ensure the optimal
long-term isolation guarantee, which we leave for future work.
Specifically, theoretical investigations should be performed in
the future, such as how to minimize the constant ratio bound of
the achieved long-term isolation compared with fair schedulers.
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