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Abstract—Middleboxes are ubiquitous in today’s networks.
They perform deep packet processing such as content-based
filtering and transformation, which requires multiple categories
of resources (e.g., CPU, memory bandwidth, and link bandwidth).
Depending on the processing requirement of traffic, packet
processing for different flows may consume vastly different
amounts of resources. Multi-resource fair queueing allows flows
to obtain a fair share of these resources, providing service
isolation across flows. However, previous solutions for multi-
resource fair queueing are either expensive to implement at
high speeds, or incurring high scheduling delay for flows with
uneven weights. In this paper, we present a new fair queueing
algorithm, called Group Multi-Resource Round Robin (GMR3),
that schedules packets in O(1) time, while achieving near-perfect
fairness with a low scheduling delay bounded by a small constant.
To our knowledge, it is the first provably fair, highly efficient
multi-resource fair queueing algorithm with bounded delay.

I. INTRODUCTION

Traditional Fair queueing algorithms [1], [2], [3], [4], [5],
[6] are designed to schedule packets in network switches
in a fair and efficient manner, and serve as the foundation
of Quality of Service (QoS) research in networking. With
fair queueing algorithms, a scheduler determines the order in
which packets of various independent flows are forwarded on
a shared output link, allocating a fair share of the outgoing
bandwidth to each flow.

However, with the evolution of network appliances, output
bandwidth is no longer the only shared resource in today’s
networks. Modern network appliances or “middleboxes” do
more than just packet forwarding. In addition, they perform
filtering (e.g., firewalls), optimization (e.g., HTTP caching and
WAN optimization), and transformation (e.g., dynamic request
routing) based on traffic contents [7], [8], [9], which require
the support of multiple resources such as CPU, memory
bandwidth, and link bandwidth [10], [11]. Multi-resource fair
queueing algorithms are therefore needed to schedule these
resources to meet the QoS requirements of flows.

While fair queueing for bandwidth sharing have been ex-
tensively studied [1], [2], [3], [4], [5], [6], multi-resource
fair queueing imposes new scheduling challenges as flows are
competing for multiple resources and may have vastly different
resource requirements. For example, flows that require for-
warding a large amount of small packets congest the memory
bandwidth of a software router [12], while those that require
IP security encryption (IPSec) needs more CPU processing
time [13]. Despite their heterogeneous resource requirements,
flows are expected to receive predictable service isolation to

meet their QoS requirements. This requires a multi-resource
packet scheduler with the following three desired properties.

Fairness: The scheduler should provide some measure of
service isolation across flows, so that the damaging behaviour
of rogue traffic will not affect the QoS of regular flows. In
particular, each flow should receive service at least at the level
when every resource is allocated in proportion to the flow’s
weight, irrespective of the behaviours of other traffic.

Bounded delay: Interactive Internet applications such as
video streaming and online games have stringent end-to-end
delay requirements. It is hence important for a scheduler to
offer a bounded scheduling delay. Such a delay bound should
be a small constant, independent of the number of flows.

Low complexity: As the volume of traffic through middle-
boxes increases [14], [15], it is important to make scheduling
decisions at high speeds. Ideally, a packet scheduler should
have a time complexity that is a small constant, independent
of the number of flows. In addition, the scheduling algorithm
should be amenable to practical implementation.

Despite recent advances in multi-resource fair queueing
(e.g., [11]), how a multi-resource packet scheduler is to be
designed to satisfy all three desirable properties remains an
open and elusive challenge. Existing designs either are expen-
sive to implement at high speeds, or provide no guaranteed
delay bound. In particular, DRFQ [11], the first multi-resource
fair queueing that implements Dominant Resource Fairness
(DRF) [16], associates packets with timestamps, and schedules
the one with the earliest timestamp. It suffers from a sorting
bottleneck with high scheduling complexity, logarithmic in the
number of flows. To avoid the sorting bottleneck of DRFQ,
we have designed a simpler scheduler, referred to as MR3, in
our previous work [17]. MR3 serves flows in a round-robin
fashion, and reduces the scheduling complexity to O(1) time
per packet. However, as we shall show in Sec. II, MR3 may
incur large scheduling delays for weighted flows, and is hence
unsuitable for applications with stringent delay requirements.

In this paper, we present a new packet scheduling algorithm,
referred to as Group Multi-Resource Round Robin (GMR3),
that achieves all three desirable properties. GMR3 groups flows
with similar weights into a small number of groups, each
associating with a timestamp. The scheduling decisions are
made in a two-level hierarchy. At the higher level, GMR3

makes inter-group scheduling decisions by choosing the group
with the earliest timestamp, while at the lower level, intra-
group scheduling serves flows within a group in a round-
robin fashion. GMR3 is highly efficient, as it requires only
O(1) time per packet in almost all practical scenarios. In
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Fig. 1. A schedule that implements DRF, where flow 1 sends packets P1, P2,
. . . , while flow 2 sends packets Q1, Q2, . . . .

addition, we show that GMR3 achieves near-perfect fairness
across flows, with its scheduling delay bounded by a small
constant. These desirable properties are proven analytically
and validated experimentally. To our knowledge, GMR3 is the
first multi-resource fair queueing algorithm that offers near-
perfect fairness with O(1) time complexity and a constant
scheduling delay bound. Furthermore, our algorithm may find
applications in other fair scheduling contexts where multiple
resources are to be time-multiplexed by different users.

The remainder of this paper is organized as follows. We clar-
ify the design objectives and discuss the drawbacks of existing
multi-resource queueing schemes in Sec. II. In Sec. III, we
present our design of GMR3 algorithm. Theoretical analysis
and simulation studies are given in Sec. IV and V, respectively.
Sec. VI concludes the paper.

II. OBJECTIVES AND CHALLENGES

In this section, we explain some terminologies and clarify
the detailed design objectives of a multi-resource scheduler.
We then briefly revisit existing multi-resource fair queueing
algorithms and show that they either suffer from high com-
plexity or incur large scheduling delays for weighted flows.

A. Design Objectives
Dominant Resource Fairness: Fairness is the primary

design objective for a packet scheduler. The recently proposed
Dominant Resource Fairness (DRF) serves as a promising
notion of fairness in a system containing multiple resources
[11], [16], [18], [19]. DRF generalizes max-min fairness to
the dominant resource in the multi-resource setting [16]. The
dominant resource is defined as the one that requires the maxi-
mum packet processing time. Specifically, let m be the number
of resources under consideration. For packet p, let ⌧r(p) be
the time required to process it on resource r. The dominant
resource r⇤ of packet p is r⇤ = argmax1rm ⌧r(p).

Under DRF, flows receive the same processing time on their
respective dominant resources (assuming flows are of equal
weights). For example, consider two flows. Flow 1 requires
basic forwarding, where link bandwidth is the dominant re-
source, while flow 2 requires security encryption, where CPU
is the dominant resource. To achieve DRF, packets should be
scheduled in a way such that the link transmission time flow 1
receives is equal to the CPU processing time flow 2 receives.
Fig. 1 illustrates such a schedule, where flow 1 sends packets
P1, P2, . . . , while flow 2 sends packets Q1, Q2, . . . .

It has been shown in [11], [20] that a schedule that achieves
DRF allows flows to receive service at least at the same
level as when every resource is allocated in proportion to
their respective weights, irrespective of the behaviours of

other traffic, which is commonly known as providing service
isolation across flows. Moreover, a DRF schedule is work
conserving in that no resource that could be used to increase
the throughput of a backlogged flow is wasted in idle. DRF
hence serves as a promising notion of fairness for multi-
resource fair queueing.

To measure how well a packet scheduler implements DRF,
the following Relative Fairness Bound (RFB) is used as an
important fairness metric [11], [17], [20].

Definition 1: For any packet arrivals and any time interval
(t1, t2), let Ti(t1, t2) be the packet processing time flow i
receives on the dominant resource of packets in (t1, t2), and
is referred to as the dominant service. Let B(t1, t2) be the set
of flows that are backlogged in (t1, t2). Finally, let wi be the
weight of flow i. The Relative Fairness Bound is defined as

RFB = sup

t1,t2;i,j2B(t1,t2)

����
Ti(t1, t2)

wi
� Tj(t1, t2)

wj

���� .

RFB bounds the gap of dominant services received by any
two flows in any backlogged period. Intuitively, the smaller
the gap, the fairer the scheduler. One of our objectives is to
design a scheduler with RFB being a small constant.

Scheduling Delay: In addition to fairness, scheduling delay
is another important concern for a packet scheduler. The
scheduling delay is defined as the time that elapses between
the instant a packet reaches the head of the queue, and the
instant the packet is completely processed on all resources.
The delay is introduced by the scheduling algorithm and is
also referred to as single packet delay in the fair queueing
literature [21], [22], [23], [24]. Intuitively, flows with larger
weights should experience smaller delays. Formally, for any
packet p of flow i, its scheduling delay Di(p) should be within
a small constant amount that is inversely proportional to the
deserved processing weight of the flow, i.e.,

Di(p)  C/wi, (1)

where C is a constant.
Scheduling Complexity: To handle a large volume of traffic

at high speeds, the scheduler must operate with low scheduling
complexity, defined as the time required to make a packet
scheduling decision. Ideally, this complexity should be a small
constant, independent of the number of flows.

In summary, a desirable packet scheduler should offer near-
perfect fairness and a constant delay bound that is inversely
proportional to the flow’s weight, while operating in O(1) time
as well. Unfortunately, none of the existing design provides all
these properties, as we shall see in the next subsection.

B. Previous Work and Challenges
There are two alternative approaches that existing multi-

resource fair queueing algorithms use in their designs.
Timestamp-based algorithms (e.g., [11], [20]) associate times-
tamps with each packet upon its arrival. Whenever there is a
scheduling opportunity, the packet with the earliest timestamp
is scheduled. Since these schedulers need to sort packet times-
tamps, they suffer from high scheduling complexity, requiring
O(log n) time per packet, where n is the number of flows.
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Fig. 2. MR3 schedule fails to offer weight-proportional delay when flows are
assigned uneven weights. P i

k denotes the kth packet of flow i.

This sorting bottleneck significantly limits the scalability of
these algorithms, and necessitates a simpler scheduler. As an
alternative, Multi-Resource Round Robin (MR3) [17] serves
flows in rounds. Each flow maintains a credit account, and
in each round, a certain amount of credit that is proportional
to the flow’s weight is given. The amount of available credit
represents the dominant service the flow is allowed to consume
in one round. A flow can overdraw its credit, and the excessive
consumption will be deducted from the credit given in the next
round. MR3 eliminates the sorting bottleneck and requires only
O(1) complexity per packet [17].

However, MR3 fails to offer a weight-proportional delay
bound. To see this, consider an example where 6 flows are
competing for both middlebox CPU and the link bandwidth.
Each packet of flow 1 requires 1 time unit for CPU processing
and 2 for link transmission. Each packet of other flows requires
2 time unit for CPU processing and 1 for link transmission.
Flow 1 weighs 1/2, while flow 2 to 6 each weighs 1/10. The
amount of credits flow 1 receives in one round is hence 5
times those given to the other flows. Fig. 2 illustrates an MR3

schedule, where P i
k denotes the kth packet of flow i. We see

that the schedule offers weight-proportional services but not
weight-proportional delay. The maximum packet scheduling
delay flow 1 experiences is 13 time units (e.g., packet P 1

6 ),
more than half of that experienced by other flows (e.g., packet
P 2
2 has been delayed by 20 time units).
Formally, the following theorem show that MR3 may in-

cur large scheduling delays when flows are assigned uneven
weights. The proof is deferred to our technical report [25].

Theorem 1: Under MR3, for any flow i, the scheduling
delay of its packet p is bounded by

Di(p) < 4(m+W )

2L/wi ,

where L is the maximum packet processing time across flows,
m is the number of resources under consideration, and W is
the maximum ratio between weights of two flows, i.e.,

W = maxi,j wi/wj . (2)

By Theorem 1, we see that the delay bound of MR3

critically depends on the weight distributions and may become
very large when W � 1. This result has been further validated
experimentally in Sec. V. To summarize, it remains open
to design a multi-resource packet scheduler that offers near-
perfect fairness with low complexity and a small delay bound.

Similar complexity and delay issues have also been a major
challenge in the long evolution of single-resource fair queue-
ing algorithms for bandwidth sharing, where both timestamp-
based schemes and round robin are the two basic approaches in
the design. The former provides tight delay bounds yet requires
high complexity to sort packet timestamps (e.g., [1], [2], [3],
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Fig. 3. An improved schedule over MR3 in Fig. 2, where the scheduling
delay is significantly reduced. P i

k denotes the kth packet of flow i.

[6], [26]). The latter approach, on the other hand, has O(1)

complexity, yet incurs high scheduling delays (e.g., [5], [27],
[22]). To achieve the best of both worlds, one approach is
to combine fairness and delay properties of timestamp-based
algorithms with low time complexity of round-robin schemes.
This is typically done by grouping flows into a small num-
ber of classes. The scheduler then uses the timestamp-based
algorithm to determine which class to serve. Within a class,
the scheduling resembles a round-robin scheme. While this
strategy turns out to be an effective approach for bandwidth
sharing [21], [28], [29], [23], [24], generalizing it to schedule
multiple resources imposes non-trivial technical challenges.
Given that flows may have different dominant resources, the
scheduler has to maintain a consistent service level across all
these resources. We answer this challenge in the next section.

III. GROUP MULTI-RESOURCE ROUND ROBIN

In this section, we present our design of Group Multi-
Resource Round Robin (GMR3) that provides all the desirable
scheduling properties described in Sec. II.

A. Basic Intuition
While round robin may incur high scheduling delays in a

general scenario, Theorem 1 indicates that it provides a good
delay bound when flows are of similar weights. In other words,
if we group flows with similar weights to a flow group, then
within the group, round robin serves as an excellent scheduler.
The challenge is to schedule inter-group flows with different
weights.

We have observed that in MR3, flows are always served in
a “burst” mode [17]. For example, in Fig. 2, flow 1 schedules
5 packets in a row in round 1, and has to wait for an entire
round to schedule its next packet P 1

6 in round 2, resulting
in a long scheduling delay of that packet. Instead of serving
flows in a “burst” mode, a better strategy is to spread their
scheduling opportunities over time, in proportion to their
respective weights. Fig. 3 illustrates an improved schedule over
MR3 in Fig. 2, where the scheduling opportunities of flow 1
are interleaved between those of other flows. Compared to the
MR3 schedule in Fig. 2, the maximum scheduling delay of
flow 1 is reduced from 13 to 5, and the delay of other flows
is also reduced from 20 to 16.

Our design follows exactly this intuition. The algorithm
aggregates flows with similar weights into a flow group,
and makes scheduling decisions in a two-level hierarchy. At
the higher level, the algorithm makes inter-group scheduling
decisions to determine a flow group, with the objective of
distributing the scheduling opportunities over time, in propor-
tion to the approximate weights of flows. Within a group, the
intra-group scheduler serves flows in a round-robin fashion.
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We shall show in Sec. IV that this simple combination leads
to remarkable performance guarantees. For now, we focus on
the detailed design in the following subsections.

B. Flow Grouping

Suppose there are n backlogged flows sharing m middlebox
resources. Without loss of generality, let the flow weight wi

be normalized such that
Pn

i=1 wi = 1 .

The scheduler collects flows with similar weights into a flow
group. Specifically, flow group Gk is defined as

Gk = {i : 2�k  wi < 2

�k+1}, k = 1, 2, . . . (3)

Thus, the weights of any two flows belonging to the same flow
group are within a factor of 2 of each other.

Such a grouping strategy leads to a small number of flow
groups ng , bounded by ng  log2 W . As pointed out in [21],
[23], [24], for a practical flow weight distribution, the number
of flow groups ng  40 and can hence be safely assumed as
a small constant. This significantly reduces the complexity of
the inter-group scheduling.

C. Inter-Group Scheduling

The inter-group scheduler determines a flow group to po-
tentially schedule a flow. Each group is associated with a
timestamp, and the one with the earliest timestamp is selected.
With appropriate timestamps, the scheduling opportunities of
a flow group would be weight-proportionally distributed over
time. Given a small number of flow groups ng , the complexity
of sorting the group timestamps is also a small constant
O(log ng). Among various timestamp-based algorithms, we
find that [21] is particularly attractive for multi-resource ex-
tension, due to its simple timestamp computation. Extending
other algorithms (e.g., [23], [24]) to multiple resources would
require referring to the idealized fluid DRGPS model [20],
incurring high complexity.

The scheduler maintains an accounting mechanism con-
sisting of a sequence of virtual slots, indexed by 0, 1, 2,
. . . . Each slot is exclusively assigned to one flow, and is the
scheduling opportunity of this flow. Each flow group Gk is
associated with a set of scheduling rounds each spanning 2

k

contiguous slots. The first scheduling round of flow group
Gk, denoted Rk

1 , starts at slot 0 and ends at slot 2

k � 1,
while the second scheduling round, denoted Rk

2 , starts at
slot 2

k and ends at slot 2

k+1 � 1, and so on. Fig. 4 gives
an example. Note that the scheduling rounds of different
flow groups overlap by design. The scheduler assigns each
backlogged flow i 2 Gk exactly one slot per scheduling round
of flow group Gk. This allows flow i to receive one scheduling
opportunity every 2

k slots, roughly matching the flow’s weight
(i.e., 2

�k  wi < 2

�k+1). The scheduling opportunities of
flows are hence weight-proportionally distributed over time.

Following [21], a flow group is called active if it contains at
least one backlogged flow. A backlogged flow i 2 Gk is called
pending if it has not yet been assigned a slot in the current
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Fig. 5. An illustration of GMR3 scheduler assigning slots to flows in the
example of Fig. 2, where f l

i denotes the packet processing for flow i 2 Gk
in the scheduling round l of its flow group Gk . The slot axis is only for the
accounting mechanism, while the time axis shows real time elapse.

scheduling round of Gk. A flow group is called pending if it
contains at least one pending flow.

For every virtual slot t, the inter-group scheduler chooses
among all pending flow groups the one with the earliest
timestamp, defined as the ending slot of the current scheduling
round of that flow group. Ties are broken arbitrarily. From the
selected flow group, the intra-group scheduler then chooses
a pending flow and assigns it the current slot t (with details
to be described in Sec. III-D). A flow temporarily ceases to
be pending once it has been assigned a slot in the current
scheduling round of its flow group, and will become pending
again at the beginning of the next scheduling round, if it
remains backlogged. If no group is pending in slot t, the slot is
skipped. Algorithm 1 summarizes this inter-group scheduling
process.

Algorithm 1 InterGroupScheduling
1: t = 0
2: P = {flow groups that are pending in slot 0}
3: while TRUE do
4: Choose Gk 2 P , where Gk has the earliest timestamp
5: IntraGroupScheduling(Gk)
6: P = P �Gk if Gk is no longer pending
7: if P = ; then
8: Keep idle until there is a backlogged flow
9: Advance t to the next slot with pending flows

10: else
11: t = t+ 1
12: end if
13: P = P [ {flow groups that become pending in slot t}
14: end while

Fig. 5 illustrates an example of the inter-group scheduler
assigning slots to flows in the example of Fig. 2, where f l

i

denotes the packet processing for flow i in the scheduling
round l of its flow group. Flow 1 belongs to G1 as its weight
is 1/2, while flows 2 to 6 are grouped to G4 as each of their
weights is 1/10. At slot 0, both G1 and G4 are pending, with
the end of the current scheduling round at slot 1 and slot 15,
respectively. The inter-group scheduler hence picks G1, from
which the intra-group scheduler selects flow 1 as it is the only
backlogged flow in G1. Flow 1 then schedules its packets for
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processing and ceases to be pending in the current scheduling
round. As a result, in slot 1, only G4 is pending and flow 2
is assigned the slot. Flow 1 becomes pending again in slot 2
as a new scheduling round of its flow group G1 starts, and is
selected for the similar reason as in slot 0. Flow groups G1 and
G4 are hence selected alternately in the following slots until
all flows of G4 are assigned slots and cease to be pending.
Note that slots 11, 13, and 15 are not shown in Fig. 5 as no
flow is pending in these slots, and are hence skipped by the
scheduler.

Unlike single-resource scheduling, in the multi-resource
environment, a flow may not receive dominant services in
its assigned slots. For example, in Fig. 5, flow 1 is assigned
slot 0 in [0, 1), but receives dominant services (i.e., link
transmission) later in [1, 3). Flow 2, on the other hand,
always receives dominant services (i.e., CPU processing) in
its assigned slots. Without appropriate control, such a potential
service asynchronicity may lead to a significant work progress
gap between two resources, resulting in poor fairness and
long scheduling delay. This is also the key challenge of
multi-resource scheduling as compared with its single-resource
counterpart (e.g., [21], [23], [24]). We show in the next
subsection that this problem is effectively addressed by the
intra-group scheduler.

D. Intra-Group Scheduling
Once the flow group is determined, the intra-group sched-

uler chooses a pending flow from that group in a round-robin
manner. Compared to round robin for bandwidth sharing (e.g.,,
[5], [22], [27], [29], [21], [23], [24]), the intra-group scheduler
operates with two important differences. First, for the purpose
of DRF, the scheduler maintains a credit system to keep track
of the dominant services a flow receives, not the amount of
bits a flow transmits. Second, the scheduler employs a progress
control mechanism to reinforce a relatively consistent work
progress across resources, so as to eliminate the adverse effects
caused by the aforementioned service asynchronicity.

Credit System: Every time a flow i is assigned a slot, it
receives a credit ci (whose size is given in (4) below), which
is the time given to the flow for packet processing on its
dominant resource in the current scheduling round. As long
as there are available credits, flow i is allowed to schedule a
packet for processing, and the corresponding packet processing
time on the dominant resource is deducted from its total credit.
A flow i can overdraw the processing time by scheduling at
most one more packet than those allowed by the available
credits. The excessive consumption of dominant services is
tracked by the excess counter ei, and will be deducted from
the credit given in the next scheduling round as a penalty of
overconsumption.

While MR3 adopts a similar credit system in its design [17],
the intra-group scheduler of GMR3 operates with an important
difference. Every time a flow i is assigned a slot, instead of
receiving an elastic amount of credits in different rounds, it is
given a fixed-size credit that is proportional to its weight wi.
Specifically, for flow i 2 Gk, the given credit ci is

ci = 2

kLwi , (4)

where L is the maximum packet processing time. The moti-
vation for defining credit in this manner is two-fold.

To begin with, even if two flows i, j belong to the same
group Gk, flow i’s weight wi may be up to twice as large as
wj . Despite their weight difference, both flows are assigned
exactly 1 slot per scheduling round of Gk. Therefore, to ensure
weight-proportional dominant services, the given credits as
shown in (4) are proportional to their respective weights.

Moreover, for each flow i 2 Gk, since 2

�k  wi < 2

�k+1,
the scaling factor 2kL in (4) ensures that

L  ci < 2L . (5)

Because the given credits are larger than the maximum packet
processing time, they can always compensate for the over-
consumption of dominant service flow i incurs in the previous
scheduling round. As a result, flow i will always have available
credits when assigned a slot, and can schedule at least one
packet. In addition, by (5), the given credits are roughly the
same across all flow groups. This is significant as flow i 2 Gk

is already assigned slots in proportion to its approximate
weight 2�k, so that in each slot, the scheduler should allocate
all flows approximately the same dominant services.

Progress Control Mechanism: In addition to the credit
system, the scheduler also employs a progress control mecha-
nism to reinforce a relatively consistent processing rate across
resources. Specifically, whenever a flow i 2 Gk is assigned
a slot t in the scheduling round l of Gk, the scheduler
checks the work progress on the last resource (usually the
link bandwidth). If flow i has already received services on the
last resource in the previous scheduling round l � 1, or flow
i is a new arrival, then its packet is scheduled immediately.
Otherwise, the scheduler defers packet scheduling until flow
i starts to receive service on the last resource in the previous
scheduling round l�1 of Gk. For example, as shown in Fig. 5,
in slot 12, the packet processing for flow 1 (i.e., f7

1 ) is withheld
in round 7 until the packet processed in round 6 (i.e., f6

1 )
starts transmission. Similar deferral has also been shown in
slots 14 and 16. Intuitively, this progress control mechanism
ensures that the work progress on one resource is not ahead
of that on the other by more than 1 round, hence achieving
an approximately consistent processing rate across resources,
in spite of the potential service asynchronicity. We shall see
in Sec. IV that this progress control mechanism is essential to
the fairness and delay performance of GMR3.

To summarize, Algorithm 2 gives detailed design of the
intra-group scheduling. Every flow group Gk maitains an
ActiveFlowList[k] for its backlogged flows. It also uses
RoundRobinCounter[k] and Round[k] to keep track of the cur-
rent scheduling round. Every time flow group Gk is selected,
the intra-group scheduler chooses flow i 2 Gk at the head
of ActiveFlowList[k]. Flow i is given a credit to compensate
for its overdraft in the previous round, and schedule packets
until no credit remains or no packet is backlogged (line 6 to
15). After that, the flow ceases to be pending and is appended
to the tail of the active list if it remains backlogged. Flow
group Gk ceases to be pending when all its backlogged flows
are serviced in the current scheduling round. If no flow is
backlogged, flow group Gk becomes inactive.
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Algorithm 2 IntraGroupScheduling(Gk)
1: if RoundRobinCounter[k] == 0 then
2: RoundRobinCounter[k] = ActiveFlowList[k].Length()
3: Round[k] += 1 . The current scheduling round of Gk

4: end if
5: Flow i = ActiveFlowList[k].RemoveFromHead()
6: bi = 2kLwi � ei . bi tracks the available credit of flow i
7: while IsBacklogged(i) and bi � 0 do
8: while FlowProgressOnLastResource[i] < Round[k] � 1 do
9: Withhold the scehduling opportunity of flow i

10: end while
11: Packet P = Queue[i].Dequeue()
12: P .SchedulingRound = Round[k]
13: ProcessPacket(P ) . Schedule for CPU processing
14: bi = bi � DominantProcessingTime(P )
15: end while
16: if IsBacklogged(i) then
17: ei = �bi . ei tracks the overdraft of credits of flow i
18: ActiveFlowList[k].AppendToTail(i)
19: else
20: ei = 0
21: end if
22: RoundRobinCounter[k] -= 1
23: if RoundRobinCounter[k] == 0 then
24: Flow group Gk ceases to be pending
25: end if
26: if ActiveFlowList[k] = ; then
27: Deactivate(Gk) . Flow group Gk ceases to be active
28: end if

E. Handling New Packet Arrivals
In addition to determining the packet scheduling order,

GMR3 scheduler also needs to handle new packet arrivals.
Algorithm 3 gives the detailed procedure. In addition to
enqueueing the newly arrived packet p to the queue of flow
i 2 Gk to which the packet belongs, the scheduler also
appends flow i to the active list of its flow group Gk if flow
i is previously inactive. Flow group Gk is also activated if it
is inactive before.

Algorithm 3 PacketArrival(P )
1: Let i be the flow to which the newly arrived packet p belongs
2: Queue[i].Enqueue(P )
3: Let Gk be the flow group to which flow i belongs
4: if ActiveFlowList[k].Contains(i) == FALSE then
5: ActiveFlowList[k].AppendToTail(i)
6: if IsActive(Gk) == FALSE then
7: Activate(Gk) . Flow group Gk becomes active
8: end if
9: end if

F. Implementation and Complexity
So far, we have described the design of GMR3. We next

show that appropriate implementations allow GMR3 to make
packet scheduling decisions in O(1) complexity.

Flow Grouping: To identify the flow group Gk of flow i,
it suffices to locate the most significant bit of wi that is set to
1, as 2

�k  wi < 2

�k+1. This can be accomplished in O(1)

by a standard priority encoder.
Inter-Group Scheduling: There are three important oper-

ations in Algorithm 1, i.e., choosing a flow group (line 4),

advancing to the earliest slot with pending groups (line 9), and
updating the pending set P (line 13). Given a small number of
flow groups ng , all these operations can be accomplished in
O(1) time using the simple methods described in [21], which
we briefly mention in the following.

The scheduler uses two bitmaps a = ang . . . a2a1 and p =

png . . . p2p1 to track the active and pending flow groups. Bit
ak is set to 1 if flow group Gk is active, and 0 otherwise.
Similarly, bit pk is 1 if group Gk is pending, and 0 otherwise.

Choosing a flow group: It is easy to check that, in all slot t,
the scheduling round of flow group Gk ends earlier than those
of all flow groups Gk0 , where k0 > k (see Fig. 4). Flow group
Gk hence has a higher priority to be chosen than Gk0 . As a
result, the chosen group Gk can be identified by locating the
rightmost bit pk of bitmap p that is set to 1. Such an operation
can be done in O(1) by a standard priority encoder [21].

Advancing to the earliest slot with pending groups: Because
the start of the scheduling round for group Gk is also the start
of a scheduling round of all groups Gk0 , where k0 > k (see
Fig. 4), the scheduler should advance to the start of the next
scheduling round of the lowest-numbered flow group that is
active. This can be identified by locating the rightmost bit ak
that is set to 1, and the new slot is the smallest multiple of
2

k greater than the current slot t. With the surport of priority
encoder, all these operations are done in O(1) time.

Updating the pending set: At slot t, an active flow group Gk

becomes pending if 2k divides t. To identify all these groups,
it is sufficient to locate the least significant bit of t that is set
to 1. Let it be the kth least significant bit of t. Then all active
flow groups Gk0 where k0  k become pending at t, and can
be found via some simple bit operations in O(1) [21].

Intra-Group Scheduling: In Algorithm 2, an essential
operation is to track the work progress on the last resource
of the selected flow i (line 8 to 10) to determine if the
scheduling opportunity of flow i should be withheld. For the
purpose of efficient implementation, a packet P of flow i, upon
scheduling, is associated a tag recording the current scheduling
round of flow group Gk to which flow i belongs (line 12 of
Algorithm 2). Whenever packet P starts service on the last
resource m, the progress of flow i on that resource is updated
as the scheduling round tagged to packet P , which will be used
later to determine the timing of withholding packet processing
of flow i (line 8). All these operations can be done in O(1).

Another operations that may introduce additional complex-
ity is to obtain the packet processing time on the dominant
resource (line 14). Note that such information is required only
after the packet has been processed by CPU. At that time the
scheduler knows exactly how the packet should be processed
next and what resources are required. The packet processing
time on each of the following resource can hence be accurately
inferred via some simple packet profiling techniques in O(1).
For example, a simple linear model based on the packet size
is proved to be sufficiently accurate for estimation [11].

To conclude, with appropriate implementations mentioned
above, both inter-group and intra-group scheduling decisions
can be made in O(1) time per packet, making GMR3 a highly
efficient multi-resource scheduler for middleboxes.
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IV. PERFORMANCE ANALYSIS

In this section, we analyze the properties of GMR3 and show
that it achieves near-perfect fairness with scheduling delays
bounded by a small constant.

A. Fairness
For the purpose of fairness analysis, we derive the RFB of

GMR3 defined in Sec. II. We start by bounding the dominant
services a flow receives in any backlogged period (t1, t2) as
follows. The complete proof is deferred to [25].

Lemma 1: Let Ti(t1, t2) be the dominant service a back-
logged flow i receives in a time interval (t1, t2). We have

xLwi � 9L  Ti(t1, t2)  xLwi + 9L , (6)

where x is the number of slots, complete and partial, that have
been assigned to flows in (t1, t2).

Proof sketch: Let xi be the number of slots assigned to flow
i 2 Gk in (t1, t2). By Algorithm 2, the progress gap between
any two resources is upper bounded by one scheduling round.
It is hence easy to verify that flow i receives services on its
dominant resource at least in xi � 2 scheduling rounds, and
at most in xi + 2 scheduling rounds. The dominant services
flow i receives are hence at least (xi � 2)ci � L and at most
(xi + 2)ci + L, where ci = 2

kLwi is the credit given to flow
i, i.e.,

(xi � 2)ci � L  Ti(t1, t2)  (xi + 2)ci + L . (7)

Also, the number of scheduling rounds of flow group Gk

contained in (t1, t2) is at least xi � 2, and is at most xi + 2.
Because each scheduling round of Gk spans exactly 2

k slots,
we have 2

k
(xi � 2)  x  2

k
(xi + 2), which is equivalent to

2

�kx� 2  xi  2

�kx+ 2 . (8)

Substituting (8) to (7) and noting that ci  2L by (5), we have

xLwi � 9L  Ti(t1, t2)  xLwi + 9L .

We are now ready to derive the RFB of GMR3 as follows.
Theorem 2: For any time interval (t1, t2) and any two flows

i, j that are backlogged, we have
����
Ti(t1, t2)

wi
� Tj(t1, t2)

wj

����  9L

✓
1

wi
+

1

wj

◆
.

Proof: For any flow i, applying Lemma 1 and dividing both
sides of (6) by wi, we have

xL� 9L/wi  Ti(t1, t2)/wi  xL+ 9L/wi . (9)

Similarly inequalities also hold for flow j, i.e.,

xL� 9L/wj  Tj(t1, t2)/wj  xL+ 9L/wj . (10)

Combining (9) and (10) leads to the statement.
Theorem 2 indicates that GMR3 bounds the difference

between the normalized dominant services received by two
flows in any backlogged period by a small constant. GMR3

hence provides near-perfect fairness across flows, irrespective
of their traffic patterns. This is significant as the fairness
guarantees provided by existing multi-resource fair queueing
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j2 f l+1

i

Resource Scheduling delay Di(p)

... tnf�1

Fig. 6. The illustration of a scenario where the scheduling delay Di(p)
reaches the maximum. Here, f l

i denotes the processing of flow i in scheduling
round l of its flow group.

schemes, e.g., [11], [17], all assume flows do not change their
dominant resources throughout the backlogged periods (a.k.a.,
the resource monotonicity assumption [11]).

B. Scheduling Delay
In addition to the fairness guarantees, we show that GMR3

ensures that the scheduling delay is bounded by a small
constant that is inversely proportional to the flow’s weight. To
see this, the following two lemmas are needed in the analysis.
Their proofs are deferred to [25].

Lemma 2: Let dli be the dominant services flow i 2 Gk

receives in scheduling round l of Gk. We have

0  dli  3L . (11)

Lemma 3: For flow i 2 Gk and scheduling round l of Gk,
let t0 be the time when flow i is completely processed on
resource 1 in round l of Gk, and t1 the time when flow i is
completely processed on the last resource m in round l. We
have

t1 � t0 < 12mL/wi .

We now bound the scheduling delay of GMR3 as follows.
Theorem 3: For all flow i, the scheduling delay of its packet

p is bounded by

Di(p) < 24mL/wi ,

where m is the number of resources.
Proof: For any flow i 2 Gk, the scheduling delay of its

packet p reaches its maximum when p reaches the head of
the queue in scheduling round l of Gk, but is not processed
until the next round l + 1 of Gk. Since there are at most
2

k+1 slots in between and each slot is assigned to one flow,
the number of flows that have been assigned slots during this
time, denoted nf , is upper bounded by 2

k+1, i.e., nf  2

k+1.
Let these flows be j1, . . . , jnf , with their assigned slots in their
current scheduling rounds l1, . . . , lnf of their respective flow
groups. In particular, jnf = i and lnf = l+1. By Algorithm 2,
flow j1 starts service on resource 1 no later than the time its
previous flow i is completely processed on the last resource
m in round l of Gk. Similarly, flow j2 starts its service on
resource 1 no later than the time when its previous flow j1 is
completely processed on the last resource m in round l1 of its
flow group, and so on. Fig. 6 illustrates this scenario, where
tu is the latest time flow ju receives service on resource 1 in
round lu of its flow group, u = 1, 2, . . . . We then have

tu+1 � tu  mdluju  3Lm, u = 1, 2, . . . , (12)
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TABLE I
SUMMARY OF PERFORMANCE OF GMR3 AND EXISTING SCHEMES, WHERE
n IS THE NUMBER OF FLOWS, AND m IS THE NUMBER OF RESOURCES.

Scheme Complexity Fairness1 Scheduling Delay
DRFQ [11] O(logn) L(1/wi + 1/wj) Unknown
MR3 [17] O(1) 2L(1/wi + 1/wj) 4(m+W )

2L/wi

GMR3 O(1) 9L(1/wi + 1/wj) 24mL/wi

where the second inequality is derived from Lemma 2. In other
words, the time span of processing flow ju on all resources
in round lu reaches its maximum when the processing time is
maximized on every resource.

Now let t0 be the time when packet p reaches the head of
the queue in scheduling round l of its flow group, which is
also the time when flow i is completely processed on resource
1 in the same round l (see Fig. 6). By Lemma 3, we have

t1 � t0  12mL/wi . (13)

With (12) and (13), we bound the scheduling delay Di(p)
as follows:

Di(p) 
Pnf

u=1(tu � tu�1)

 12mL/wi + 3Lm2

k+1  24mL/wi ,

where the last inequality holds because 2

�k  wi < 2

�k+1,
which implies 2

k+1  4/wi.
Theorem 3 gives a strictly weight-proportional scheduling

delay bound that is independent of the number of flows. This
implies that a flow is guaranteed to be scheduled within a
small constant amount of time that is inversely proportional
to the processing rate (weight) the flow deserves, irrespective
of the behaviours of other flows. To our knowledge, this is the
first multi-resource packet scheduler that offers this property.

To conclude, Table I compares the performance of GMR3

with DRFQ [11] and MR3 [17]. We see that GMR3 is the only
scheduler that provides provably good performance guarantees
on fairness, delay, and complexity.

V. SIMULATION RESULTS

For complementary study to our theoretical analysis, we
experimentally evaluate the fairness and delay performance of
GMR3 via simulations.

General Setup: All simulation results are based on our
event-driven packet simulator written with 3,000 lines of
C++ code. Packets follow Poisson arrivals and are processed
serially on resources, with CPU processing first, followed by
link transmission. In addition to GMR3, we also implement
DRFQ [11] and MR3 [17] for the purpose of comparison. The
simulator simulates packet processing in 3 typical middlebox
modules, i.e., basic forwarding (Basic), statistical monitoring
(Stat. Mon.), and IP security encryption (IPSec). The first two
modules are bandwidth intensive, with monitoring consuming
slightly more CPU resources, while IPSec is CPU intensive.
According to the measurement results reported in [11], the
CPU processing time required by each middlebox module
follows a simple linear model based on packet size x, and

1The fairness analysis of DRFQ and MR3 requires that flows do not change
their dominant resources throughout the backlogged periods [11], [17].

TABLE II
PARAMETERS OF LINEAR MODEL FOR CPU PROCESSING TIME IN 3

MIDDLEBOX MODULES BASED ON MEASUREMENT RESULTS IN [11].

Module CPU processing time (µs)
Basic Forwarding 0.00286⇥ PacketSizeInBytes + 6.2

Statistical Monitoring 0.0008⇥ PacketSizeInBytes + 12.1
IPSec Encryption 0.015⇥ PacketSizeInBytes + 84.5

is ↵kx + �k, where ↵k and �k are parameters of module k
and are summarized in Table II. The link transmission time is
proportional to the packet size, and the output bandwidth of
the middlebox is 200 Mbps, the same as [11].

Fairness: We confirm experimentally that GMR3 provides
near-perfect service isolation across flows, irrespective of their
traffic behaviours. The simulator generates 30 traffic flows
that send 1300-byte UDP packets for 30 seconds. Flows 1 to
10 pass through the Basic module; flows 11 to 20 undergo
statistical monitoring; while flows 21 to 30 require IPSec
encryption. Among all these flows, flow 1, 11, and 21 are rogue
traffic, each sending 30,000 pkts/s. All other flows behave
normally, each sending 3,000 pkts/s. Flows are assigned ran-
dom weights uniformly drawn from 1 to 1000. Fig. 7a depicts
the dominant services, in seconds, received by different flows
under GMR3, normalized to their respective weights. We see
that despite the presence of ill-behaving traffic, GMR3 allows
flows through different modules to receive weight-proportional
dominant services, enforcing service isolation. Similar results
have also been observed using DRFQ and MR3, and are not
shown in the figure.

Scheduling Delay: We next confirm experimentally that
GMR3 significantly improves the packet scheduling delay, as
compared to existing multi-resource scheduling alternatives.
The simulator generates 150 UDP flows with flow weights
uniformly drawn from 1 to 1000. A flow randomly chooses one
of the three middlebox modules to pass through. To congest
the middlebox resources, the flow rate is set to 500 pkts/s, with
packet sizes uniformly drawn from 200 B to 1400 B, which are
the typical settings for Ethernet. For each processed packet, we
record its scheduling delay, using DRFQ, MR3, and GMR3,
respectively. The simulation spans 30 seconds.

Fig. 7b shows the CDF of the scheduling delay a packet
experiences, from which we see the significance of GMR3

on delay improvement: Using GMR3, over 95% packets are
scheduled within 20 ms, which is roughly the minimum time
a packet has to wait under DRFQ and MR3! A detailed
statistics breakdown is given in Fig. 7c and 7d. Fig. 7c
shows the mean scheduling delay a flow experiences with
respective to its weight. We see that GMR3 consistently leads
to a smaller mean delay than the other two schedulers for
almost all flows, especially for those with large weights. This
delay improvement is not limited to the average case. Fig. 7d
gives the maximum delay a flow experiences with respect
to its weight. We see that both GMR3 and DRFQ offer a
weight-proportional delay bound. While DRFQ achieves a
smaller delay bound for flows with smaller weights, GMR3

is generally better for more important flows with medium
to large weights. MR3, on the other hand, fails to provide
service differentiations among flows. Intuitively, since flows
are served in rounds, in the worst case, a packet has to wait
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Fig. 7. Simulation results of the fairness and delay performance of GMR3, as compared to DRFQ and MR3. Figure (a) dedicates to the fairness evaluation,
while (b), (c), and (d) compare the scheduling delay of the three schedulers.

for the entire scheduling round until it is processed, incurring a
worst-case delay that is as long as the span of an entire round.
GMR3 avoids this problem by distributing the scheduling
opportunities over time, in proportion to the flows’ weights.

VI. CONCLUDING REMARKS

In this paper, we design a new packet scheduler, called
Group Multi-Resource Round Robin (GMR3), that allows
independent flows to have a fair share on multiple middlebox
resources. GMR3 collects flows with similar weights into the
same flow group, and makes scheduling decisions in a two-
level hierarchy. The inter-group scheduler determines a flow
group, from which the intra-group scheduler picks a flow in a
round-robin manner. Through this design, GMR3 eliminates
the sorting bottlenecks suffered by existing multi-resource
scheduling alternatives such as DRFQ, and is able to handle
a large volume of traffic at high speeds. More importantly,
we show, both analytically and experimentally, that GMR3

ensures a constant scheduling delay bound that is inversely
proportional to the flow’s weight, hence offering predictable
delay guarantees for individual flows. To our knowledge,
GMR3 is the first multi-resource fair queueing algorithm that
offers near-perfect fairness with a constant scheduling delay
bound in O(1) complexity.
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