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Abstract— Serverless applications are typically composed of
function workflows in which multiple short-lived functions are
triggered to exchange data in response to events or state changes.
Current serverless platforms coordinate and trigger functions by
following high-level invocation dependencies but are oblivious to
the underlying data exchanges between functions. This design
is neither efficient nor easy to use in orchestrating complex
workflows — developers often have to manage complex function
interactions by themselves, with customized implementation and
unsatisfactory performance. Therefore, we argue that function
orchestration should follow a data-centric approach. In our design,
the platform provides a data bucket abstraction to hold the
intermediate data generated by functions. Developers can use
a rich set of data trigger primitives to control when and how the
output of each function should be passed to the next functions in
a workflow. By making data consumption explicit and allowing
it to trigger functions and drive the workflow, complex function
interactions can be easily and efficiently supported. We present
Pheromone — a scalable, low-latency serverless platform fol-
lowing this data-centric design. Compared to well-established
commercial and open-source platforms, Pheromone cuts the
latencies of function interactions and data exchanges by orders
of magnitude, scales to large workflows, and enables easy
implementation of complex applications.

Index Terms— Serverless computing, function workflow, data
sharing.

I. INTRODUCTION

ERVERLESS computing, with its Function-as-a-Service
S incarnation, is becoming increasingly popular in the cloud.
It allows developers to write highly scalable, event-driven
applications as a set of short-running functions. Developers
simply specify the events that trigger the activation of these
functions, and let the serverless platform handle resource pro-
visioning, autoscaling, logging, fault-tolerance, etc. Serverless
computing is also economically appealing as it has zero idling
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cost: developers are only charged when their functions are
running.

Many applications have recently been migrated to the sev-
erless cloud [1], [2], [3], [4], [5], [6], (7], [8], [9]. These
applications typically consist of multiple interactive functions
with diverse function-invocation and data-exchange patterns.
For example, a serverless-based batch analytics application
may trigger hundreds of parallel functions for all-to-all data
communication in a shuffle phase [3], [10], [11]; a stream
processing application may repeatedly trigger certain functions
to process dynamic data received in a recent time window.
Ideally, a serverless platform should provide an expressive
and easy-to-use function orchestration to support various
function-invocation and data-exchange patterns. The orches-
tration should also be made efficient, enabling low-latency
invocation and fast data exchange between functions.

However, function orchestration in current serverless plat-
forms is neither efficient nor easy to use. It typically models
a serverless application as a workflow that connects functions
according to their invocation dependency [12], [13], [14], [15],
[16], [17], [18], [19]. It specifies the order of function invoca-
tions but is oblivious to when and how data are exchanged
between functions. Without such knowledge, the serverless
platform assumes that the output of a function is entirely
and immediately consumed by the next function(s), which is
not the case in many applications such as the aforementioned
“shuffle” operation in batch analytics and the processing of
dynamically accumulated data in stream analytics. To work
around these limitations, developers have to manage complex
function interactions and data exchanges by themselves, using
various approaches such as a message broker or a shared
storage, either synchronously or asynchronously [10], [13],
[14], [20], [21], [22]. As no single approach is found optimal
in all scenarios, developers may need to write complex logic
to dynamically select the most efficient approach at runtime
(see §II-B). Current serverless platforms also incur function
interaction latencies of tens of milliseconds, which may be
unacceptable to latency-sensitive applications [23], particu-
larly since this overhead accumulates as the function chain
builds up.

In this paper, we argue that function orchestration should
follow the flow of data rather than the function-level invocation
dependency, thus a data-centric approach. Our key idea is to
make data consumption explicit, and let it trigger functions
and drive the workflow. In our design, the serverless platform
exposes a data bucket abstraction that holds the intermediate
output of functions in a logical object store. The data bucket
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provides a rich set of data trigger primitives that developers
can use to specify when and how the intermediate data are
passed to the intended function(s) and trigger their execution.
With such a fine control of data flow, developers can express
sophisticated function invocations and data exchanges, sim-
ply by configuring data triggers through a unified interface.
Knowing how intermediate data will be consumed also enables
the serverless platform to schedule the intended downstream
functions close to the input, thus ensuring fast data exchange
and low-latency function invocation.

Following this design approach, we develop Pheromone,
a scalable serverless platform with low-latency data-centric
function orchestration. Pheromone proposes three key
designs to deliver high performance. First, it uses a two-tier
distributed scheduling hierarchy to locally execute a function
workflow whenever possible. Each worker node runs a local
scheduler, which keeps track of the execution status of a work-
flow via its data buckets and schedules next functions of the
workflow onto local function executors. In case that all local
executors are busy, the scheduler forwards the request to a
global coordinator which then routes it to another worker node
with available resources. Second, Pheromone trades the
durability of intermediate data, which are typically short-lived
and immutable, for fast data exchange. Functions exchange
data within a node through a zero-copy shared-memory
object store; they can also pass data to a remote function
through direct data transfer. Third, Pheromone uses sharded
global coordinators, each handling a disjoint set of work-
flows. With such a shared-nothing design, local schedulers
only synchronize workflows’ execution status with the cor-
responding global coordinators, which themselves require no
synchronization, thus ensuring high scalability for distributed
scheduling.

We evaluate Pheromone against well-established com-
mercial and open-source serverless platforms, including AWS
Lambda with Step Functions, Azure Durable Functions,
Cloudburst [14], and KNIX [13]. Evaluation results show that
Pheromone improves the function invocation latency by up
to 10x and 450x over Cloudburst (best open-source baseline)
and AWS Step Functions (best commercial baseline), respec-
tively. Pheromone scales well to large workflows and incurs
only millisecond-scale orchestration overhead when running
1k chained functions and 4k parallel functions, whereas
the overhead is at least a few seconds in other platforms.
Pheromone has negligible data-exchange overhead (e.g.,
tens of us), thanks to its zero-copy data exchange. It can
also handle failed functions through efficient re-execution.
Case studies of three serverless applications, i.e., Yahoo!
stream processing [24], real-time query, and MapReduce sort,
further demonstrate that Pheromone can easily express
complex function interaction patterns (rich expressiveness),
require no specific implementation to handle data exchange
between functions (high usability), and efficiently support
both latency-sensitive and data-intensive applications (wide
applicability).

1

Pheromone is a chemical signal produced and released into the environ-
ment by an animal that triggers a social response of others of its species.
We use it as a metaphor for our data-centric function orchestration approach.

II. BACKGROUND AND MOTIVATION

We first introduce serverless computing and discuss the
limitations of function orchestration in current serverless plat-
forms.

A. Serverless Computing

Serverless computing, with its popular incarnation being
Function-as-a-Service (FaaS), has recently emerged as a pop-
ular cloud computing paradigm that supports highly-scalable,
event-driven applications [25], [26], [27]. Serverless comput-
ing allows developers to write short-lived, stateless functions
that can be triggered by events. The interactions between
functions are simply specified as workflows, and the serverless
platform manages resource provisioning, function orches-
tration, autoscaling, logging, and fault tolerance for these
workflows. This paradigm appeals to many developers as it
allows them to concentrate on the application logic without
having to manage server resources [28], [29] — hence the name
serverless computing. In addition to the high scalability and
operational simplicity, serverless computing adopts a “pay-as-
you-go” billing model: developers are billed only when their
functions are invoked, and the function run-time is metered at
a fine granularity, e.g., 1 ms in major serverless platforms [25],
[26]. Altogether, these benefits have increasingly driven a large
number of traditional “serverful” applications to be migrated to
the serverless platforms, including batch analytics [2], [3], [4],
[11], video processing [5], [6], stream processing [1], machine
learning [7], [8], microservices [23], etc.

B. Limitations of Current Platforms

Current serverless platforms take a function-oriented
approach to orchestrating and activating the functions of a
serverless workflow: each function is treated as a single and
standalone unit, and the interactions of functions are separately
expressed within a workflow. This workflow connects individ-
ual functions according to their invocation dependencies, such
that each function can be triggered upon the completion of one
or multiple upstream functions. For example, many platforms
model a serverless workflow as a directed acyclic graph
(DAG) [12], [13], [14], [15], [16], [17], [18], [19], in which the
nodes represent functions and the edges indicate the invocation
dependencies between functions. The DAG can be specified
using general programming languages [17], [18], or domain-
specific languages such as Amazon States Language [13], [19].
However, this approach has several limitations with regard to
expressiveness, usability, and applicability.

Limited  expressiveness. Although the current
function-oriented orchestration supports the workflows
of simple invocation patterns, it becomes inconvenient
or incapable of expressing more sophisticated function
interactions, as summarized in Table I. This is because the
current function orchestration assumes that data flow in the
same way as how functions are invoked in a workflow, and
that a function passes its entire output to others by directly
invoking them for immediate processing. These assumptions
do not hold for many applications, hence developers resort to
create workarounds.
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Shuffle Batched data processing

—— Function invocation flow

------ > Data flow

Fig. 1. The shuffle operation (left) in data analytics and the batched data
processing in a stream (right).

For example, the “shuffle” operation in a data analytics job
involves a fine-grained, all-to-all data exchange between the
functions of two stages (e.g., “map” and “reduce” stages).
As shown in Fig. 1 (left), the output data of a function in
stage-1 are shuffled and selectively redistributed to multiple
functions in stage-2 based on the output keys. However, the
way to invoke functions is not the same as how the output data
flow: only after stage-1 completes can the workflow invoke
all the stage-2 functions in parallel. In current serverless plat-
forms, developers must manually implement such a complex
data shuffle invocation via external storage [3], [10], which is
neither flexible nor efficient.

Another example is a batched stream analytics job which
periodically invokes a function to process the data continu-
ously received during a time window [24], [30], as shown in
Fig. I (right). A serverless workflow cannot effectively express
this invocation pattern as the function is not immediately
triggered when the data arrive, and thus developers have to
rely on other cloud services (e.g., AWS Kinesis [31]) to
batch the data for periodic function invocations [1], [32],
[33]. Note that, even with the latest stateful workflow (e.g.,
Azure Durable Functions [34]), an addressable function needs
to keep running to receive data. As we will show in §VI-
E, deploying a long-running function not only incurs extra
resource provisioning cost but results in an unsatisfactory
performance.

Limited wsability. Current serverless platforms pro-
vide various options for data exchange between functions.
Functions can exchange data either synchronously or asyn-
chronously via a message broker or a shared storage [10],
[13], [14], [20], [21], [22]. They can also process data from
various sources, such as nested function calls, message queues,
or other cloud services [35].

The lack of a single best approach to exchange data
between functions significantly complicates the development
and deployment of serverless applications, as developers
must find their own ways to efficiently pass data across
functions [16] which can be dynamic and non-trivial; thus,
reducing the usability of serverless platforms. To illustrate
this problem, we compare four data-passing approaches in
AWS Lambda: a) calling a function directly (Lambda), b)
using AWS Step Functions (ASF) to execute a two-function
workflow,” c) allowing functions to access an in-memory Redis
store for fast data exchange (ASF+Redis), and d) configuring
AWS S3 to invoke a function upon data creation (S3) [37].

2We use the ASF Express Workflows in our experiments as it delivers
higher performance than the ASF Standard Workflows [36].
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Fig. 2. The interaction latency of two AWS Lambda functions under various
data sizes using four approaches.

Fig. 2 compares the latencies of these four approaches under
various data volumes. Lambda is efficient for transferring
small data; ASF+Redis is efficient for transferring large data;
the maximum data volume supported by each approach varies
considerably, and only the S3 approach can support virtually
unlimited (but slow) data exchange. Thus, there is no single
approach that prevails across all scenarios, and developers
must carefully profile the data patterns of their applications
and the serverless platforms to optimize the performance of
data exchange between interacting functions.

To make matters worse, the data volume exchanged between
functions depends on the workload, which may be irregular or
unpredictable. Thus, there may be no best fixed approach to
exchanging data between interacting functions, and developers
have to write complex logic to select the best approach at
runtime. Developers also need to consider the interaction cost.
Previous work has highlighted the tricky trade-off between
I/O performance and cost when using different storage to
share intermediate data [3], [10], which further exacerbates
the usability issue. Altogether, these common practices bring
a truly non-serverless experience to developers as they still
have to deal with server and platform characteristics.

Limited applicability. Existing serverless applications are
typically not latency-sensitive. This is because current server-
less platforms usually have a function interaction delay of
multiple or tens of milliseconds (§VI-B), and such delays
accumulate as more functions are chained together in an
application workflow. For example, in AWS Step Functions,
each function interaction causes a delay of more than 20 ms,
and the total platform-incurred delay for a 6-function chain
is over 100 ms, which may not be acceptable in many
latency-sensitive applications [23]. In addition, as current
serverless platforms cannot efficiently support the sharing of
varying-sized data between functions (as described earlier),
they are ill-suited for data-intensive applications [3], [5], [13],
[14], [23], [25]. Altogether, the above characteristics substan-
tially limit the applicability of current serverless platforms.

ITI. DATA-CENTRIC FUNCTION ORCHESTRATION

In this section, we address the aforementioned limitations
of the function orchestration practice in current serverless
platforms, with a novel data-centric approach. We will describe
how this approach can be applied to develop a new serverless
platform later in §IV.
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send object(s) ——— trigger function(s,
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source functions data bucket target functions

Fig. 3. An overview of triggering functions in data-centric orchestration.
Source functions send intermediate data to the associated bucket, which can
be configured to automatically trigger target functions.

A. Key Insight

As discussed in §II-B, the current function orchestration
practice only specifies the high-level invocation dependencies
between functions, and thus has little fine-grained control over
how these functions exchange data. In particular, the current
practice assumes the tight coupling between function flows
and data flows. Therefore, when a function returns its result,
the workflow has no knowledge about how the result should
be consumed (e.g., in full or part, directly or conditionally,
immediately or later). To address these limitations, an effective
serverless platform must allow fine-grained data exchange
between the functions of a workflow, while simultaneously pro-
viding a unified and efficient approach for function invocation
and data exchange.

Following this insight, we propose a new data-centric
approach to function orchestration. We note that interme-
diate data (i.e., results returned by functions) are typically
short-lived and immutable [10], [38]: after they are generated,
they wait to be consumed and then become obsolete.> We
therefore make data consumption explicit and enable it to
trigger the target functions. Developers can thus specify when
and how intermediate data should be passed to the target
functions and trigger their activation, which can then drive
the execution of an entire workflow. As intermediate data are
not updated once they are generated [10], [38], using them to
trigger functions results in no consistency issues.

The data-centric function orchestration addresses the limi-
tations of the current practice via three key advances. First,
it breaks the tight coupling between function flows and data
flows, as data do not have to follow the exact order of
function invocations. It also enables a flexible and fine-grained
control over data consumption, and therefore can express a
rich set of workflow patterns (i.e., rich expressiveness). Sec-
ond, the data-centric function orchestration provides a unified
programming interface for both function invocations and data
exchange, obviating the need for developers to implement
complex logic via a big mix of external services to optimize
data exchange (i.e., high usability). Third, knowing when
and how the intermediate data will be consumed provides
opportunities for the serverless platform scheduler to optimize
the locality of functions and relevant data, and thus latency-
sensitive and data-intensive applications can be supported
efficiently (i.e., wide applicability).

B. Data Bucket and Trigger Primitives

Data bucket. To facilitate the data-centric function orches-
tration, we design a data bucket abstraction and a list of
trigger primitives. Fig. 3 gives an overview of how functions

3For data that need durability, they can be persisted to a durable storage.

are triggered. A serverless application creates one or multiple
data buckets that hold the intermediate data. Developers can
configure each bucket with triggers that specify when and how
the data should invoke the target functions and be consumed
by them. When executing a workflow, the source functions
directly send their results to the specified buckets. Each bucket
checks if the configured triggering condition is satisfied (e.g.,
the required data are complete and ready to be consumed).
If so, the bucket triggers the target functions automatically
and passes the required data to them. This process takes place
across all buckets, which collectively drive the execution of
an entire workflow.

We design various trigger primitives for buckets to specify
how functions are triggered. The interaction patterns between
functions can be broadly classified into three categories:

Direct trigger primitive (i.e., Immediate) allows one
or more functions to directly consume data in the associated
buckets. This primitive has no specified condition, and triggers
the target functions immediately once the data are ready to
be consumed. This primitive can easily support sequential
execution or invoke multiple functions in parallel (fan-out).

Conditional trigger primitives trigger the target func-
tion(s) when the developer-specified conditions are met.

e ByBatchSize: It triggers the function(s) when the
associated bucket has accumulated a certain number of
data objects. It can be used to enable the batched stream
processing [32], [33] in a way similar to Spark Streaming.

e ByTime: It sets up a timer and triggers the function(s)
when the timer expires. All the accumulated data objects
are then passed to the function(s) as input. It can be used
to implement routine tasks [24], [30].

e ByName: It triggers the function(s) when the bucket
receives a data object of a specified name. It can be used
to enable conditional invocations by choice [39].

e BySet: It triggers functions when a specified set of data
objects are all complete and ready to be consumed. It can
be used to enable the assembling invocation (fan-in).

e Redundant: It specifies n objects to be stored in
a bucket and triggers the function(s) when any k of
them are available and ready to be consumed. It can
be used to execute redundant requests and perform late
binding for straggler mitigation and improved reliability
[40], [41], [42].

Dynamic trigger primitives, unlike the previous two cate-
gories with statically-configured triggers, allow data exchange
patterns to be configured at runtime.

e DynamicJoin: It triggers the assembling functions
when a set of data objects are ready, which can
be dynamically configured at runtime. It enables the
dynamic parallel execution like ‘Map’ in AWS Step
Functions [43].

e DynamicGroup: It allows a bucket to divide its data
objects into multiple groups, each of which can be
consumed by a set of functions. The data grouping is
dynamically performed based on the objects’ metadata
(e.g., the name of an object). Once a group of data objects
are ready, they trigger the associated set of functions.
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TABLE I

EXPRESSIVENESS COMPARISON BETWEEN THE FUNCTION-ORIENTED
WORKFLOW PRIMITIVES IN AWS STEP FUNCTIONS (ASF) AND THE
DATA-CENTRIC TRIGGER PRIMITIVES IN PHEROMONE

Invocation Patterns [ ASF [ Pheromone
Sequential Execution Task Immediate
Conditional Invocation Choice ByName
Assembling Invocation Parallel BySet
Dynamic Parallel Map DynamicJoin

. ByBatchSize
Batched Data Processing | - -

ByTime
k-out-of-n - Redundant
MapReduce - DynamicGroup

MapReduce Advertisement event stream
Mappers Reducers  Preprocess Query Aggregate
event info

N

n every second

\n — Function invocations --»Send objects

Fig. 4.  Usage examples of two primitives: DynamicGroup for data
shuffling in MapReduce (left), and ByTime for periodic data aggregation
in the event stream processing (right).

e,

Dynamic trigger primitives are critical to implement some
widely-used computing frameworks, e.g., MapReduce (which
is hard to support in current serverless platforms as it requires
triggering parallel functions at every stage and optimizing
the fine-grained, all-to-all data exchange between them [2],
[3], [10], see §II-B). Here, our DynamicGroup primitive
provides an easy solution to these issues. As shown in Fig. 4
(left), when a map function sends intermediate data objects
to the associated bucket, it also specifies to which data group
each object belongs (i.e., by specifying their associated keys).
Once the map functions are all completed, the bucket triggers
the reduce functions, each consuming a group of objects.

We have developed a new serverless platform, Pheromone,
which implements the aforementioned data bucket abstraction
and trigger primitives. The design of Pheromone will be
detailed in §IV. Table I lists all the supported trigger prim-
itives in current Pheromone platform. Compared to AWS
Step Functions (ASF), Pheromone supports more sophisti-
cated invocation patterns and provides richer expressiveness
for complex workflows. We note that Azure Durable Func-
tions [44] can also achieve rich expressiveness for complex
workflows (§VI-A). Yet, it fails to achieve the other two
desired properties, i.e., high usability and wide applicability
(§VI-E).

Abstract interface. Pheromone’s trigger primitives are
not only limited to those listed in Table I. Specifically,
we provide an abstract interface for developers to implement
customized trigger primitives for their applications, if needed.
Fig. 5 shows the three main methods of the trigger interface.
The first method, action_for_new_object, is provided
to specify how the trigger’s associated target functions should
be invoked. This method can be called when a new data object
arrives: it checks the current data status and returns a list of
functions to invoke, if any. The method can also be called
periodically in a configurable time period through periodical

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

struct BucketKey {
string bucket_; // bucket name
string key_; // key name
string session // unique session id per request

-5

)

abstract class Trigger {
// Check whether to trigger functions for a new object.
vector<TriggerAction> action_for_new_object (
BucketKey bucket_key);

// Notify the information of a source function.
void notify_source_func(string function_name,
string session, vector<string> function_args);

// Check whether to re-execute source functions.
vector<TriggerAction> action_for_rerun(string session);

3

Fig. 5. Three main methods of the trigger interface.

int handle(UserLibraryInterface* library,\
int arg_size, char*x arg_values);

Fig. 6. Function interface.

checking (e.g., ByTime primitive). The other two meth-
ods, notify_source_func and action_for_rerun,
are provided to implement the fault handling logic which
re-executes the trigger’s associated source functions in case
of failures. In particular, through notify_source_func,
a trigger can obtain the information of a source function
once the function starts, including the function name, ses-
sion, and arguments; Pheromone also performs the periodic
re-execution checks by calling action_for_rerun, which
returns a list of timeout functions, such that Pheromone can
then re-execute them. The detailed fault tolerance mechanism
will be described in §IV-D. We give an example of imple-
menting a customized ByBatchSize trigger primitive via
the abstract interface in our technical report [45].

C. Programming Interface

Our Pheromone serverless platform currently accepts
functions written in C++4-, with capabilities to support more
languages (see §VII). Pheromone also provides a Python
client through which developers can program function inter-
actions.

Function interface. Following the common practice,
developers implement their functions through the handle ()
interface (see Fig. 6), which is similar to the C++ main
function except that it takes a user library as the first argument.
The user library provides a set of APIs (see Table II) that
allow developers to operate on intermediate data objects. These
APIs enable developers to create intermediate data objects
(EpheObject), set their values, and send them to the buck-
ets. A data object can also be persisted to a durable storage
by setting the output flag when calling send_object ().
When a bucket receives objects and decides to trigger next
function(s), it automatically packages relevant objects as the
function arguments (see Fig. 6). A function can also access
other objects via the get_object () APL

Bucket trigger configuration. Developers specify how the
intermediate data should trigger functions in a workflow via
our Python client. The client creates buckets and configures
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TABLE II
THE APIs OF USER LIBRARY WHICH DEVELOPERS USE TO OPERATE ON INTERMEDIATE DATA OBJECTS AND DRIVE THE WORKFLOW EXECUTION

Class [ API | Description

EpheObject vo;d* get_value() . Get a pointer to the va_lue of an object.
void set_value(value, size) Set the value of an object.
EpheObject* create_object(bucket, key) Create an object by specifying its bucket and key name.
EpheObject* create_object(function) Create an object by specifying its target function.

UserLibrary EpheObject* create_object() Create an object.
void send_object(object, output=false) Ez:s(iisfn object to its bucket, and set the output flag if it needs to
EpheObject* get_object(bucket, key) Get an object by specifying its bucket and key name.

I app_name = 'event-stream-processing’ Pheromone Runtime

> bucket_name = 'by_time_bucket'

3 trigger_name = 'by_time_trigger'
4 prim_meta = {'function':'aggregate', 'time_window':1000}
5 EVERY_OBJ)1, 100)
6 bucket_name)

7 bucket_name, trigger_name, \
hints=re_exec_rules)

re_exec_rules = ([('query_event_info',
s client.create_bucket (app_name,
client.add_trigger (app_name,
8 BY_TIME, prim_meta,

Fig. 7. Configuring a bucket trigger to periodically invoke a function in a
stream processing workflow.

triggers on the buckets using the primitives described in §I1I-B.
Functions can then interact with the buckets by creating,
sending and getting objects using the APIs listed in Table II.

As an example, we refer to a stream processing work-
flow [24] as shown in Fig. 4 (right). This workflow first
filters the incoming advertisement events (i.e., preprocess)
and checks which campaign each event belongs to (i.e.,
query_event_info). It then stores the returned results
into a bucket and periodically invokes a function (i.e.,
aggregate) to count the events per campaign every second.
Fig. 7 gives a code snippet of configuring a bucket trigger
that periodically invokes the aggregate function, where a
ByTime trigger is created with the primitive metadata that
specifies both the target function and the triggering time win-
dow (line 4). Developers can optionally specify a re-execution
rule in case of function failures, e.g., by re-executing the
query_event_info function if the bucket has not received
query_event_info’s output in 100 ms (line 5). We will
describe the fault tolerance and re-execution in §IV-D. A full
script of deploying this workflow is given in our technical
report [45].

To summarize, our data bucket abstraction, trigger prim-
itives, and programming interface facilitate the data-centric
function orchestration, and enable developers to conveniently
implement their application workflows and express various
types of data patterns and function invocations. In addition,
the unified programming interface also obviates the need
to make an ad-hoc selection from many APIs provided by
various external services, such as a message broker, in-memory
database, and persistent storage.

IV. PueroMONE DESIGN

This section presents the design of Pheromone, a new
serverless platform that supports data-centric function orches-
tration.

Coordinator Coordinator

Worker Node Worker Node

| Scheduler | | Scheduler |

Executor Executor

‘ Executor

. ‘ Executor

Shared Memory Object Store|

A

| Durable Key-Value Store |

| Shared Memory Object Store
VAN

Fig. 8. An architecture overview of Pheromone.

A. Architecture Overview

Pheromone runs on a cluster of machines. Fig. 8 shows an
architecture overview. Each worker node follows instructions
from a local scheduler, and runs multiple executors that load
and execute the user function code as needed. A worker node
also maintains a shared-memory object store that holds the
intermediate data generated by functions. The object store
provides a data bucket interface through which functions can
efficiently exchange data within a node and with other nodes.
It also synchronizes data that must persist with a remote
durable key-value store, such as Anna [46]. When new data
are put into the object store, the local scheduler checks the
associated bucket triggers. If the triggering conditions are
satisfied, the local scheduler invokes the target function(s)
either locally, or remotely with the help of a global coordinator
that runs on a separate machine and performs cross-node
coordination with a global view of bucket statuses.

B. Function Request Scheduling

In this section, we first introduce the scheduling problem
and algorithm of Pheromone, and then illustrate how we
realize scalable distributed scheduling.

Scheduling algorithm. Pheromone aims to exploit the
data locality of function execution for enhanced workflow
performance. Therefore, the objective of scheduling is to
minimize the amount of data transmitted across worker nodes,
thereby improving the overall efficiency of function interac-
tions. Let M = {1,...,m} be a batch of function requests
that are required to be scheduled onto a list of worker nodes
N ={1,...,n}. Let e; be a number of idle function executors
at node ¢. The total number of available executors is sufficient
to accommodate all function requests, i.e., ZZ e; > m. For
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Algorithm 1 Scheduling Algorithm
— M: a batch of function requests
— N: a list of worker nodes
— e;: available executors at node 4
— d7: amount of data accessed by request j at node 4
1: function SCHEDULE

2: T « list of nodes in N with executors available, i.e.,
e; >0

3: for request 5 € M do

4: t — Null

5: § «— —00

6: for node i € T do

7 if d/ > s then

8 s —dl

o: t—1

10: Schedule request j to node ¢

11: e — e —1

12: if e; = 0 then

13: remove node t from T’

each node 7, we denote d{ to be its amount Qf data accessed
by request j during execution. Note that {d’} can be easily
obtained before execution in our data-centric function orches-
tration. We define a binary variable z] to indicate whether
request j is scheduled to node %, i.e., 1 if scheduled and
0 otherwise. We formalize the scheduling problem as follows.
max Z Z d{ xf
i

st. Y al=1, VjeM
i

fo <e, VieN
J
x} €{0,1} (1

The objective of Equation 1 is to schedule all requests in
the batch (xf ) to maximize the amount of local data, which in
turn minimizes cross-node data transmission. The constraints
ensure that each function request is scheduled to exactly one
node and that the number of scheduled requests at each node
does not exceed its number of idle executors. Clearly, finding
the optimal solution to this problem is NP-hard, which is a
variant of the bin packing problem. We therefore resort to a
greedy scheduling algorithm.

Algorithm 1 presents the scheduling design of
Pheromone. In particular, it keeps track of a list of
worker nodes with available executors (line 2), and iterates
over all function requests in a batch and schedules each
request to the node with the most data to be accessed (line 3-
10). The algorithm then updates the number of available
executors at the scheduled node (line 11) and removes the
node from the list if it has no more available executors
(line 12-13).

We realize the scheduling algorithm following a two-tier,
distributed system design to deliver low-latency function invo-
cations and ensure high scalability.
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Fig. 9. Intra-node (left) and inter-node (right) scheduling.

Realization of distributed scheduling. In Pheromone,
a workflow request first arrives at a global coordinator, which
routes the request to a local scheduler on a worker node. The
local scheduler invokes subsequent functions to locally execute
the workflow whenever possible, thus reducing the invocation
latency and incurring no network overhead.

Intra-node scheduling. The local scheduler uses bucket
triggers to invoke functions as locally as possible. The sched-
uler starts the first function of a workflow and tracks its
execution status via its bucket. The downstream functions are
triggered immediately on the same node when their expected
data objects are put into the associated buckets and ready to
be consumed. As no cross-node communication is involved, it
reduces the function invocation latency and enables efficient
consumption of data objects in a local workflow execution.
Fig 9 (left) shows how the local scheduler interacts with
executors when running a workflow locally. The executors
synchronize the data status (e.g., the readiness of local objects
in buckets) with the local scheduler, which then checks the
associated bucket triggers and invokes downstream functions
if the triggering conditions are met. The low-latency message
exchange between the scheduler and executors is enabled via
an on-node shared-memory object store.

Local invocations occur when the node possesses all the data
required by downstream functions, aligning with Algorithm 1.
The scheduler simply routes subsequent requests to idle
executors that have no running tasks, avoiding concurrent
invocations and resource contention in each executor (similar
to the concurrency model in AWS Lambda [47]). When the
executor receives a request for the first time, it loads the
function code from the local object store and persists it
in memory for reuse in subsequent invocations. In case of
multiple idle executors, the scheduler prioritizes those with
function code already loaded to enable a warm start.*

If the requests received by a local scheduler exceed the
capacity of local executors, the scheduler forwards them to
a global coordinator, which routes them to other worker
nodes with sufficient resources. Instead of forwarding the
exceeding requests immediately, the scheduler waits for a
configurable short time period: if any local executors become
available during this period, the requested functions start and
the requests are served locally. The rationale is that it typically
takes little time for executors to become available as most
serverless functions are short-lived [53], plus Pheromone
has microsecond-scale invocation overhead (§VI-B). Such a

4Many techniques have been proposed to deal with cold starts of execu-
tors [48], [49], [50], [511, [52], [53], [54], which can be applied directly in

Pheromone.
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delayed scheduling has proven effective for improving data
locality [55].

Inter-node scheduling. A global coordinator not only for-
wards requests from overloaded nodes to non-overloaded
nodes, but also drives the execution of a large workflow which
needs to run across multiple worker nodes that collectively
host many functions of the workflow. This cannot be orches-
trated by individual local schedulers without a global view.

As Fig. 9 (right) shows, a coordinator gathers the associated
bucket statuses of the functions of a large workflow from
multiple worker nodes, and triggers the next functions as
needed. Each node immediately synchronizes local bucket
status with the coordinator upon any change, such that the
coordinator maintains an up-to-date global view. When the
coordinator decides to trigger functions, it also updates this
message to relevant workers, which reset local bucket status
accordingly. This ensures a function invocation is neither
missed nor duplicated. Note that, some bucket triggers (e.g.,
ByTime) can only be performed at the coordinator with
its global view; here, worker nodes only update their local
statuses to the coordinator without checking trigger conditions.

The coordinator employs Algorithm 1 in the inter-node
scheduling to enhance data locality. It tracks the node-level
knowledge from local schedulers, including the number of idle
executors and the amount of intermediate data objects. When
scheduling request batches, the coordinator can reduce data
movement across nodes, thereby improving overall function
interaction performance.

Scaling distributed scheduling with sharded coordinators.
Pheromone employs a shared-nothing model to signifi-
cantly reduce synchronization between local schedulers and
global coordinators, thus attaining high scalability. Specif-
ically, it partitions the workflow orchestration tasks across
sharded coordinators, each of which manages a disjoint set
of workflows. When executing a workflow, the responsible
coordinator sends the relevant bucket triggers to a selected set
of worker nodes and routes the invocation requests to them.
A worker node may run functions of multiple workflows. For
each workflow, its data and trigger status are synchronized
with the responsible coordinator only. This design substantially
reduces communication and synchronization overheads, and
can be achieved by running a standard cluster management
service (e.g., ZooKeeper [56], [57]) that deals with coordinator
failures and allows a client to locate the coordinator of
a specific workflow. The client can then interact with this
coordinator to configure data triggers and send requests. This
process is automatically done by the provided client library
and is transparent to developers.

C. Bucket Management and Data Sharing

We next describe how Pheromone manages data objects
in buckets, and enables fast data sharing between functions.

Bucket management. Pheromone uses an on-node
shared-memory object store to maintain data objects, such
that functions can directly access them via pointers (i.e.,
EpheObject in Table II). A data object is marked
ready when the source function puts it into a bucket via

send_object (). The bucket can be distributed across its
responsible coordinator and a number of worker nodes, where
each worker node tracks local data status while the coordinator
holds a global view (§IV-B). Bucket status synchronization is
only needed between the responsible coordinator and workers,
as local statuses at different workers track their local objects
only and are disjoint.

Pheromone garbage-collects the intermediate objects of
a workflow execution after the associated invocation request
has been fully served along the workflow. In case a workflow
is executed across multiple worker nodes, the responsible
coordinator notifies the local scheduler on each node to remove
the associated objects from its object store.

When a worker node’s local object store runs out of
memory, a remote key-value store is used to hold the newly
generated data objects at the expense of an increased data
access delay.’ Later, when more memory space is made
available (e.g., via garbage collection), the node remaps the
associated buckets to the local object store. In case a data
object is lost due to system failures, Pheromone automat-
ically re-executes the source function(s) to get it recovered
(details in §IV-D).

Fast data sharing. Pheromone further adopts optimiza-
tions to fully reap the benefits of data locality enabled by
its data-centric design. As intermediate data are typically
short-lived and immutable [10], [38], we trade their durability
for fast data sharing and low resource footprint. With an
on-node shared-memory object store, Pheromone enables
zero-copy data sharing between local functions by passing
only the pointers of data objects to the target functions. This
avoids the significant data copying and serialization overheads,
and substantially reduces the latency of accessing local data
objects.

To efficiently pass data to remote functions, Pheromone
also enables the direct transfer of data objects between nodes.
A function packages the metadata (e.g., locator) of a data
object into a function request being sent to a remote node.
The target function on the remote node uses such metadata
to directly retrieve the required data object. Compared with
using a remote storage for cross-node data sharing, our
direct data transfer avoids unnecessary data copying, and
thus leads to reduced network and storage overheads. While
the remote-storage approach can ensure better data durability
and consistency [13], [14], [58], there is no such need for
intermediate data objects. Only when data are specified to
persist will Pheromone synchronize data objects with a
durable key-value store (see send_object () in Table II).

Note that, Pheromone’s data-centric design can expose
details of intermediate data (e.g., the size of each data object),
therefore we can further optimize cross-node data sharing. For
large data objects, they are sent as raw byte arrays to avoid
serialization-related overheads, thus significantly improving
the performance of transferring large objects (see Fig. 13
in §VI-B). For small data objects, Pheromone implements a
shortcut to transfer them between nodes: it piggybacks small

5Qur current implementation does not support spilling in-memory objects
to disk, which we leave for future work.
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objects on the function invocation requests forwarded during
the inter-node scheduling (see §1V-B). This shortcut saves one
round trip as the target function does not need to additionally
retrieve data objects from the source function. In addition,
Pheromone runs an I/O thread pool on each worker node to
improve cross-node data sharing performance.

D. Fault Tolerance

Pheromone sustains various types of system component
failures. In case an executor fails or a data object is lost,
Pheromone restarts the failed function to reproduce the lost
data and resume the interrupted workflow. This is enabled
by using the data bucket to re-execute its source function(s)
if the expected output has not been received in a config-
urable timeout. This fault handling approach is a natural
fit for data-centric function orchestration and brings two
benefits. First, it can simplify the scheduling logic as data
buckets can autonomously track the runtime status of each
function and issue re-execution requests whenever necessary,
without needing schedulers to handle function failures. Sec-
ond, it allows developers to customize function re-execution
rules when configuring data buckets, e.g., timeout. Fig. 7
gives an example of specifying re-execution rules (line 5).
Fig. 5 shows the interface to implement the logic of function
re-execution for a bucket trigger (notify_source_func
and action_for_rerun).

Pheromone also checkpoints the scheduler state (e.g., the
workflow status) to the local object store, so that it can quickly
recover from a scheduler failure on a worker node. In case that
an entire worker node crashes, Pheromone re-executes the
failed workflows on other worker nodes. Pheromone can also
handle failed coordinators with a standard cluster management
service, such as ZooKeeper, as explained in §IV-B.

V. IMPLEMENTATION

We have implemented Pheromone atop Cloudburst [14],
a lightweight, performant serverless platform. We heavily
re-architected Cloudburst and implemented Pheromone’s
key components (Fig. 8) in 5k lines of C++ code. These
components were packaged into Docker [59] images for ease
of deployment. Pheromone’s client was implemented in
400 lines of Python code. Like Cloudburst, Pheromone runs
in a Kubernetes [60] cluster for convenient container man-
agement, and uses Anna [46], [61], an autoscaling key-value
store, as the durable key-value storage. On each worker node,
we mount a shared in-memory volume between containers
for fast data exchange and message passing. The executor
loads function code as dynamically linked libraries, which
is pre-compiled by developers and uploaded to Pheromone.
The entire codebase of Pheromone is open-sourced at [62].

VI. EVALUATION

In this section, we evaluate Pheromone via a cluster
deployment in AWS EC2. Our evaluation answers three
questions:

e« How does Pheromone improve function interactions

(§VI-B) and ensure high scalability (§VI-C)?
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¢ Can Pheromone effectively handle failures (§VI-D)?

e Can developers easily implement real-world applica-
tions with Pheromone and deliver high performance
(§VI-E)?

A. Experimental Setup

Cluster settings. We deploy Pheromone in an EC2
cluster. The coordinators run on the c5.xlarge instances,
each with 4 vCPUs and 8 GB memory. Each worker node is a
c5.4xlarge instance with 16 vCPUs and 32 GB memory.
The number of executors on a worker node is configurable
and we tune it based on the requirements of our experiments.
We deploy up to 8 coordinators and 51 worker nodes, and
run clients on separate instances in the same us—east-1a
EC2 zone.

Baselines. We compare Pheromone with four baselines.

1) Cloudburst: As an open-source platform providing fast
state sharing, Cloudburst [14] adopts early binding in schedul-
ing: it schedules all functions of a workflow before serving a
request, and enables direct communications between functions.
It also uses function-collocated caches. As Pheromone’s
cluster setting is similar to Cloudburst’s, we deploy the two
platforms using the same cluster configuration and resources.

2) KNIX: As an evolution of SAND [12], KNIX [13]
improves the function interaction performance by executing
functions of a workflow as processes in the same container.
Message passing and data sharing can be done either via a
local message bus or via a remote persistent storage.

3) AWS Step Functions (ASF): We use ASF Express Work-
flows [36] to orchestrate function instances as it achieves faster
function interactions than the ASF Standard Workflows [36].
As ASF has a size limit of transferring intermediate data (see
Fig. 2), we use Redis [20], a fast in-memory storage service,
to share large data objects between functions.

4) Azure Durable Functions (DF): Compared with ASF,
DF provides a more flexible support for function interactions.
It allows developers to express workflows in program code and
offers the Entity Functions [34] that can manage workflow
states following the actor model [63], [64]. We include DF
to study whether this expressive orchestration approach can
achieve satisfactory performance.

Here, Cloudburst, KNIX and ASF focus more on optimizing
function interactions of a workflow, while DF provides rich
expressiveness. Note that, for the two commercial platforms,
i.e., ASF and DF, we cannot control their orchestration run-
time. To make a fair comparison, we configure their respective
Lambda and Azure functions such that the number of function
instances matches that of executors in Pheromone. The
resource allocations of each function instance and executor
are also maintained the same. In our experiments, functions
are all warmed up to avoid cold starts in all platforms.

B. Function Interaction

Function invocation under various patterns. We first
evaluate the overhead of invoking no-op functions without
any payload. We consider three common invocation patterns:
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Fig. 10. Latencies of invoking no-op functions under three interaction patterns: function chain, parallel and assembling invocations. Each bar is broken into
two parts which measure the latencies of external (darker) and internal (lighter) invocations, respectively. The overall latency value is given at the top of the

bar, and the internal invocation latency is given at the bottom.

sequential execution (e.g., a two-function chain), parallel invo-
cation (fan-out), and assembling invocation (fan-in). We vary
the number of involved functions for parallel and assembling
invocations to control the degree of parallelism. Fig. 10 shows
the latencies of invoking no-op functions under these three
patterns. Each latency bar is further broken down into the
overheads of external and internal invocations. The former
measures the latency between the arrival of a request and
the complete start of the workflow, and the latter measures
the latency of internally triggering the downstream function(s)
following the designated pattern. In Pheromone, the external
invocation latency is mostly due to the overhead of request
routing which takes about 200 us [65]. Note that, functions
can be invoked locally or remotely in Pheromone and
Cloudburst, thus we measure them respectively in Fig. 10.
In our experiments, we report the average latency over 10 runs.

Fig. 10 (left) compares the invocation latencies of a two-
function chain measured on five platforms. Pheromone sub-
stantially outperforms the others. In particular, Pheromone’s
shared memory-based message passing (§IV-C) only incurs
an overhead of less than 20 us, reducing the local invocation
latency to 40 ps, which is 10x faster than Cloudburst. The
latency improvements become significantly more salient com-
pared with other platforms (e.g., 140x over KNIX, 450x over
ASF). When invoking a remote function, both Pheromone
and Cloudburst require network transfer, leading to a similar
internal invocation latency. Yet, Cloudburst incurs higher over-
head than Pheromone for external invocations as it needs
to schedule the entire workflow’s functions before serving
a request (early binding), thus resulting in worse overall
performance.

Fig. 10 (center) and (right) show the invocation laten-
cies under parallel and assembling invocations, respectively.
We also evaluate the cross-node function invocations in
Pheromone and Cloudburst by configuring 12 executors
on each worker, thus forcing remote invocations when run-
ning 16 functions. Pheromone constantly achieves the best
performance and incurs only sub-millisecond latencies in
all cases, even for cross-node function invocations. In con-
trast, Cloudburst’s early-binding design incurs a much longer
latency for function invocations as the number of functions
increases. Both KNIX and ASF incur high invocation over-
heads in the parallel and assembling scenarios. DF yields the
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Fig. 11. Latencies of a two-function chain invocation under various data

sizes.

worst performance, and we exclude it from the experiments
hereafter.

Data transfer. We next evaluate the interaction overhead
when transferring data between functions. Fig. 11 shows the
invocation latencies of a two-function chain with various data
sizes in Pheromone, Cloudburst, KNIX, and ASF. We eval-
uate both local and remote data transfer for Pheromone and
Cloudburst. For KNIX and ASF where the data transfer can
be done via either a workflow or a shared storage (i.e., Riak
and Redis), we report the best of the two choices.

For local data transfer, Pheromone enables zero-copy data
sharing, leading to extremely low overheads regardless of the
data size, e.g., 0.1 ms for 100 MB data. In comparison, Cloud-
burst needs the data copying and serialization, causing much
longer latencies especially for large data objects. For remote
data transfer, both Pheromone and Cloudburst support direct
data sharing across worker nodes. Pheromone employs an
optimized implementation without (de)serialization, making it
more efficient than Cloudburst. Collectively, compared with
Pheromone, the serialization overhead in Cloudburst dom-
inants the latencies of both local and remote invocations
under large data exchanges, which diminishes the performance
benefits of data locality: saving the cost of transferring 100 MB
data across network only reduces the latency from 844 ms to
648 ms. Fig. 11 also shows that KNIX and ASF incur much
longer latencies. While KNIX outperforms ASF when data
objects are small, ASF becomes more efficient for passing
large data because it is configured in our experiments to use
the fast Redis in-memory storage for large data transfer.

We further evaluate the overhead of data transfer under
parallel and assembling invocations. For parallel invocation,
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invocations. Each case includes transferring 10 B (left) and 1 MB (right)
of data in function invocations.

we measure the latency of a function invoking parallel
downstream functions and passing data to all of them; for
assembling invocation, we measure the latency between the
transfer of the first object and the reception of all objects in
the assembling function. Fig. 12 shows the latencies of these
two invocation patterns under various data sizes. Similarly,
Pheromone constantly achieves faster data transfer compared
with all other platforms for both invocation patterns.

Improvement breakdown. To illustrate how each of our
individual designs contributes to the performance improve-
ment, we break down Pheromone’s function invocation
performance and depict the results in Fig. 13. Specifically,
for local invocation, “Baseline” uses a central coordinator
to invoke downstream functions (i.e., no local schedulers),
which is today’s common practice [19]; “Two-tier scheduling”
uses our local schedulers for fast invocations on the same
worker node (§IV-B), where intermediate data objects are
cached in the scheduler’s memory and get copied to next func-
tions; “Shared memory” further optimizes the performance
via zero-copy data sharing (§IV-C). Fig. 13 (top) shows that
applying two-tier scheduling can reduce network round trips
and achieve up to 3.7x latency improvement over “Baseline”.
Applying shared memory avoids data copy and serialization,
further speeding up the data exchange especially for large
objects (e.g., 1 MB) by two orders of magnitude.

For remote invocation, “Baseline” uses a durable key-value
store (i.e., Anna [46]) to exchange intermediate data among
cross-node functions; “Direct transfer” reduces the communi-
cation overhead by allowing direct data passing between nodes
(§IV-C), where raw data objects on a node are serialized into a
protobuf [66] message and then sent to downstream functions;
“Piggyback & w/o Ser.” further optimizes the data exchange
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by piggybacking small objects on forwarded function requests
and eliminating serialization (§IV-C). As shown in Fig. 13
(bottom), direct data transfer avoids interactions with the
remote storage and improves the performance by up to 2.6x
compared with baseline. The piggyback without serialization
further speeds up the remote invocations with small (10 B)
and large (1 MB) objects by 2x and 2.7, respectively.

C. Scalability

We next evaluate the scalability of Pheromone with regard
to internal function invocations and external user requests.

Long function chain. We start with a long function chain
that sequentially invokes a large number of functions [67].
Here, each function simply increments its input value by
1 and sends the updated value to the next function, and the
final result is the total number of functions. As shown in
Fig. 14, we change the number of chained functions, and
Pheromone achieves the best performance at any scale.
Moreover, Cloudburst suffers from poor scalability due to its
early-binding scheduling, causing significantly longer latencies
when the number of chained functions increases; KNIX cannot
host too many function processes in a single container, making
it ill-suited for long function chains; ASF incurs the longest
latencies due to its high overhead of function interactions.

Parallel functions. Fig. 15 (left) evaluates the end-to-end
latencies of invoking various numbers of parallel functions,
where each function sleeps 1 second. We run 80 func-
tion executors per node in Pheromone and Cloudburst.
Pheromone only incurs a negligible latency in large-scale
parallel executions, while ASF and Cloudburst incur much
higher latencies, e.g., seconds or tens of seconds. KNIX suffers
from severe resource contention when running all workflow
functions in the same container, and fails to support highly par-
allel function executions. To further illustrate Pheromone’s
behavior in parallel invocations, Fig. 15 (right) shows the
distribution of function start times, where Pheromone can
quickly launch all 4k functions within 40 ms.

User request throughput. Fig. 16 shows the user request
throughput when serving requests to no-op functions using
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Fig. 17. Median and 99" tail latencies of a four-function workflow with
no failure, function- and workflow-level re-executions. The numbers indicate
the tail latencies.

various numbers of executors. We configure 20 executors
on each node in Pheromone and Cloudburst. We observe
that Cloudburst’s schedulers can easily become the bottleneck
under a high request rate, making it difficult to fully utilize the
executor’s resources; KNIX suffers from a similar problem that
limits its scalability. While ASF has no such an issue, it leads
to low throughput due to its high invocation overhead (Fig. 10).
Compared with these platforms, Pheromone ensures better
scalability with the highest throughput.

D. Fault Tolerance

We evaluate Pheromone’s fault tolerance mechanism
(§IV-D). We execute a workflow that chains four sleep func-
tions (each sleeps 100 ms), and each running function is
configured to crash at a probability of 1%. Fig. 17 shows
the median and 99'" tail latencies of the workflow over
100 runs using Pheromone’s function- and workflow-level
re-executions after a configurable timeout. In particular, the
timeout is configured as twice of the normal execution, i.e.,
200 ms for each individual function and 800 ms for the work-
flow. We also include the normal scenario where no failure
occurs. Compared with the common practice of workflow
re-execution, Pheromone’s data-centric mechanism allows
finer-grained, function-level fault handling, which cuts the
tail latency of the workflow from 1204 ms to 608 ms, thus
significantly reducing the re-execution overhead.

E. Case Studies

We evaluate three representative applications atop
Pheromone: Yahoo’s  streaming  benchmark  for
advertisement events [24], a real-time query task, and a
data-intensive MapReduce sort.

Advertisement event stream processing. This application
filters incoming advertisement events (e.g., click or purchase),
checks which campaign each event belongs to, stores them into
storage, and periodically counts the events per campaign every
second. As shown in Fig. 1 (right) and discussed in §II-B,
the key to enabling this application in serverless platforms
is to periodically invoke a function to process the events

160
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Fig. 18. Delays of accessing the accumulated data objects in the advertise-

ment event stream processing. Lower delays and more objects are better.

accumulated during the past one second. In Pheromone, this
is straightforward by using the ByTime primitive (§III-C and
Fig. 7). This application can also be implemented easily in DF
by using an addressable Entity function for aggregation [68].
However, it is non-trivial in ASF and we have to resort to a
“serverful” workaround: one workflow does the regular “filter-
check-store” for each event and sends the event ID to an
external, serverful coordinator; a separate workflow is set up
to get triggered every second by the accumulated event IDs
sent from the external coordinator, so that it can access and
count the associated events per campaign.

Fig. 18 compares the performance on Pheromone, ASF,
and DF. We measure the delays of accessing accumulated data
objects (i.e., advertisement events), where the lower delays
and more objects are better. For DF, data are not accessed in
batches, and thus we measure the queuing delay between the
reset request being issued and the Entity function receiving it.
We use up to 40 functions in all these platforms. DF results in
a significant overhead with high and unstable queuing delays,
as its Entity function can easily become a bottleneck. Among
the three platforms, Pheromone performs the best: it can
access substantially more accumulated data objects in a much
smaller delay. In summary, Pheromone not only simplifies
the design and deployment for such a stream processing
application, but also delivers high performance.

Real-time query. To evaluate Pheromone’s ability to
efficiently support latency-critical tasks, we employ a real-time
query application as a representative example. This application
workflow consists of three functions. The first function accepts
user queries and extracts the data field to be retrieved from
the data store. It then passes the extracted information to the
second function, which searches a local in-memory data store
for the corresponding value associated with the requested field.
Finally, the third function returns a formatted message to the
user with the retrieved data value.

We deploy the real-time query workflow on Pheromone,
Cloudburst, KNIX, and ASF, and compare their performance
in Fig. 19 (left). Among all the platforms, Pheromone
achieves the best performance and reduces the end-to-end
latency by 3.5x, 23x, and 79x compared with Cloudburst,
KNIX, and ASF, respectively. We further break down the end-
to-end latency into function execution time and interaction
overhead, as shown in Fig. 19 (right). The numbers indicate
the latency of function interaction. Pheromone incurs only
microsecond-scale interaction overheads compared to Cloud-
burst, resulting in significantly lower end-to-end latency.

MapReduce sort. We next evaluate how Pheromone’s
data-centric orchestration can easily facilitate MapReduce sort,
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Fig. 20. Latencies of sorting 10 GB data using various numbers of functions
on PyWren and Pheromone-MR. The latency is broken down into: the
interaction latency (for PyWren, the invocation and intermediate data 1/O),
and the latency for compute and I/O. The numbers indicate the former.

a typical data-intensive application. We have built a MapRe-
duce framework atop Pheromone, called Pheromone-MR.
Using the DynamicGroup primitive, Pheromone-MR can
be implemented in only 500 lines of code, and developers can
program standard mapper and reducer [69] without operating
on intermediate data (§III-B). We compare Pheromone—-MR
with PyWren [2], a specialized serverless analytics system
built atop AWS Lambda. Compared with Pheromone-MR,
PyWren is implemented in about 6k lines of code and supports
the map operator only, making it complicated to deploy a
MapReduce application: developers need to explicitly trans-
fer the intermediate data via a shared storage (e.g, Redis)
to simulate the reducer, and carefully configure the storage
cluster for improved data exchange. Even with these opti-
mizations, PyWren still suffers from limited performance (and
usability).

We evaluate the performance of Pheromone-MR and
PyWren with MapReduce sort over 10 GB data, where
10 GB intermediate objects are generated in the shuffle phase.
We allocate each Pheromone executor and each Lambda
instance the same resource, e.g., | vCPU. We also configure
a Redis cluster for PyWren to enable fast data exchange.
We measure the end-to-end latencies on Pheromone—MR and
PyWren using various numbers of functions, and break down
the results into the function interaction latency and the latency
for compute and I/O. The former measures the latency between
the completion of mappers and the start of reducers. For
PyWren, the interaction latency consists of two parts: 1) the
invocation latency of triggering all reducers after mappers
return, and 2) the I/O latency of sharing intermediate data via
Redis. As shown in Fig. 20, running more functions in PyWren
improves the I/O of sharing intermediate data, but results in a
longer latency in parallel invocations. Compared with PyWren,
Pheromone—-MR has a significantly lower interaction latency
(e.g., less than 1s), thus improving the end-to-end performance
by up to 1.6x.

IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 1, FEBRUARY 2025

We note that, the limitations of AWS Lambada make
PyWren less efficient. First, because Lambda does not support
large-scale map by default [43], it needs to implement this
operation but in an inefficient way which incurs high invoca-
tion overheads. Second, Lambda has a limited support for data
sharing, forcing developers to explore an external alternative
that incurs high overheads even though using a fast storage
(i.e., Redis). Unlike AWS Lambda, Pheromone supports
rich patterns of function executions while enabling fast data
sharing, such that developers can easily build a MapReduce
framework and achieve high performance.

VII. DISCUSSION AND RELATED WORK

Isolation in Pheromone. Pheromone provides the
container-level isolation between function invocations, while
functions running on the same worker node share in-memory
data objects (§IV-C). Commercial container-based serverless
platforms often do not co-locate functions from different users
to enhance security [70]. In this setting, functions on the same
worker node can be trusted; hence, it is safe to trade strict
isolation for improved I/O performance. We notice that current
serverless platforms have made various trade-offs between
performance and isolation. For example, AWS Lambda runs
functions in MicroVMs for strong isolation [48]; KNIX iso-
lates a workflow’s functions using processes in the same
container for better performance [12]; recent work proposes
lightweight isolation for privacy-preserving serverless applica-
tions [71]. Pheromone can explore these different trade-offs,
which we leave for future work.

Supported languages. Pheromone currently supports
functions written in C++4, but it can be straightfor-
ward to support other programming languages. Specifically,
Pheromone’s executor exposes data trigger APIs (Tabel II)
and interacts with other system components, and can serve
as a proxy for functions written in different languages. That
being said, Pheromone’s optimization on fast data exchange
via shared memory may not apply to all language runtimes —
only those allowing the direct consumption of byte arrays
without (de)serialization, e.g., Python ctype, can benefit from
zero-copy data sharing. The other Pheromone designs are
still effective regardless of language runtimes.

Data exchange in serverless platforms. Data exchange
is a common pain point in today’s serverless platforms. One
general approach is to leverage shared storage to enable and
optimize data exchange among functions [3], [5], [10], [72],
[73], [74], [75]. One other approach is to exploit data locality
to improve performance, e.g., by placing workflow functions
on a single machine [14], [15], [16], [23], [38], [58]. Moreover,
OFC [76] and Faa$T [77] provide the autoscaling cache for
individual applications. Shredder [78] and Zion [79] push the
function code into storage. Wukong [4] enhances the locality
of DAG-based parallel workloads at the application level.
Lambdata [38] makes the intent of a function’s input and
output explicit for improved locality; however, it does not
provide a unified programming interface for expressive and
simplified function interactions, and its performance is heavily
bound to Apache OpenWhisk [15], [80].
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VIII. CONCLUSION

This paper revisits the function orchestration in serverless
computing, and advocates a new design paradigm that a
serverless platform needs to: 1) break the tight coupling
between function flows and data flows, 2) allow fine-grained
data exchange between functions of a workflow, and 3) provide
a unified and efficient approach for both function invoca-
tions and data exchange. With this data-centric paradigm,
we have designed and developed Pheromone, a new server-
less platform which achieves all the desired properties, namely,
rich expressiveness, high usability, and wide applicability.
Pheromone is open-sourced, and outperforms current com-
mercial and open-source serverless platforms by orders of
magnitude in terms of the latencies of function invocation and
data exchange.
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