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ABSTRACT directed acyclic graph (DAG) of operations with data flow-

Troubleshooting performance bugs for dataflow computation
often leads to a “painful” process, even for experienced devel-
opers. Existing approaches to configuration tuning or perfor-
mance analysis are either specific to a particular framework
or in need of code instrumentation. In this paper, we propose
a framework-independent and non-intrusive approach to per-
formance characterization. For each job, we first assemble the
information provided by off-the-shelf profilers into a DAG-
based execution profile. We then locate, for each DAG node
(operation), the source code of its executed functions. Our
key insight is that code contains learnable lexical and syn-
tactic patterns that reveal resource information. We hence
perform code analysis and infer the operations’ resource us-
age with machine learning classifiers. Based on them, we es-
tablish a performance-resource model that correlates the job
performance with the resources used. The evaluation with
two Spark use cases demonstrates the effectiveness of our ap-
proach in detecting program bottlenecks and predicting job
completion time under various resource configurations.
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ing among them, and automatically manage the DAG exe-
cution in cluster environments. For example, Spark [49] al-
lows programmers to compose a set of (dependent) transfor-
mations (e.g., flatMap followed by reduceByKey) to a dis-
tributed dataset; the framework then converts the transfor-
mations into a DAG and schedules its execution as parallel
tasks on multiple machines. However, owing to the complex-
ity of DAG execution, the performance of dataflow programs
is usually hard to predict or reason about, which has led to
a painful experience [50] for domain experts. In fact, even
skilled programmers cannot avoid painstakingly troubleshoot-
ing configurations [18] and performance issues [52].

A leading factor that renders performance debugging of
dataflow computation a painful process is the lack of handy
toolchains (e.g., profiler, debugger, monitor) that can offer in-
formative results with actionable advices. Existing tools pro-
vided by popular dataflow systems often produce an over-
whelming amount of low-level execution traces. For exam-
ple, when the user trains ResNet50 [22] with TensorFlow [39],
the profiling traces of one iteration would include 9505 ten-
sors, 2950 operators, and 5602 memory operations’, in which
the relevant performance information is easily drowned out.
In addition, many profilers generate framework-specific infor-
mation which requires users to have a solid understanding
about the framework internals in the first place. As a result,
an inexperienced developer may end up with more troubles
making sense of the profiling traces (see “performance diag-
nosing” in §3). Moreover, almost all built-in profilers produce
the execution traces only, without offering high-level action-
able advices for performance debugging.

There are many approaches proposed recently to improve
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1 INTRODUCTION

Dataflow is the de facto computing paradigm for a wide spec-
trum of parallel processing frameworks, ranging from batch
and streaming analytics [10, 29, 31, 49] to distributed ma-
chine learning [1, 12]. These systems model computation as a

quire intrusive instrumentation. Notably, blocked time analy-
sis [35] reasons about the job performance only in Spark; [24]
designs a self-tuning system that finds the optimal configu-
ration for MapReduce-like frameworks [15]. These solutions
are bound to a specific framework, limiting their applications

!The numbers are obtained from an official benchmark provided by Tensor-
Flow (https://github.com/tensorflow/benchmarks).
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to the increasingly diversified dataflow systems. Other ap-
proaches, such as Monotasks [34] and SnailTrail [26], heav-
ily instrument the existing frameworks for performance clar-
ity (Monotasks) or critical path analysis (SnailTrail). While
accurate in profiling, such intrusive approaches fall short in
two aspects. First, given the fast evolving codebase of popu-
lar dataflow frameworks, the instrumentation code must be
manually updated accordingly. Second, the instrumentation
itself can be framework-specific (e.g., Monotasks built upon
the Spark task implementation), making it difficult to port to
other systems.

In this paper, we propose a non-intrusive and framework-
independent approach to performance reasoning and debug-
ging for dataflow computation. Central to our approach is
a performance-resource model that, for a dataflow job, infers
from the execution traces how much time each operation has
spent on different resources (e.g., CPU, network, disk). The
model can then be used to predict the job completion time
under varying resource configurations or reveal abnormal re-
source usage. Our model makes use of the information that
is readily accessible in stock frameworks (e.g., job DAGs, run-
time logs, execution traces given by the built-in profiler, source
code), requiring no instrumentation.

We build the performance-resource model for a dataflow
job in two stages. In the first stage, we construct a DAG exe-
cution profile out of the traces generated by the built-in profil-
ers, where each node of the DAG corresponds to an operation.
Here, “operation” is an umbrella term which may refer to a
mathematical operator in a TensorFlow computation graph,
a task in a Spark job, or an operation in a Heron [31] topol-
ogy. For each operation, we extract its execution details from
the traces, including the operation name, the start and finish
time, and the call trace of its executed functions. We also lo-
cate the source code of those functions in the framework’s
codebase for further analysis.

In the second stage, we infer the resource usage of each
operation and characterize it with a resource vector. Its com-
ponents measure the time portion the operation spends on
different resources (e.g., 30% on CPU and 70% on network).
However, in many frameworks, the resource time cannot be
directly obtained from the execution traces. To tackle this
challenge, we resort to our insight that how an operation
uses resources can be largely characterized from its source
code. For example, an operation containing many routines for
data encoding (or decoding) is likely bound on CPU; an oper-
ation frequently making RPC calls can be network-bound. In
fact, many operations are implemented using functions pro-
vided by open-source toolkits and libraries (e.g., Netty [16],
Akka [3], Parquet [17]), whose resource usage can be clearly
identified from both the source code and documentation. Fol-
lowing this insight, we train classification models that learn
the code patterns (lexical and syntactic) of different resource
usage. The training datasets are prepared by extracting code
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from open-source projects with clear indication of resource
usage, e.g., network and I/O primitives.

Combining the DAG execution profile with the inferred re-
source vector, we can easily generate performance diagnosis
by inspecting abnormal resource usage patterns, or predict
job runtime in what-if scenarios by simulating its DAG exe-
cution. We evaluate the effectiveness of our approach in two
Spark use cases: performance debugging and runtime predic-
tion. Preliminary results show that our approach accurately
identifies performance bottlenecks, and predicts the job com-
pletion time with a 10% deviation on average.

2 OUR APPROACH

Performance-Resource Model Consider a programmer of
a dataflow framework following the development workflow
of coding, executing, and debugging. If the program runs much
slower than she expects, she may ask: “Is there any resource
malfunctioning [21, 28]?” After correcting all bugs, she may
want to accelerate its execution, wondering “What would hap-
pen if I put in use more resources [23, 30]?” If the perfor-
mance still falls short of her expectation, she has to optimize
the program, typically starting with the question: “Which re-
source is the bottleneck during the execution [26]?” Bottle-
neck detection and performance debugging can be done by
knowing how much time the job has spent on each resource;
what-if questions involve predicting how long a job would
take under a different resource configuration. Therefore, the
answers to the questions above boil down to a performance-
resource model, which is however lacking in today’s dataflow
systems.

Our goal is to establish such a performance-resource model
for dataflow computation in a non-intrusive manner by lever-
aging the runtime information (§2.1) that is commonly avail-
able in the prevalent frameworks. We first assemble this in-
formation into a framework-independent, graph-based exe-
cution profile (§2.2). For each operation node, we train two
machine learning models to infer its resource usage from the
source code and documentation (§2.3), through which the bot-
tleneck can be easily identified by finding the resource that
takes the longest time. Our approach can be further general-
ized for performance prediction (§2.4).

2.1 Availability Assumption

Our approach presumes the availability of the following three
types of information in most dataflow systems.

Job DAG Dataflow systems organize the operations of a job
as a DAG where each node corresponds to one operation and
the directed edge represents the dependency between two op-
erations. Most frameworks expose it through monitoring API
or runtime logs. For instance, DAG can be extracted from the
event logs in Spark, through REST API in Heron and from
TensorBoard in TensorFlow:.
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Figure 1: In a nutshell, our approach takes the DAG from runtime profiling and infers the resource usage of each
operation based on its source code. For the inference, we design two machine learning models respectively for
classifying code and documentation, and train them using source code extracted from open-source projects with

manually labeled resource usage.

Source Code Given that many leading dataflow frameworks
for big data analytics are open-source, we assume their source
code is available and exploit it for analysis. This assumption
holds true for TensorFlow, MXNet [12], Heron, Flink [10]
and Spark. Moreover, those large scale projects typically have
function-level documentation which provides useful informa-
tion about resource usage.

Call Traces Such information is non-standardized, but we
find it either accessible or derivable in existing systems. In
essence, we intend to know what code has been executed in
each operation. In TensorFlow and MXNet, the profiling re-
sult contains the operator names, and each operator is associ-
ated with a specific snippet of code which we can easily trace.
However, as such association is lacking in Spark, we take an
indirect measure by periodically recording the call stacks of
JVM with a non-intrusive sampling profiler.” We then align
the records with the time when an operation begins and ends
to extract the called functions. The similar procedure is appli-
cable to Heron and Flink.

2.2 Graph-based Execution Profile

We establish a performance-resource model for a dataflow job
in two stages. In the first stage, we represent the job structure
as a DAG, with necessary modification for certain framework.
We further annotate each node (operation) with its execution
details which will serve as the basis of resource-time infer-
ence in the second stage.

Graph Representation In many frameworks, we can di-
rectly use the job DAG (e.g., TensorFlow computation graphs
and Heron topologies) to represent its internal computation

2Sampling profilers [8] periodically sample the execution of JVM and record
the call stacks. They are widely used in both academia [14, 43] and indus-
try [20].

structure, i.e., the operations and their dependencies. A spe-
cial treatment is needed for Spark, in which a job is decom-
posed into multiple stages with wide dependency, each con-
taining multiple parallel tasks [49]. A completely stage-based
graph may be overly coarse while a task-based graph may
complicate the analysis. To strike a balance, we allow hier-
archical DAG where a node may contain another DAG (e.g.,
a Spark stage consisting of many parallel tasks with narrow
dependency).

Node Information After constructing the DAG, we extend
the content of each node with detailed execution information,
including the start/end time of the operation, the functions
that it calls during the execution, the source code related to
those functions, etc. Figure 1 shows an example representa-
tion of a Spark job and a sample piece of auxiliary informa-
tion attached to a “map” node.

2.3 Resource Usage Inference

With the source code collected for each operation (including
both function code and its associated documentation), we in-
fer its resource usage in the second stage. Specifically, given
a snippet of code, we measure its resource usage as a resource
vector, where each component is the probability of using a
type of resource during execution. For example, a resource
vector taking the form of R = (Pepus PretsPaisk) = (0.2,0.5,0.3)
implies that the program mainly uses three types of resources,
i.e., CPU, network and disk. They respectively account for
20%, 50% and 30% of the execution time.

Our prediction approach is based on the fact that the imple-
mentations of many operations are heavily built on functions
in standard libraries and open-source toolkits. These func-
tions are usually low-level and involves a single type of re-
source, e.g., algebra library uses CPU; socket operation uses
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network. We thus design machine learning models to learn
the code patterns correlated with resource usage, which can
be used to predict the resource vector of an operation based
on code analysis (§2.3.1). To train those models, we collect
source code from several open-source projects with apparent
resource usage (§2.3.2).

2.3.1 Inference Method. Inferring resource usage of a code
snippet is equivalent to calculating its probability of using a
certain type of resource. This problem resembles document
classification [32, 48, 51], a well-studied topic that predicts
the probability of a document (code snippet) belonging to a
certain class. We therefore borrow their techniques and de-
sign the following procedure.

General Procedure As source code comes in unstructured
text format, we first convert them to a mathematical repre-
sentation (i.e., a vector) for the convenience of analysis and
calculation. In data mining, this process is termed as “embed-
ding” [33, 37] because it embeds the text into a vector space.
We embed both code and their associated documentation for
inference, which we will elaborate in the coming subsection.

With the embeddings calculated, we use one-layer neural
networks [9] to infer resource vectors. The neural network
has the advantage of supporting variable length in both input
and output, so we can easily adjust the dimension of embed-
ding or incorporate a new type of resource. After feeding the
embeddings into the network, we interpret the output as re-
source vectors. For the vectors generated from code and doc-
umentation embeddings, we take their average as the final
resource vector for an operation.

Code Embedding Critical to code analysis is lexical and
syntactic information [4]. The former mainly refers to iden-
tifiers of variables, functions, classes, types, etc; the latter
refers to the abstract syntax trees (AST). To combine them,
we adopt the structure of recursive autoencoder [42]. For a
snippet of code, we first parse it into an AST and augment it to
a binary tree by inserting some artificial nodes [46]. Then the
autoencoder will compute a vector representation for each
node of the AST. It starts by assigning a random embedding
vector to each identifier, so the leaf nodes in the AST now
have vector representations attached to them. For the inter-
mediate nodes, the autoencoder computes their vectors in a
bottom-up order. It recursively computes the vector represen-
tation of parent nodes based on their children’s. More con-
cretely, if two sibling nodes are represented as ¢; and cs, their
parent’s vector p is computed as p = Wcy : ¢3] + b, where
W and b are model parameters, and [:] denotes concatenation.
The vector of the root node is taken as the embedding of the
code snippet. The model parameters and embedding vectors
are iteratively refined through training (§2.3.2).

Documentation Embedding For each function, we view
its related documentation as a natural language document.
After removing punctuations, each document consists of a
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sequence of words. We first utilize the state-of-the-art tech-
nique of word embedding, Flair [2], to convert words to vec-
tor representations. Then we use a well-established network
architecture called gated recurrent unit (GRU) [13] for sen-
tence encoding. GRU is a specialized recurrent neural net-
work that can take an arbitrarily long sequence. It has inter-
nal states and works in a recursive way: take an input ele-
ment; update state; produce output and repeat. We feed the
word embeddings to the network according to their order in
the document and take the state from the last iteration as the
overall embedding for the document.

2.3.2 Model Training. In order to train the neural networks
used in code (documentation) embedding and resource infer-
ence, we collect code with clear resource usage from several
open-source projects. The selection criteria include clean de-
sign, comprehensive documentation, sustained development
activities and wide adoption. Within each project, we manu-
ally choose the source files that have apparent resource usage,
such as TCP and UDP services (network-dominant), compres-
sion and hashing (computation-dominant), file operations (disk-
dominant). We admit that code selection unavoidably involves
subjectiveness, so we leave it as a future work to validate how
different code selection may affect the characterization per-
formance.

We extract the selected functions together with their docu-
mentation and manually label their resource usage.’ For code
(documentation) classification model, each data sample con-
tains the code (documentation) of a function and a label of
bottleneck resource. During training, we will treat the label
as a resource vector where the probability of the bottleneck
resource is set to 1 and all others 0. Such approximation is
viable as we only choose low-level libraries where most func-
tions only use one type of resource. In each training iteration,
we compute the gradient based on the difference between the
predicted resource vector and the ground truth (i.e., the la-
beled vector). We then back propagate [40] the gradient infor-
mation to update the model parameters. We omit the mathe-
matical details due to the space constraint and refer the inter-
ested reader to [13, 46].

Note that the models trained on certain programming lan-
guages can be reused by the other frameworks or languages,
as language models have a transferable [11, 27] nature, and
the program code statistically resembles natural language [25,
44]. This allows our system users to employ pre-trained mod-
els for performance characterization, without retraining them
for a particular framework.

Why it works? The validity of our approach critically de-
pends on the assumption that the code and documentation cor-
rectly reflect the resource usage. We discover several pieces

$Manual labeling is feasible as long as the project follows modern design
guidelines (e.g., modularity, high cohesion, low coupling). For instance, in
a well modularized project, functionally similar code tend to appear in the
same module, so it is easy to “batch process” them.
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of evidence in current practice of coding and documenting.
Most obviously, different resources typically have their spe-
cific terminologies (e.g., transmitting packets over network,

reading blocks from disk) that are easily distinguishable. The

documentation written in natural language frequently men-
tions those terminologies, thus revealing the resource infor-
mation. This is also the case for the identifier names in source

code [25]. Moreover, the AST is distinguishable as well for

certain resources. For instance, the matrix operation library [5]
is awash with for loops and mathematical operators, suggest-
ing the heavy usage of CPU. Despite the empirical justifica-
tion provided above, we leave it as a future work to verify the

assumptions with quantifiable metrics and refutable proofs.

2.4 Performance Characterization

With the resource vector inferred for each operation, we fur-
ther have to model how operation runtime changes with re-
gard to resource allocation so as to predict or debug job per-
formance. Since different resources affect performance in a
different manner, we categorize them into three classes ac-
cording to the von Neumann architecture and model them
separately.

Computing Devices CPU, GPU or TPU mainly influence
job execution in two respects. (1) Utilizing devices with dif-
ferent computing speeds (e.g., upgrading CPU to GPU) may
change the durations of computation tasks. Suppose the num-
ber of low level instructions remains the same, switching from

original device with computing speed s, (e.g., 5MHz, 10 MFLOPS)

to a new one s, will cause the original runtime ¢ to become
t' = tsefs,. (2) Altering the quantity of devices (e.g., CPU
cores) may cause the parallelism of tasks to change. For in-
stance, Spark will schedule more tasks concurrently if given
more cores; TensorFlow will perform more calculations; Flink
will arrange more task slots. Therefore, given such resource
variation during prediction, we replay the DAG execution by
rescheduling the parallel tasks and update the job runtime.

Memory It plays a passive role in job execution for it never
performs active operations. As long as given enough memory,
a job won’t run any faster even if we allocate more memory
to it. However, if a job runs short of it, frequent garbage col-
lection or communication with secondary storage is likely to
elongate the execution. In light of such behavior, we adopt a
“reversed” roofline model [47], i.e., a linear decreasing func-
tion followed by a constant lower limit, to model the rela-
tionship between memory and runtime. The turning point is
chosen by summing up the data size used in the program, e.g.,
RDD blocks in Spark, tensors in TensorFlow, network buffers
in Flink; the slope is set as the ratio between the I/O speed of
in-memory and on-disk data access. The intuition behind is
that memory is sufficient as long as it can accommodate all
data, so the delay is primarily caused by exchanging data be-
tween memory and disk.
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1/0 Devices NIC cards, hard drives or even I/O buses have

data transmission as their primary functionality, and the band-
width largely determines the time spent. We hence choose a

linear relationship to approximate their operation runtime.
Suppose the amount of data is held constant, changing a de-
vice with bandwidth B to a new one with B” will let the run-
time ¢ become ¢’ = ¢'B/p'.

Putting It All Together We combine the execution pro-
file with resource-runtime model to characterize job perfor-
mance. For debugging, we simply output the bottleneck re-
source that takes the most of time during execution, which

can help users understand the potential bottleneck of the pro-
gram. For prediction, we consider the scenario where a user

profiles the execution of a job under a certain resource config-
uration and wonders how the completion time would change

with more or less resources. After converting the trace into

an annotated DAG representation, we simulate its execution

under the given resource configuration and determine the

runtime of each operation with the aforementioned device-
specific models. We then sum up the adjusted runtime and

output it as our prediction.

It is noteworthy that such estimation is approximate in its
nature because our simplified models only capture the com-
monality among resources. The approximation is nonetheless
acceptable in our approach because the users are mostly inter-
ested in knowing the general trend of runtime with varying
resource allocation instead of the exact job durations. Pro-
vided that they are aware of which resource is the bottle-
neck, they can take action to alleviate or optimize it. Similarly,
when cluster schedulers decide which job should be allocated
with more resources, it suffices to make a rough numerical
comparison on the estimated runtime.

3 PRELIMINARY EVALUATION AND
FUTURE WORK

We have prototyped our approach as a command line tool
in Python. For resource inference, we have implemented the
models for code and documentation embedding (§2.3.1) with
PyTorch [36]. To train those models, we have extracted around
5,000 low-level functions from five popular open-source li-

braries, including FS2 [19], Twitter Util [45], Play Framework [38],

Scala Standard Library, and Scalaz [41]. The resource usage
of those functions are manually labeled by a domain expert
in several hours.

Performance Diagnosing To evaluate how our approach
can streamline performance diagnosing, we apply our tool
to a real case [7] reported in Stack Overflow, where a pro-
grammer implemented a Spark program to count a dataset in
HDEFS, yet found it taking much longer time than expectation.
Someone else mentioned Spark UI for debugging, but it has
led to more confusion as the programmer replied: “In fact, af-
ter looking at the information in the Spark UL, I leave with more
questions than answers ...”
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Figure 2: We run two Spark applications and collect their traces. We then vary certain resource configurations (e.g.,
reducing memory to 7 GB) and use our tool to predict the job completion time. Each bar group corresponds to one

execution with one resource variation.

We reproduce this case with the same configuration as men-
tioned in the original post. After applying our tool, we find
that, within each task, a large portion of time is spent in CPU-
related function calls (i.e., decompressing and decoding data
from raw data blocks). So we simply double the number of
cores and, as a result, the runtime drops from 25.89s to 14.76s,
proving that CPU is the bottleneck.

Runtime Prediction We next evaluate how our approach
can be used to predict the job runtime under different re-
source configurations (§2.4). We experiment with two Spark
applications, WordCount and PageRank, on three-node EC2 [6]
clusters with instance type m5.xlarge (4 cores, 16 GB mem-
ory, 10 Gbps network) and m5. 4x1arge (16 cores, 64 GB mem-
ory, 10 Gbps network), respectively. We run two applications
with all the available resources and collect the traces. Then we
use our tool to predict the runtime under the condition of ad-
justing the amount of resources, e.g., reducing memory from
16 GB to 7 GB. To check the accuracy of prediction, we rerun
the job on real cluster with the same resource configuration
as in prediction. Figure 2 shows the actual and predicted run-
times for two applications, with an average prediction error
0f 10.06%. The effective overhead of our approach comes from
the sampling profiler, which we set to sample once per 100ms.
We measure WordCount jobs with and without profiler and
their runtimes differ within 2%, lower than the overhead of
instrumentation in SnailTrail [26] (10%).

Future Work The inaccuracy of current prediction partially
stems from the neglect of pipelined operations. We plan to
address it with our key insight that each data block is pro-
cessed sequentially even among multiple threads or workers.
In Spark, data blocks have to be read first, then computed,
but not both at the same time; tensors in TensorFlow cannot
participate in multiple calculations simultaneously; buffered
data are transferred sequentially among long-running oper-
ators in Flink. Therefore, if we further decompose an opera-
tion into sub-operations on the level of data blocks, then the
pipelining vanishes and our approach becomes directly ap-
plicable. The sub-operations can be inferred from the thread-
level stack traces provided by sampling profilers.
Our approach is also applicable to streaming systems, though

they even lack the notion of “job completion time” given the

unbounded data streams. We observe that, under the hood,
streaming data are chunked into blocks and then processed,
so we narrow down our attention onto one data block and
focus on how long it takes to traverse the whole processing
logic. Such duration is similar to the job duration in batch
processing frameworks and naturally fits into our approach.
However, as the data size may vary for each block, we will
record it and normalize the runtime against it to get a size-
agnostic performance indicator.

Finally, a possible obstacle to extending our approach to
deep learning systems is that they may have multiple imple-
mentations for the same operation. For example, in Tensor-
Flow or MXNet, a mathematical operator may have both CPU
and GPU implementations, even TPU or FPGA. We may lever-
age the log information to infer which resource the operator
is actually running on.

4 CONCLUSION

In this paper, we proposed a framework-independent and non-
intrusive approach to performance characterization for dataflow
computation. Our approach constructs a DAG execution pro-
file of a job and infers the resource usage for each operation
using classification models trained over manually labeled func-
tions from open-source projects. Preliminary evaluation shows
that our approach can detect program bottlenecks and predict
job runtime under varying resource configurations.
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