
To Reserve or Not to Reserve: Optimal Online
Multi-Instance Acquisition in IaaS Clouds

Wei Wang, Baochun Li, and Ben Liang
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Infrastructure-as-a-Service (IaaS) clouds offer di-
verse instance purchasing options. A user can either run instances
on demand and pay only for what it uses, or it can prepay
to reserve instances for a long period, during which a usage
discount is entitled. An important problem facing a user is
how these two instance options can be dynamically combined to
serve time-varying demands at minimum cost. Existing strategies
in the literature, however, require either exact knowledge or
the distribution of demands in the long-term future, which
significantly limits their use in practice. Unlike existing works,
we propose two practical online algorithms, one deterministic and
another randomized, that dynamically combine the two instance
options online without any knowledge of the future. We show that
the proposed deterministic (resp., randomized) algorithm incurs
no more than 2 � ↵ (resp., e/(e � 1 + ↵)) times the minimum
cost obtained by an optimal offline algorithm that knows the exact
future a priori, where ↵ is the entitled discount after reservation.
Our online algorithms achieve the best possible competitive ratios
in both the deterministic and randomized cases, and can be
easily extended to cases when short-term predictions are reliable.
Simulations driven by a large volume of real-world traces show
that significant cost savings can be achieved with prevalent IaaS
prices.

I. INTRODUCTION

Enterprise spending on Infrastructure-as-a-Service (IaaS)
cloud is on a rapid growth path. According to [1], the public
cloud services market is expected to expand from $109 billion
in 2012 to $207 billion by 2016, during which IaaS is the
fastest-growing segment with a 41.7% annual growing rate [2].
IaaS cost management therefore receives significant attention
and has become a primary concern for IT enterprises.

Maintaining optimal cost management is especially chal-
lenging, given the complex pricing options offered in today’s
IaaS services market. IaaS cloud vendors, such as Amazon
EC2, ElasticHosts, GoGrid, etc., apply diverse instance (i.e.,
virtual machine) pricing models at different commitment
levels. At the lowest level, cloud users launch on-demand
instances and pay only for the incurred instance-hours, without
making any long-term usage commitments, e.g., [3], [4], [5].
At a higher level, there are reserved instances wherein users
prepay a one-time upfront fee and then reserve an instance for
months or years, during which the usage is either free, e.g.,
[4], [5], or is priced under a significant discount, e.g., [3].
Table I gives a pricing example of on-demand and reserved
instances in Amazon EC2.

Acquiring instances at the cost-optimal commitment level
plays a central role for cost management. Simply operating the
entire load with on-demand instances can be highly inefficient.

TABLE I
PRICING OF ON-DEMAND AND RESERVED INSTANCES (LIGHT

UTILIZATION, LINUX, US EAST) IN AMAZON EC2, AS OF FEB. 10, 2013.

Instance Type Pricing Option Upfront Hourly

Standard Small On-Demand $0 $0.08
1-Year Reserved $69 $0.039

Standard Medium On-Demand $0 $0.16
1-Year Reserved $138 $0.078

For example, in Amazon EC2, three years of continuous on-
demand service cost 3 times more than reserving instances
for the same period [3]. On the other hand, naively switching
to a long-term commitment incurs a huge amount of upfront
payment (more than 1,000 times the on-demand rate in EC2
[3]), making reserved instances extremely expensive for spo-
radic workload. In particular, with time-varying loads, a user
needs to answer two important questions: (1) when should I
reserve instances (timing), and (2) how many instances should
I reserve (quantity)?

Recently proposed instance reservation strategies, e.g., [6],
[7], [8], heavily rely on long-term predictions of future
demands, with historic workloads as references. These ap-
proaches, however, suffer from several significant limitations
in practice. First, historic workloads might not be available,
especially for startup companies who have just switched to
IaaS services. In addition, not all workloads are amenable
to prediction. In fact, it is observed in real production ap-
plications that workload is highly variable and statistically
nonstationary [9], [10], and as a result, history may reveal
very little information about the future. Moreover, due to the
long span of a reservation period (e.g., 1 to 3 years in Amazon
EC2), workload predictions are usually required over a very
long period of time, say, years. It would be very challenging, if
not impossible, to make sufficiently accurate predictions over
such a long term. For all these reasons, instance reservations
are usually made conservatively in practice, based on empirical
experiences [11] or professional recommendations, e.g., [12],
[13], [14].

In this paper, we are motivated by a practical yet fundamen-
tal question: Is it possible to reserve instances in an online
manner, with limited or even no a priori knowledge of the
future workload, while still incurring near-optimal instance
acquisition costs? To our knowledge, this paper represents the
first attempt to answer this question, as we make the following
contributions.

With dynamic programming, we first characterize the op-
timal offline reservation strategy as a benchmark algorithm

1

(Sec. III), in which the exact future demand is assumed to be
known a priori. We show that the optimal strategy suffers “the
curse of dimensionality” [15] and is hence computationally
intractable. This indicates that optimal instance reservation is
in fact very difficult to obtain, even given the entire future
demands.

Despite the complexity of the reservation problem in the
offline setting, we present two online reservation algorithms,
one deterministic and another randomized, that offer the best
provable cost guarantees without any knowledge of future
demands beforehand. We first show that our deterministic
algorithm incurs no more than 2�↵ times the minimum cost
obtained by the benchmark optimal offline algorithm (Sec. IV),
and is therefore (2 � ↵)-competitive, where ↵ 2 [0, 1] is the
entitled usage discount offered by reserved instances. This
translates to a worst-case cost that is 1.51 times the optimal
one under the prevalent pricing of Amazon EC2. We then
establish the more encouraging result that, our randomized
algorithm improves the competitive ratio to e/(e � 1 + ↵)
in expectation, and is 1.23-competitive under Amazon EC2
pricing (Sec. V). Both algorithms achieve the best possible
competitive ratios in the deterministic and randomized cases,
respectively, and are simple enough for practical implemen-
tations. Our online algorithms can also be extended to cases
when short-term predictions into the near future are reliable
(Sec. VI).

In addition to our theoretical analysis, we have also eval-
uated both proposed online algorithms via large-scale simu-
lations (Sec. VII), driven by Google cluster-usage traces [16]
with 40 GB workload demand information of 933 users in one
month. Our simulation results show that, under the pricing of
Amazon EC2 [3], our algorithms closely track the demand
dynamics, realizing substantial cost savings compared with
several alternatives.

Though we focus on cost management of acquiring compute
instances, our algorithms may find wide applications in the
prevalent IaaS services market. For example, Amazon Elasti-
Cache [17] also offers two pricing options for its web caching
services, i.e., the On-Demand Cache Nodes and Reserved
Cache Nodes, in which our proposed algorithms can be
directly applied to lower the service costs.

II. OPTIMAL COST MANAGEMENT

We start off by briefly reviewing the pricing details of the
on-demand and reservation options in IaaS clouds, based on
which we formulate the online instance reservation problem
for optimal cost management.

A. On-demand and Reservation Pricing

On-Demand Instances: On-demand instances let users pay
for compute capacity based on usage time without long-term
commitments, and are uniformly supported in leading IaaS
clouds. For example, in Amazon EC2, the hourly rate of
a Standard Small Instance (Linux, US East) is $0.08 (see
Table I). In this case, running it on demand for 100 hours
costs a user $8.

On-demand instances resemble the conventional pay-as-
you-go model. Formally, for a certain type of instance, let
the hourly rate be p. Then running it on demand for h hours
incurs a cost of ph. Note that in most IaaS clouds, the hourly
rate p is set as fixed in a very long time period (e.g., years),
and can therefore be viewed as a constant.

Reserved Instances: Another type of pricing option that is
widely supported in IaaS clouds is the reserved instance. It
allows a user to reserve an instance for a long period (months
or years) by prepaying an upfront reservation fee, after which,
the usage is either free, e.g., ElasticHosts [4], GoGrid [5],
or is priced with a heavy discount, e.g., Amazon EC2 [3].
For example, in Amazon EC2, to reserve a Standard Small
Instance (Linux, US East, Light Utilization) for 1 year, a user
pays an upfront $69 and receives a discount rate of $0.039 per
hour within 1 year of the reservation time, as oppose to the
regular rate of $0.08 (see Table I). Suppose this instance has
run 100 hours before the reservation expires. Then the total
cost incurred is $69 + 0.039⇥100 = $72.9.

Reserved instances resemble the wholesale market. For-
mally, for a certain type of reserved instance, let the reservation
period be ⌧ (counted by the number of hours). An instance
that is reserved at hour i would expire before hour i + ⌧ .
Without loss of generality, we assume the reservation fee to
be 1 and normalize the on-demand rate p to the reservation
fee. Let ↵ 2 [0, 1] be the received discount due to reservation.
A reserved instance running for h hours during the reservation
period incurs a discounted running cost ↵ph plus a reservation
fee, leading to a total cost of 1+↵ph. In the previous example,
the normalized on-demand rate p = 0.08/69; the received
discount due to reservation is ↵ = 0.039/0.08 = 0.49; the
running hour h = 100; and the normalized overall cost is

1 + ↵ph = 72.9/69 .

In practice, cloud providers may offer multiple types of
reserved instances with different reservation periods and uti-
lization levels. For example, Amazon EC2 offers 1-year and
3-year reservations with light, medium, and high utilizations
[3]. For simplicity, we limit the discussion to one type of
such reserved instances chosen by a user based on its rough
estimations. We also assume that the on-demand rate is far
smaller than the reservation fee, i.e., p⌧ 1, which is always
the case in IaaS clouds, e.g., [3], [4], [5].

B. The Online Instance Reservation Problem

In general, launching instances on demand is more cost
efficient for sporadic workload, while reserved instances are
more suitable to serve stable demand lasting for a long period
of time, for which the low hourly rate would compensate
for the high upfront fee. The cost management problem is to
optimally combine the two instance options to serve the time-
varying demand, such that the incurred cost is minimized. In
this section, we consider making instance purchase decisions
online, without any a priori knowledge about the future
demands. Such an online model is especially important for
startup companies who have limited or no history demand data

2

and those cloud users whose workloads are highly variable
and non-stationary — in both cases reliable predictions are
unavailable. We postpone the discussions for cases when short-
term demand predictions are reliable in Sec. VI.

Since IaaS instances are billed in an hourly manner, we slot
the time to a sequence of hours indexed by t = 0, 1, 2, . . . At
each time t, demand d

t

arrives, meaning that a user requests d
t

instances, d
t

= 0, 1, 2, . . . To accommodate this demand, the
user decides to use o

t

on-demand instances and d

t

�o
t

reserved
instances. If the previously reserved instances that remain
available at time t are fewer than d

t

� o

t

, then new instances
need to be reserved. Let r

t

be the number of instances that
are newly reserved at time t, r

t

= 0, 1, 2, . . . The overall
cost incurred at time t is the on-demand cost o

t

p plus the
reservation cost r

t

+ ↵p(d
t

� o

t

), where r

t

is the upfront
payments due to new reservations, and ↵p(d

t

� o

t

) is the cost
of running d

t

� o

t

reserved instances.
The cost management problem is to make instance purchase

decisions online, i.e., r
t

and o

t

at each time t, before seeing
future demands d

t+1, dt+2, . . . The objective is to minimize
the overall instance acquisition costs. Suppose demands last
for an arbitrary time T (counted by the number of hours). We
have the following online instance reservation problem:

min
{rt,ot}

C =

TX

t=1

(o
t

p+ r

t

+ ↵p(d
t

� o

t

)) ,

s.t. o

t

+

tX

i=t�⌧+1

r

i

� d

t

,

o

t

, r

t

2 {0, 1, 2, . . . }, t = 1, . . . , T .

(1)

Here, the first constraint ensures that all d
t

instances demanded
at time t are accommodated, with o

t

on-demand instances andP
t

i=t�⌧+1 ri reserved instances that remain active at time t.
Note that instances that are reserved before time t � ⌧ + 1
have all expired at time t, where ⌧ is the reservation period.
For convenience, we set r

t

= 0 for all t 0.
The main challenge of problem (1) lies in its online setting.

Without knowledge of future demands, the online strategy may
make purchase decisions that turn out later not to be optimal.
Below we clarify the performance metrics to measure how far
away an online strategy may deviate from the optimal solution.

C. Measure of Competitiveness

To measure the cost performance of an online strategy,
we adopt the standard competitive analysis [18]. The idea is
to bound the gap between the cost of an interested online
algorithm and that of the optimal offline strategy. The latter is
obtained by solving problem (1) with the exact future demands
d1, . . . , dT given a priori. Formally, we have

Definition 1 (Competitive analysis): A deterministic on-
line reservation algorithm A is c-competitive (c is a constant)
if for all possible demand sequences d = {d1, . . . , dT }, we
have

C

A

(d) c · COPT(d) , (2)

where C

A

(d) is the instance acquisition cost incurred by algo-
rithm A given input d, and COPT(d) is the optimal instance
acquisition cost given input d. Here, COPT(d) is obtained by
solving the instance reservation problem (1) offline, where the
exact demand sequence d is assumed to know a priori.

A similar definition of the competitive analysis also extends
to the randomized online algorithm A, where the decision
making is drawn from a random distribution. In this case, the
LHS of (2) is simply replaced by E[C

A

(d)], the expected
cost of randomized algorithm A given input d. (See [18] for
a detailed discussion.)

Competitive analysis takes an optimal offline algorithm as
a benchmark to measure the cost performance of an online
strategy. Intuitively, the smaller the competitive ratio c is, the
more closely the online algorithm A approaches the optimal
solution. Our objective is to design optimal online algorithms
with the smallest competitive ratio.

We note that the instance reservation problem (1) captures
the Bahncard problem [19] as a special case when a user
demands no more than one instance at a time, i.e., d

t

 1 for
all t. The Bahncard problem models online ticket purchasing
on the German Federal Railway, where one can opt to buy
a Bahncard (reserve an instance) and to receive a discount
on all trips within one year of the purchase date. It has been
shown in [19], [20] that the lower bound of the competitive
ratio is 2 � ↵ and e/(e � 1 + ↵) for the deterministic and
randomized Bahncard algorithms, respectively. Because the
Bahncard problem is a special case of our problem (1), we
have

Lemma 1: The competitive ratio of problem (1) is at least
2�↵ for deterministic online algorithms, and is at least e/(e�
1 + ↵) for randomized online algorithms.

However, we show in the following that the instance re-
serving problem (1) is by no means a trivial extension to the
Bahncard problem, mainly due to the time-multiplexing nature
of reserved instances.

D. Bahncard Extension and Its Inefficiency

A natural way to extend the Bahncard solutions in [19] is
to decompose problem (1) into separate Bahncard problems.
To do this, we introduce a set of virtual users indexed by 1, 2,
. . . Whenever demand d

t

arises at time t, we view the original
user as d

t

virtual users 1, 2, . . . , d
t

, each requiring one instance
at that time. Each virtual user then reserves instances (i.e., buy
a Bahncard) separately to minimize its cost, which is exactly
a Bahncard problem.

However, such an extension is highly inefficient. An in-
stance reserved by one virtual user, even idle, can never be
multiplexed with another, who still needs to pay for its own
demand. For a real user, this implies that it has to acquire
additional instances, either on-demand or reserved, even if the
user has already reserved sufficient amount of instances to
serve its demand, which inevitably incurs a large amount of
unnecessary cost.

We learn from the above failure that instances must be
reserved jointly and time multiplexed appropriately. These

3

factors significantly complicate our problem (1). Indeed, as
we see in the next section, even with full knowledge of the
future demand, obtaining an optimal offline solution to (1) is
computationally prohibitive.

III. THE OFFLINE STRATEGY AND ITS INTRACTABILITY

In this section we consider the benchmark offline cost
management strategy for problem (1), in which the exact future
demands are given a priori. The offline setting is an integer
programming problem and is generally difficult to solve. We
derive the optimal solution via dynamic programming. How-
ever, such an optimal offline strategy suffers from “the curse
of dimensionality” [15] and is computationally intractable.

We start by defining states. A state at time t is defined as
a (⌧ � 1)-tuple s

t

= (s
t,1, . . . , st,⌧�1), where s

t,i

denotes
the number of instances that are reserved no later than t and
remain active at time t+ i, i = 1, . . . , ⌧�1. We use a (⌧�1)-
tuple to define a state because an instance that is reserved no
later than t will no longer be active at time t+⌧ and thereafter.
Clearly, s

t,1 � · · · � s

t,⌧�1 as reservations gradually expire.
We make an important observation, that state s

t

only
depends on states s

t�1 at the previous time, and is independent
of earlier states s

t�2, . . . , s1. Specifically, suppose state s
t�1

is reached at time t�1. At the beginning of the next time t, r
t

new instances are reserved. These newly reserved r

t

instances
will add to the active reservations starting from time t, leading
state s

t�1 to transit to s
t

following the transition equations
below:

⇢
s

t,i

= s

t�1,i+1 + r

t

, i = 1, . . . , ⌧ � 2 ;
s

t,⌧�1 = r

t

.

(3)

Let V (s
t

) be the minimum cost of serving demands
d1, . . . , dt up to time t, conditioned upon the fact that state s

t

is reached at time t. We have the following recursive Bellman
equations:

V (s
t

) = min
st�1

�
V (s

t�1) + c(s
t�1, st)

, t > 0, (4)

where c(s
t�1, st) is the transition cost, and the minimization

is over all states s
t�1 that can transit to s

t

following the
transition equations (3). The Bellman equations (4) indicate
that the minimum cost of reaching s

t

is given by the minimum
cost of reaching a previous state s

t�1 plus the transition cost
c(s

t�1, st), minimized over all possible previous states s
t�1.

Let
X

+ = max{0, X} . (5)

The transition cost is defined as

c(s
t�1, st) = o

t

p+ r

t

+ ↵p(d
t

� o

t

) , (6)

where
r

t

= s

t,⌧�1, (7)

o

t

= (d
t

� r

t

� s

t�1,1)
+
, (8)

and the transition from s
t�1 to s

t

follows (3). The rationale
of (6) is straightforward. By the transition equations (3), state
s
t�1 transits to s

t

by reserving r

t

= s

t,⌧�1 instances at time

t. Adding the s

t�1,1 instances that have been reserved before
t, we have r

t

+ s

t�1,1 reserved instances to use at time t. We
therefore need o

t

= (d
t

� r

t

� s

t�1,1)
+ on-demand instances

at that time.
The boundary conditions of Bellman equations (4) are

V (s0) = s0,1, for all s0 = (s0,1, . . . , s0,⌧�1), (9)

because an initial state s0 indicates that a user has already
reserved s0,1 instances at the beginning and paid s0,1.

With the analyses above, we see that the dynamic pro-
gramming defined by (3), (4), (6), and (9) optimally solves
the offline instance reserving problem (1). Therefore, it gives
COPT(d) in theory.

Unfortunately, the dynamic programming presented above
is computationally intractable. This is because to solve the
Bellman equations (4), one has to compute V (s

t

) for all
states s

t

. However, since a state s
t

is defined in a high-
dimensional space — recall that s

t

is defined as a (⌧ � 1)-
tuple — there exist exponentially many such states. Therefore,
looping over all of them results in exponential time complexity.
This is known as the curse of dimensionality suffered by high-
dimensional dynamic programming [15].

The intractability of the offline instance reservation problem
(1) suggests that optimal cost management in IaaS clouds is
in fact a very complicate problem, even if future demands can
be accurately predicted. However, we show in the following
sections that it is possible to have online strategies that
are highly efficient with near-optimal cost performance, even
without any knowledge of the future demands.

IV. OPTIMAL DETERMINISTIC ONLINE STRATEGY

In this section, we present a deterministic online reservation
strategy that incurs no more than 2 � ↵ times the minimum
cost. As indicated by Lemma 1, this is also the best that one
can expect from a deterministic algorithm.

A. The Deterministic Online Algorithm

We start off by defining a break-even point at which a
user is indifferent between using a reserved instance and an
on-demand instance. Suppose an on-demand instance is used
to accommodate workload in a time interval that spans a
reservation period, incurring a cost c. If we use a reserved
instance instead to serve the same demand, the cost will be
1 + ↵c. When c = 1/(1 � ↵), both instances cost the same,
and are therefore indifferent to the user. We hence define the
break-even point as

� = 1/(1� ↵) . (10)

Clearly, the use of an on-demand instance is well justified if
and only if the incurred cost does not exceed the break-even
point, i.e., c �.

Our deterministic online algorithm is summarized as fol-
lows. By default, all workloads are assumed to be operated
with on-demand instances. At time t, upon the arrival of
demand d

t

, we check the use of on-demand instances in
a recent reservation period, starting from time t � ⌧ + 1

4

to t, and reserve a new instance whenever we see an on-
demand instance incurring more costs than the break-even
point. Algorithm 1 presents the detail.

Algorithm 1 Deterministic Online Algorithm A

�

1. Let x

i

be the number of reserved instances at time i,
Initially, x

i

 0 for all i = 0, 1, . . .
2. Let I(X) be an indicator function where I(X) = 1 if X is

true and I(X) = 0 otherwise. Also let X+ = max{X, 0}.
3. Upon the arrival of demand d

t

, loop as follows:
4. while p

P
t

i=t�⌧+1 I(di > x

i

) > � do
5. Reserve a new instance: r

t

 r

t

+ 1.
6. Update the number of reservations that can be used in

the future: x
i

 x

i

+ 1 for i = t, . . . , t+ ⌧ � 1.
7. Add a “phantom” reservation to the recent period,

indicating that the history has already been “processed”:
x

i

 x

i

+ 1 for i = t� ⌧ + 1, . . . , t� 1.
8. end while
9. Launch on-demand instances: o

t

 (d
t

� x

t

)+.
10. t t+ 1, repeat from 3.

Fig. 1 helps to illustrate Algorithm 1. Whenever demand
d

t

arises, we check the recent reservation period from time
t � ⌧ + 1 to t. We see that an on-demand instance has
been used at time i if demand d

i

exceeds the number of
reservations x

i

(both actual and phantom), i = t�⌧+1, . . . , t.
The shaded area in Fig. 1 represents the use of an on-
demand instance in the recent period, which incurs a cost of
p

P
t

i=t�⌧+1 I(di > x

i

). If this cost exceeds the break-even
point � (line 4 of Algorithm 1), then such use of an on-demand
instance is not well justified: We should have reserved an
instance before at time t�⌧+1 and used it to serve the demand
(shaded area) instead, which would have lowered the cost. As a
compensation for this “mistake,” we reserve an instance at the
current time t (line 5), and will have one more reservation to
use in the future (line 6). Since we have already compensated
for a misuse of an on-demand instance (the shaded area),
we add a “phantom” reservation to the history so that such
a mistake will not be counted multiple times in the following
rounds (line 7). This leads to an update of the reservation
number {x

i

} (see the bottom figure in Fig. 1).
Unlike the simple extension of the Bahncard algorithm

described in Sec. II-D, Algorithm 1 jointly reserves instances
by taking both the currently active reservations (i.e., x

t

) and
the historic records (i.e., x

i

, i < t) into consideration (line 4),
without any knowledge of the future. We will see later in
Sec. VII that such a joint reservation significantly outper-
forms the Bahncard extension where instances are reserved
separately.

B. Performance Analysis: (2� ↵)-Competitiveness
The “trick” of Algorithm 1 is to make reservations “lazily”:

no instance is reserved unless the misuse of an on-demand
instance is seen. Such a “lazy behaviour” turns out to guarantee
that the algorithm incurs no more than 2 � ↵ times the
minimum cost.

tt- +1⌧ Time

D
em

an
d

tt- +1⌧ Time

D
em

an
d

t+ -1⌧

xNewly updated
xOriginal

d

Demand curve
xReservation curve

Fig. 1. Illustration of Algorithm 1. The shaded area in the top figure shows
the use of an on-demand instance in the recent period. An instance is reserved
at time t if the use of this on-demand instance is not well justified. The bottom
figure shows the corresponding updates of the reservation curve x.

Let A
�

denote Algorithm 1 and let OPT denote the optimal
offline algorithm. We now make an important observation, that
OPT reserves at least the same amount of instances as A

�

does, for any demand sequence.
Lemma 2: Given an arbitrary demand sequence, let n

�

be
the number of instances reserved by A

�

, and let nOPT be the
number of instances reserved by OPT. Then n

�

 nOPT.
Lemma 2 can be viewed as a result of the “lazy behaviour”

of A
�

, in which instances are reserved just to compensate for
the previous “purchase mistakes.” Intuitively, such a conser-
vative reservation strategy leads to fewer reserved instances.
The proof of Lemma 2, however, is tedious and is deferred to
our technical report [21].

We are now ready to analyze the cost performance of A

�

,
using the optimal offline algorithm OPT as a benchmark.

Proposition 1: Algorithm 1 is (2 � ↵)-competitive. For-
mally, for any demand sequence,

C

A� (2� ↵)COPT , (11)

where C

A� is the cost of Algorithm 1 (A
�

), and COPT is the
cost of the optimal offline algorithm OPT.

Proof: Suppose A

�

(resp., OPT) launches o
t

(resp., o⇤
t

) on-
demand instances at time t. Let Od(A

�

) be the costs incurred
by these on-demand instances under A

�

, i.e., Od(A
�

) =P
T

t=1 otp. We refer to Od(A
�

) as the on-demand costs of
A

�

. Similarly, we define the on-demand costs incurred by
OPT as Od(OPT) =

P
T

t=1 o
⇤
t

p. Also, let Od(A
�

\OPT) =P
T

t=1(ot�o

⇤
t

)+p be the on-demand costs incurred in A

�

that
are not incurred in OPT. We see

Od(A
�

\OPT) �nOPT (12)

by noting the following two facts: First, demands
P

T

t=1(ot �
o

⇤
t

)+ are served by at most nOPT reserved instances in OPT.
Second, demands that are served by the same reserved instance
in OPT incur on-demand costs of at most � in A

�

(by the
definition of A

�

). We therefore bound Od(A
�

) as follows:

Od(A
�

) Od(OPT) + Od(A
�

\OPT)

 Od(OPT) + �nOPT . (13)

5

Let S =
P

T

t=1 dtp be the cost of serving all demands with
on-demand instances. We bound the cost of OPT as follows:

COPT = Od(OPT) + nOPT + ↵(S �Od(OPT)) (14)
� Od(OPT) + nOPT + ↵�nOPT (15)
� nOPT/(1� ↵) . (16)

Here, (15) holds because in OPT, demands that are served by
the same reserved instance incur at least a break-even cost �
when priced at an on-demand rate p.

With (13) and (16), we bound the cost of A
�

as follows:

C

A� = Od(A
�

) + n

�

+ ↵(S �Od(A
�

))

 (1� ↵)Od(A
�

) + nOPT + ↵S (17)
 (1� ↵)(Od(OPT) + �nOPT) + ↵S + nOPT (18)
= COPT + nOPT (19)
 (2� ↵)COPT . (20)

Here, (17) holds because n

�

 nOPT (Lemma 2). Inequality
(18) follows from (13), while (20) is derived from (16).

By Lemma 1, we see that 2�↵ is already the best possible
competitive ratio for deterministic online algorithms, which
implies that Algorithm 1 is optimal in a view of competitive
analysis.

Proposition 2: Among all online deterministic algorithms
of problem (1), Algorithm 1 is optimal with the smallest
competitive ratio of 2� ↵.

As a direct application, in Amazon EC2 with reservation
discount ↵ = 0.49 (see Table I), algorithm A

�

will lead to no
more than 1.51 times the optimal instance purchase cost.

Despite the already satisfactory cost performance offered
by the proposed deterministic algorithm, we show in the next
section that the competitive ratio may be further improved if
randomness is introduced.

V. OPTIMAL RANDOMIZED ONLINE STRATEGY

In this section, we construct a randomized online strategy
that is a random distribution over a family of deterministic
online algorithms similar to A

�

. We show that such ran-
domization improves the competitive ratio to e/(e � 1 + ↵)
and hence leads to a better cost performance. As indicated
by Lemma 1, this is the best that one can expect without
knowledge of future demands.

We start by defining a family of algorithms similar to the
deterministic algorithm A

�

. Let A
z

be a similar deterministic
algorithm to A

�

with � in line 4 of Algorithm 1 replaced
by z 2 [0,�]. That is, A

z

reserves an instance whenever it
sees an on-demand instance incurring more costs than z in
the recent reservation period. Intuitively, the value of z reflects
the aggressiveness of a reservation strategy. The smaller the
z, the more aggressive the strategy. As an extreme, a user
will always reserve when z = 0. Another extreme goes to
z = � (Algorithm 1), in which the user is very conservative
in reserving new instances.

Our randomized online algorithm picks a z 2 [0,�] accord-
ing to a density function f(z) and runs the resulting algorithm

A

z

. Specifically, the density function f(z) is defined as

f(z) =

⇢
(1� ↵)e(1�↵)z

/(e� 1 + ↵), z 2 [0,�),
�(z � �) · ↵/(e� 1 + ↵), o.w., (21)

where �(·) is the Dirac delta function. That is, we pick
z = � with probability ↵/(e � 1 + ↵). It is interesting to
point out that in other online rent-or-buy problems, e.g., [22],
[20], [23], the density function of a randomized algorithm
is usually continuous1. However, we note that a continuous
density function does not lead to the minimum competitive
ratio in our problem. Algorithm 2 formalizes the descriptions
above.

Algorithm 2 Randomized Online Algorithm
1. Randomly pick z 2 [0,�] according to a density function

f(z) defined by (21)
2. Run A

z

The rationale behind Algorithm 2 is to strike a suitable bal-
ance between reserving “aggressively” and “conservatively.”
Intuitively, being aggressive is cost efficient when future
demands are long-lasting and stable, while being conservative
is efficient for sporadic demands. Given the unknown future,
the algorithm randomly chooses a strategy A

z

, with an ex-
pectation that the incurred cost will closely approach the ex
post minimum cost. The following theorem shows that the
choice of f(z) in (21) leads to the optimal competitive ratio
e/(e� 1 + ↵). The proof is given in [21].

Proposition 3: Algorithm 2 is e/(e � 1 + ↵)-competitive.
Formally, for any demand sequence,

E[C
Az]

e

e� 1 + ↵

COPT , (22)

where the expectation is over z between 0 and � according to
density function f(z) defined in (21).

By Lemma 1, we see that no online randomized algorithm
is better than Algorithm 2 in terms of the competitive ratio.

Proposition 4: Among all online randomized algorithms
of problem (1), Algorithm 2 is optimal with the smallest
competitive ratio e/(e� 1 + ↵).

As a direct application, in Amazon EC2 with reservation
discount ↵ = 0.49 (see Table I), the randomized algorithm
will lead to a competitive ratio of 1.23, compared with the
1.51-competitiveness of the deterministic alternative.

VI. COST MANAGEMENT WITH SHORT-TERM DEMAND
PREDICTIONS

In the previous sections, our discussions focus on the
extreme cases, with either full future demand information (i.e.,
the offline case in Sec. III) or no a priori knowledge of the
future (i.e., the online case in Sec. IV and V). In this section,
we consider the middle ground in which short-term demand
predictions are reliable. For example, websites typically see
diurnal patterns exhibited on their workloads, based on which

1The density function in these works is chosen as f(z) = e

z
/(e�1), z 2

[0, 1], which is a special case of ours when ↵ = 0.

6

it is possible to have a demand prediction window that is
weeks into the future. Both our online algorithms can be easily
extended to utilize these knowledge of future demands when
making reservation decisions.

We begin by formulating the instance reservation problem
with limited information of future demands. Let w be the
prediction window. That is, at any time t, a user can predict its
future demands d

t+1, . . . , dt+w

in the next w hours. Since only
short-term predictions are reliable, one can safely assume that
the prediction window is less than a reservation period, i.e.,
w < ⌧ . The instance reservation problem resembles the online
reservation problem (1), except that the instance purchase
decisions made at each time t, i.e., the number of reserved
instances (r

t

) and on-demand instances (o
t

), are based on both
history and future demands predicted, i.e., d1, . . . , dt+w

. The
competitive analysis (Definition 1) remains valid in this case.

The Deterministic Algorithm: We extend our deterministic
online algorithm as follows. As before, all workloads are by
default served by on-demand instances. At time t, we can
predict the demands up to time t+w. Unlike the online deter-
ministic algorithm, we check the use of on-demand instances
in a reservation period across both history and future, starting
from time t+w�⌧+1 to t+w. A new instance is reserved at
time t whenever we see an on-demand instance incurring more
costs than the break-even point � and the currently effective
reservations are less than the current demand d

t

. Algorithm 3,
also denoted by A

w

�

, shows the details.

Algorithm 3 Deterministic Algorithm A

w

�

with Prediction
Window w

1. Let x

i

be the number of reserved instances at time i,
Initially, x

i

 0 for all i = 0, 1, . . .
2. Upon the arrival of demand d

t

, loop as follows:
3. while p

P
t+w

i=t+w�⌧+1 I(di > x

i

) > � and x

t

< d

t

do
4. Reserve a new instance: r

t

 r

t

+ 1.
5. Update the number of reservations that can be used in

the future: x
i

 x

i

+ 1 for i = t, . . . , t+ ⌧ � 1.
6. Add a “phantom” reservation to the history, indicating

that the history has already been “processed”: x

i

x

i

+ 1 for i = t+ w � ⌧ + 1, . . . , t� 1.
7. end while
8. Launch on-demand instances: o

t

 (d
t

� x

t

)+.
9. t t+ 1, repeat from 2.

The Randomized Algorithm: The randomized algorithm
can also be constructed as a random distribution over a family
of deterministic algorithms similar to A

w

�

. In particular, let
A

w

z

be similarly defined as algorithm A

w

�

with � replaced by
z 2 [0,�] in line 3 of Algorithm 3. The value of z reflects
the aggressiveness of instance reservation. The smaller the z,
the more aggressive the reservation strategy. Similar to the
online randomized, we introduce randomness to strike a good
balance between reserving aggressively and conservatively.
Our algorithm randomly picks z 2 [0,�] according to the same
density function f(z) defined by (21), and runs the resulting
algorithm A

w

z

. Algorithm 4 formalizes the description above.

Algorithm 4 Randomized Algorithm with Prediction Window
w

1. Randomly pick z 2 [0,�] according to a density function
f(z) defined by (21)

2. Run A

w

z

200 250 300 350 400
0

300

600

900

Time (hour)

In
st

a
n
ce

User 552

Fig. 2. The demand curve of User 552 in Google cluster-usage traces [16],
over 1 month.

It is easy to see that both the deterministic and the random-
ized algorithms presented above improve the cost performance
of their online counterparts, due to the knowledge of future
demands. Therefore, we have Proposition 5 below. We will
quantify their performance gains via trace-driven simulations
in the next section.

Proposition 5: Algorithm 3 is (2 � ↵)-competitive, and
Algorithm 4 is e/(e� 1 + ↵)-competitive.

VII. TRACE-DRIVEN SIMULATIONS

So far, we have analyzed the cost performance of the
proposed algorithms in a view of competitive analysis. In this
section, we evaluate their performance for practical cloud users
via simulations driven by a large volume of real-world traces.

A. Dataset Description and Preprocessing

Long-term user demand data in public IaaS clouds are often
confidential: no cloud provider has released such information
so far. For this reason, we turn to Google cluster-usage traces
that were recently released in [16]. Although Google is not a
public IaaS cloud, its cluster-usage traces record the computing
demands of its cloud services and Google engineers, which
can represent the computing demands of IaaS users to some
degree. The dataset contains 40 GB of workload resource
requirements (e.g., CPU, memory, disk, etc.) of 933 users over
29 days in May 2011, on a cluster of more than 11K Google
machines.

Demand Curve: Given the workload traces of each user,
we ask the question: How many computing instances would
this user require if it were to run the same workload in a public
IaaS cloud? For simplicity, we set an instance to have the same
computing capacity as a cluster machine, which enables us
to accurately estimate the run time of computational tasks by
learning from the original traces. We then schedule these tasks
onto instances with sufficient resources to accommodate their
requirements. Computational tasks that cannot run on the same
server in the traces (e.g., tasks of MapReduce) are scheduled
to different instances. In the end, we obtain a demand curve
for each user, indicating how many instances this user requires
in each hour. Fig. 2 illustrates such a demand curve for a user.

User Classification: To investigate how our online algo-
rithms perform under different demand patterns, we classify

7

0 50 100 150 200
0

50

100

150

200

Demand Mean µ

D
e

m
a

n
d

 S
td

 σ

� = 5µ
� = µ

Fig. 3. User demand statistics and group division.

all 933 users into three groups by the demand fluctuation level
measured as the ratio between the standard deviation � and
the mean µ.

Specifically, Group 1 consists of users whose demands are
highly fluctuating, with �/µ � 5. As shown in Fig. 3 (circle
‘o’), these demands usually have small means, which implies
that they are highly sporadic and are best served with on-
demand instances. Group 2 includes users whose demands are
less fluctuating, with 1 �/µ < 5. As shown in Fig. 3 (cross
‘x’), these demands cannot be simply served by on-demand or
reserved instances alone. Group 3 includes all remaining users
with relatively stable demands (0 �/µ < 1). As shown in
Fig. 3 (plus ‘+’), these demands have large means and are best
served with reserved instances. Our evaluations are carried out
for each user group.

Pricing: Throughout the simulation, we adopt the pric-
ing of Amazon EC2 standard small instances with the on-
demand rate $0.08, the reservation fee $69, and the discount
rate $0.039 (Linux, US East, 1-year light utilization). Since
the Google traces only span one month, we proportionally
shorten the on-demand billing cycle from one hour to one
minute, and the reservation period from 1 year to 6 days (i.e.,
24⇥ 365 = 8760 minutes = 6 days) as well.

B. Evaluations of Online Algorithms

We start by evaluating the performance of online algorithms
without any a priori knowledge of user demands.

Benchmark Online Algorithms: We compare our online
deterministic and randomized algorithms with three bench-
mark online strategies. The first is All-on-demand, in which
a user never reserves and operates all workloads with on-
demand instances. This algorithm, though simple, is the most
common strategy in practice, especially for those users with
time-varying workloads [11]. The second algorithm is All-
reserved, in which all computational demands are served via
reservations. The third online algorithm is the simple extension
to the Bahncard algorithm proposed in [19] (see Sec. II-D),
and is referred to as Separate because instances are reserved
separately. All three benchmark algorithms, as well as the two
proposed online algorithms, are carried out for each user in
the Google traces. All the incurred costs are normalized to

All-on-demand.
Cost Performance: We present the simulation results in

Fig. 4, where the CDF of the normalized costs are given,
grouped by users with different demand fluctuation levels.
We see in Fig. 4a that when applied to all 933 users, both

TABLE II
AVERAGE COST PERFORMANCE (NORMALIZED TO ALL-ON-DEMAND).

Algorithm All users Group 1 Group 2 Group 3
All-reserved 16.48 48.99 1.25 0.61
Separate 0.88 1.01 1.02 0.71
Deterministic 0.81 1.00 0.89 0.67
Randomized 0.76 1.02 0.79 0.63

the deterministic and randomized online algorithms realize
significant cost savings compared with all three benchmarks.
In particular, when switching from All-on-demand to the
proposed online algorithms, more than 60% users cut their
costs. About 50% users save more than 40%. Only 2%
incur slightly more costs than before. For users who switch
from All-reserved to our randomized online algorithms, the
improvement is even more substantial. As shown in Fig. 4a,
cost savings are almost guaranteed, with 30% users saving
more than 50%. We also note that Separate, though generally
outperforms All-on-demand and All-reserved, incurs more
costs than our online algorithms, mainly due to its ignorance
of reservation correlations.

We next compare the cost performance of all five algorithms
at different demand fluctuation levels. As expected, when it
comes to the extreme cases, All-on-demand is the best fit
for Group 1 users whose demands are known to be highly
busty and sporadic (Fig. 4b), while All-reserved incurs the
least cost for Group 3 users with stable workloads (Fig. 4d).
These two groups of users, should they know their demand
patterns, would have the least incentive to adopt advanced
instance reserving strategies, as naively switching to one
option is already optimal. However, even in these extreme
cases, our online algorithms, especially the randomized one,
remain highly competitive, incurring only slightly higher cost.

However, the acquisition of instances is not always a black-
and-white choice between All-on-demand and All-reserved.
As we observe from Fig. 4c, for Group 2 users, a more
intelligent reservation strategy is essential, since naive al-
gorithms, either All-on-demand or All-reserved, are always
highly risky and can easily result in skyrocketing cost. Our
online algorithms, on the other hand, become the best choices
in this case, outperforming all three benchmark algorithms by
a significant margin.

Table II summarizes the average cost performance for each
user group. We see that, in all cases, our online algorithms
remain highly competitive, incurring near-optimal costs for a
user.

C. The Value of Short-Term Predictions

While our online algorithms perform sufficiently well with-
out knowledge of future demands, we show in this section that
more cost savings are realized by their extensions when short-
term demand predictions are reliable. In particular, we consider
three prediction windows that are 1, 2, and 3 months into the
future, respectively. For each prediction window, we run both
the deterministic and randomized extensions (i.e., Algorithm 3
and 4) for each Google user in the traces, and compare their
costs with those incurred by the online counterparts without

8

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Normalized Cost

All−reserved
Separate
Deterministic
Randomized

(a) Cost CDF (all users)

0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

Normalized Cost

All−reserved
Separate
Deterministic
Randomized

(b) Cost CDF (high fluctuation)

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Normalized Cost

All−reserved
Separate
Deterministic
Randomized

(c) Cost CDF (medium fluctuation)

0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized Cost

All−reserved
Separate
Deterministic
Randomized

(d) Cost CDF (stable demands)

Fig. 4. Cost performance of online algorithms without a priori knowledge of future demands. All costs are normalized to All-on-demand.

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized Cost

1−month
2−month
3−month

(a) Cost CDF

Low Medium High
0.8

0.9

1

1.1

Demand Fluctuation

A
ve

ra
g
e
 N

o
rm

a
liz

e
d
 C

o
st

1−month
2−month
3−month

(b) Average cost in different user
groups

Fig. 5. Cost performance of the deterministic algorithm with various
prediction windows. All costs are normalized to the online deterministic
algorithm (Algorithm 1) without any future information.

future knowledge (i.e., Algorithm 1 and 2). Figs. 5 and 6
illustrate the simulation results, where all costs are normalized
to Algorithm 1 and 2, respectively.

As expected, the more information we know about the future
demands (i.e., longer prediction window), the better the cost
performance. Yet, the marginal benefits of having long-term
predictions are diminishing. As shown in Figs. 5a and 6a,
long prediction windows will not see proportional performance
gains. This is especially the case for the randomized algorithm,
in which knowing the 2-month future demand a priori is no
different from knowing 3 months beforehand.

Also, we can see in Fig. 5b that for the deterministic
algorithm, having future information only benefits those users
whose demands are stable or with medium fluctuation. This is
because the deterministic online algorithm is almost optimal
for users with highly fluctuating demands (see Fig. 4b), leaving
no space for further improvements. On the other hand, we see
in Fig. 6b that the benefits of knowing future demands are
consistent for all users with the randomized algorithm.

VIII. RELATED WORK

On-demand and reserved instances are the two most promi-
nent pricing options that are widely supported in leading
IaaS clouds [3], [4], [5]. Many case studies [11] show that
effectively combining the use of the two instances leads to a
significant cost reduction.

There exist some works in the literature, including both
algorithm design [6], [7], [24] and prototype implementation
[8], focusing on combining the two instance options in a

0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Normalized Cost

1−month
2−month
3−month

(a) Cost CDF

Low Medium High
0.8

0.9

1

1.1

Demand Fluctuation

A
ve

ra
g

e
 N

o
rm

a
liz

e
d

 C
o

st

1−month
2−month
3−month

(b) Average cost in different user
groups

Fig. 6. Cost performance of the randomized algorithm with various prediction
windows. All costs are normalized to the online randomized algorithm
(Algorithm 1) without any future information.

cost efficient manner. All these works assume, either explic-
itly or implicitly, that workloads are statistically stationary
in the long-term future and can be accurately predicted a
priori. However, it has been observed that in real production
applications, ranging from enterprise applications to large e-
commerce sites, workload is highly variable and statistically
non-stationary [9], [10]. Furthermore, most workload pre-
diction schemes, e.g., [25], [26], [27], are only suitable for
predictions over a very short term (from half an hour to several
hours). Such limitation is also shared by general predicting
techniques, such as ARMA [28] and GARCH models [29].
Some long-term workload prediction schemes [30], [31], on
the other hand, are reliable only when demand patterns are
easy to recognize with some clear trends. Even in this case,
the prediction window is at most days or weeks into the future
[30], which is far shorter than the typical span of a reservation
period (at least one year in Amazon EC2 [3]). All these factors
significantly limit the practical use of existing works.

Our online strategies are tied to the online algorithm lit-
erature [18]. Specifically, our instance reservation problem
captures a class of rent-or-buy problems, including the ski
rental problem [22], the Bahncard problem [19], and the
TCP acknowledgment problem [20], as special cases when
a user demands no more than one instance at a time. In these
problems, a customer obtains a single item either by paying a
repeating cost (renting) per usage or by paying a one-time cost
(buying) to eliminate the repeating cost. A customer makes
one-dimensional decisions only on the timing of buying. Our
problem is more complicated as a user demands multiple
instances at a time and makes two-dimensional decisions on

9

both the timing and quantity of its reservation. A similar
“multi-item rent-or-buy” problem has also been investigated
in [23], where a dynamic server provisioning problem is
considered and an online algorithm is designed to dynamically
turn on/off servers to serve time-varying workloads with a
minimum energy cost. It is shown in [23] that, by dispatching
jobs to servers that are idle or off the most recently, the
problem reduces to a set of independent ski rental problems.
Our problem does not have such a separability structure and
cannot be equivalently decomposed into independent single-
instance reservation (Bahncard) problems, mainly due to the
possibility of time multiplexing multiple jobs on the same
reserved instance. It is for this reason that the problem is
challenging to solve even in the offline setting.

Besides instance reservation, online algorithms have also
been applied to reduce the cost of running a file system in
the cloud. The recent work [32] introduces a constrained ski-
rental problem with extra information of query arrivals (the
first or second moment of the distribution), proposing new
online algorithms to achieve improved competitive ratios. [32]
is orthogonal to our work as it takes advantage of additional
demand information to make rent-or-buy decisions for a single
item.

IX. CONCLUDING REMARKS AND FUTURE WORK

Acquiring instances at the cost-optimal commitment level
for time-varying workloads is critical for cost management to
lower IaaS service costs. In particular, when should a user
reserve instances, and how many instances should it reserve?
Unlike existing reservation strategies that require knowledge
of the long-term future demands, we propose two online
algorithms, one deterministic and another randomized, that
dynamically reserve instances without knowledge of the future
demands. We show that our online algorithms incur near-
optimal costs with the best possible competitive ratios, i.e.,
2�↵ for the deterministic algorithm and e/(e�1+↵) for the
randomized algorithm. Both online algorithms can also be eas-
ily extended to cases when short-term predictions are reliable.
Large-scale simulations driven by 40 GB Google cluster-usage
traces further indicate that significant cost savings are derived
from our online algorithms and their extensions, under the
prevalent Amazon EC2 pricing.

One of the issues that we have not discussed in this paper
is the combination of different types of reserved instances
with different reservation periods and utilization levels. For
example, Amazon EC2 offers 1-year and 3-year reserved
instances with light, medium, and high utilizations. Effectively
combining these reserved instances with on-demand instances
could further reduce instance acquisition costs. We note that
when a user demands no more than one instance at a time
and the reservation period is infinite, the problem reduces to
Multislope Ski Rental [33]. However, it remains unclear if
and how the results obtained for Multislope Ski Rental could
be extended to instance acquisition with multiple reservation
options.

REFERENCES

[1] “Gartner Says Worldwide Cloud Services Market to Surpass $109
Billion in 2012,” https://www.gartner.com/it/page.jsp?id=2163616.

[2] “The Future of Cloud Adoption,” http://cloudtimes.org/2012/07/14/
the-future-of-cloud-adoption/.

[3] Amazon EC2 Pricing, http://aws.amazon.com/ec2/pricing/.
[4] ElasticHosts, http://www.elastichosts.com/.
[5] GoGrid Cloud Hosting, http://www.gogrid.com.
[6] Y. Hong, M. Thottethodi, and J. Xue, “Dynamic server provisioning to

minimize cost in an IaaS cloud,” in Proc. ACM SIGMETRICS, 2011.
[7] C. Bodenstein, M. Hedwig, and D. Neumann, “Strategic decision support

for smart-leasing Infrastructure-as-a-Service,” in Proc. 32nd Intl. Conf.
on Info. Sys. (ICIS), 2011.

[8] K. Vermeersch, “A broker for cost-efficient qos aware resource allocation
in EC2,” Master’s thesis, University of Antwerp, 2011.

[9] C. Stewart, T. Kelly, and A. Zhang, “Exploiting nonstationarity for
performance prediction,” ACM SIGOPS Operating Systems Review,
vol. 41, no. 3, pp. 31–44, 2007.

[10] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy, “Autonomic mix-
aware provisioning for non-stationary data center workloads,” in Proc.
IEEE/ACM Intl. Conf. on Autonomic Computing (ICAC), 2010.

[11] AWS Case studies, http://aws.amazon.com/solutions/case-studies/.
[12] “Cloudability,” http://cloudability.com.
[13] “Cloudyn,” http://www.cloudyn.com.
[14] “Cloud Express by Apptio,” https://www.cloudexpress.com.
[15] W. Powell, Approximate Dynamic Programming: Solving the curses of

dimensionality. John Wiley and Sons, 2011.
[16] Google Cluster-Usage Traces, http://code.google.com/p/googleclusterdata/.
[17] “Amazon ElastiCache,” http://cloudability.com.
[18] A. Borodin and R. El-Yaniv, Online Computation and Competitive

Analysis. Cambridge University Press, 1998.
[19] R. Fleischer, “On the Bahncard problem,” Theoretical Computer Science,

vol. 268, no. 1, pp. 161–174, 2001.
[20] A. Karlin, C. Kenyon, and D. Randall, “Dynamic TCP acknowledgment

and other stories about e/(e-1),” Algorithmica, vol. 36, no. 3, pp. 209–
224, 2003.

[21] W. Wang, B. Li, and B. Liang, “To reserve or not to reserve: Optimal
online multi-instance acquisition in IaaS clouds,” University of Toronto,
Tech. Rep., 2013. [Online]. Available: http://iqua.ece.toronto.edu/⇠bli/
papers/onlinereserve.pdf

[22] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki, “Competitive
randomized algorithms for nonuniform problems,” Algorithmica, vol. 11,
no. 6, pp. 542–571, 1994.

[23] T. Lu, M. Chen, and L. L. Andrew, “Simple and effective dynamic
provisioning for power-proportional data centers,” IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 6, pp. 1611–1171, 2013.

[24] W. Wang, D. Niu, B. Li, and B. Liang, “Revenue maximization with
dynamic auctions in iaas cloud markets,” in Proc. IEEE ICDCS, 2013.

[25] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, “Energy-
aware server provisioning and load dispatching for connection-intensive
internet services,” in Proc. USENIX NSDI, 2008.

[26] B. Guenter, N. Jain, and C. Williams, “Managing cost, performance,
and reliability tradeoffs for energy-aware server provisioning,” in Proc.
IEEE INFOCOM, 2011.

[27] Í. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini,
“Greenhadoop: leveraging green energy in data-processing frameworks,”
in Proc. ACM EuroSys, 2012.

[28] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting
and Control. Prentice Hall, 1994.

[29] T. Bollerslev, “Generalized autoregressive conditional heteroskedastic-
ity,” Journal of Econometrics, vol. 31, no. 3, pp. 307–327, 1986.

[30] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic pro-
visioning of multi-tier internet applications,” in Proc. IEEE/ACM Intl.
Conf. on Autonomic Computing (ICAC), 2005.

[31] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Capacity manage-
ment and demand prediction for next generation data centers,” in Proc.
IEEE Intl. Conf. on Web Services (ICWS), 2007.

[32] A. Khanafer, M. Kodialam, and K. P. N. Puttaswamy, “The constrained
ski-rental problem and its application to online cloud cost optimization,”
in Proc. IEEE INFOCOM, 2013.

[33] Z. Lotker, B. Patt-Shamir, D. Rawitz, S. Albers, and P. Weil, “Rent,
lease or buy: Randomized algorithms for multislope ski rental,” in Proc.
Symp. on Theoretical Aspects of Computer Science (STAC), 2008.

10

