
Characterizing and Synthesizing Task Dependencies of
Data-Parallel Jobs in Alibaba Cloud

Huangshi Tian

HKUST

htianaa@cse.ust.hk

Yunchuan Zheng

HKUST

yzhengbj@connect.ust.hk

Wei Wang

HKUST

weiwa@cse.ust.hk

ABSTRACT
Cluster schedulers routinely face data-parallel jobs with complex

task dependencies expressed as DAGs (directed acyclic graphs).

Understanding DAG structures and runtime characteristics in large

production clusters hence plays a key role in scheduler design,

which, however, remains an important missing piece in the litera-

ture. In this work, we present a comprehensive study of a recently

released cluster trace in Alibaba. We examine the dependency struc-

tures of Alibaba jobs and find that their DAGs have sparsely con-
nected vertices and can be approximately decomposed into multiple

trees with bounded depth. We also characterize the runtime perfor-

mance of DAGs and show that dependent tasks may have significant
variability in resource usage and duration—even for recurring tasks.

In both aspects, we compare the query jobs in the standard TPC

benchmarks with the production DAGs and find the former inad-
equately representative. To better benchmark DAG schedulers at

scale, we develop a workload generator that can faithfully syn-

thesize task dependencies based on the production Alibaba trace.

Extensive evaluations show that the synthesized DAGs have con-

sistent statistical characteristics as the production DAGs, and the

synthesized and real workloads yield similar scheduling results

with various schedulers.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Cloud Resource Scheduling, Workload Analysis

ACM Reference Format:
Huangshi Tian, Yunchuan Zheng, and Wei Wang. 2019. Characterizing and

Synthesizing Task Dependencies of Data-Parallel Jobs in Alibaba Cloud. In

ACM Symposium on Cloud Computing (SoCC ’19), November 20–23, 2019,
Santa Cruz, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/

10.1145/3357223.3362710

1 INTRODUCTION
Production data-parallel jobs increasingly have complex dependen-

cies in computation. Modern data analytics frameworks [1, 8, 11, 31,

35, 60] compile programs into job DAGs (directed acyclic graphs)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6973-2/19/11. . . $15.00

https://doi.org/10.1145/3357223.3362710

consisting of many dependent tasks. Each vertex in a DAG corre-

sponds to a compute task, and a directed edge between two vertices

(tasks) specifies their dependency. The dependency requirements

of job DAGs pose significant challenges to cluster scheduling, mak-

ing it difficult to balance common objectives such as high cluster

utilization, fair sharing, and fast job completion [27, 28, 40].

Key to innovations in scheduler design is understanding the

dependency structures of production job DAGs and their impact on

scheduling. However, prior studies on cluster workloads [4, 37, 49]

offer little such clue because the released production traces con-

tain no dependency information. As DAG characterization remains

lacking, many works on scheduling algorithm [9, 29, 38, 63] base

their designs and evaluations on randomly generated DAGs and the

limited choices of benchmark suites (e.g., TPC-DS [48] and TPC-

H [47])—none of those workloads can well represent the complex

dependencies of production jobs (§4-5). While some recently pro-

posed schedulers are evaluated against real job DAGs [27, 28, 40],

the production traces they used are unavailable to the public, ren-

dering it difficult, if not impossible, to reproduce the results and

promote further improvement.

In this paper, we present a panoramic view of production job

DAGs through an in-depth characterization study on the Alibaba

trace [3]. The trace, released in November 2018, records batch pro-

cessing jobs and long-running containerized services from a cluster

of 4034 machines throughout an 8-day period. We single out the

dependent jobs therein and perform a comprehensive analysis on

their scope of influence, dependency structures, and runtime per-

formance. We summarize our key findings as follows.

Job DAGs are too prevalent to ignore. Our analysis shows that

dependent jobs are replacing the distributed, independent jobs and

becoming themajority. Almost 50% of batch jobs have dependencies,

and they account for 80% of the resources consumed by all batch

jobs (§3.2). The prevalence of job DAGs necessitates the dependency

awareness for modern cluster schedulers.

Production DAGs are highly artificial in structure. In theory,

job dependencies can form DAGs of any shape, so they are believed

to be “large and complex” [28, 40]. However, we observe that the

complexity of production DAGs is, to a large extent, artificial in
that they have many distinctive features from random general

DAGs. For instance, their nodes are sparsely connected, forming

many small chains so that we could approximately decompose

job DAGs into trees. Those trees are bounded in depth because

the critical paths of job DAGs typically do not grow longer with

more tasks. Instead, they become “wider” in terms of the degree of

parallelism, which means more tasks can be executed in parallel.

Such an artificial structure of production DAGs, if well exploited,

https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3357223.3362710

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Huangshi Tian, Yunchuan Zheng, and Wei Wang

can greatly simplify the design of scheduling algorithms, even

leading to tractable analysis under practical assumptions.

Salient variability is seen amongdependent tasks. Priorwork-

load analysis [49] reveals significant heterogeneity among produc-

tion jobs, which takes a toll in the scheduling performance [5, 7, 26].

One might expect such problem to become less severe among de-

pendent tasks within the same job because (1) upstream and down-

stream tasks usually run in the executors with the same configura-

tion, and (2) sibling tasks of the same parents work on the similar

intermediate data. Contrary to this expectation, the heterogene-

ity becomes even more pronounced to the point where dependent

tasks can vary in certain metrics, such as task duration and re-

source usage, by more than 10
3
x (§5). In comparison, a task of a

data-parallel job with 8x longer duration than average is viewed as

a severe straggler [5]. Therefore, high variability is turning to the

“new normal” for DAG schedulers.

Standard benchmarks are not sufficiently representative of
productionDAGs. Existingworks frequently use standard bench-

marks, notably TPC-DS [48] and TPC-H [47], to evaluate the pro-

posed cluster schedulers [27, 28, 40], so we compare their job DAGs

with those in the Alibaba trace. Our comparison reveals that bench-

mark DAGs are neither as structurally diversified as the production

DAGs, nor as comparably variable in runtime metrics. For instance,

TPC-H DAGs have a rather narrow range of in-degrees and out-

degrees, while TPC-DS DAGs tend to have significantly lower edge

density. Such structural difference suggests that they are inadequate

to evaluate a scheduler in its capability of handling complex pro-

duction DAGs. We also run the two benchmarks and measure their

runtime performance, e.g., task duration and resource usage. Even

under the most complicated settings we could find in the literature,

the dynamic range of the metrics remains an order of magnitude

smaller than that of the production jobs.

As standard benchmarks may not well represent production

DAGs, we design a new workload generator that can faithfully syn-

thesize dependency DAGs from a production trace in a controllable

manner (§7). Our synthesis algorithm is based on the observation

that batch jobs typically have bounded critical paths as they are

constrained by the program complexity. When synthesizing a DAG,

we first randomly determine its critical path length based on the

distribution in the trace. We then decide how nodes are distributed

along the path, and generate edges to connect them. Our evaluation

shows that the synthesized DAGs resemble production DAGs in

terms of five metric distributions (without directly sampling from

them); they also yield similar results to production traces in sim-

ulated scheduling process. Such statistical and runtime similarity

attests the effectiveness of our synthesis algorithm.

We summarize our key contributions as follows.

(1) We conduct the first comprehensive analysis on the struc-

tural and runtime properties of dependent jobs at scale and

identify several key characteristics of production DAGs.

(2) We compare the standard benchmarks with the production

traces and discern their insufficiency in evaluating cluster

schedulers.

(3) We design an algorithm that can faithfully synthesize pro-

duction job DAGs in a controllable manner. We extend it

to a full-fledged workload generator and release its code as

open-source [55].

2 RELATEDWORK AND MOTIVATION
In this section, we briefly survey existing cluster schedulers and

examine their applicability in modern datacenters where depen-

dent jobs prevail. We summarize the common assumptions held by

those schedulers, and find that prior trace analyses provide little or

outdated supporting information, leaving several questions for us

to answer in this paper.

Dependency-Agnostic Task Scheduling Scheduling millions

of jobs on tens of thousands of machines in modern datacenters

poses a daunting challenge. Over the years, a myriad of cluster

schedulers have been proposed, aiming at fair sharing [24, 32],

low latency [25, 45], predictable performance guarantee [15, 21],

fast job completion [26], straggler mitigation [50, 61], high cluster

utilization [26], etc. However, most of those schedulers assume

independent parallel tasks within a job, which is no longer the case

in today’s datacenters.

Job DAGs and Dependency-Aware Scheduling Data process-

ing frameworks have evolved to a stage where computation is too

complex to fit into a monolithic job, so many divide a complex job

into multiple dependent tasks and organize their dependencies as a

DAG. Batch analytics frameworks are the first system category to

adopt such design [31, 60], followed by stream processing [8, 43]

and DAG-backed SQL engines [6, 54]. The newly proposed machine

learning frameworks also follow this direction [1, 11]. Dependent

jobs hence have dominated production workloads.

As task dependencies gain increasing attention,many dependency-

aware schedulers have been proposed recently. For example, Graphene [28]

splits job DAGs and heuristically prioritizes the time-consuming

and resource-intensive tasks; Carbyne [27] follows job DAGs to

estimate completion time and lets jobs altruistically yield allocated

resources without delaying completion; Decima [40] encodes job

DAGs and schedules them with deep reinforcement learning.

We summarize common beliefs about production jobs as follows,

where some (2 and 3) are based on the studies of non-DAG jobs:

(1) Job dependencies are (vaguely described as) “large and com-

plex” [28, 40].

(2) Runtime variability is ubiquitous, e.g., straggler tasks [5],

resource fragmentation [26], and data skew [7].

(3) Recurring jobs are commonplace, and their resource usage

and duration are well predictable [21].

Cloud Trace Analysis Despite a body of works on cloud work-

load analysis [4, 14, 37, 49], the study of task dependencies remains

a largely uncharted territory. The lack of such research is primarily

due to (1) the lack of task dependencies, and (2) the coarse-grained

workload information contained in the cluster traces. Take the

Google cluster trace [49], released in 2011, as an example. The trace

contains both job and task-level records, but when we attempt to

infer the task dependencies from the temporal information, we find

that over 98% of complex jobs are actually parallel. More specifically,

within 98% of jobs consisting of more than five tasks, all tasks are

executed in parallel, indicating no dependency between those tasks.

Aside from the Google trace, workloads in the other traces, such as

Characterizing and Synthesizing Task Dependencies SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Table 1: Statistics of the batch jobs in the trace. Note that we
only list the attributes of our interest.

Jobs: 4,201,014 # Dependencies: 9,449,272
... w/o Dependencies: 830,258 Attributes of Task
... w/ Dependencies: 3,370,756 - Start/End Time

... w/ Full Information
1
: 2,872,634 - CPU/Memory Request

... w/ over Two Tasks: 2,055,299 - # Instances

Tasks: 14,295,731 Attributes of Instance:
... w/ Dependencies: 12,207,703 - Start/End Time

Instances: 1,351,255,775 - CPU/Memory Usage

... w/ Dependencies: 1,310,672,556 - Machine ID

ATLAS [4] and Azure [14] traces, even provide no task information.

The former only gives job-level traces, while the latter is collected

on the VM level, where each VM can host multiple concurrent tasks.

Owing to these limitations, we are unable to extract separate task

information from the two traces, let alone the dependencies.

The aforementioned problems do not appear in a recent trace [37]

released by Alibaba in 2017, which contains task-level information

with clear signs of dependencies. Nevertheless, we choose not to

reverse engineer its dependencies because the same company has

released a new version of more comprehensive cluster trace [3] in

November 2018 with explicit dependency information. We take it

as an opportunity to answer the following questions:

(1) How complex are the job DAGs in production clusters?

(2) How do dependencies affect runtime variability?

(3) How prevalent and predictable are recurring jobs?

3 OVERVIEW OF DEPENDENT JOBS
In this section, we give an overview of the Alibaba trace (§3.1), with

a focus on dependent jobs. We examine how they are distributed

over time and across the cluster (§3.2) to understand their impact

on the production workload.

3.1 Trace Overview
The Alibaba trace [3] we study is collected on a production clus-

ter of 4034 machines, which records the activities of both long-

running containers (for Alibaba’s e-commerce business) and batch

jobs across an 8-day period. In this paper, we only analyze the batch

jobs and their dependencies. Readers interested in the other aspects

may refer to [37] for a general analysis of a 24-hour Alibaba trace

released in 2017, which contains no DAG information though.

In the trace, each batch job consists of one or multiple compute

tasks which may or may not have dependencies (DAGs). A task

has one or multiple instances2 running the same binary but pro-

cessing different data partitions. A task instance must wait until

all instances of its upstream tasks complete. Table 1 gives the basic

statistics about the batch jobs in the Alibaba trace. According to

our contact at Alibaba, over 90% of those jobs are SQL programs

supported by a Hive-like [54] framework for routine and ad-hoc

1
Owing to the collection method, some jobs may have incomplete information, e.g., a

few instances are not included or several attributes are missing. We sometimes exclude

incomplete jobs from the analysis in this study.

2
For those who are more familiar with Spark, the “task” in the trace is equivalent to

the “stage” in Spark, and “instance” to “task”.

data analytics. Other jobs such as Spark [6] and Flink [8] applica-

tions do exist, but only account for a small portion. Furthermore,

unlike the Google workload [49], the Alibaba jobs typically have no

locality preferences or placement constraints. The only common

requirement is instead a (loose) completion deadline, e.g., a job

generating the daily transaction summary should complete before

8 am the next day.

3.2 Temporal and Spatial Distributions
To understand the impact of dependent jobs on production batch

workloads, we give a holistic view of their distributions. Figure 1

shows how (DAG and all) jobs are temporally distributed along

with their resource usage; Figure 2 illustrates how they are spatially
distributed across the cluster, i.e., the number of machines that each

job spans, and the number of jobs that each machine has run.

Dependent jobs follow (probably reversed) diurnal patterns.
Batch jobs are reported to run diurnally in many previously released

cluster traces [4]. That is, a large number of jobs run in the day-

time while only a few run at night. Dependent jobs in the Alibaba

trace follow a similar diurnal pattern, though in a lesser degree.

Specifically, we observe 3.18x more job DAGs running in the peak
hours than in the slack hours; if we expand the counting to include

all batch jobs, the peak-to-trough ratio increases to 7.63x. The re-

source consumption, however, exhibits the opposite difference. The

peak-slack variation of CPU (memory) usage is 18.94x (19.93x) for

dependent jobs, and 10.67x (12.92x) for all batch workloads. That is

to say, in terms of resource usage, dependent jobs demonstrate a

more salient diurnal pattern than those non-DAG ones.

It is worth mentioning that such diurnal pattern may actually

be reversed—according to our contact at Alibaba—as many batch

jobs are purposely scheduled to run at night. In Alibaba clusters,

batch jobs are collocated with long-running containerized services

for improved utilization [37]. As those services are closely related

to the company’s e-commerce business and usually undergo peak

demands during the daytime, most latency-tolerant batch jobs are

scheduled at late night or early morning to avoid negatively affect-

ing the performance of user-facing services.

Dependent jobs consumedisproportionatelymore resources.
DAG jobs compose 48.92% of batch jobs, yet they account for 77.05%

of CPU cores and 80.20% of memory used by all batch workloads.

In some extreme cases such as the 116
th

hour, dependent jobs, with

5.54% of population, grab 67.81% of CPUs and 81.53% of memory.

On the scale of seconds, at somemoment the dependent jobs occupy

98.04% of CPUs and 99.12% of memory used by all batch workloads.

Dependent jobs are evenly spread across the cluster. As shown

in Figure 2 (left), over 25% of DAG jobs span hundreds or even

thousands of machines, dramatically larger than the median of ten

machines. Note that this could be an underestimate because the

trace may miss some task instances running on another cluster.

Quite different spans as those dependent job have, Figure 2 (right)

suggests that they are evenly distributed across the cluster. In fact,

should those jobs commonly specify placement constraints, which
are found prevalent in the production clusters of the other compa-

nies [15, 53], we would have expected large jobs to make a fraction

of machines heavily loaded, leading to spiky curves in Figure 2. As

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Huangshi Tian, Yunchuan Zheng, and Wei Wang

40 60 80 100 120 140 160

104

105

Jo

bs

40 60 80 100 120 140 160
Hours from Beginning of Trace

5

10

15

CP
U

Us
ag

e
(×

10
4 C

or
es

) All Jobs Dependent Jobs

40 60 80 100 120 140 160

2

4

6

M
em

 U
sa

ge
(×

10
4 U

ni
t)

Figure 1: Hourly distributions of the number of jobs, their CPU and memory usage. The time range does not span exactly 8
days because some timestamps in the trace are misaligned [17].

100 101 102 103

Machines Involved

0.0

0.5

1.0

CD
F

0 1000 2000 3000 4000
Machine ID

0

10

20

Jo

bs
 (×

10
4)

All Jobs
Dependent Jobs

Figure 2: Distributions of the number of machines each job
spans (left) and the number of jobs each machine has run
(right).

this is not the case, we conjecture that few jobs have constraints

or most constraints are not so strict. Our Alibaba contact confirms

this conjecture.

4 ANATOMY OF DAG STRUCTURES
In this section, we analyze the structural properties of production

job DAGs. We first show that a complex DAG can be generally

decomposed into two types of trees for scatter- and gather-like

operations respectively (§4.1). We then show that production DAGs

are structured in a largely artificial manner (§4.2).

4.1 Dissecting Job DAGs
Data-parallel jobs frequently perform MapReduce-like operations:

a dataset is first scattered to multiple workers and they produce

intermediate data which will be eventually gathered. Both processes
are so prevailing in the trace that most jobs can be viewed as either a

scattering or gathering process, or a composite of them. To quantify

their popularity, we first take them as metaphors to define two

common types of jobs.

Scatter/Gather Job In the scattering process, a single task may

generate data that will be consumed by multiple tasks, and those

tasks may iteratively spawn more tasks. We define the jobs with

such characteristic as scatter jobs. They feature a tree-like shape

where each task, other than those in the last level, has one or

more children tasks. Figure 3b gives an example scatter job. On the

opposite, the gathering process reverse the shape in that the output

of several tasks is collected by a single task. Such property defines

the gather jobs, where each task, except the top-level ones, has one

or more parent tasks. An example gather job is shown in Figure 3c.

These two types of jobs are so prevalent that 36.03% and 78.54%

of DAGs (that contain more than 2 tasks) are scatter and gather jobs,

respectively. The percentages sum up to more than 100% because

(a) complete graph (b) scatter component (c) gather component

10

2

3

7

1 84 5

9

6 13 14

15

16

12

11

10

2

3

7

1 84 12

11

1 84 5

6 13 14

15

16

12

11

1

2

3

4

5

6

7

8

Figure 3: The decomposition of a job3 into scatter and gather
component using our heuristic algorithm. The numbers in
the nodes are task identifiers.

our definitions allow a parent (child) to have only one child (parent)

in a scatter (gather) job, meaning a chain of tasks can be both scatter
and gather job. Such looseness in the definitions is acceptable from

a theoretical perspective. As tree-structured dependency is a special

case for scheduling algorithm [36], there is no reason to exclude

task chains, a special case of tree, from the definition.

Decomposing Complex DAGs into Scatter/Gather Jobs De-

spite the prevalence of simple (scatter/gather) jobs, the trace also

includes quite a few complex ones. Given that data analytics job are

often composed of many primitive operators (e.g., map and filter
in Spark [60]), we explore the possibility of decomposing a complex

job into scatter and gather components. Algorithm 1 is designed for

this purpose.
4
The key intuition behind is to prune away the nodes

that are impossible to appear in a certain component. For instance,

a task with two parents cannot be in a scatter component, so we

remove all such tasks. After pruning, the resulting components can

be viewed as a decomposition of that job, as shown in Figure 3.

After decomposing all complex jobs, we find our methods effec-

tive in that (1) the scatter and gather components overlap only to a

small extent, and (2) they almost fully cover the entire DAG struc-

tures. On average, the scatter and gather components produced by

our algorithms only have 11.55% tasks in common, meaning that

our algorithms can effectively separate a job into multiple parts. If

3
Its job ID is j_3985826.

4
Owing to the approximate nature of our algorithms, we just prune tasks according to

their natural order as they appear in the trace.

Characterizing and Synthesizing Task Dependencies SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Algorithm 1 Find the Scatter and Gather Components

1: function FindScatter

2: repeat
3: prune all nodes with more than 2 parents

4: prune all nodes with 0 parent and less than 2 children

5: until no node is pruned

6: function FindGather

7: repeat
8: prune all nodes with more than 2 children

9: prune all nodes with 0 child and less than 2 parents

10: until no node is pruned

we reconstruct the job from its decomposition, scatter and gather

components can recover 81.68% of tasks, i.e., they are included in

either scatter or gather components.

The decomposition results suggest that most production DAGs

are scatter or gather jobs, or can be approximately viewed as a

composite of multiple simple components. Similar to the frequent

communication patterns [12] stemming from primitive operators,

we believe the DAG structures are also affected by them. To in-

vestigate the consequence of such effect at large, we inspect the

statistical distributions of job DAGs in the coming section.

4.2 Artificiality of DAG Structure
To characterize the distinctive structural properties of production

job DAGs, we compare them to standard benchmarks and randomly

generated DAGs. Here we only consider the jobs with at least 6
tasks, because 6 is the smallest n such that, if the DAGs in the trace

are randomly generated over n unlabeled vertices, the expected

number of graph pairs that are isomorphic is less than one [51]. We

introduce four datasets of DAGs in our comparison:

(1) Alibaba dataset where the DAGs are extracted from the

trace [3]. We only include the job DAGs with complete in-

formation of tasks and instances.

(2) Random dataset with the DAGs generated by a uniformly

random graph synthesis algorithm [34]. This dataset has

exactly one-to-one relationship with the Alibaba dataset, i.e.,

for each DAG therein, we generate a random graph with the

same number of vertices.

(3) TPC-DS dataset where the DAGs are generated from the

namesake benchmark [48] with Spark 2.4.0 [65].

(4) TPC-H dataset generated similarly as above [47, 52].

Job DAGs are sparse. Our decomposition analysis (§4.1) suggests

that the dependencies of many jobs actually have a tree structure.

One noteworthy feature of the trees is sparsity because a tree with

V vertices haveV −1 edges whereas a DAG can have up to V (V−1)/2.

To examine whether production DAGs are sparse, we define the

edge density of a DAG as the ratio between its number of edges E
and the possible maximum, i.e., 2E/V (V−1). Figure 5a shows the edge

density of four datasets. The randomly generated DAGs have the

highest edge density around 0.5, a consequence of the uniformity of

the generation algorithm. In comparison, the density of production

DAGs is only half of the random, hinting at lower complexity than

general graphs.

Chains prevail in production DAGs. When we examine the

DAGs to understand the cause of sparsity, we notice that many

tasks have exactly one child and one parent, and together they

form multiple task chains. In order to measure the prevalence of

those chains, we define the chain ratio of a DAG as C/V , where C
and V respectively denote the number of chained tasks and total

tasks (vertices). Figure 5b presents the distribution of the measured

chain ratios in four datasets. By a significant margin, task chains

are the most prevalent in Alibaba trace, which aligns with our

observation. In comparison, at least 75% of randomDAGs have near-

zero chain ratio, meaning that chains are rarely found in natural

graphs. Therefore, we believe task chains should be treated as

artifacts that deserve special attention in job scheduling.

A task can havemany dependencies, but typically a few chil-
dren. We next examine the in- and out-degrees of DAG vertices,

where the former measures the number of dependent tasks of a

given vertex (task), and the latter the number of children tasks that

depend on its output. Figure 4 shows the distribution of bothmetrics

in all four datasets. As production DAGs have sparser edges than

the random ones, their in- and out-degrees are correspondingly

smaller.

Specifically for in-degrees (left figure), the Alibaba curve has a

long tail that stretches as far as the random curve, suggesting that

a noticeable fraction of tasks depend on a significant number of

others. In fact, the largest production jobs in the trace have 199

tasks and they only constitute rare cases, in which some tasks of

those jobs have dependencies on all the other tasks.
Regarding the out-degrees, the dominating majority of the ver-

tices in the Alibaba trace have only a few children. Specifically, 99%

of vertices have out-degrees no more than 3, and 99.9% no more

than 9. In comparison, 35.9% of random vertices have out-degrees

larger than 3.

To sum up, most tasks in production DAGs tend to funnel multi-

ple input datasets into some smaller output, without branching out

many children tasks for parallel processing. This is in line with our

prior observation that gather jobs outnumber scatter ones (§4.1).

Optimizing the scheduling and execution of those gather jobs and

tasks hence leads to more salient performance improvement.

Parallelism linearly increases as the tasknumber rises. From

the perspective of scheduling, the high in-degree of vertices might

suggest better chances for fast job execution because, for each ver-

tex, all its upstream tasks, if having no interdependency, can be

executed in parallel. To study such parallelization opportunities,

we compute the maximum parallelism of each job, defined as the

maximum number of tasks that can be executed concurrently. For

example, the job in Figure 3a has maximum parallelism of six (tasks

1, 4, 8, 9, 12 and 14). Figure 6 (left) plots the average maximum

parallelism of the jobs with different number of tasks.

Notably, the maximum parallelisms of all curves other than “ran-

dom” (approximately) increase linearly with respect to the task

number. In fact, the ordinary linear square fitting gives a slope of

0.491, meaning every two tasks will increase the parallelism by

one. However, the randomly generated DAGs have almost the same

parallelism regardless of the number of tasks they have. The reason

behind such discrepancy may take root in the edge density. As

random DAGs have more edges (i.e., dependencies), tasks tend to

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Huangshi Tian, Yunchuan Zheng, and Wei Wang

0 25 50 75 100 125 150 175 200
In-Degree

Alibaba
Random
TPC-DS
TPC-H

0 20 40 60 80 100
Out-Degree

100

10−1

10−2

10−3

10−4

CC
DF

 (1
 -

CD
F)

Figure 4: Adjusted5 complementary cumulative distribution function (CCDF, the fraction that is above a particular value) of
in-degrees and out-degrees of vertices in four datasets. For each task, its in-degree corresponds to howmany dependent tasks
it has; its out-degree is the number of children tasks that depend on it.

Aliba
ba

Ran
do

m
TP

C-DS
TP

C-H
0.0

0.2

0.4

0.6

0.8

Ed
ge

 D
en

sit
y

Aliba
ba

Ran
do

m
TP

C-DS
TP

C-H
0.0

0.2

0.4

0.6

0.8

Ch
ai

n
Ra

tio

Figure 5: Edge density and chain ratio of four datasets. Each
box symbol corresponds to 1st, 25th, 50th, 75th, and 99th per-
centiles.

be connected together, which hinders the growth of parallelism. On

the contrary, production DAGs have sparser edges and thus higher

parallelism.

The length of critical path stagnates when tasks increase.
While parallelizing tasks shortens execution time, the minimum job

completion time is dictated by the critical path—the longest stretch
of dependent tasks in a job DAG. This motivates us to examine

the critical paths of DAGs in four datasets to justify whether high

parallelization helps accelerate job completion. As random DAGs

do not have time information, we take the critical path length as

a proxy metric. Figure 6 (right) depicts the average critical path

length of the jobs with a certain number of tasks.

The random and production DAGs drastically differ in that the

critical path of the former grows linearly while the latter remains

stable. The slope of the random curve reaches 0.764 (computed

with linear regression), meaning that, if the task dependencies are

generated randomly, they almost have to be executed sequentially.

In stark contrast, the production DAGs typically have quite short

critical paths. Quantitatively, the DAGs in the Alibaba trace have an

average critical path length of 7.68, with a standard deviation of 4.57.

The result is in line with the initial purpose of many distributed

frameworks: parallelizing the work for faster job completion.

5
Notice that the y-axis is in logarithmic scale where 0 becomes an unreachable value.

Therefore, we add 0.0001 to all values in order to show them completely.

Standard benchmarks donotwell represent productionDAGs.
Our prior analysis shows that standard benchmarks fall short of

structural complexity and diversity if they are to be used for evalu-

ating cluster schedulers. On all six metrics measured above, they

display a perceptible deviation from the production jobs, typically

towards the simplified side. Specifically, TPC-DS has much lower

edge density and smaller in-degrees, insufficient in the quantity of

task dependencies. Even if some of its vertices possess reasonably

large in-degrees, it still cannot cover the corner cases where a task

has a huge number of upstream dependents. TPC-H has similar

edge density as the production traces, but its distributions of in-

degrees and out-degrees gather around near-zero area, signifying

a lack of the complexity of dependencies. Figure 6 further shows

that the DAGs from standard benchmarks have limited coverage of

job size, only providing a small set of choices.

5 RUNTIME VARIABILITY
Now that we have characterized the structural properties of job

DAGs, we proceed to analyzing their runtime performance. Prior

studies [4, 49] show that cloud workloads are highly heterogeneous

in that different jobs have divergent task durations, resource de-

mands and usage. We expect such heterogeneity to become less

severe between dependent tasks in the same DAG, supposedly

because some tasks therein share the same intermediate data. Con-

trary to our expectation, however, we find the opposite to be true.

Methodology To study the impact of dependencies on runtime

performance, we specify two types of dependent tasks of our inter-

est.

(1) Dependent Pair: The task duo where one directly depends

on the other (e.g., 1 and 7 in Figure 3a).

(2) Dependent Set (fork/join sets [36]): A set of (at least three)

tasks that are indirectly dependent with a common par-

ent/child (e.g., 6, 13 and 14 in Figure 3c).

Given a metric (e.g., number of instances, requested CPU cores),

for a dependent pair, we calculate the ratio between the metric

values of the two tasks as a scale-agnostic indicator of variation.

For a dependent set, we first normalize the metric value of each

task by that of the smallest. We then compute the geometric mean of
those normalized values as the measure of variation of the depen-

dent set. We choose geometric mean over arithmetic one because

the former gives a more unbiased view of “central tendency” over

Characterizing and Synthesizing Task Dependencies SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

0 25 50 75 100 125 150 175 200
Tasks

0
25
50
75

100

M
ax

 P
ar

al
le

lis
m

0 25 50 75 100 125 150 175 200
Tasks

0

50

100

150

Cr
iti

ca
l P

at
h

Le
ng

th Alibaba
Random
TPC-DS
TPC-H

Figure 6: Average maximum parallelism and critical path length within the jobs with a certain number of tasks. The former
measures the maximum number of tasks that can be executed in parallel, and the latter the longest path in the DAG.

10−3 100 103
0.00
0.25
0.50
0.75
1.00

CD
F

10−3 100 103

Ratio Between Dependent Pairs (Parent
Child)

Variation in Alibaba Trace

100 101 102 1030.00

0.25

0.50

0.75

1.00

CD
F

Instance Number
Task Duration

100 101 102

Mem Usage
CPU Usage
Mem Request
CPU Request

Geometric Mean of Pairwise Ratios in Dependent Sets

Figure 7: Variation of metrics between dependent pairs and
sets. The left column shows the variation of instance num-
bers and task durations; the right side that of requested and
used resources, i.e., CPU and memory.

skewed data [41]. Note that in our definition, the minimum possible

geometric mean is 1, which corresponds to the case where tasks

have the same value for a certain metric; the larger the mean is,

the more diverse the values are. For the same reason as in §4.2, we

limit our analysis to jobs with at least 6 tasks.

Task durations vary, sometimes dramatically. When we cal-

culate the ratios, we notice that many tasks have zero as their

durations. According to the trace description, the time unit in the

trace is second but the system is actually running with a finer tem-

poral scale. Hence zero actually means the task finishes within one

second. Unable to recover the actual duration, we filter out all the

pairs and sets where one or more tasks have zero-length durations.

The left column in Figure 7 shows the extent of variation in task

durations (dashed lines in the up-left and bottom-left).

In particular, among all dependent pairs, we observe 34.44%

having exactly the same durations, yet 20.77% (12.83%) having vari-

ations larger than 5x (10x).
6
There even exist some extremes on

five orders of magnitude. As a comparison, early work deems a

task with 8x longer time as a severe straggle [5]. Aside from the

numerical values, the symmetric shape (with respect to x=1) of the
curve implies that such extent of variation exists regardless of the

direction of dependencies.

The variation abates in dependent sets. While 14.57% still have

identical task durations, the largest average variation plummets to

O(102), a three-order-of-magnitude decrease. We could thus infer

that the task durations approximately follow a log-normal distri-
bution so that the geometric mean exerts a significant averaging

effect.

Instance numbers differ, sometimesmore dramatically. The

left side in Figure 7 also presents the variation of instance numbers

(solid lines). Within the dependent pairs, although 46.67% have

equally many instances, 26.46% (13.37%) of them differ in instance

number by over 5x (10x). The largest variation is on the order of

O(104) and the parent is equally likely to contain more or fewer

instances. As for the dependent sets, a similar 43.00% have the same

instance numbers, but the largest variation still approaches O(103),
i.e., the geometric mean fails to effectively reduce the extent of

variation among dependent tasks. Unlike task durations, instance

numbers are dispersed in a more diverging way instead of revolving

around a central value.

Resource requests are similar. Each task in the trace specifies

the resource demands of each of its instances, including the number

of CPU cores and the amount of memory. We plot the variation

of resource demand among dependent tasks in the right column

of Figure 7. The variability appears exceptionally low. Specifically,

99.87% (99.99%) of tasks pairs (sets) request for the same number of

CPU cores. Though the proportion drops to 34.73% (40.43%) for the

memory demand, there are still 97.61% (99.96%) of tasks pairs (sets)

having less than 2x variation. The dependent pairs (sets) have their

maximum variation as 16x (5.17x), relatively smaller compared with

task durations and instance numbers.

We caution that such similar resource requests may be a speci-

ficity for Fuxi [64], the in-house cluster manager of Alibaba that

favors jobs with low resource requests by executing them earlier.

6
When we say “more than x times” for dependent pairs, we actually mean that the

ratio is either greater than x or smaller than 1/x in the figure. The same rule applies to

the remainder of this section.

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Huangshi Tian, Yunchuan Zheng, and Wei Wang

10−2 100 102
0.00
0.25
0.50
0.75
1.00

CD
F

10−2 10−1 100 101 102

Ratio Between Dependent Pairs (Parent
Child)

Variation in TPC Benchmarks

100 101
0.00

0.25

0.50

0.75

1.00

CD
F

Instance Number
Task Duration

100 101

Mem Usage
CPU Usage

Geometric Mean of Pairwise Ratios in Dependent Sets

Figure 8: Variation of metrics calculated the same way as in
Figure 7 but on TPC benchmarks.

Those jobs will then request incrementally for more resources dur-

ing execution [37]. Therefore, the resource demand pattern we

observe in the trace may not generally apply to the other cluster

environments.

Resource usage varies. In order to measure the resource usage

of each task, we calculate the arithmetic mean of the resource usage

of all its instances. We choose not to sum them up because we have

already analyzed the variation of instance numbers and we want to

smooth out their impact on the resource usage. The right column

in Figure 7 shows the distribution of variation among dependent

tasks.

Be it within dependent pairs or sets, CPU usage varies more dras-

tically than memory. As for memory usage, 19.78% (14.63%) of task

pairs (sets) see variations less than 5%; the 90
th

percentile is 17.78x

(5.48x); the largest seen variation is 703.85x. As for CPU usage, tasks

with 5% of variation account for 9.59% (4.82%) of the pairs (sets); 90%

of them have variation less than 6.93x (3.86x). In the extreme, the

CPU usage can vary as much asO(105) times between some depen-

dent pair. Although each machine in the cluster only has 96 cores,

10
5
is possible because the cluster allows over-subscription [19]

and fractional CPU allocation [20] (e.g., 0.05 core means allocating

5% of time of one core). For dependent sets, the maximum variation

shrinks to O(102)—similarly to task durations, CPU usage can be

roughly viewed as following a log-normal distribution.

Both CPU andmemory show larger degree of variation during ex-

ecution than in request. Sometimes the difference can be as huge as

several orders of magnitude. Compared with the Google trace [49]

where the most over-subscription is within 2x, the elasticity in the

cluster nowadays tolerates much larger amount of resource overuse.

Therefore, the resource request may not be a stable indicator of real

resource usage, and their difference is far beyond the tolerance of

misestimation in many schedulers [10, 27, 30, 39, 57].

Standard benchmarks have lesser variability. As standard

benchmarks are frequently used in evaluating newly proposed

cluster schedulers, we compare their runtime variation with the

production trace. For a fair comparison, we employ the most com-

plicated workload to our knowledge in the literature [40]. The

evaluation therein mixes TPC-H benchmarks with 6 input sizes,

i.e., 2, 5, 10, 20, 50, and 100 GB. We further add TPC-DS with the

same input choices into the mix. Figure 8 presents the variation in

those benchmarks.

Despite our efforts in complicating the workload, standard bench-

marks still showmuch less variation than production jobs by orders

of magnitude, be it in task duration or resource consumption. There-

fore, even if a scheduler has been shown effective when evaluated

against standard benchmarks, its performance in production envi-

ronments may deteriorate because of the resource fragmentation,

stragglers, and workload imbalance brought by such a high degree

of variation. For instance, some poor scheduling decisions (e.g.,

accidentally starting a long job that blocks others) may not cause

too much harm when tasks have comparable durations, but the

variation in production tasks may magnify its negative effect.

6 JOB RECURRENCE
Prior work [21, 27, 33] reports that most production jobs in Mi-

crosoft’s clusters are recurrent, and their resource usage can be

accurately inferred from past runs for better scheduling. We thus

analyze the Alibaba trace from this perspective to validate the gen-

erality of that finding.

Methodology From the trace, we cannot tell directly if two jobs

running at different times are recurrent, as no meta information

about the jobs (e.g., application programs and business units) is

provided. We therefore turn to structural isomorphism and tempo-
ral periodicity as the two indicators of recurrence. The former is

frequently exploited in scheduler design [21, 27, 30]; the latter is

allegedly prevalent among production jobs [33].

We first group together the jobs with isomorphic dependency

structures (§6.1). Within a group, we pick out periodic jobs and

treat them as recurrent (§6.2). We then analyze their predictability

in terms of runtime and resource usage (§6.3). Note that we only

include jobs composed of at least 6 tasks in the analysis, because

those with fewer tasks may coincidentally have the same DAG

structure as stated in §4.2.

6.1 Isomorphic Jobs
If two jobs have isomorphic DAGs (structurally similar), they have a

high chance of having the same processing logic. Since it is NP-hard

to check graph isomorphism, we turn to an approximate approach

by drawing DAGs using a layout algorithm [22] and comparing the

output images. If the result images are identical, then both DAGs

must be isomorphic. Note that the opposite is, however, not true,

so our results below just give an underestimate.

The vast majority of job DAGs are repetitive. We find that

99.52% of job DAGs have at least one structurally isomorphic coun-

terpart in the trace; 90.19% have at least 13; 75.01% have at least 117.

These numbers suggest that DAGs are not uniformly distributed

in the graph space, which is in line with our decomposition result

(§4.1) in that most jobs are composed of several artificial patterns

Characterizing and Synthesizing Task Dependencies SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

101 103
0.00

0.25

0.50

0.75

1.00

CD
F

Instance Number
Task Duration

100 101 102 103

Mem Usage
CPU Usage

Geometric Mean of Pairwise Ratios between Recurring Tasks

Figure 9: Variation among “recurring” tasks computed with
the same method as in Figure 7.

(e.g., gather or scatter components). However, according to [33], it

is estimated that only 60% of production jobs are recurrent, so we

have to heighten the selection standard to identify them.

6.2 Periodic Jobs
As recurring jobs are usually scheduled to run periodically, we use

the periodicity as a selection criteria to shortlist candidates among

isomorphic jobs. To obtain the scheduling interval of two jobs, we

calculate the difference between the start times of their earliest

tasks. If a set of jobs have roughly (i.e., within 5% deviation) the

same scheduling intervals in-between, we view them as recurrent.

Lacking in the clue of real periods, we expediently choose 15 min-

utes, 1 hour, and 1 day—three common periods in production jobs

reported by Microsoft [33].

The isomorphic jobs periodically run in those three intervals

respectively account for 3.27%, 4.02%, and 6.60% of all jobs, much

fewer than those reported by Microsoft [33]. Nevertheless, we be-

lieve that they are inevitably underestimated because (1) the Alibaba

trace does not include the exact job submission time, and (2) the

jobs have no strict SLOs and may undergo an indefinite delay.

6.3 Predictability of Recurring Jobs
We now study if the resource usage of recurring jobs can be well

predicted from the past runs. Within those periodic jobs, we single

out those that have exactly the same resource request and treat

them as “recurring” jobs. We don’t require the instance numbers to

be same because they may be data-dependent. For instance, a Spark

application will spawn more instances when data partitions grow.

Among those “recurring” jobs, we match their tasks and compute

the inter-task variation using the same method as in §5. Note that

such matching between two isomorphic job DAGs is not unique

(e.g., consider two symmetric graphs), so we choose the one with

minimal variation. Concretely, we sort the metrics and follow their

order to match tasks sequentially. The computed variation is shown

in Figure 9.
7

“Recurring” tasks may have high runtime variability. As

shown in Figure 9, between “recurring” tasks the instance numbers

can vary as much as 10
4
x, and CPU usage 10

3
x. In fact, 69.25% of

“recurring” tasks have larger than 2x variation in instance number,

7
Our Alibaba contact comments that the extremely high repetitiveness of DAGs con-

forms with their impression on recurring jobs [18]. Considering such prevalence, we

believe at least a considerable proportion of selected tasks are indeed recurrent.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Level Number

0.00
0.05
0.10
0.15
0.20

Fr
ac

tio
n

of
 N

od
es 8

12
16
20

Figure 10: Node distributions in terms of level in jobs with
critical path length of 8, 12, 16 and 20, respectively.

75.69% in task duration, 54.15% in CPU usage, and 57.61% in mem-

ory usage. Such a large variation poses non-trivial challenges to the

common approach of predicting task attributes (e.g., duration, re-

source usage) based on their previous execution [10, 27, 30, 39, 57]:

to our knowledge, most predictive schedulers assume no more than

100% of prediction error in evaluations [30].

7 DEPENDENCY SYNTHESIS
Having uncovered several statistical peculiarities of production

DAGs, we switch to a generative perspective by studying how to

authentically synthesize dependency graphs. Faced with such re-

quirement are the researchers who want to evaluate their proposed

scheduling algorithms against (synthesized) production DAGs—

standard benchmark suites fall short in this purpose (§4.2 and §5).

With synthesized dependencies, we could extend many previously

released traces [4, 49] that include no dependency information and

take them to benchmark newly proposed DAG schedulers.

Based on our observations (§7.1) about the critical paths in pro-

duction jobs and how tasks are distributed along them, we design

an algorithm (§7.2) to randomly generate a dependency graph. We

evaluate (§7.3) its output in terms of both the statistical distribution

and dynamic scheduling. Finally, we elaborate on how we extend it

into a full-fledged cluster trace generator (§7.4).

7.1 Observations on DAG Structures
As seen in §4.2, the critical path length of job DAGs remains stable

regardless of the number of tasks. Such stability motivates us to

closely examine how tasks are spread along the path. Specifically,

for each task (vertex) v , we assign it a level number l(v). We say a

level assignment of a DAG is valid if l(c) > l(p) holds for any tasks

c and p, where c (child task) depends on p (parent task). That is,

children tasks have larger level numbers than their parents. As an

example, the left-sided numbers in Figure 3a constitute a valid level

assignment. Amongmany valid level assignments, we are interested

in the compact ones where the sum of the differences between all

parents and children are minimum, i.e., minimize

∑
p,c l(c) − l(p).

Referring back to Figure 3a, the level assignment is compact, but

it is not the only choice because we could elevate task 11 to level

2 while maintaining the compactness. We design an algorithm

to obtain a level assignment for each DAG, whose details can be

found in our technical report [56]. In general, it recursively assigns

the number from the root nodes and then compacts the number

backwards whenever possible.

Cross-level edges are rare. In the trace, we observe that most

edges only span two adjacent levels, i.e., the level difference between

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Huangshi Tian, Yunchuan Zheng, and Wei Wang

Algorithm 2 Synthesize a DAG with a Given Size

– s : size of DAG, i.e., number of vertices

– CP : random generator of critical path length given a DAG size

– LV : random generator of level number given a critical path length

1: function SynthesizeDAG(s)

2: Initialize N as an array of s vertices.
3: len ← CP (s)
4: for n ∈ a random permutation of N do
5: if n is in the first len vertices then
6: Set n .level as its index in the sequence.

7: else
8: n .level ← LV (len)
9: for l ← 1, · · · , (len − 1) do
10: for n ∈ vertices on level l do
11: r ← ⌈# vertices on level l+1/# vertices on level l ⌉

12: n .children ← sample r vertices from level l + 1
13: return N

two endpoints of an edge is one, the minimum possible value in a

valid assignment. To have a comprehensive view, we calculate the

level difference of all edges in the Alibaba trace and 1000 randomly

generated DAGs. Noticeably, 96.54% of edges in production DAGs

stay between two adjacent levels, as opposed to 29.92% in random

DAGs. The result means the output of many production tasks is

often only consumed by another task immediately after it, and

there rarely are subsequent tasks that further depend on it. Such

characteristic makes it feasible for us to only consider two adjacent

levels when synthesizing the edges.

Nodes are not evenly distributed on each level. Since most

tasks only depend on those exactly one level above them, we count

the tasks on each level and inspect how they are distributed. Fig-

ure 10 plots the distributions of the jobs with critical path length of

8, 12, 16, 20, respectively. Production jobs show considerable vari-

ability in node distribution. For instance, many 8-node-long DAGs

have “thick waists” where quite a few tasks amass around the mid-

dle levels; 12-node-long DAGs tend to be “heavy-headed” by having

many tasks in the first three level; 16- and 20-node long DAGs have

roughly bimodal distributions with the modes in different places.

Such irregularity renders futile our attempts to theoretically model

the distribution and hints at the necessity of direct sampling.

7.2 Synthesis Algorithm
Based on the observations above, we propose Algorithm 2 for DAG

synthesis, which is underpinned by two pre-defined random gen-

erators. The first is critical path length generator CP that takes the

vertex number as its input. For vertex number no greater than 35,

we direct count the occurrences of length in all jobs with that size

and randomly draw one following the proportional probabilities.

For the jobs with more than 35 tasks, we aggregate them and draw

the path length from their overall distribution. We differentiate

between those two cases because not all job sizes exist in the trace,

especially when they are relatively large. Hence we have to inter-

polate the distribution in those gaps. We choose 35 as the threshold

because it is the length of the longest critical path. The second

generator LV is used for assigning a level number to each vertex.

It takes the critical path length as the input and randomly output

0 50 100 150 200
In-Degree

Alibaba
Sythesis

0 20 40 60
Out-Degree

100

10−1

10−2

10−3

10−4CC
DF

 (1
 -

CD
F)

Figure 11: The distributions of in- and out-degrees in origi-
nal and synthesized DAGs.

a level number based on the level distribution in all jobs with the

given length.

Algorithm 2 can be viewed as a three-step process. (1) We deter-

mine the critical path length for a DAG (Line 3). It comes as the first

step because critical path length is a defining difference between

real and random jobs. Production jobs and standard benchmarks,

despite their disparity in many other topological metrics, have sim-

ilar distribution of critical path length (Figure 6b), only differing in

the range. Thus we take it as the basis of the synthesis. (2) To decide

how vertices are distributed along the critical path, Line 4 through

8 assign the level number to each vertex. The first several vertices

are numbered sequentially to ensure that all levels have at least

one vertex. (3) Finally, Line 9 to 12 generate edges between each

two adjacent levels. The step tries to make all vertices connected

to at least one next-level vertex because the production DAGs have

all their vertices connected. Here we only construct edges between

two levels because of the rarity of cross-level edges in the trace

(§7.1).

7.3 Evaluation
To evaluate our algorithm, we raise two crucial questions:

(1) Do synthesized DAGs have similar structural characteristics

to production DAGs?

(2) Do they yield similar results during scheduling?

Static Properties Section 4.2 has shown that production DAGs

have special distributions in variousmetrics, sowe examinewhether

our synthesis algorithm is able to capture them. To keep the cal-

culation consistent, we synthesize, for each DAG in the Alibaba

trace, a DAG with the same number of vertices. Then we compute

the distributions of the previously used metrics and plot them in

Figure 11 and 12. The synthesized and production DAGs are closely

similar in the majority of metrics. Although the distributions of in-

and out-degrees appear pictorially dissimilar, they succeed in cap-

turing the key characteristics of production trace. The maximum

out-degree almost reaches 200, covering the extreme case in the

trace; the in-degrees are mostly small, reflecting that most tasks

have few children.

Dynamic Properties We further simulate the scheduling pro-

cess on both production and synthesized traces. We sampled an

hour-long trace from the original one. In our simulator, we set the

machine configuration the same as the Alibaba servers (96 units

of CPU, 100 units of memory [3]) and choose such a cluster size

Characterizing and Synthesizing Task Dependencies SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

Aliba
ba

Sy
nth

esi
s

0.2

0.4

0.6

Ed
ge

 D
en

sit
y

Aliba
ba

Sy
nth

esi
s

0.00

0.25

0.50

0.75

Ch
ai

n
Ra

tio

0 50 100 150 200
Tasks

0

25

50

75

100

M
ax

 P
ar

al
le

lis
m

0 25 50 75 100 125 150 175 200
Tasks

0

10

20

30

40

Cr
iti

ca
l P

at
h

Le
ng

th Alibaba
Sythesis

Figure 12: Comparison of chain ratio, edge density, maximal parallelism and critical length between production and synthe-
sized DAGs.

101 102 103
0.00
0.25
0.50
0.75
1.00

CD
F

FIFO

101 102 103

SJF

Alibaba
Sythesis

Job Completion Time (sec)

Figure 13: We simulate scheduling on both production and
synthesized traces. The figures show the distributions of
job completion time using FIFO and SJF schedulers, respec-
tively.

that the average load of bottlenecked resource reaches 0.8. We con-

sider two widely used scheduling policies, First-In-First-Out (FIFO)

and Shortest-Job-First (SJF). After simulating the scheduling of pro-

duction jobs, we replace their dependencies with our synthesized

DAGs and repeat the experiment. For each simulation, we com-

pute the CDF of job completion time and depict them in Figure 13.

Under both scheduling policies, the distributions are almost the

same, indicating that our algorithmmanages to capture the runtime

characteristics of production DAGs.

7.4 Trace Generation
We further extend the synthesis algorithm to a full-fledged cluster

trace generator whose output trace can be controlled in several

aspects. This will be useful when the trace is not directly usable.

Supposing a user is evaluating a scheduler against a cluster with

less resources than Alibaba cloud, it will be problematic to directly

replay the trace because of some overly high resource demand. Also,

the user may want to evaluate with workload of different load or

heterogeneity, so it is desirable to have some control knobs for trace

generation.

Our generation tool offers to users three tunable parameters. (1)

They could set the size the resource amount of the target cluster

with cluster configuration. We then rescale the resource usage of

tasks tomake themfit into the target. (2) If the userswant to increase

or decrease the cluster load, they could specify the load parameter.

For lower load, we simply down-sample the trace; for higher, we

up-sample jobs and replace the dependency with synthesized one

to ensure diversity. (3) In stress testing, the users can make the

jobs vary to a larger extent by setting heterogeneity amplifier.

We further scale up the extreme metrics to the user-defined ratio.

With those parameters, users can experiment with the trace in a

more customized and flexible manner. The tool has been released

as open-source [55].

8 DISCUSSION
In this section, we discuss the implications of our measurement

analyses to the scheduler design. As our measurements are limited

to a single source of trace collected in an Alibaba cluster, we make

a caveat to the generality of the conclusions drawn from our study.

8.1 Implications to Scheduler Design
The prevalence of job DAGs underscores the necessity of having

dependency-aware schedulers. In the Alibaba trace, DAGs com-

pose nearly half of the job’s population, account for 85% of tasks,

and grab over 80% of CPUs and memory (§3.2). Some large DAGs

may even span over 1000 machines. By all means, job DAGs have al-

ready become the first-class citizens in the cloud. We thus anticipate

dependency awareness to be indispensable for scheduler design.
Though dependency DAG complicates the scheduling problem,

there is a silver lining that schedulers may not need to deal with

the full complexity posed by general dependency graphs. As our

analysis repeatedly demonstrates, the DAGs of production appli-

cations have characteristics far from the random general graphs

(§4.2). To name a few, their in-degrees are mostly bounded; adding

more tasks tends to increase the parallelism rather than expand-

ing the critical path; the dependency edges seldom cross levels,

i.e., connecting two faraway tasks in terms of dependencies. Our

simple, yet faithful synthesis algorithm also serves as an evidence

that the DAGs are highly artificial (§7). Therefore, although many

graph-related problems are NP-hard, we believe DAG scheduling

stands a good chance to be tackled by theoretical approaches,
such as approximation, randomization algorithms with provable

performance bound under some practical assumptions.

Aside from DAG awareness, the runtime variability of produc-

tion jobs necessitates the robustness to variation and mises-
timation in scheduling algorithms. Many state-of-the-art sched-

ulers [10, 27, 30, 39, 57] make scheduling decisions based on the

estimation of job durations and resource usage. Many of those

schedulers are robust against 25% error in estimation, though the

most tolerant stretching to 100%. However, our analysis has shown

that the claimed resource demand may differ from the actual usage

by orders of magnitude. Such a large discrepancy poses serious

SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Huangshi Tian, Yunchuan Zheng, and Wei Wang

challenges to the predictive scheduling algorithms. We have seen

promising solutions offered by non-clairvoyant schedulers (e.g.,
Kairos [16], Aalo [13], NC-DRF [58]) which make scheduling de-

cisions without the exact job information. Another prospective

solution goes to adaptive scheduling in that the scheduler quickly

reacts to the environmental changes. Quintessential examples in-

clude RoPE [2] and QOOP [39] that can dynamically adjust the

execution plan with runtime information.

Finally, when it comes to scheduler evaluations, there is a funda-
mental limit of using standard benchmarks which are struc-

turally deviant from the production DAGs and far less variable in

runtime performance. This signifies the necessity of using produc-

tion traces for a comprehensive evaluation of cluster schedulers.

8.2 Limitations
We have to acknowledge that, throughout the entire study, our anal-

ysis is limited to a single source of trace collected from an Alibaba

cluster. Though we have attempted to include more production

traces in our analysis, we were unable to extract the required infor-

mation from the existing public traces (§2). Therefore, it remains

unproven whether the conclusions we draw from the Alibaba work-

load generalize to the other production clusters. Below we discuss

the potential limitations of our analysis.

Business Domain The source of this trace, Alibaba incorpora-

tion, is an e-commerce company, whose core business includes

online shop hosting, item recommendation, and online transac-

tions. Other applications, such as social media and search engines,

may have different web characteristics, which can lead to the dis-

parity in many technical aspects, e.g., job types, framework choices,

stored data, etc. For instance, indexing web pages [46] is a unique

workload to search engines; the various content types supported

by social media result in an overflow of BLOB data [42]. As a result,

the structural and the runtime characteristics we observed in the

Alibaba trace may not hold in the traces from other companies due

to the different mix of job and data types.

Target Applications As pointed out in §3.1, the current trace

mainly consists of SQL programs that are based on a distributed en-

gine similar to Pig [44], Hive [54] and Spark SQL [6]. Since SQL has

a specific syntax, the underlying generated jobs are likely to share

some common patterns. For instance, a typical SELECT-FROM-WHERE
statement will be translated into a dispersion of a dataset followed

by an aggregation. Such patterns could result in some special prop-

erties of task dependencies which, however, may not apply to the

other applications, such as distributed machine learning [62], deep

learning [59], and long-running applications [23]. For the clusters

dominated by those types of workloads, our conclusions, especially

the structural characteristics, may not directly apply.

Scheduling Infrastructure Alibaba has developed an in-house

scheduling system, Fuxi [64], with several specialized design that

may contribute to certain runtime characteristics of the trace. For

instance, it supports fractional resource usage, a potential cause of

the exceptionally high runtime variability, while other schedulers

may not face the same problem. Also, as mentioned in §5, Fuxi’s

preference to lower resource requests and its incremental resource

allocation would encourage many jobs to make more conserva-

tive resource demands. Unlike Fuxi, other schedulers may need to

handle a greater variety of requests than those in the Alibaba trace.

9 CONCLUSION
In this analysis, we aimed at understanding the characteristics of

data-parallel jobs with inter-task dependencies at cloud scale. By

analyzing the Alibaba trace, we have uncovered several unique

structural characteristics of production DAGs in Alibaba, includ-

ing sparse edges, small out-degrees and the critical paths with a

relatively stable length. The simpler structures than the general

graphs hint at the potential tractability of theoretical approaches.

Yet the runtime variability among dependent tasks becomes no

lesser, but actually aggravated. Irrespective of directly or indirectly

dependent tasks, they show variation of runtime metrics on several

orders of magnitude. The variability persists even among “recur-

ring” tasks, which necessitates the robustness and adaptiveness in

future scheduler design. During the analysis, we have also found

the standard TPC benchmarks insufficiently representative of pro-

duction workload, so we have designed a workload generator that

can faithfully synthesize task dependencies in the Alibaba trace in

a controlled manner. Our evaluation demonstrates that, compared

with the production DAGs, our synthesized graphs have almost

identical statistical distributions and produce similar scheduling

results with various scheduling algorithms.

ACKNOWLEDGMENTS
We thank our shepherd, Timothy Zhu, and the anonymous review-

ers for their valuable feedbacks that help improve the quality of

this work. We are deeply grateful to Haiyang Ding and Yihui Feng

for providing detailed background information about the Alibaba

trace and offering insightful comments to an early version of this

paper. This research is supported by RGC ECS grant under contract

26213818. Huangshi Tian was supported in part by the Hong Kong

PhD Fellowship Scheme. Yunchuan Zheng was supported in part

by the Huawei PhD Fellowship Scheme.

REFERENCES
[1] Martín Abadi, Paul Barham, et al. 2016. Tensorflow: a system for large-scale

machine learning.. In OSDI.
[2] Sameer Agarwal, Srikanth Kandula, Nico Bruno, Ming-Chuan Wu, Ion Stoica,

and Jingren Zhou. 2012. Reoptimizing data parallel computing. In NSDI.
[3] Alibaba. 2019. Alibaba Cluster Trace Program. https://bit.ly/2K8DWCa

[4] George Amvrosiadis, JunWoo Park, Gregory R Ganger, Garth A Gibson, Elisabeth

Baseman, and Nathan DeBardeleben. 2018. On the diversity of cluster workloads

and its impact on research results. In ATC.
[5] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013.

Effective straggler mitigation: Attack of the clones. In NSDI.
[6] Michael Armbrust, Reynold S Xin, Cheng Lian, et al. 2015. Spark sql: Relational

data processing in spark. In SIGMOD.
[7] Laurent Bindschaedler, Jasmina Malicevic, et al. 2018. Rock You Like a Hurricane:

Taming Skew in Large Scale Analytics. In EuroSys.
[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a

single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering (2015).

[9] Chen Chen, Wei Wang, and Bo Li. 2018. Performance-Aware Fair Scheduling:

Exploiting Demand Elasticity of Data Analytics Jobs. In Proc. IEEE INFOCOM.

[10] Chen Chen, Wei Wang, Shengkai Zhang, and Bo Li. 2017. Cluster fair queueing:

Speeding up data-parallel jobs with delay guarantees. In IEEE Conference on
Computer Communications (INFOCOM).

https://bit.ly/2K8DWCa

Characterizing and Synthesizing Task Dependencies SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA

[11] Tianqi Chen, Mu Li, et al. 2015. Mxnet: A flexible and efficient machine learning

library for heterogeneous distributed systems. Neural Information Processing
Systems, Workshop on Machine Learning Systems (2015).

[12] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: A networking abstraction

for cluster applications. In HotNets.
[13] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient coflow scheduling without

prior knowledge. In SIGCOMM.

[14] Eli Cortez, Anand Bonde, Alexandre Muzio, et al. 2017. Resource Central: Un-

derstanding and Predicting Workloads for Improved Resource Management in

Large Cloud Platforms. In SOSP.
[15] Carlo Curino, Djellel E Difallah, Chris Douglas, et al. 2014. Reservation-based

scheduling: If you’re late don’t blame us!. In SoCC.
[16] Pamela Delgado, Diego Didona, Florin Dinu, andWilly Zwaenepoel. 2018. Kairos:

Preemptive data center scheduling without runtime estimates. In SoCC.
[17] Haiyang Ding. 2019. Is there some problem with the time_stamp in v2018??

https://github.com/alibaba/clusterdata/issues/52

[18] Haiyang Ding. 2019. Private Communication. Online Meeting.

[19] Haiyang Ding. 2019. Question about CPU allocation on containerized online

service. https://github.com/alibaba/clusterdata/issues/19

[20] Haiyang Ding. 2019. Question Regarding Normalized Memory Usage. https:

//github.com/alibaba/clusterdata/issues/61

[21] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo

Fonseca. 2012. Jockey: guaranteed job latency in data parallel clusters. In EuroSys.
[22] Emden R Gansner, Eleftherios Koutsofios, Stephen C North, and K-P Vo. 1993. A

technique for drawing directed graphs. IEEE Transactions on Software Engineering
(1993).

[23] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun Suresh,

and Sriram Rao. 2018. Medea: scheduling of long running applications in shared

production clusters. In EuroSys.
[24] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,

and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple

Resource Types.. In NSDI.
[25] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert NM Watson, and Steven

Hand. 2016. Firmament: Fast, centralized cluster scheduling at scale. In OSDI.
[26] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and

Aditya Akella. 2015. Multi-resource packing for cluster schedulers. (2015).

[27] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Anantha-

narayanan. 2016. Altruistic Scheduling in Multi-Resource Clusters.. In OSDI.
[28] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan

Kulkarni. 2016. Graphene: Packing and dependency-aware scheduling for data-

parallel clusters. In OSDI.
[29] Zhiming Hu, James Tu, and Baochun Li. 2019. Spear: Optimized Dependency-

Aware Task Scheduling with Deep Reinforcement Learning. In Proc. IEEE ICDCS.
[30] Chien-Chun Hung, Leana Golubchik, and Minlan Yu. 2015. Scheduling jobs

across geo-distributed datacenters. In SoCC.
[31] Michael Isard, Mihai Budiu, et al. 2007. Dryad: distributed data-parallel programs

from sequential building blocks. In ACM SIGOPS operating systems review. ACM.

[32] Michael Isard, Vijayan Prabhakaran, Jon Currey, et al. 2009. Quincy: fair sched-

uling for distributed computing clusters. In SOSP.
[33] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, et al. 2016. Morpheus:

Towards automated slos for enterprise clusters. In OSDI.
[34] Jack Kuipers and Giusi Moffa. 2015. Uniform random generation of large acyclic

digraphs. Statistics and Computing (2015).

[35] Sanjeev Kulkarni, Nikunj Bhagat, et al. 2015. Twitter heron: Stream processing

at scale. In SIGMOD.
[36] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static scheduling algorithms for

allocating directed task graphs to multiprocessors. ACM Computing Surveys
(CSUR) (1999).

[37] Qixiao Liu and Zhibin Yu. 2018. The Elasticity and Plasticity in Semi-

Containerized Co-locating CloudWorkload: a View from Alibaba Trace. In SoCC.
[38] Yang Liu, Huanle Xu, and Wing Cheong Lau. 2019. Online Job Scheduling with

Resource Packing on a Cluster of Heterogeneous Servers. In Proc. IEEE INFOCOM.

[39] Kshiteej Mahajan, Mosharaf Chowdhury, Aditya Akella, and Shuchi Chawla.

2018. Dynamic Query Re-Planning using QOOP. In OSDI.
[40] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng,

and Mohammad Alizadeh. 2018. Learning scheduling algorithms for data pro-

cessing clusters. arXiv preprint arXiv:1810.01963 (2018).
[41] Donald McAlister. 1879. The law of the geometric mean. Proceedings of the Royal

Society of London (1879).

[42] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, and other. 2014. f4:

Facebook’s Warm BLOB Storage System. In OSDI.
[43] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: a timely dataflow system. In SOSP.
[44] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew

Tomkins. 2008. Pig latin: a not-so-foreign language for data processing. In

SIGMOD.
[45] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:

distributed, low latency scheduling. In SOSP.

[46] Daniel Peng and Frank Dabek. 2010. Large-scale Incremental Processing Using

Distributed Transactions and Notifications. In OSDI.
[47] Meikel Poess and Chris Floyd. 2000. New TPC benchmarks for decision support

and web commerce. ACM Sigmod Record (2000).

[48] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. 2002. Tpc-ds, taking

decision support benchmarking to the next level. In SIGMOD.
[49] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A

Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace

analysis. In SoCC.
[50] Xiaoqi Ren, Ganesh Ananthanarayanan, Adam Wierman, and Minlan Yu. 2015.

Hopper: Decentralized speculation-aware cluster scheduling at scale. In SIG-
COMM.

[51] Robert W Robinson. 1977. Counting unlabeled acyclic digraphs. In Combinatorial
mathematics V. Springer.

[52] Savvas Savvides. 2018. tpch-spark. https://github.com/ssavvides/tpch-spark

[53] Bikash Sharma, Victor Chudnovsky, Joseph L Hellerstein, Rasekh Rifaat, and

Chita R Das. 2011. Modeling and synthesizing task placement constraints in

Google compute clusters. In SoCC.
[54] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, et al. 2009. Hive: A Warehousing

Solution over a Map-reduce Framework. VLDB (2009).

[55] Huangshi Tian, Yunchuan Zheng, and Wei Wang. 2019. Alibaba DAG Trace

Generator. https://github.com/All-less/trace-generator.

[56] Huangshi Tian, Yunchuan Zheng, and Wei Wang. 2019. Characterizing and
Synthesizing Task Dependencies of Data-Parallel Jobs in Alibaba Cloud. Techni-
cal Report. HKUST. https://www.cse.ust.hk/~weiwa/papers/huangshi-socc19-

techreport.pdf

[57] Alexey Tumanov, Timothy Zhu, Jun Woo Park, et al. 2016. TetriSched: global

rescheduling with adaptive plan-ahead in dynamic heterogeneous clusters. In

EuroSys.
[58] Luping Wang and Wei Wang. 2018. Fair coflow scheduling without prior knowl-

edge. In IEEE 38th International Conference on Distributed Computing Systems
(ICDCS).

[59] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, et al. 2018. Gandiva:

Introspective cluster scheduling for deep learning. In OSDI.
[60] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al. 2012. Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

In NSDI.
[61] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica.

2008. Improving MapReduce performance in heterogeneous environments.. In

OSDI.
[62] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J Freedman. 2017. Slaq:

quality-driven scheduling for distributed machine learning. In SoCC.
[63] Xiaoda Zhang, Zhuzhong Qian, Sheng Zhang, Xiangbo Li, Xiaoliang Wang, and

Sanglu Lu. 2018. COBRA: Toward Provably Efficient Semi-Clairvoyant Scheduling

in Data Analytics Systems. In Proc. IEEE INFOCOM.

[64] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. 2014.

Fuxi: a fault-tolerant resource management and job scheduling system at internet

scale. VLDB (2014).

[65] Yunchuan Zheng. 2019. TPC-DS on Spark. https://github.com/SimonZYC/tpcds-

spark.

https://github.com/alibaba/clusterdata/issues/52
https://github.com/alibaba/clusterdata/issues/19
https://github.com/alibaba/clusterdata/issues/61
https://github.com/alibaba/clusterdata/issues/61
https://github.com/ssavvides/tpch-spark
https://github.com/All-less/trace-generator
https://www.cse.ust.hk/~weiwa/papers/huangshi-socc19-techreport.pdf
https://www.cse.ust.hk/~weiwa/papers/huangshi-socc19-techreport.pdf
https://github.com/SimonZYC/tpcds-spark
https://github.com/SimonZYC/tpcds-spark

	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Overview of Dependent Jobs
	3.1 Trace Overview
	3.2 Temporal and Spatial Distributions

	4 Anatomy of DAG Structures
	4.1 Dissecting Job DAGs
	4.2 Artificiality of DAG Structure

	5 Runtime Variability
	6 Job Recurrence
	6.1 Isomorphic Jobs
	6.2 Periodic Jobs
	6.3 Predictability of Recurring Jobs

	7 Dependency Synthesis
	7.1 Observations on DAG Structures
	7.2 Synthesis Algorithm
	7.3 Evaluation
	7.4 Trace Generation

	8 Discussion
	8.1 Implications to Scheduler Design
	8.2 Limitations

	9 Conclusion
	Acknowledgments
	References

