ARTIFACT
EVALUATED
susenix

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED

susenix
€0,

AVAILABLE REPRODUCED

Attack of the Bubbles: Straggler-Resilient Pipeline Parallelism
for Large Model Training

Tianyuan Wu' Lunxi Cao™* Hanfeng Lu®, Xiaoxiao]iangT, Yinghao Yu, Siran Yang§,
Guodong Yang®, Jiamang Wang®, Lin QuS, Liping Zhang®, Wei Wang'
"Hong Kong University of Science and Technology
SAlibaba Group

Abstract

Training large Deep Neural Network (DNN) models at
scale often encounters straggler issues, mostly in communi-
cations due to network congestion, RNIC/switch defects, or
topological asymmetry. Under advanced pipeline parallelism,
even minor communication delays can induce significant train-
ing slowdowns. This occurs because (1) slow communica-
tion disrupts the pipeline schedule, creating cascading “bub-
bles” in a domino effect, and (2) current GPU kernel schedul-
ing is susceptible to head-of-line blocking, where slow com-
munication blocks subsequent computations, further adding
to these bubbles. To address these challenges, we present
PIPEMORPH, a straggler-resilient training system with two
key optimizations. First, it optimally adapts the pipeline sched-
ule in the presence of stragglers to absorb communication
delays without inducing cascading bubbles, using a simple yet
effective algorithm guided by an analytical model. Second,
upon detecting slow communication, PIPEMORPH offloads
communication operations from GPU to host memory and
utilizes CPU-side RDMA for data transfer. This eliminates
head-of-line blocking as subsequent computation kernels can
be scheduled immediately on GPUs. Together, these opti-
mizations effectively reduce pipeline stalls in the presence of
communication stragglers, improving the training iteration
time by 1.2-3.5x in our experiments under various settings.

1 Introduction

The rise of large Deep Neural Network (DNN) models has
ushered in the golden age of Artificial Intelligence, leading to
breakthroughs in applications that would have been consid-
ered science fiction even a few years ago [1,15,33,43,47,51].
Training large DNN models typically requires combining ten-
sor, data, and pipeline parallelism strategies across thousands
of GPUs [22,31,41, 53], where providing high-throughput,
low-latency communication is critical to enhancing the train-
ing performance [6, 11,27].

However, at this scale, communication stragglers, mani-
fested as slow links with extended pairwise transmission de-
lays, are frequent [12,35] and can have a significant perfor-

*Equal contribution.

A 1F1B-base
[ZB-base

Il 1F1B-bubble
= ZB-bubble

EE 1F1B-blocking
ZB-blocking

L3 3 3.26
&c 2.30 2.3
082 1.8
gx 1.331.36
gl
=0
0 0.02 0.04 0.06

Communication Delay (s) between PP stages 6 & 7

Figure 1: GPT-2 14B training performance on 8 nodes (one
H800 GPU per node) with 8-stage PP, where minor communi-
cation delays between PP stages trigger dependency bubbles
and blocking stalls, causing significant slowdowns in 1F1B
and ZeroBubble (ZB) pipelines.

mance impact [9,36,49]. Particularly in multi-tenant environ-
ments, jobs occupying a large number of GPUs frequently
suffer from communication-induced slowdowns during life
cycles [6,49]. These stragglers originate predominantly from
transient network congestion [6,49] but can also persist due
to hardware defects (e.g., RNIC or switch failures) or network
topological asymmetry [50]. The presence of communica-
tion stragglers, even on a single link, slows down the entire
training job due to frequent synchronizations necessitated by
hybrid-parallelism strategies, causing up to 90% throughput
degradation in production clusters [9,36,49].

Production systems mainly focus on detecting communi-
cation stragglers in large-scale training [6,9, 12,49] and rely
on traffic load balancing at flow or packet level to alleviate
network congestion [4, 10, 14,24]. However, these approaches
are agnostic to the parallelism strategies of the training job
and cannot effectively mitigate the straggler impacts on job
performance. As illustrated in Figure 1, with pipeline par-
allelism (PP), even minor communication delays between
two PP stages can result in significant training slowdowns,
which grow rapidly as the delay increases. Our study identi-
fies two issues that contribute to this large slowdown, with
their impacts shown in Figure 1.

First, given sophisticated data dependencies in a PP sched-
ule (e.g., Gpipe [18], IF1B [30] and ZeroBubble [34]), a
single communication straggler, when exceeding a certain
threshold, can set off a domino effect, triggering cascading
bubbles (i.e., GPU idle periods) that propagate across subse-
quent stages (Figure 5-bottom). These bubbles, which we call

Execution Plan: [F1, Send-F1, F2, Send-F2, F3, Send-F3, F4, ...]

w/o comm. delay 1 w/ comm. delay

si‘i;T,‘:n [FAlFr2F]Fa| :|F1|F2|BSZ|F3|BS4|F4|
Send-F1 | Send-F1

Comm. Send-F2 | Send-F2

Streams Sehd-F3 | Send-F3

Blocking Stalls Blocked Kernel Root Cause
BS1&3 Send-F2&F3
BS2&4 F3&F4

Queuing: the previous comm. kernel not finished.

It is blocked by its predecessor comm. kernel.

Figure 2: Head-of-line blocking due to sequential kernel
scheduling: slow comm. blocks subsequent comp.

dependency bubbles, cause severe misalignment within the
pipeline, disrupting its entire schedule.

Second, existing GPU kernel scheduling is susceptible to
head-of-line blocking, where slow communication can block
subsequent computation. To illustrate this, we refer to Fig-
ure 2. Once a PP schedule is determined, a low-level kernel
execution plan is generated accordingly, in which communi-
cation and computation operations are interleaved to overlap
communication latency (e.g., F1, Send-F1, F2, Send-F2, ...).
The GPU scheduler sequentially schedules operations follow-
ing this plan. However, in the presence of a slow link, a com-
munication operation cannot be scheduled immediately as
previous communication operations are still queued up, pend-
ing for transmission. This blocks the scheduling of subsequent
computation operations, introducing additional blocking stalls
to the pipeline (Figure 2-right), which in turn triggers more
bubbles, further aggravating training slowdowns.

Eliminating dependency bubbles and blocking stalls re-
quires dynamically adapting the pipeline schedule with frame-
work support, which remains lacking in existing systems.
For instance, Falcon [49] simply reassigns slow links from
communication-heavy DP groups to communication-light
PP groups, without addressing subsequent pipeline bubbles.
Recycle [13] and Oobleck [20] pre-compute a pipeline recon-
figuration plan for handling GPU failures. However, commu-
nication stragglers cannot be addressed using a pre-computed
plan as pipeline adaptation must be made dynamically based
on the changing straggler magnitude.

In this paper, we present PIPEMORPH, a straggler-resilient
system for efficient hybrid-parallel training. It addresses de-
pendency bubbles and blocking stalls caused by slow commu-
nications with two key designs.

Straggler-resilient pipeline adaptation. We show analyti-
cally that a pipeline schedule (e.g., 1F1B [30] or ZeroBub-
ble [34]) can tolerate slow communication up to a certain
threshold without triggering cascading bubbles in a domino
effect. This threshold is in proportion to the slackness be-
tween adjacent PP stages, defined as the difference of the
number of forward operations scheduled in the two stages
during the warm-up phase. Larger slackness enhances the
pipeline’s resilience to a longer communication delay. Based
on this, PIPEMORPH initially generates a ZeroBubble sched-
ule [34] that maximizes the minimum inter-stage slackness

under memory and configuration constraints. It then monitors
communication delays between PP stages. When the delay ex-
ceeds the tolerance threshold (given by our analytical model),
it quickly reacts by adapting the pipeline schedule to increase
the inter-stage slackness of the slow link, eliminating all or
most straggler-induced dependency bubbles.

Decoupled data plane. PIPEMORPH further employs a fully-
decoupled data plane to address head-of-line blocking of
GPU kernel scheduling and the resulting blocking stalls. Upon
detecting communication stragglers, the system transparently
switches to a delegation mode, in which it offloads PP commu-
nications from GPU to host memory and uses dedicated dele-
gate processes to perform data transfer via CPU-side RDMA.
PIPEMORPH chooses to bypass the more efficient GPU-direct
RDMA due to three design imperatives. First, it completely
decouples PP communications from GPU execution, prevent-
ing slow communication from blocking subsequent GPU com-
putations. Second, optimally adapting pipeline schedule in
the presence of stragglers may require storing more activa-
tions than GPU memory can hold, where offloading to host
memory becomes necessary. Third, given that PP schedule
only requires light to moderate communications (compared
to DP and TP), the performance overhead introduced by of-
floading can be minimized with system-level optimizations.
This design additionally enables RNIC fault tolerance: upon
detecting a RNIC failure, the system reroutes traffics through
remaining healthy RNICs via the delegation path, obviating
the need for checkpoint-and-restart failovers.

We implemented PIPEMORPH on top of the Megatron-
LM [31,41] training framework, using ZeroBubble [34] as the
base pipeline schedule to achieve the best performance. We
evaluated PIPEMORPH using GPT-2 models of varying sizes,
from 7B to 140B parameters, on H800 clusters. Compared to
state-of-the-art straggler mitigation solutions, PIPEMORPH
reduces the average training iteration time by 1.2-3.5x under
various network latency conditions. In a large-scale deploy-
ment involving 128 H800 GPUs, PIPEMORPH consistently
delivers high training throughput in real-world network en-
vironments with frequent communication stragglers, outper-
forming the ZeroBubble baseline by 1.36x.

2 Background and Motivation

2.1 Hybrid-Parallel DNN Training

The increasing scale of Deep Neural Networks (DNNs),
driven by empirical scaling laws [23], has led to state-of-
the-art models with hundreds of billions of parameters [1,
12,15,27,39,43,51]. Training such large models requires
high-performance computing (HPC) clusters comprising tens
of thousands of GPUs [22,31,35], leveraging advanced paral-
lelization strategies in three primary forms.

Data parallelism (DP) distributes identical model replicas

across GPU groups, with each replica processing a subset
of the input data (mini-batches) concurrently [31, 37, 41].
Synchronization is performed at the end of each iteration via
all-reduce operations, often spanning multiple GPU nodes
interconnected through high-speed networks such as RDMA
over Infiniband (IB) [14,22,35].

Tensor parallelism (TP) partitions individual tensors (e.g.,
weight matrices) within model layers across multiple
GPUs [41,53]. While this technique parallelizes linear algebra
operations within layers, it incurs significant communication
overhead due to frequent reduce-scatter and all-reduce oper-
ations during forward and backward passes. Consequently,
TP is typically restricted to single-node deployments with
high-bandwidth GPU interconnects (e.g., NVLink).

Pipeline parallelism (PP) divides the model into sequential
layer groups (stages) assigned to different GPUs [18,31,53].
Mini-batches are further split into micro-batches that flow
through these stages in a pipelined manner, enabling parallel
processing across stages. PP requires lower network band-
width than DP/TP by communicating only activations and
gradients at layer boundaries. However, it can suffer from
reduced training throughput due to pipeline dependencies
and bubbles (idle slots) as the number of stages increases.
Modern PP implementations like 1F1B [30] and ZeroBubble
(ZB) [34] address these issues, with ZB achieving bubble-free
execution at the expense of increased memory footprint.

2.2 Reliability Issues

Training large DNN models over extended periods face relia-
bility challenges, primarily manifested through crash failures
and still-functioning but slow stragglers [9, 12, 20, 22, 48,
49,51]. These issues stem from hardware failures, software
errors, or resource contention, with even a single affected
component disrupting the entire distributed training.

Crash failures. Crash failures have been extensively analyzed
in recent studies [12,13,17,20,21,29,45,48,50]. Meta and
ByteDance report that faulty GPUs and RNICs are the lead-
ing causes, accounting for 40% and 10% of failures, respec-
tively [12, 17]. To address this, researchers have developed
fault-resilient solutions for hybrid-parallel training, including
(1) optimized checkpoint-and-restart mechanisms to minimize
recovery overhead [29,48] and (2) exploiting PP’s functional
redundancy to reduce checkpointing [13,20,45].

Stragglers. Stragglers—manifested as slow computation or
communication—represent another major reliability concern
in large-scale DNN training [9, 12,49]. Prior studies [22,49]
indicate that computation stragglers, typically caused by GPU
thermal throttling or hardware defects, are relatively rare
(~0.5% occurrence) and short-living (usually recovering in
10 minutes). These incidents can be efficiently addressed
by adjusting the parallelization of GPU devices [25,49]. In
contrast, communication stragglers, predominantly due to

@4 3.94

9T | E=a DP PP 2.79

0S92 1.87 -

Ee o 249,049 0.64 0.86_ L0y
= 0.0 10.0 20.0 30.0

Communication Delay (ms)

Figure 3: Iteration time growth under different per packet
delays, where DP is more communication-sensitive to PP.

network congestion, are more frequent and persistent, often
lasting for hours [6,49]. In Alibaba’s production multi-tenant
clusters, over 36% of jobs using >50% GPUs experience slow-
downs from communication issues [6]. In extreme cases, such
stragglers can reduce training throughput by up to 90% [49].

Communication stragglers may occur on cross-node links
between DP groups (DP straggler) or between PP stages
(PP straggler), but not in TP groups, as TP communica-
tions are confined to intra-node, high-bandwidth, and stable
NVLinks [6,49]. Compared to PP stragglers, DP stragglers
can have a more pronounced impact on performance, as DP’s
all-reduce operations incur substantial communication costs
and are bottlenecked by the slowest link in the all-reduce
ring [7,16,25,49,55].

To illustrate this effect, we train a GPT2-7B model on 8
nodes (each with one H800 GPU) by configuring a (2 DP, 4
PP) ZeroBubble pipeline using Megatron-LM [31]. We man-
ually inject a communication delay of 10/20/30 ms into a
designated cross-node link (400 Gbps IB), which may affect
DP or PP communication. As shown in Figure 3, when this
link is part of the DP communication group, iteration time
increases by up to 8.04x. In contrast, when the same link
is assigned for PP communication, the slowdown is limited
to < 2.24x. Motivated by these findings, recent work [49]
proposes mitigating DP stragglers by reconfiguring the par-
allelization scheme to assign slow links to PP stages instead
of DP groups. While this approach effectively converts a DP
straggler to a PP straggler, it still results in significant slow-
downs, which remain open to address.

3 Impact Analysis and Challenges

In this section, we systematically investigate how inter-stage
communication stragglers lead to substantial pipeline stalls.
Our investigation focuses on ZeroBubble (ZB) pipeline
scheduling [34]—a generalized, fine-grained PP scheduling
scheme that subsumes common approaches like 1F1B [30]
as special cases. As illustrated in Figure 4, ZB eliminates
pipeline bubbles by decomposing backward pass into two
independent operators, backward input (B) and backward
weight (W), then precisely orchestrating their execution. This
generalized design encapsulates diverse pipeline behaviors,
ensuring the broad applicability of our findings. In the follow-
ing, we identify two critical delay propagation mechanisms:
(1) domino effect of cascading bubbles due to PP’s vulnerable
dependency chains (§3.1) and (2) head-of-line blocking stalls

Warm-up Phase Cool-down Phase

of Stage 0 Steady Phase of Stage 0 of Stage 0
\ A
0 1[2[3[4]5[6[7] 1[8[2[9] 3nd 4R 5[z 6] 1] 72 8] 3[9[4o 5|1 612 7] 8] Oof 12
4 1 1{2|3(4(5[1|6|2|7|3|8|4|9[50 61712 8| 1|9|2r0 3[11{4[12(5|6 7|89 01102
§2 123142536475869710§|119121 11| 2p23|4|5|6(7|8|9Lop112|
3 1|1{2|2|3[3|4[4[5|5[6|6|7|7(8|8[9|9fopopif11h212[1|2[3[4|5]6]7]|8[9pop112
0 50 100 150 200 250 300 350

Time (ms)

[Forward (F) [Backward Input (B) [Backward Weight (W)

Figure 4: An ideal straggler-free ZeroBubble [34] pipeline
with 4 stages and 12 microbatches, completing in 390 ms.

due to sequential GPU kernel scheduling (§3.2).

3.1 Domino Effect of Cascading Bubbles

Pipeline parallelism orchestrates stage execution with strict
data dependencies. In ZB scheduling, these dependencies
manifest through two key constraints: (1) a forward opera-
tor (F;) in stage S; requires completion of F; in preceding
stage S;_1; (2) backward operators B; and W; in S; must be
scheduled after B; completion in subsequent stage S; . The
presence of communication stragglers between stages S; and
Si+1 introduces additional latency c;, with two immediate
impacts: (1) forward operator F; in stage ;11 can only com-
mence after the completion of F; in S; plus the communication
delay ¢;; (2) backward operators B; and W; in S; must follow
the completion of B; in S;, plus the delay c;.

We quantify the straggler impacts on pipeline schedules
through simulations of a 4-stage pipeline processing 12 micro-
batches, with uniform operator execution time (F =B =W =
10 ms). Figure 4 shows the ideal straggler-free ZB schedule
completing in 390 ms with zero bubbles. Figure 5 depicts
the resulting schedules in the presence of communication de-
lays of 10 and 20 ms between stages 0 and 1. A 10 ms delay
introduces a slight slowdown, extending the execution time
from 390 to 400 ms. However, further increasing the delay
to 20 ms results in a non-linear growth of pipeline stall to
440 ms. This occurs because the 20 ms delay pushes the first
backward B; and subsequent Fg in Sy back to t = 110 ms,
creating a bubble in S;. This bubble propagates downstream,
triggering cascading pipeline stalls in subsequent stages.

Extending our analysis, Figure 8 examines various ZB
pipelines with different slackness parameters A; (defined in
§4.1). For each pipeline schedule, we gradually increase the
communication delays between adjacent stages and depict in
Figure 8 the resulting pipeline delays (left) and bubble rates
(right). These results empirically demonstrate that localized
communication delays exceeding a certain threshold create
cascading dependency bubbles in a domino effect, leading to
significant global pipeline stalls.

3.2 Head-of-Line Blocking Stalls

Communication stragglers further degrade pipeline perfor-
mance through low-level GPU kernel scheduling anomalies,

[Forward (F) [Backward Input (B) [Backward Weight (W)

10ms delay on 0 & 1, T=400ms

01|2|34567 1]8[2[9[3[q 411 52 6] 1] 7] 2[8] 3[9] 4|1 5|1 619 7] 8[frdr 117
él ﬁl2345162738495106117128192103114125678911112
<ol N 12314253647586971081191210111212345678910114
m310m 1122334455667788991111111717123456789111[121
0 50 100 150 200 250 300 350 400
20ms delay on 0 1, T=440ms
0 1|2|3|4567 1] 3[q 4507 6] 1 728394105116117891011[12
§1 L,JllZ3451,62 484|951 6] ll 7128192103114125678911112{
82 t 112[3[1]4]2[5]3[6] 4] 7[5] 8[6] 9| 7 8‘ 119R21q 1h12h2 3[4(5[6[7[8[9112
9 3 |20ms [T[1[2[2[3(3[3[4[5[5[6[6]7| 7[8[8| 9| OfdLaiiiziz 1] 2| 3[4 5[6| 7|8 Ol
0 50 100 150 200 250 300 350 400

Time (ms)

Figure 5: ZeroBubble schedule under ¢y = 10/20 ms delay
between stage 0 and 1. Increasing co from O to 10 ms only
prolongs iteration time 7 by 10 ms, while an additional 10
ms delay introduces a 40 ms growth in 7'.

manifested as head-of-line blocking stalls. To demonstrate
this problem, we conduct a GPT2-7B training experiment
across four nodes (one H800 GPU per node), under a ZB
schedule of (1 TP, 1 DP, 4 PP). We inject a 30 ms delay be-
tween PP stages 0 and 1 using NCCL network plugin. Figure 6
illustrates the profiled kernel execution result using NVIDIA
Nsight Systems [32].

Blocking stalls. Given a pipeline schedule, a training frame-
work (e.g., Megatron-LM [31], TorchTitan [26]) generates a
fixed execution plan that interleaves computation (F, B, W)
and communication operations, including send/recv-forward
(SF/RF) and send/recv-backward (SB/RB). This execution
plan maximizes computation-communication overlap through
a carefully ordered operation scheduling sequence (e.g.,
[F1,SF,F>,SF,, ...] in Figure 6). The kernel scheduler se-
quentially launches these operations following this predeter-
mined order. However, delayed communication operations
stall subsequent computation operations, creating unexpected
bubbles. In Figure 6, the delayed SF; blocks the launching of
Fy in stage 0, despite it being ready to execute after F3.

Root cause analysis. Blocking stalls occur when the NCCL’s
transmission queue becomes saturated, which may disrupt
CUDA’s asynchronous execution. This is because each NCCL
send/recv launches a GPU kernel to enqueue data transfers,
which are handled asynchronously by a dedicated backend
thread. Under normal circumstances without stragglers, the
network transmission rate closely matches data generation.
As a result, NCCL’s internal queue does not fill up, allowing
perfect overlap of computation and communication through
the use of separate CUDA streams. This outcome aligns with
the original design principle of frameworks such as Megatron-
LM. However, when network links become slow, the queue
builds up as pending transfers outpace actual data transmis-
sion. The launching of subsequent communication kernels
(e.g., SF3) hence blocks—they do not return control to the
kernel scheduler until the queue space becomes available.
This in turn prevents the CUDA scheduler from launching
subsequent computation kernels (e.g., F4 is blocked until SF3

[_Forward (F) [Backward Input (B) 1 Backward Weight (W)

(I} T
o Sl FRIININININ
£ “uﬂ it LT
0101 O AN R

/I 0 200 400 600 800 "~ 1000 1200
’ Time (ms) Tteall
1 =~
[Stage 0’s Execution Plan]: (F1, SF1, F2, SF2, F3, SF3, F4, ...)
Send Stream SF1 SF2 SF3 SF4 SF5 SF6
» 41.7% Stream 27 [| e T |
» 23.4% Stream 22 () |)) () (:)
Comp. Stream F1 F2 F3 F4 F5 F6 F7

Figure 6: Slow communication (SF,) induces HOL blocking
stalls (F4) due to sequential GPU kernel scheduling.

returns control, which itself waits on SF>), thus creating head-
of-line (HOL) blocking stalls in computation. As illustrated
in Figure 6, such HOL blocking increases the iteration time
from 710 ms to 1350 ms—a 1.9 x slowdown. Notably, CUDA
multi-streaming does not resolve this issue because all streams
within a GPU context share the same NCCL communicator
and transmission queue. As a result, once the queue becomes
full, all streams are stalled and blocking is unavoidable.

3.3 Which Layer to Optimize?

Our analysis reveals that communication stragglers degrade
pipeline performance through two mechanisms: dependency
bubbles and HOL blocking stalls (see Figure 1 for quantita-
tive contributions). Addressing these issues requires careful
considerations of optimization layers within the system stack.

Network-level optimizations, such as ECMP [4, 14,44] or
packet spraying [10,24], balance traffic at the flow or packet
level. While effective for general congestion reduction, these
approaches are agnostic to training semantics (e.g., paral-
lelism strategies and communication patterns) and cannot
prioritize critical communications over less sensitive trans-
fers, nor can they address HOL blocking stalls. Also, even
state-of-the-art load balancing techniques cannot eliminate
network congestion, especially in multi-tenant clusters [2,6].

Effective straggler mitigation requires framework-level
optimizations, leveraging training semantics such as pipeline
schedule, operator dependencies, and communication pat-
terns. This semantic insight enables targeted mitigation strate-
gies, such as pipeline adaptation and blocking-free kernel
scheduling—none of these can be implemented in the network
layer. However, existing reliability enhancement mechanisms
for training frameworks are ineffective in addressing commu-
nication stragglers under pipeline parallelism. For instance,
Malleus [25] exclusively targets computation stragglers with-
out considering slow communications. XPUTimer [9] pro-
vides production-grade straggler detection yet lacks integrated
mitigation mechanisms. Falcon [49] reassigns slow links from
DP groups to PP stages, but fails to resolve resulting PP strag-
glers. Recycle [13] and Oobleck [20] rely on static pipeline
reconfiguration plans to handle GPU failures, lacking adapt-
ability to dynamic network conditions.

Notation Explanation
S; The i™ pipeline stage.
S Total number of pipeline stages.
N Total number of microbatches.
t Execution time of a single operation F/B/W .
ci Communication latency between S; and S .
T The overall pipeline execution time.
Xi Number of warm-up forwards in stage ;.
A Slackness between stages S; and S; .
) Simulator’s time step size.

Table 1: Notations in the quantitative analysis and algorithms.

4 Straggler-Resilient Pipeline Adaptation

PIPEMORPH is a system that effectively mitigates commu-
nication stragglers for hybrid-parallel training with two key
designs: (1) a straggler-resilient pipeline adaptation algorithm
that dynamically adapts the pipeline schedule to minimize
dependency bubbles (§3.1), and (2) a fully-decoupled data
plane eliminating HOL blocking stalls (§3.2).

In this section, we describe the first design component,
the pipeline adaptation algorithm, where we assume no HOL
blocking stalls—which is guaranteed by our second design in
§5. We first analytically quantify the accumulated pipeline de-
lays caused by a slow link between PP stages (§4.1). Driven by
this analytical result, we design the pipeline adaptation algo-
rithm, including warm-up scheduling (§4.2) and full pipeline
scheduling (§4.3). Key mathematical notations are summa-
rized in Table 1 to guide subsequent analysis.

4.1 Quantitative Delay Analysis

Key insight. In §3.1, we empirically demonstrate that com-
munication delays exceeding a certain threshold induce dis-
proportionately significant pipeline stalls through cascading
bubbles. We further develop an analytical model to quantify
this effect. Our analysis identifies the slackness of a pipeline
as the key structural resilience to communication delays, in-
formally defined as the difference of the warm-up forward
counts in two adjacent stages. Intuitively, the more warm-up
forward operators the pipeline schedules in stage S; than in
Si+1, the larger slackness it provides between the two stages,
which can be utilized to “absorb” more dependency bubbles
caused by inter-stage communication delays.

Analysis. To prove this result, we base our analysis on Zer-
oBubble (ZB) pipeline scheduling, as it is a more generalized
design encapsulating common approaches like 1F1B as spe-
cial cases without backward weight (W) costs. Our analyti-
cal findings are hence broadly applicable to 1F1B and other
pipeline scheduling approaches.

In a ZB schedule, each pipeline stage operates through
three phases (Figure 4): (1) the warm-up phase containing a
configurable number of forward-only (') operations, (2) the
steady phase containing a mixture of forward (F'), backward
input (B), and backward weight (W) operations, and finally
(3) the cool-down phase containing the remaining backward

(@c =0
No delay F4 sz B M\n\as\ps\ss\ T T T 1]

(2) Delay =¢;

b S<a—1|FL Je2]Fr 3]s]eafroles| | | | |

' < §
Linear scaling LY ‘F7 ‘Bs ‘ ESA(IES) ‘ ‘ ‘ ‘ ‘
oGt d=28g=2t%2e .

(1) No de elay = 2¢; (5) Delay = 3¢;

©%>a—1 [P [Fm /82 [F7 B3 [F8 4 [Fo [Bs

" lified dela F 84 [F7 |85 [F8 |B6

c;=2t (2) Delay = ¢; (4) Delay = 2¢;

Figure 7: Analysis of accumulated pipeline delay with A; = 2.

weight (W) computations. For ease of presentation, we assume
all three operations F, B and W have a uniform execution
time (tF = ¢ =tV =r). Nonetheless, our analysis extends
to a more general heterogeneous setting. Let N be the total
number microbatches in pipeline, S be the number of pipeline
stages, and x; be the number of forward operations scheduled
in stage S; during the warm-up phase, aka warm-up forward
count. The following lemma shows that x; is monotonically
decreasing, with the proof given in the Appendix.

Lemma 1 (Monotonic warm-up) For any pipeline schedule,
the warm-up forward count is non-increasing over stages, i.e.,
Xi 2 xiyy foralli=0,1,...,S—1.

We formally define the slackness between stages S; and
Si+1 as A; = x; — x;11, which is guaranteed non-negative by
Lemma 1. The following theorem identifies the slackness as
the key structural resilience to communication delays.

Theorem 1 (Delay resilience) Let ¢; be the communication
delay between stages S; and Siy1. The accumulated pipeline

delay caused by c; is O(c;) if ¢; < (A; — 1)t but amplifies to

(ANJL:1> if ci > (A
=B =tV =y).

Proof: By the Lemma, A; is non-negative, so we can prove
this theorem by considering the following two cases.

Case 1: ¢; < (A; — 1)t. For any two adjacent B,F opera-
tions B, 4, F;; in §; (e.g., By, Fg in the Figure 7(b)), we can
find its corresponding operations Bjy1 4, Fit1p in Siyq, and
define the feasible interval I; as the interval between the end
of Biy1, and the start of F;1,. During the steady phase,
this interval is inherently 2A;¢ in an ideal no-delay scenario
(Figure 7 (a)). To absorb the communication delay, the total
execution time of the following operations must not exceed
I;: (1) sending B; , back to S;, (2) calculation of B; , and F;
in §;, and (3) sending F;;, to S;11 (costs 2¢; + 2t in total).

Therefore, ¢; < (A; — 1)t ensures that the 2A;¢ interval is
larger than the 2c¢; + 2¢ cost. Thus, the delay ¢; is fully ab-
sorbed without propagating bubbles to subsequent operations
(Figure 7 (b)). The accumulated delay is therefore bounded
by O(c;), as no cascading stalls occur.

Case 2: ¢; > (A;— 1)t. For this case, the pipeline incurs
cascading bubbles as illustrated in Figure 7 (c). This is due
to each feasible interval I should be expanded from 2A; to
2c¢; + 2t to fit the communication and computation operations.

— 1)t, where t is the operation execution

time (i.e., t¥

- A=5 A=6

N U
u o
o o

Accumulated
Delay (ms)

,/“ A :
0 10 20 30 40 50
Comm. Delay ¢; (ms)

o

0L
0 10 20 30 40 50
Comm. Delay ¢; (ms)

Figure 8: Simulated delay and bubble rate using different A;
for a pipeline with N = 30 microbatches and t = 10 ms.

This expansion postpones a group of 2A; + 2 operations by
2¢;, and the delay will accumulate to the subsequent group
of operations. Therefore, for a pipeline with N operations,

the overall delay will be ® (AIYJCF"I), as each group of A; + 1
operations contributes c; to the total.

Theorem | essentially states that a pipeline with slackness
A, can tolerate a communication delay up to (A; — 1) without
triggering cascading bubbles. This result can be extended to a
more general setting where the execution times of F, B and
W are non-uniform. In this case, communication delay ¢; will
not introduce cascading bubbles if and only if

1 420 <Ay o), ey
where ¢ and t? denote the execution time of forward F and
backward input B operations in stage i, respectively. When
there are multiple slow links, the accumulated delay is simply
the summation of all stragglers’ individual contributions.

Figure 8 empirically verifies our analytical findings in sim-
ulations: as the communication delay c; grows beyond the
threshold (A; — 1)¢, the accumulated pipeline delay sharply
increases, aligning with that predicted by Theorem 1.

4.2 Orchestrating Warm-up Forwards

Our previous analysis indicates that enhancing the pipeline’s
resilience to communication delays requires configuring a
larger slackness between two stages. However, doing this
comes at a cost of increased memory footprint, as more for-
ward activations are maintained on device. We design pipeline
scheduling algorithms that optimally orchestrate warm-up
forwards in each stage (i.e., x;), maximizing the straggler re-
silience under the memory constraint. Our algorithms include
two strategies: (1) initial planning for pipeline initialization
and (2) dynamic adaptation for reconfiguring the pipeline
in response to straggler presence. We next explain how the
two strategies orchestrate warm-up forwards in each stage,
followed by constructing the full-pipeline schedule in §4.3.

Initial planning. During pipeline initialization, the system
assumes no knowledge of stragglers. As they can occur on
any link between two stages, the best strategy is to maximize
the minimum inter-stage slackness within the pipeline, i.e.,
maxmin; A;. This is equivalent to configuring a pipeline that
uniformly maximizes each A; under GPU memory constraints.
Algorithm | shows how this can be achieved. It first computes

Algorithm 1 Initial Planning

Require: Number of pipeline stages S, available GPU memory ca-
pacity M, per-activation memory MF".

Ensure: Initial warm-up forward counts {xg,...,xs_1 }.
1: function GETINITWARMUPFWDS(S, M, MT)
2: Xmax = L%j > Calculate max #activations on GPU.
3: X0 < Xmax > First stage holds xmax forwards.
4 Agg + Tl
5: r 4 (Xmax — 1) mod (S—1)
6: fori<—1toS—1do
7: > Calculate A;_1 and x; recursively.
8: A Ay + 1 0f i <7 else Ay
9: Xi ¢ Xxi—1 —Aiq
10: return {xg,...,xs_]}

Algorithm 2 Dynamic Adaptation

Require: Number of pipeline stages S, per-stage forward/backward
times {r/'}, {t?}, inter-stage communication delays {c;}.
Ensure: Adapted warm-up forward counts {xp,...,xs_1 }.
1: function GETADAPTEDWARMUPFWDS(S, {t/' }, {t?},{c:})
2: > The last stage holds only one warm-up forward.
xs_1 <1
> Calculate A; and x; backward-recursively.
fori+ S—2to0do

> Ensure bubble absorption by Equation 1.
: tF +18+2¢;
Ai<—mln N_ZS,maX 5 72
li i
Xi = Xip1 HA;

° X kW

return {xg,...,xs_]}

the maximum number of forward activations that a GPU can
maintain in memory, all of which are assigned to stage 0
(lines 2 and 3). With x¢ determined, it then computes the
warm-up forward counts in subsequent stages to ensure that
x;’s are monotonically decreasing (Lemma 1) with as balanced
slackness A; as possible (lines 4 to 9). The generated pipeline
provides the maximum uniform delay resilience.

Dynamic adaption. Upon detecting a communication delay
exceeding the tolerance threshold (given by Equation 1), the
system reconfigures the pipeline to increase the slackness be-
tween the affected stages, aiming to “absorb” as many bubbles
as possible. At this point, memory constraints can be relaxed
as PIPEMORPH offloads activations to host memory—which
provides significantly larger space than the device memory—
and uses CPU-side RDMA for data transfer to eliminate HOL
blocking stalls (details in §5). Therefore, the optimal strategy
is to maximize A;, under virtually no memory limit.
Algorithm 2 implements this strategy. Starting backward
from the last stage requiring only one warm-up forward
(line 3), it recursively computes the desired warm-up count
x; in the preceding stage (for-loop). Specifically, it uses pro-
filed per-stage compute times and communication delays to
determine the minimum required slackness A; for all i us-
ing Equation 1, ensuring that A; is large enough to absorb
the observed delay while clipping it by N —2S to preserve
enough forwards for other stages’ warm-up (line 7). Once A;

is computed, x; easily follows (line 8).

4.3 Full-Pipeline Orchestration

With the warm-up forward count determined in each stage, we
now construct the complete pipeline execution schedule. Op-
timally orchestrating all operator executions across stages and
microbatches formulates a mixed-integer linear programming
(MILP) problem [15,34] and is NP-hard [46]. We hence turn
to an efficient heuristic that sequentially generates a pipeline
schedule following its execution timeline, discretized into
multiple time steps. At each time step, the algorithm does two
things: (1) simulating pipeline execution and (2) making new
scheduling decisions.

Simulation. First, it keeps track of the execution of previously
scheduled operators (F /B/W) and updates their states in each
stage—similar to running a discrete-time simulation. It also
maintains a list of schedulable operators for each stage and
updates it accordingly (e.g., an F becomes schedulable in
stage S; after its upstream F completes in S;_1).

Operator selection. Second, for each idle stage, the algo-
rithm makes new scheduling decisions based on the updated
system state. It chooses an operator from the schedulable list
following a two-phase operator selection policy. During the
warm-up phase, each stage S; executes only forward operators
until reaching the assigned quota x; (computed by Algorithm |
or 2), ensuring the desired straggler resilience. After all warm-
up forwards complete, the stage transitions into a steady phase,
in which it selects operators from the schedulable list in a
priority order of B > F > W. Specifically, backward input
operators (B) are prioritized to immediately free activation
memory and propagate dependencies upstream; forwards (F)
are selected next, as they generate single downstream de-
pendencies; backward weight (W) operators have the lowest
priority, since they do not generate further dependencies and
can be scheduled opportunistically.

Optimality and complexity. We will show in §7.4 that this
simple heuristic generates pipeline schedules that closely
approximate the optimum-—obtained by solving an MILP
problem—when the simulation is configured with a fine-
grained step size d. In terms of the complexity, let z, be the
longest operator execution time, i.e., t, = max;(¢/,15,1 0).
The algorithm completes in at most 3NS[z,/3] steps, as each
operator (of which there are 3N per stage over S stages) is
scheduled at most once per & interval. Each step involves
S constant-time policy evaluations, resulting in an overall

complexity of O(NS?[t,/8]).

5 Decoupled Data Plane via Comm. Delegation

The effectiveness of the aforementioned pipeline adaptation
algorithms (§4)—our first key design—is contingent on elimi-
nating head-of-line (HOL) blocking stalls. In this section, we

[Forward (F) [Backward Input (B) [Backward Weight (W)

.0 Il T T T T
g1 (L O T T I T
@2 TOT P-4 00 T T0 T IFITIT I

E3 e (1 A A A1

0-7 200 400 600 800 10‘0ﬂ~~_\1200
s Time (ms) Tt-< .
[Stage 1] # Irrelevant communications are omitted.
g — B : Bl I F6] C Prorlon gd B2 1 F7)
Comm. Process ‘mw™"*" = SB1 — ._Jntederenfe!'
Comparison ‘ [| ‘ B1 (Typical): 280 kernels, 31.1 ms |

B2 (Prolonged): 280 kernels, 61.9 ms

of61& 62 I WA WM WUN

Figure 9: Naively adopting NCCL-based opportunistic com-
munication [5,42] solves the blocking issue, but introduces
severe interference to computation.

start with a straw man solution and illustrate its ineffectiveness
(§5.1). We then present our second key design to eliminate
HOL blocking stalls (§5.2), which additionally provides fault
tolerance to RNIC failures (§5.3).

5.1 Straw Man Solution

Recall in §3.2 that HOL blocking is caused by sequential
launching of communication and subsequent computation
operations (Figure 6). Therefore, the key to avoiding HOL
blocking is to decouple slow communication operations from
the compute sequence, thereby ensuring that all compute ker-
nels can be launched without a delay.

A straw man solution is opportunistic communication [5,
42]. It delegates communication operations to some dedicated
processes, allowing the main training process to concentrate
on computation. These dedicated communication processes
asynchronously retrieve data from shared buffers and transmit
it to adjacent pipeline stages via GPU-direct RDMA using
NCCL. However, this approach introduces significant inter-
ference to computation. As illustrated in Figure 9, although
computation and communication operations are already in
separated CUDA streams and the priority of communication
process is carefully tuned to minimize interference, overlap-
ping computation and communication results in substantial
kernel execution slowdowns. For instance, stage-1’s back-
ward operation (B) increases from 31 ms to 61.9 ms when
overlapped with SB;. Our profiling reveals that, although this
approach closes the kernel launch gaps, the runtime of in-
dividual kernels is greatly prolonged: a GEMM kernel that
typically finishes in 110 us is stretched to 2 ms under interfer-
ence. As a result, despite being blocking-free, the pipeline’s
end-to-end performance degradation is still about 1.9x, no
better than sequential execution.

5.2 CPU-based Communication Delegation

Key idea. While the NCCL-based straw man introduces se-
vere interference, its delegation paradigm remains valid—
provided we can avoid such interference. This inspires us
to offload activation and gradient transfers from the GPU to

Training 4. F/B/W Computation 1'@@'
Process I o —
(GPY) | 3. CPU->GPU | 5. GPU->CPU
Delegates Optir}ﬁzed CPU-GPU Data Trangfer
(cPU) 1 *
2. Dequeue 6. Enqueue
(Round Robin) (Round Robin)

: Receiver Sender
Delegates Delegates
. = (re/rB) (sF/sB) = = L.

........ m—
1. Fetch remote data) l 7. Send data

Figure 10: CPU-delegated data transmission path.

host memory upon straggler detection, and perform send/re-
ceive operations using dedicated CPU-side delegate processes
to avoid interfering GPU computation. This design enables
three key benefits. First, it fully decouples communication
operations from GPU kernel scheduling, preventing slow
communication from stalling GPU computation operations
(blocking-free). Second, offloading activation and gradients to
the host lifts the GPU memory pressure, enabling orchestrat-
ing a memory-intensive pipeline schedule with more warm-
up forwards and larger slackness for enhanced straggler re-
silience (i.e., virtually no memory constraint in Algorithm 2).
Third, it additionally provides RNIC fault tolerance: in case of
GPU-side RNIC failures, the host RNICs serves as a backup.

Design. In our design, the delegated communication path is ac-
tivated only upon the detection of communication delays. For
each type of communication (e.g., send-forward), the frame-
work launches multiple CPU communication processes, each
with its own transmission queue. This multi-queue design en-
sures that the total data consumption rate keeps pace with the
data production rate of computation. For example, if the GPU
produces 8 activations per second while each communication
delegate can consume only 2 per second, at least 4 sending
queues are needed to avoid blocking and queue buildup.

Figure 10 illustrates the data transmission path. () The
receiver delegates eagerly fetch data from remote peers during
training. The training process (@) retrieves input data from a
receiver queue in a round-robin manner and Q) copies it to
GPU. The GPU @ computes the results, which are 3) copied
back to host and () enqueued into the corresponding sender
queue. (7) Finally, the sender delegates send the results via
CPU-side RDMA.

Optimizing data transfer. As our design bypasses GPU-
direct RDMA (GDR) and utilizes a slower CPU-side RDMA,
reducing the overhead of data movement between the host
and the GPU becomes critical. To minimize this overhead,
we design a fine-grained data pipeline with optimized CUDA
kernels which move data asynchronously and only report to
the training process when the data is ready.

Specifically, our optimization creates a pinned shared mem-
ory buffer for each delegate, which allows faster GPU data
access than pageable memory through DMA and zero addi-
tional data copy between the delegate and the training pro-

—>» Delegate Process Operations
= Training Process Operations

Delegate Sender Pracessl - -

. - ECEIN

FEE---= JLaL . oo T fmmm = EY

W i Data Buffer + GPU Data !
4. Fetch & Send Data S2]

'

'

'

'

'

'
0
'
' S1
'
'

Pinned Shared Memory GPU Memory

Figure 11: Optimized data transfer for sending data.

—>» Delegate Process Operations

6. Check GPU Signal

7. Fetch Data

—>» Training Process Operations

i
Delegate Recver Process| __. -

_______ Juae o ZII=0 .
p Data Buffer

R2 R2_H

'

i Signal Buffer 1 | GPU Signal!

2. Set Signal : FR2{R2] 3. Check Signal | [5. Set Signal r

__________________ it

Pinned Shared Memory GPU Memory

Figure 12: Optimized data transfer for receiving data.

cesses during IPC. For each replica of a communication type
(e.g., send-forward), both its training process and itself can
access a piece of pinned shared memory. When sending for-
ward or backward, as shown in Figure 11, the training process
initiates two sequential cudaMemcpy () operations in the same
CUDA stream. It first (I) copies data from GPU to host and
then (2) sets a copy completion signal to guarantee data in-
tegrity. After checking the signal, the delegate process Q)
ensures copy completion and @) sends data via RDMA.

When receiving forward or backward, as shown in Fig-
ure 12, once (I) data is received from remote via RDMA,
the delegate process sets a signal in shared memory indicating
data ready. 3 Meanwhile, the training process checks this
signal through busy waiting. After confirming, two sequential
cudaMemcpy () operations are initiated to first @) copy data
from host to GPU, followed by) setting a signal in GPU
memory to acknowledge data copy completion. Once the
training process (6 sees this data ready signal, the subsequent
compute operators can (7) consume this data safely.

5.3 Handling RNIC Failures

During NCCL initialization, each GPU is assigned a dedi-
cated RNIC to avoid bandwidth contention within a node.
Consequently, a single RNIC failure during NCCL communi-
cation results in a connection loss or a timeout error, even if
the other RNICs are still well functioning. The GDR path is
hence vulnerable to RNIC failures.

The CPU-based communication delegation provides an in-
herent tolerance to RNIC failures as it bypasses the faulty
GDR path. To achieve this, PIPEMORPH wraps each com-
munication operation in a try-catch block. Upon detect-
ing an error indicative of an RNIC issue like NCCLTimeout,
it automatically retries the failed operation using the CPU
delegation path across all involved nodes. Therefore, each
delegate process can flexibly choose an RNIC for data trans-

| Control Plane |

1 Parallelism & @[Hybrid-Parallel)@ Pipeline :
:HardwareConfig Orchestrator ® Scheduler |

[S e e N A |

[Execution Piane

|Comm‘ nglegatesl |Comn.1‘.DeJ.egates| Comm. Delegates

Hle Switah Wle Switdh | | PCle Switch
GPUs<9¢-RNICs GPUs ¢>RNICs GPUs<#p-RNICs
PPStage 0 4 PPStage 1 A4 PP Stage S-1 A

Hybrid-Parallel Training Cluster

- Handling comm. straggler < === GPU-direct RDM.
Initial control flow > between PP stage 0-1 < ===» CPU Delegation

Figure 13: PIPEMORPH system design.

fer using Gloo [19] during training. In the event of an RNIC
failure, the delegate process reroutes the affected communica-
tion traffic from the faulty RNIC to a healthy one to continue
data transfer, enabling uninterrupted training as opposed to
conventional checkpoint-and-restart failover.

6 PIPEMORPH Design and Implementation

PIPEMORPH is an efficient parallel training system that inte-
grates the two key designs described in §4 and §5 to deliver
robust resilience against communication stragglers. As illus-
trated in Figure 13, it comprises three main components: (1) a
profiler that continuously monitors each node’s compute and
communication performance, (2) a hybrid-parallel orchestra-
tor that dynamically determines the communication topology
and constructs TP, DP, and PP communication groups based
on runtime performance, and (3) a pipeline scheduler that
adaptively configures a resilient pipeline schedule against
dynamic stragglers using the algorithms developed in §4.

Initialization. During system initialization, (I) the orchestra-
tor establishes the initial TP/DP/PP communication groups
according to the parallelism strategy and hardware configura-
tion (e.g., network topology). 2 The scheduler then generates
an initial pipeline schedule that provides uniform resilience
to potential stragglers across all stages (§4). 3 This sched-
ule is deployed on the cluster, and the training starts with all
inter-node communication performed via GPU-direct RDMA.

Straggler mitigation. Throughout training, the profiler con-
tinuously tracks communication and computation perfor-
mance. Upon detecting slow communication (using detection
techniques in [9, 49]), it reports this straggler event to the
orchestrator (@). If the affected link is between PP stages
(e.g., stages 0 and 1), the orchestrator notifies the pipeline
scheduler (), which then adapts the pipeline schedule as
described in §4. The updated schedule is then deployed on
the cluster, and CPU communication delegates are activated
at the affected nodes to eliminate HOL blocking stalls (®)).
If the slow link is part of a DP communication group, the
orchestrator reconfigures the training topology to reassign
this link for PP communication, effectively converting a DP

Model Size 7B 14B 30B 60B 140B
Parallelism
abDppp | 19 | (L8 | 248 | @.2.8) | 8.2.8
#GPUs 4 8 64 64 128

Table 2: Models and corresponding 3D-parallelism settings.

straggler into a less detrimental PP straggler [49], which is
then addressed using the above mechanisms.

Implementation. PIPEMORPH is implemented on top of
Megatron-LM [31] and ZeroBubble [34], comprising 5.3K
lines of code (LoC), primarily in Python, with performance-
critical data transfer kernels written in CUDA. The straggler
detector and orchestrator are adapted from Falcon [49], while
the profiler leverages CUDA Events and reports profiles via
Redis [38]. For CPU-side communication, PIPEMORPH uti-
lizes Gloo [19] to facilitate RDMA data transfers.

7 Evaluation

In this section, we evaluate PIPEMORPH to answer the fol-
lowing questions: (1) Does PIPEMORPH effectively address
dependency bubbles and HOL blocking stalls caused by PP
stragglers (§7.2)? (3) Does PIPEMORPH also effectively han-
dle DP stragglers (§7.3)? (2) Can PIPEMORPH generate an
optimal schedule and delegate communication with accept-
able overhead (§7.4)? (4) How does PIPEMORPH perform in
large-scale pretraining in the presence of frequent communi-
cation stragglers and RNIC failures (§7.5)?

7.1 Experimental Setup

Cluster setup. Our evaluation is conducted on a 128-GPU
cluster, where each node is equipped with 8 NVIDIA H800
GPUs and 400 Gbps InfiniBand inter-node connections.

Baselines. We evaluate PIPEMORPH against four baselines.

1. 1FI1B [30] is a classic pipeline schedule with low bubble
rate and controllable memory footprint.

2. ZeroBubble (ZB) [34] is a SOTA pipeline schedule that
eliminates bubbles via decoupled backward passes.

3. Falcon [49] migrates slow links to PP groups if stragglers
occur on DP groups, but does not mitigate the stragglers’
residual impact on pipeline execution.

4. PIPEMORPH-CPU only enables delegated communica-
tion (§5) without pipeline adaptation.

Models and Parallelism. We evaluate PIPEMORPH using
GPT-2 models of varying sizes, ranging from 7B to 140B
parameters, on up to 128 GPUs across 16 nodes. The models
and corresponding parallelism settings are given in Table 2.

7.2 Mitigating PP Stragglers

Microbenchmark. Before introducing end-to-end perfor-
mance, we first demonstrate the behavior of PIPEMORPH’s

[Forward (F) [Backward Input (B) [Backward Weight (W)

Blocking Stall ZB Dependency
Mg H 00
2% o i]
3
Dependency PipeMorph-CPU
0 [
g’al [T HI%
&2 [T I
n 3 (T [T M T
PipeMorph
0 T T T I
1 [T IO O AT
2 T LTI AT I AT
3 [T AT
0 100 200 300 400 500 600 700
Time (ms)

Figure 14: The actual execution of the schedule using
PIPEMORPH and other two baselines on a 7B model under
30 ms delay on the link between last two PP stages.

w

1 =e— 1F1B
ZB

| === PipeMorph-CPU
=4 PipeMorph e == =X
- ——

0 001 002 003 004 005 0.06
Communication Delay (s) between PP stages 6« 7

Time Per
Iteration (s)
N

i
l
|
!
|
i
|
t
|

Figure 15: Sensitivity analysis of PIPEMORPH and baselines
using a 14B model under various delay values.

two designs in addressing dependency bubbles and HOL
blocking stalls using a GPT2-7B model. We inject a 30 ms
delay between pipeline stages 2 and 3 and then profile the ex-
ecution of each operator within an iteration using cudaEvent,
with the execution timeline shown in Figure 14.

In the original ZB execution, we observe significant bub-
bles between warm-up forward operators in stage 2 caused by
HOL blocking stalls and dependency-bubbles exacerbate the
performance. This compound effect extends the iteration time
to 703 ms with 57.4% bubble rate (1.9x longer than the nor-
mal execution). PIPEMORPH-CPU retains the same pipeline
schedule as ZB but activates CPU-based delegation, elimi-
nating HOL blocking stalls by redirecting the original GPU-
direct RDMA to CPU-based RDMA operations. As a result,
the iteration time improves to 579 ms, with the bubble rate
reduced to 48.8% solely due to dependency issues. Further
enabling pipeline adaptation (i.e., the complete PIPEMORPH)
reduces the iteration time to 398 ms (only 30 ms slowdown)
and the bubble rate to only 25.3%. This 1.76x improvement
is achieved by increasing the slackness between stages 2 and
3 (i.e., Ay), substantially enhancing the pipeline’s resilience
to the injected communication delays.

Sensitivity analysis. We assess the impact of delay values
on end-to-end iteration times by gradually increasing the la-
tency between the last two stages of a 14B model from 0
to 60 ms. As shown in Figure 15, a 60 ms communication
delay slows down 1F1B, ZB, and PIPEMORPH-CPU signif-
icantly by 2.70x, 4.24 x, and 2.15 X, respectively. Notably,
7B, though achieving better performance without stragglers,
is more vulnerable to communication delays due to its tightly

coupled schedule. In contrast, PIPEMORPH consistently out-
performs baseline systems with slightly increased iteration
times. Specifically, under a 60 ms delay, PIPEMORPH mea-
sures a modest slowdown of 1.13x thanks to the two designs
described in §4 and §5. Compared to ZB, switching to CPU-
based communication delegation (PIPEMORPH-CPU) miti-
gates the straggler impact by 48.1%; this impact is further
alleviated by 24.6% using pipeline adaptation.

Resilience to single-link degradation. We next evaluate
PIPEMORPH’s performance in the presence of a single-link
straggler under various model and parallelism settings. As
illustrated in Figure 16, we inject a delay of 30 ms (or 60 ms)
into a single communication link between the first (or last)
two PP stages. Across all model sizes from 7B to 60B,
PIPEMORPH consistently outperforms baseline methods. In
particular, it achieves up to 3.71x speedup over 1F1B (in the
scenario of 7B, 60 ms, last two stages) and 3.49x speedup
over ZB (14B, 60 ms, last). When the communication delay
increases from 30 ms to 60 ms, the average iteration time
measured across all models increases by only 1.07x using
PIPEMORPH, compared to 1.49x, 1.69x, and 1.30x using
1F1B, ZB, and PIPEMORPH-CPU, respectively. These results
suggest that dependency bubbles account for 39% of slow-
down, while HOL blocking stalls contribute 23% on average.
PIPEMORPH effectively mitigates both issues.

Note that the straggler location also matters. A delay occur-
ring between the final pipeline stages has a more significant
performance impact than one at the beginning, as there is less
subsequent scheduling slackness (A;) available to absorb it,
leading to tighter computational dependencies. PIPEMORPH
effectively addresses this issue through pipeline adaptation:
it improves the average iteration time by 19.3% compared
to PIPEMORPH-CPU under a 60 ms delay between the first
two stages; this gain increases to 38.4% when the same delay
occurs between the last two stages.

Multi-link degradation. To evaluate PIPEMORPH under
more complex straggler conditions, we configure multiple
stragglers in the 14B setting with 30 ms delays occurring on
two adjacent links (0-1 and 1-2), two skip links (0-1 and 2-3),
first-and-last links (0-1 and 6-7), and three skip links (0-1,
3-4, 6-7), respectively. Note that each degraded link incurs
an additional 30 ms of latency, so the total delay scales with
the number of affected links and results in a greater overall
impact than a single link delay. As detailed in Figure 17,
PIPEMORPH reduces the iteration time by 51.6% and 57.5%
on average across the four settings, compared to 1F1B and ZB.
Importantly, adaptive pipeline reconfiguration improves the
average performance by 23.1% (comparing to PIPEMORPH-
CPU), further validating the effectiveness of PIPEMORPH’s
scheduling algorithm under complicated delay conditions.

Dynamic stragglers. To evaluate PIPEMORPH against dy-
namic stragglers, we inject rapidly changing network delays
into a GPT2-7B training workload. The latency of each inter-

PP link is sampled from a normal distribution A (u = 30,6 =
10)ms and updated at intervals drawn from three uniform
distributions: A:U(50, 100)ms, B: (100, 200)ms, and C:
U(200, 400)ms (Figure 18-upper, a shorter interval means a
higher changing frequency). Despite delay changing is much
faster than the iteration time and rescheduling only at itera-
tion boundaries, PIPEMORPH consistently outperforms 1F1B
and ZB, achieving up to 2.8 x speedup (Figure 18-lower). Its
robustness stems from the initial schedule’s slackness absorb-
ing minor jitters (§4.2), complemented by rescheduling at
the next iteration to handle prolonged delay spikes. We leave
finer-grained, intra-iteration rescheduling to future work.

7.3 Mitigating DP Stragglers

Communication stragglers can also occur between DP groups.
We evaluate PIPEMORPH in this scenario using a GPT2-7B
model on 8 nodes with ZB scheduling under a configura-
tion of (1 TP, 2 DP, 4 PP). We inject 10/20/30 ms inter-node
communication latency into a designated link. As shown in
Figure 19, when this link is for DP communications, the base-
line ZB degrades by 8.04 x, far exceeding the impact of PP
communication stragglers. In response, both PIPEMORPH and
Falcon [49] mitigate this by reassigning the slow link to PP
communication, leading to 3.6 improvement. PIPEMORPH
further mitigates the residual PP straggler through pipeline
adaptation and CPU-delegated communications, achieving
1.96x additional speedup over Falcon.

7.4 Optimality and Overhead

Performance and overhead of pipeline scheduling. We eval-
uate the performance of our pipeline scheduling algorithm
described in §4 against the optimal schedule obtained by
formulating an MILP problem. We consider four pipeline
configurations (with 3-8 stages and 6-32 microbatches) with
randomly generated profiles. As illustrated in Figure 20, con-
figuring a smaller time step & (higher [7,/8]) for fine-grained
simulation narrows the gap between the generated schedule
and the optimum, at a cost of increased schedule generation
time. In all settings, the gap, measured by the relative differ-
ence in execution time, is less than 1% when running at a fine
granularity of [#,/8] = 30. These near-optimal schedules are
generated in less than 100 ms, as opposed to computing the
optimal schedules that requires solving an MILP in hours.

Overhead of delegation. We stress-test the delegated path
across models from 7B to 60B parameters. Under a worst-
case scenario where all pipeline communications are forcibly
routed through CPU delegates (All-CPU). Figure 21-left
presents a breakdown analysis to quantify the components
of introduced overhead, which is dominated by the necessary
PCle data transfers and slower CPU-side RDMA. Across
the evaluated model sizes, device-to-host (D2H) copy times
range from 0.6% to 1.2%, host-to-device (H2D) copies range

]1FlB == ZB E=3 PipeMorph-CPU I P|peMorph 2eo
by == T 77T 165 e ;
¢ 2139 piy 1.8 €3 .00
ES Q01.83
32 1] opdg0 = 2] 356 F#
F o — — @ f R@ ;
=0 + f — — 0
7B 14B 30B 60B 14B 30B 60B
30 ms delay between first two stages 60 ms delay between first two stages
0 183 fRie s e by 18- 3é>
822 106 80 & ;\31_£% 2.32
0S| Llddses 7 14887 /7;: — 21 18248 7:1- 8
ge 82 .43 / 87 49 .
=0 " 0 " "
7B 14B 30B 60B 7B 14B 30B 60B

30 ms delay between last two stages

60 ms delay between last two stages

Figure 16: Evaluation on single inter-PP communication degradation under various model settings and delay locations.

=4 1F1B [ZB X3 PipeMorph-CPU [IIW PipeMorph
% &t 23210 1.99 212
52 21
a <
08
£% 14
g
-0 t t t t
01,12 01,23 0167 01,3467
Slow Links

Figure 17: Iteration times of a 14B model under multiple
simultaneous inter-PP communication stragglers.

@
o

—-= A: Unif(50, }Uo)ms ! B: Unif(100, 200)ms

— C Unlf(2001 400)m5

N
o

f
ﬁ IHI i miy
S

Comm.
Delay (ms)
N
o

5.0 7.5 10.0 12.5

Wallclock Time (s)

17.5

—e— 5=3,N=6 S=4,N=12 == S$=6,N=18 =—+- S=8, N=32
X4 % 75] —®
z \ (8 o
EERRS S0 © 501"

~N ~ S -~ ——
22 0_‘ 2251 B B
%17 \‘\' _;4 é M
G} 4

15 20 25 30

Granularity [t,/6]

10

10

15 20 25
Granularity [t,/6]

30

Figure 20: The relative error to optimal solution and solving
time of PIPEMORPH’s scheduler, where it achieves an near-
optimal solution within 1% error in 0.1 seconds.

[1F1B £ ZB IEN PipeMorph-All-CPU

9 — +164%
< A Comp =42 +1°'6% o

c 9z 1.0 1.0% =[] 2=
2 = D2H |25

3 == comm | £% 0.5{ £15% ZENEN
g mm H2D |FE m

@ 0.0 ; .

7B

14B

308

60B

N

78 14B308 60B

Model

Model

o m 1F1B = ZB [_PipeMorph-CPU ipeMorph
g% 3 128 135" 57 =, By 121
221 ,7!: 0.81 ~= los4 07
Ec 0,58 0.55 0.55
0 t
A B C

Figure 18: Upper: a 20s-part of communication delay traces
A/B/C with different changing frequencies. Lower: corre-
sponding performance of PIPEMORPH and baselines.

from 2.6% to 4.4%, and CPU-side RDMA ranges from 5.7%
to 10.5%. PIPEMORPH effectively overlaps these operations
via an optimized, asynchronous transfer mechanism (§ 5.2)
to minimize end-to-end impact, and maintains comparable
performance to the strongest GPU-direct RDMA baseline
(i-e., ZB) for models with 7B or 14B parameters. At 30B or
60B scale, All-CPU introduces only up to 16.4% additional
iteration time compared to GDR (Figure 21-right).

[Z@ 7B (DP) £ Falcon 24 PipeMorph- CPUE PipeMorph

1.87

Time Per
Iteration (s)

Or—‘Nw-l}

:640.540.53
s —
10.0

20.0
Communication Delay (ms)
Figure 19: A communication straggler in DP group intro-
duces significant baseline degradation. Both Falcon [49]
and PIPEMORPH migrates this link to PP groups, while
PIPEMORPH further optimizes the residual impacts.

Figure 21: Worst-case overhead of PIPEMORPH’s delegated
communication w/o presence of communication stragglers.
Left: breakdown analysis, Right: end-to-end performance.

7.5 PIPEMORPH in the Wild

We evaluate PIPEMORPH’s robustness at scale by training a
140B model on 128 GPUs across 16 nodes under realistic net-
work conditions. To do so, we first record a one-hour trace of
inter-PP stage communication delays from a large-scale pro-
duction training job. As shown in Figure 22-upper, the delay
trace is highly bursty and fluctuating, with median/mean/99th-
percentile of 13.0/22.3/79.3 ms.

For a fair comparison, we evaluated each method under
exactly the same network conditions, achieved by replay-
ing the recorded trace for each experiment run. Figure 22-
lower shows that under these volatile network conditions, the
throughput of ZB degrades significantly, at times performing
worse than the simpler 1F1B. This vulnerability stems from
7ZB’s fine-grained scheduling of backward pass operators (B,
W), which creates tight data dependencies that are highly
susceptible to delays. During periods of severe congestion
(e.g., t=1700-2200s), the throughput of both baselines drops
to below 30 iters/min. In contrast, PIPEMORPH consistently
maintains its throughput above 40 iters/min by mitigating
HOL blocking and dependency-induced bubbles.

Overall, PIPEMORPH achieves an average throughput of

_go]— 001 62— 203 Bod— 405 566 67
£ 60
=40 . \ "
[A
e M HL
0 ¥ T ‘th'l:ﬁ'

—— 1F1B ZB —— PipeMorph
550 ipeMorp
3c
SEa0
o
££30 WA
[= \| V

\ '\
20 J

0 500 1000 1500 2000 2500 3000 3500
Wallclock Time (s)

Figure 22: Upper: Inter-PP communication delays recorded
from real-world network environments. Lower: Throughput
of PIPEMORPH of pretraining a 140B model on 128 GPUs
against baselines, where PIPEMORPH improves the end-to-
end throughput by up to 1.36x.

45.9 iters/min, outperforming 1F1B (41.4 iters/min) and
ZB (33.6 iters/min) by 1.11x and 1.36X, respectively.
The performance gap becomes even more pronounced dur-
ing the severely congested period (t=1300-2500s), where
PIPEMORPH’s throughput gains grow to 1.30/1.47x over
1F1B/ZB, demonstrating PIPEMORPH’s ability to maintain
high performance under realistic network circumstances.

8 Limitations and Future Works

CPU delegation overhead. While PIPEMORPH’s CPU dele-
gation effectively mitigates HOL blocking under communica-
tion stragglers, it introduces a residual overhead from PCle
data transfers. We note that recent advances in MoE train-
ing have addressed similar challenges with more GPU-native
techniques. For instance, DeepEP [52] uses PTX-level pro-
gramming to orchestrate communications on separate SMs,
while FlashMoE [3] fuses them into a single CUDA kernel. A
promising future direction is to adapt these optimizations for
pipeline parallelism, which may offer a new path to minimize
latency by removing host involvement entirely.

Intra-iteration re-scheduling. Another limitation of the cur-
rent design is that pipeline rescheduling occurs only at it-
eration boundaries. While this policy is effective even for
rapid network fluctuations, our analysis reveals a 5% perfor-
mance gap to optimal under extremely high-frequency latency
changes. This is because although we preserve slackness to
handle minor jitters, it can be overwhelmed by large, mid-
iteration delays, resulting in bubbles. Future work could there-
fore implement a dynamic, intra-iteration rescheduling mech-
anism that reacts to latency spikes as they occur, offering a
more resilient solution for highly volatile environments.

9 Related Works

Reliability issues in training. Abundant studies address train-
ing crashes using checkpoints [29,48], redundant computa-

tions [45], and elastic frameworks [20, 29, 45,48]. However,
seldom existing works address communication stragglers,
while they have been identified in several reports [12,22],.
Malleus [25] solely mitigates compute stragglers without con-
sidering communications. Falcon [49] addresses slow commu-
nication by shifting the degraded links to PP groups without
optimizing the residual impact. Crux [6]’s communication-
aware scheduling tries to reduce the occurrence probability
of stragglers, yet not mitigating their impacts.

Communication optimizations for training. Communica-
tion optimizations span three critical layers. Infrastructure-
level efforts like Alibaba HPN [35] and Megascale [22] pro-
pose specialized network topologies for training clusters. At
the library level, TACCL [40], ACCL [11], and MSCCL [8]
develop optimized communication primitives for collective
operations. Framework-level approaches including Megatron-
LM [31], Varuna [5], and DeepEP [52] enhance computation-
communication overlap in hybrid-parallel settings.

Pipeline parallelism optimizations. Pipeline scheduling re-
mains challenging in distributed training. Classic approaches
like Gpipe [18] and 1F1B [30] achieve comparable bubble
rates, with 1F1B additionally reducing memory usage. Recent
advances address distinct dimensions: Interleaved 1F1B [31]
reduces bubbles via introducing virtual stages, while Zer-
oBubble [34] eliminates them through decoupled backward
passes. For specialized architectures, DualPipe [15] optimizes
MOoE training pipelines and RLHFuse [54] tailors for RLHF
workloads. In terms of improving reliability, Recycle [13]
employs precomputed schedules with microbatch rerouting
for fail-stop recovery, whereas SDPipe [28] trades training
accuracy for computation straggler-resilience.

10 Conclusion

This paper presents PIPEMORPH, a system designed for ef-
ficient hybrid-parallel training in the presence of commu-
nication stragglers. PIPEMORPH employs dynamic pipeline
adaption to minimize dependency bubbles and CPU-delegated
communication to eliminate head-of-line blocking stalls. Ex-
periments demonstrate that PIPEMORPH achieves 1.2-3.5x
speedup over SOTA baselines under communication strag-
glers, and 1.36x higher throughput with zero restart overhead
upon RNIC failures.

Acknowledgment

We thank our shepherd, Ram Ramjee, and the anonymous
reviewers for their valuable comments that help improve the
quality of this work. This work was supported in part by the
Alibaba Innovative Research (AIR) Grant, RGC CRF Grant
(Ref. #C6015-23G), RGC GRF Grant (Ref. #16217124), and
NSFC/RGC CRS Grant (Ref. #CRS_HKUST601/24 and Ref.
#CRS_PolyU501/23).

References

(1]

(2]

(3]

(4]

[5

—_

(6]

(7]

(8]

(9]

[10]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Vamsi Addanki, Prateesh Goyal, and Ilias Marinos.
Challenging the need for packet spraying in large-scale
distributed training. arXiv preprint arXiv:2407.00550,
2024.

Osayamen Jonathan Aimuyo, Byungsoo Oh, and Rachee
Singh. Flashdmoe: Fast distributed moe in a single
kernel. arXiv preprint arXiv:2506.04667, 2025.

Mohammad Alizadeh, Tom Edsall, Sarang Dharma-
purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-
gerhut, Vinh The Lam, Francis Matus, Rong Pan, Navin-
dra Yadav, et al. Conga: Distributed congestion-aware
load balancing for datacenters. In Proceedings of the
2014 ACM conference on SIGCOMM, pages 503-514,
2014.

Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ra-
machandran Ramjee, and Nipun Kwatra. Varuna: scal-
able, low-cost training of massive deep learning models.
In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 472487, 2022.

Jiamin Cao, Yu Guan, Kun Qian, Jiaqi Gao, Wencong
Xiao, Jianbo Dong, Binzhang Fu, Dennis Cai, and Ennan
Zhai. Crux: Gpu-efficient communication scheduling
for deep learning training. In Proceedings of the ACM
SIGCOMM 2024 Conference, pages 1-15, 2024.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Ben-
gio, and Rafal Jozefowicz. Revisiting distributed syn-
chronous sgd. arXiv preprint arXiv:1604.00981, 2016.

Meghan Cowan, Saeed Maleki, Madanlal Musuvathi,
Olli Saarikivi, and Yifan Xiong. Mscclang: Microsoft
collective communication language. In Proceedings of
the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, pages 502-514, 2023.

Weihao Cui, Ji Zhang, Han Zhao, Chao Liu, Wenhao
Zhang, Jian Sha, Quan Chen, Bingsheng He, and Minyi
Guo. Xputimer: Anomaly diagnostics for divergent llm
training in gpu clusters of thousand-plus scale. arXiv
preprint arXiv:2502.05413, 2025.

Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ra-
mana Rao Kompella. On the impact of packet spraying
in data center networks. In 2013 Proceedings IEEE
INFOCOM, pages 2130-2138. IEEE, 2013.

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

Jianbo Dong, Shaochuang Wang, Fei Feng, Zheng
Cao, Heng Pan, Lingbo Tang, Pengcheng Li, Hao Li,
Qianyuan Ran, Yiqun Guo, et al. ACCL: Architecting
highly scalable distributed training systems with highly
efficient collective communication library. IEEE micro,
41(5):85-92, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. The Llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Swapnil Gandhi, Mark Zhao, Athinagoras Skiadopoulos,
and Christos Kozyrakis. Recycle: Resilient training of
large dnns using pipeline adaptation. In Proceedings
of the ACM SIGOPS 30th Symposium on Operating
Systems Principles, pages 211-228, 2024.

Adithya Gangidi, Rui Miao, Shengbao Zheng,
Sai Jayesh Bondu, Guilherme Goes, Hany Morsy, Rohit
Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty,
Jingyi Yang, et al. Rdma over ethernet for distributed
training at meta scale. In Proceedings of the ACM
SIGCOMM 2024 Conference, pages 57-70, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentiviz-
ing reasoning capability in LLMs via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei,
Gregory R Ganger, Phillip B Gibbons, Garth A Gibson,
and Eric P Xing. Addressing the straggler problem for
iterative convergent parallel ml. In Proceedings of the
seventh ACM symposium on cloud computing, pages
98-111, 2016.

Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang,
Meng Zhang, Qiaoling Chen, Peng Sun, Dahua Lin, Xi-
aolin Wang, Yingwei Luo, et al. Characterization of
large language model development in the datacenter. In
21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pages 709-729, 2024.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

Facebook Incubator. Gloo, 2025. Accessed: 2025-03-
26.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Insu Jang, Zhenning Yang, Zhen Zhang, Xin Jin, and
Mosharaf Chowdhury. Oobleck: Resilient distributed
training of large models using pipeline templates. In
Proceedings of the 29th Symposium on Operating Sys-
tems Principles, pages 382-395, 2023.

Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of {Large-Scale }{Multi-Tenant}{GPU} clus-
ters for {DNN} training workloads. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
947-960, 2019.

Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, et al. MegaScale: Scaling large
language model training to more than 10,000 { GPUs}.
In 21st USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24), pages 745-760,
2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Yanfang Le, Rong Pan, Peter Newman, Jeremias
Blendin, Abdul Kabbani, Vipin Jain, Raghava Sivaramu,
and Francis Matus. Strack: A reliable multipath trans-
port for ai/ml clusters. arXiv preprint arXiv:2407.15266,
2024.

Haoyang Li, Fangcheng Fu, Hao Ge, Sheng Lin, Xu-
anyu Wang, Jiawen Niu, Yujie Wang, Hailin Zhang, Xi-
aonan Nie, and Bin Cui. Malleus: Straggler-resilient
hybrid parallel training of large-scale models via mal-
leable data and model parallelization. arXiv preprint
arXiv:2410.13333, 2024.

Wanchao Liang, Tianyu Liu, Less Wright, Will Consta-
ble, Andrew Gu, Chien-Chin Huang, Iris Zhang, Wei
Feng, Howard Huang, Junjie Wang, et al. Torchtitan:
One-stop pytorch native solution for production ready
Ilm pre-training. arXiv preprint arXiv:2410.06511,
2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao
Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 techni-
cal report. arXiv preprint arXiv:2412.19437, 2024.

Xupeng Miao, Yining Shi, Zhi Yang, Bin Cui, and Zhi-
hao Jia. Sdpipe: A semi-decentralized framework for
heterogeneity-aware pipeline-parallel training. Proceed-
ings of the VLDB Endowment, 16(9):2354-2363, 2023.

[29]

(30]

(31]

(32]

(33]
[34]

[35]

(36]

(37]

(38]

(39]

[40]

Jayashree Mohan, Amar Phanishayee, and Vijay
Chidambaram. {CheckFreq}: Frequent,{Fine-
Grained}{DNN} checkpointing. In /9th USENIX
Conference on File and Storage Technologies (FAST
21), pages 203-216, 2021.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM symposium on operating sys-
tems principles, pages 1-15, 2019.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, et al. Efficient large-scale language
model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1-15, 2021.

NVIDIA Cooperation. Nvidia nsight systems, 2025.
Accessed: 2025-03-24.

OpenAl. Openai sora, 2024. Accessed: 2024-09-13.

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min
Lin. Zero bubble pipeline parallelism. arXiv preprint
arXiv:2401.10241, 2023.

Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi
Xu, Yu Guan, Binzhang Fu, Xuemei Shi, Fangbo Zhu,
Rui Miao, et al. Alibaba hpn: A data center network
for large language model training. In Proceedings of
the ACM SIGCOMM 2024 Conference, pages 691-706,
2024.

Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya
Akella. {CASSINI}:{Network-Aware} job scheduling
in machine learning clusters. In 21st USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 24), pages 1403-1420, 2024.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In IEEE/ACM SC, 2020.

Salvatore Sanfilippo. Redis - the real-time data platform,
2009. Accessed: 2024-09-08.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilié, et al. BLOOM: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100, 2023.

Aashaka Shah, Vijay Chidambaram, Meghan Cowan,
Saeed Maleki, Madan Musuvathi, Todd Mytkowicz,

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Jacob Nelson, Olli Saarikivi, and Rachee Singh.
{TACCL}: Guiding collective algorithm synthesis us-
ing communication sketches. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 23), pages 593-612, 2023.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

Mohammed Sourouri, Tor Gillberg, Scott B Baden, and
Xing Cai. Effective multi-gpu communication using
multiple cuda streams and threads. In 2014 20th IEEE
International Conference on Parallel and Distributed
Systems (ICPADS), pages 981-986. IEEE, 2014.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Dave Thaler and C Hopps. Multipath issues in unicast
and multicast next-hop selection. Technical report, 2000.

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yi-
fan Qiao, Zhihao Jia, Minjia Zhang, Ravi Netravali, and
Guoqing Harry Xu. Bamboo: Making preemptible in-
stances resilient for affordable training of large {DNNs}.
In 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23), pages 497-513,
2023.

Jeffrey D. Ullman. Np-complete scheduling problems.
Journal of Computer and System sciences, 10(3):384—
393, 1975.

Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu,
Lennart Heim, Anson Ho, and Marius Hobbhahn. Ma-
chine learning model sizes and the parameter gap. arXiv
preprint arXiv:2207.02852, 2022.

Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xin-
wei Fu, T. S. Eugene Ng, and Yida Wang. Gemini: Fast
failure recovery in distributed training with in-memory
checkpoints. In Proceedings of the 29th Symposium on
Operating Systems Principles, SOSP ’23, page 364-381,
New York, NY, USA, 2023. Association for Computing
Machinery.

Tianyuan Wu, Wei Wang, Yinghao Yu, Siran Yang, Wen-
chao Wu, Qinkai Duan, Guodong Yang, Jiamang Wang,
Lin Qu, and Liping Zhang. FALCON: Pinpointing and
mitigating stragglers for large-scale hybrid-parallel train-
ing. arXiv preprint arXiv:2410.12588, 2024.

[50]

(51]

(52]

[53]

[54]

[55]

Yifan Xiong, Yuting Jiang, Ziyue Yang, Lei Qu, Gu-
oshuai Zhao, Shuguang Liu, Dong Zhong, Boris Pinzur,
Jie Zhang, Yang Wang, et al. SuperBench: Improving
cloud Al infrastructure reliability with proactive valida-
tion. In 2024 USENIX Annual Technical Conference
(ATC’24), pages 835-850, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt:
Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

Chenggang Zhao, Shangyan Zhou, Liyue Zhang,
Chengqi Deng, Zhean Xu, Yuxuan Liu, Kuai Yu, Ji-
ashi Li, and Liang Zhao. Deepep: an efficient expert-
parallel communication library. https://github.com/
deepseek-ai/DeepEP, 2025.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al. Alpa:
Automating inter-and {Intra-Operator} parallelism for
distributed deep learning. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 22), pages 559-578, 2022.

Yinmin Zhong, Zili Zhang, Bingyang Wu, Shengyu
Liu, Yukun Chen, Changyi Wan, Hanpeng Hu, Lei Xia,
Ranchen Ming, Yibo Zhu, et al. Rlhfuse: Efficient rlhf
training for large language models with inter-and intra-
stage fusion. arXiv preprint arXiv:2409.13221, 2024.

Qihua Zhou, Song Guo, Haodong Lu, Li Li, Minyi Guo,
Yanfei Sun, and Kun Wang. Falcon: Addressing strag-
glers in heterogeneous parameter server via multiple par-
allelism. IEEE Transactions on Computers, 70(1):139—
155, 2020.

https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP

Appendix

Proof of the Lemma in § 4.1

Assume for contradiction that x; < x;4; for some stage S;.
Since the warm-up phase of S; ends after F; ., F; ;,+-1 must
belong to the steady phase of S;, preceded by B; 1, i.e.,

Fix; <Bix < Fix11. ()

However, B; 1,1 can only occur after S;;1’s warm-up phase
ends with Fiy 1, ,. Furthermore, due to pipeline dependen-

cies, Fiy1,y;,, depends on F;,, ,. Thus:
Fiir < Firloy < Bir11 3)
Combining these inequalities, we have:
Biy < Fix, <Bir1,1. “4)

This implies that B; ; starts before B; 11 which violates the
data dependency of backward between S; and S;y;. Hence,
X; > xi+1 must hold forall 1 <i < S. O

Scheduling Algorithm in § 4.3

We present the detailed algorithm of generating the full
pipeline schedule, which employs a discrete-time simulator
and a localized operation selection policy described in § 4.3.
Algorithm 3 presents our two-stage operator selection policy,
which guarantees the slackness on the communication strag-
glers and minimizes the bubble rate for subsequent steady
and cool-down phases. Algorithm 4 then demonstrates the
implementation of pipeline simulation, which asks the policy
for operator selection and propagates scheduable operators to
the upstream and downstream stages.

Algorithm 3 Operator Selection Policy

Require: Current stage i (0 < i < S), available operator sets 4; at
current step of S;, required warm-up forward counts x;.

Ensure: An operator o € {F,B,W} or None if no operators should
be executed.

1: function SELECTOP(i, 4;, x;)

2 if 4; = 0 then

3 return None

4 > Warm-up phase, do x; forwards at first.

5: if x; > 0 then

6

7

8

9

if F € 4; then
Xi—xi—1
return 4;.pop(F)
: else
10: return None
11: > Execution priority after warm-up: B> F > W.
12: Pri<— {B:3,F:2,W:1}
13: > Find an available operator with the highest priority.

14: return 4;.pop(max,c g, (Prijo.type]))

Algorithm 4 Full Pipeline Schedule Generation

Require: Number of stages S, number of microbatches N, per-stage
compute times {r/'}, {t?},{t}V }, inter-PP communication times
{c¢i}, warm-up forward counts {x;}, time step &.

Ensure: A pipeline schedule X.

1: function SCHEDULE(S, N, {rf'}, {t?}, {1V}, {x;}. {c:}. &)

2: X<+ [0] xS > Initialize an empty schedule.
3: A+ [0]xS > Current available operators.
4 Ay + [F]x N > Initially, F’s are available for S.

5: t+0

6: while 3A € 4,A # 0 do

7 foric[0...S—1] do

8

9

if not i.busy() then

: > Decide the next operator to execute.
10: 0 < SELECTOP(i, 4;,x;)
11: i.execute(o, duration = t{""7)
12: > Add dependent operators after execution.
13: if o.type = F and i # S — 1 then
14: A4 .append(F (ready =t +c¢;))
15: else if 0.rype = B and 5 # 0 then
16: A;_y.append(B(ready =t +c;_1))
17: A;_.append(W (ready =t +ci—1))
18: X; < X;U{o} > Update schedule.
19: t+1+3

20: return X

	Introduction
	Background and Motivation
	Hybrid-Parallel DNN Training
	Reliability Issues

	Impact Analysis and Challenges
	Domino Effect of Cascading Bubbles
	Head-of-Line Blocking Stalls
	Which Layer to Optimize?

	Straggler-Resilient Pipeline Adaptation
	Quantitative Delay Analysis
	Orchestrating Warm-up Forwards
	Full-Pipeline Orchestration

	Decoupled Data Plane via Comm. Delegation
	Straw Man Solution
	CPU-based Communication Delegation
	Handling RNIC Failures

	PipeMorph Design and Implementation
	Evaluation
	Experimental Setup
	Mitigating PP Stragglers
	Mitigating DP Stragglers
	Optimality and Overhead
	PipeMorph in the Wild

	Limitations and Future Works
	Related Works
	Conclusion

