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Abstract—Cross-silo federated learning (FL) enables multiple
institutions (clients) to collaboratively build a global model
without sharing their private data. To prevent privacy leakage
during aggregation, homomorphic encryption (HE) is widely
used to encrypt model updates, yet incurs high computation and
communication overheads. To reduce these overheads, packed HE
(PHE) has been proposed to encrypt multiple plaintexts into a
single ciphertext. However, the original design of PHE does not
consider the heterogeneity among different clients, an intrinsic
problem in cross-silo FL, often resulting in undermined training
efficiency with slow convergence and stragglers. In this work,
we propose FedPHE, an efficiently packed homomorphically
encrypted FL framework with secure weighted aggregation and
client selection to tackle the heterogeneity problem. Specifically,
using CKKS with sparsification, FedPHE can achieve efficient
encrypted weighted aggregation by accounting for contributions of
local updates to the global model. To mitigate the straggler effect,
we devise a sketching-based client selection scheme to cherry-pick
representative clients with heterogeneous models and computing
capabilities. We show, through rigorous security analysis and
extensive experiments, that FedPHE can efficiently safeguard
clients’ privacy, achieve a training speedup of 1.85− 4.44×, cut
the communication overhead by 1.24 − 22.62×, and reduce the
straggler effect by up to 1.71− 2.39×.

I. INTRODUCTION

Cross-silo federated learning (FL) [1, 2] is an emerging
distributed learning paradigm that enables multiple institutions
(e.g., banks, companies), referred to as clients, to collabo-
ratively train a global model without sharing their private
data [3, 4]. In a typical cross-silo FL system, a central
parameter server (PS) orchestrates many clients to aggregate
local updates (e.g., gradients, model parameters) in multiple
rounds of synchronization. Although this system does not
reveal the clients’ raw data in the clear, it has been shown
that adversaries can still infer a client’s private information
from its updates [5–7].
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To avoid privacy leakage during aggregation, many privacy-
preserving techniques have been employed for FL [8–10].
Among them, homomorphic encryption (HE) is particularly
attractive to cross-silo FL, as it provides stronger privacy
guarantees without compromising the learning accuracy [11–
13]. With HE, gradient aggregation can be performed directly
on ciphertexts, without decrypting them first. However, HE
incurs significant computation and communication overheads
as it performs computationally intensive cryptographic opera-
tions (e.g., modular multiplications and polynomial reductions)
and generates ciphertexts that are much larger to transfer
than the input plaintexts [14–16]. A promising approach to
address this problem is packed HE (PHE), which packs and
encrypts multiple plaintext values into a single ciphertext [17].
By facilitating parallel encryption/decryption operations on
multiple plaintexts, PHE dramatically reduces the encryption
and communication overheads.

Though effective, existing PHE solutions largely ignore the
heterogeneity of participating clients [18, 19], an intrinsic
problem of cross-silo FL, making them hard to deploy in
practice. On one hand, data are distributed in an unbalanced
fashion across clients (known as statistical heterogeneity),
which often leads to discrepancies in local models and ad-
versely impacts convergence behavior. This way, additional
encrypted communications will be implemented, undermining
the training efficiency of FL. On the other hand, clients
may have varying computing capacities and communication
bandwidth (known as system heterogeneity). This results in
a prominent straggler problem, which can be further exac-
erbated by computationally intensive encryption/decryption
operations, significantly slowing down the training progress.
Without addressing the client heterogeneity problem, the
power of PHE cannot be fully unleashed.

A large body of works have been proposed to tackle the
client heterogeneity issues for expediting training convergence
and mitigating the straggler impact [20, 21]. One common
approach is weighted aggregation [22]. As datasets held by
clients may have different contributions to model performance,
vanilla aggregation often causes serious bias to the global
model that hinders convergence. It is thus desirable to dif-
ferentiate between the contributions of local updates during



aggregation. Another popular approach is to judiciously select
a subset of clients to participate into training, as not all clients
are equally important [18, 23]. By identifying fast clients
with quality data and involving them in the training process,
the straggler issue can be effectively addressed without com-
promising model accuracy. Although many efforts have been
devoted to weighted aggregation and client selection, they
were largely explored separately and designed for plaintext
data without any encryption protection. In general, weighted
aggregation is performed based on client selection to collect
clients’ contributions, meanwhile, the aggregated global model
also affects local model training and, in turn, determines the
client selection. It is hence imperative to handle these problems
to achieve efficient PHE for heterogeneous FL. This, however,
is challenging due to the following reasons.

First, existing HE solutions [14] often rely on homomor-
phic addition for secure weighted aggregation, where clients
directly weigh their local updates based on data size and
encrypt the weighted updates for aggregation. However, this
approach becomes infeasible under client heterogeneity, as the
amount of local data on a client does not reflect its potential
contribution to the global model. Even with knowledge of
clients’ contributions, the challenge remains in assigning ap-
propriate aggregation weights for each client. Besides, clients
may misreport weights, leading to biasing the global model
towards their local training. As such, it is desired to employ
homomorphic multiplication on ciphertext for weighted aggre-
gation on the server side. This introduces potential commu-
nication bottlenecks as homomorphic multiplication typically
requires a large ciphertext space for encryption [24]. Second,
existing client selection approaches [18] are mainly carried
out in plaintext and require direct access to local model
updates, raising privacy concerns in FL. Accurately measuring
clients’ contributions to the global model is challenging due to
client heterogeneity, which is further exacerbated by privacy
protection requirements. Even if achieved, the selection effi-
ciency will be significantly compromised as data encryption
demands many extra operations (e.g., communications and
computations), which can be overly expensive. Therefore, we
have to carefully navigate the tradeoff between security and
efficiency in client selection.

In this paper, we propose FedPHE, a secure and efficient
cross-silo FL framework with PHE to tackle client hetero-
geneity. FedPHE employs a contribution-aware weighted ag-
gregation scheme using the CKKS techniques, which supports
homomorphic multiplication. In a nutshell, the PS aggregates
the encrypted local updates from the selected clients with
encrypted weights accounting for their contributions to the
global model. This enhances the model’s ability to quickly
incorporate new knowledge, thereby accelerating training con-
vergence. Given that vanilla CKKS often generates substan-
tially enlarged ciphertexts, we use a pack-based sparsification
approach to optimize data transfer efficiency during periodi-
cal encrypted FL synchronizations. To mitigate the straggler
effect, we devise a sketching-based client selection scheme to
judiciously select clients that host diverse models with fast

training capability. The key insight is that different clients
might send similar or redundant model updates to the PS,
incurring unnecessary communication costs. We propose to
measure the similarity of local models using the sketching
techniques. Similar clients are clustered together and only
the fastest client is selected from each cluster. Adopting the
sketches of local models as a cluster feature is not only
communication-efficient but also privacy-preserving as it maps
high-dimensional model updates to a lower dimension through
entry hashing. We provide rigorous security analysis for Fed-
PHE and also validate its efficiency through empirical studies.

We summarize our main contributions as follows:

• We propose FedPHE, an efficient and straggler-resistant
homomorphically encrypted FL framework for hetero-
geneous clients. To our knowledge, this is the first at-
tempt that enables secure client selection and weighted
aggregation to effectively address the challenges caused
by client heterogeneity, thus closing the gap between
privacy-preserving FL and its practical implementation.

• Building upon CKKS’s homomorphic encryption, Fed-
PHE achieves efficient encrypted weighted aggregation
that accounts for contributions of local updates to the
global model. A pack-level sparsification approach is im-
plemented to optimize data transfer efficiency, addressing
the issue of increased ciphertext size using vanilla CKKS.

• FedPHE leverages sketches of local updates to facilitate
a communication-efficient client selection in a privacy-
preserving manner. By jointly considering data distribu-
tions and resource availability, FedPHE clusters similar
clients together and then cherry-picks the fastest client
from each cluster, effectively mitigating the straggler
problem without compromising model accuracy.

• Extensive experiments on real-world datasets show that
compared to the state-of-the-art approaches, FedPHE
accelerates the training speed by 1.85 − 4.44×, cuts
the communication overhead by 1.24 − 22.62×, and
mitigates the straggler effect by 1.71 − 2.39×, with a
slight degradation of model accuracy (1.58% only).

II. PRELIMINARIES AND MOTIVATION

We start by introducing the basics of cross-silo FL and the
HE technique. We then motivate the design of FedPHE.

A. Cross-Silo Federated Learning

Consider a cross-silo FL system consisting of a central PS
and a set of N clients N = {1, · · · , N} that collaboratively
train a machine learning model without sharing their raw data.
Each client i holds a local dataset Di containing Di = |Di|
data samples. Let fi(w, ξi) be the loss value computed from
the training sample ξi ∈ Di with parameters w. The local loss
function of client i is computed as

fi(w) ≜
1

Di

∑
ξi∈Di

fi(w, ξi). (1)



The goal of clients is to jointly solve the following optimiza-
tion problem, under the coordination of the PS:

min
w
F(w) ≜ min

w

∑
i∈N

pifi(w), (2)

where F(w) is the global loss function, and pi is client i’s
aggregation weight, where pi ≥ 0 and

∑
i∈N pi = 1. To solve

Eq. (2), clients perform synchronous update that proceeds in
rounds of communication.

A key requirement for cross-silo FL is to provide a strong
privacy guarantee, as there is increasing evidence that ad-
versaries can exploit clients’ updates to infer their private
information even when the training data are kept locally [5–7].

B. Homomorphic Encryption

Homomorphic encryption (HE) is a powerful cryptographic
primitive that enables computations to be performed directly
on the encrypted data without decrypting them in advance [25,
26]. HE ensures that the calculations performed on ciphertexts,
when decrypted, give the identical results of that obtained
by directly operating on the plaintexts. More formally, an
encryption scheme E(·) is said to be an additive HE scheme if
E(m1)⊕E(m2) = E(m1 +m2) for any plaintext messages
m1 and m2, where ⊕ is an addition operation. Similarly, a
scheme is a multiplicative HE scheme if E(m1)⊙E(m2) =
E(m1 ·m2), where ⊙ is a multiplication operation. Popular
HE schemes include Paillier [27], BFV [28], and CKKS [29],
where Paillier only allows the addition operation to be per-
formed on ciphertexts, whereas BFV and CKKS support both
additions and multiplications.

While HE allows the computation to be securely delegated
to an untrusted third party, it suffers from critical inefficiency
associated with encryption operations and ciphertext trans-
missions. Many efforts have been devoted to improving HE
efficiency [14–16, 30]. Among them, a promising approach
is PHE which packs and encrypts multiple plaintext values
into a single ciphertext, thus allowing for parallel encryp-
tion/decryption operations. However, current (packed) homo-
morphically encrypted FL solutions largely ignore the intrinsic
client heterogeneity in a cross-silo FL system, substantially
limiting their practical applications.

C. Motivation

The need for weighted aggregation on ciphertexts. In
real-world FL systems, the training datasets owned by clients
often have different contributions to the global model, a
phenomenon known as the statistical heterogeneity. In this
case, simply performing unweighted aggregation, i.e., wt+1 =∑

i∈N
1
Nwt

i where pi =
1
N , results in an undesirable bias to

the global model that hinders the training convergence. A more
appropriate approach is to perform weighted aggregation, in
which clients are assigned different weights for aggregation
based on their contributions (e.g., data size or quality). Taking
FedAvg [31] as an example, the weighted aggregation based
on data size is performed to minimize the loss in Eq. (2), i.e.,

wt+1 =
∑
i∈N

piw
t
i =

∑
i∈N

Di∑
i∈N Di

wt
i , (3)
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Fig. 1: Comparison results of weighted and unweighted aggregation.

TABLE I: Comparison results of different (packed) HE schemes.

Plaintext
size

(Packed)
HE scheme

Ciphertext
size

Encryption
time (s)

Decryption
time (s)

109.89KB

Paillier 21.97 MB 63.46 39.63

PackedPaillier 264.96 KB 3.18 2.60

BFV Memory out

PackedBFV 22.68 MB 0.04 0.02

CKKS Memory out

PackedCKKS 4.54 MB 0.06 0.04

where wt
i and wt are the local and the global models, respec-

tively. To demonstrate the significance of weighted aggrega-
tion, we refer to Fig. 1. Compared to the unweighted approach,
weighted aggregation (weight set based on the data size) re-
sults in much improved accuracy loss and faster convergence.
However, existing HE solutions [14] employ either unweighted
aggregation or homomorphic addition-based aggregation, mak-
ing them infeasible to support general weighted aggregation.
It is hence desired to employ homomorphic multiplication on
ciphertext for secure weighted aggregation.

The need for efficient encrypted aggregation. HE-based
FL methods offer strong privacy guarantees, albeit at the
expense of efficiency. Table I shows the comparison results
of Paillier, BFV, and CKKS as well as their packed imple-
mentation. Specifically, Paillier generates a ciphertext close to
205× larger than the plaintext, while consuming considerable
computation time. BFV and CKKS produce larger ciphertexts
than Paillier and even lead to memory overflow. Though the
PHE technique can address these issues, the yielded commu-
nication overheads remain too high, resulting in an inflation
of 2.4× for Paillier, and 211.3× for BFV, 42.3× for CKKS.

The need for straggler resistance. In synchronous cross-
silo FL systems, client heterogeneity inevitably results in strag-
glers, i.e., slow clients. This problem is further exacerbated
with computationally intensive HE operations. Waiting for
these stragglers significantly prolongs FL training. Although
it seems feasible to set a staleness bound by directly ignoring
stragglers, deriving the optimal bound is challenging. Table II
illustrates the straggler effect, which extends the training
time by 91.0% and the encryption/decryption time by 93.6%.
Moreover, normal clients, except for stragglers, experience an
extra 36.2% waiting time. Therefore, stragglers cause high
latency and hinder synchronization efficiency, necessitating the
straggler-resistant solutions for cross-silo FL.

The need for client selection. One possible remedy for



TABLE II: Breakdown of training iteration time for normal clients
and stragglers.

Clients

Time (s)
Training Encryption Idle Decryption

Normal clients 3.24 6.68 8.25 4.65

Stragglers 6.19 12.24 2.00 9.69

(a) MNIST (b) FashionMNIST

Fig. 2: Comparison results of FullSelection and RandomSelection.

stragglers is to select a subset of clients to participate in FL.
As shown in Fig. 2, a simple approach that randomly chooses
80% of clients can significantly decrease the delay without
sacrificing model accuracy. Although random selection ex-
pedites convergence by reducing the selection probability of
stragglers, it fails to tackle the straggler issue at its core.
Moreover, existing client selection methods are carried out in
plaintext, which is susceptible to privacy leakage [32]. Hence,
how to achieve efficient and privacy-preserving client selection
remains challenging for mitigating the straggler effect.

III. DESIGN OF FEDPHE

In this section, we describe FedPHE, an efficient homo-
morphically encrypted FL framework designed for addressing
client heterogeneity. We begin with system overview and then
elaborate on how FedPHE co-designs secure weighted aggre-
gation and client selection, followed by its security analysis.

A. Overview

Our design goal is to develop a secure and efficient FL
framework for heterogeneous clients. Specifically, the follow-
ing desirable objectives should be achieved.

• Privacy Protection. It should protect clients’ privacy
during aggregation. That is, the PS cannot reveal any sen-
sitive information pertaining to individual clients, while
clients cannot access any private data about others. We
assume that the HE key-pair is shared among clients
through a secure channel, and the PS does not collude
with any client [14, 33].

• Efficiency. It is expected to be efficient for encrypting
and transferring local models in each round since high
computation and communication overheads make HE
difficult to implement in practice.

• Straggler Resistance. It should effectively mitigate the
negative impact of stragglers under client heterogene-
ity, accelerating the training process without sacrificing
model accuracy.

Fig. 3: A snapshot of FedPHE architecture.
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We propose FedPHE to attain these three objectives by
jointly designing secure weighted aggregation and client selec-
tion to tackle the client heterogeneity challenges. Fig. 3 shows
the main architecture, where FedPHE proceeds in rounds of
communication as described below.

1⃝ Local Training. At the beginning of each round t, every
client i ∈ N runs E steps of local stochastic gradient
descent in Eq. (2) to compute the local model wt

i ;
2⃝ Packed Encryption with Sparsification. Any selected

client i ∈ St flattens and packs the local model wt
i into

{P1
i , · · · ,PK

i }, and then performs sparsification at the
pack granularity; After that, it encrypts the sparse packed
local model, and finally sends the ciphertext Ct

i as well
as mask M t

i to the PS for aggregation;
3⃝ Encrypted Weighted Aggregation. The PS aggregates the

received encrypted local models along with the encrypted
weights, then computes and dispatches the new encrypted
global model Ct and mask M t to all clients;

4⃝ Decryption and Model Update. Every client decrypts and
unpacks the global ciphertext to obtain the global model
wt, and then updates the local model wt

i,0 = wt;
5⃝ Sketching Local Model. Then each client i ∈ N computes

and sends the sketch of local model ht
i to the PS;

6⃝ Client Selection via Clustering Sketches. The PS selects
a subset St+1 out of N clients as participants and derives
the aggregation weight pt+1

i based on its contribution.
The details of FedPHE are illustrated in Alg. 1. In each

global round t, only selected clients perform PHE and spar-
sification, and then transmit the encrypted model updates and
masks (lines 14–16) to the PS. Given clients’ contributions,
the PS carries out encrypted weighted aggregation and sends
the results to all clients (lines 3-5). After decryption and model
updates, clients send sketches of their local models to PS (lines
17-19). The PS then selects a subset of clients as participants
St+1 for the next round (lines 6–8).



Algorithm 1: FedPHE
Input: Clients N , global round T , local steps E,

learning rate η
Output: Global model wT

1 Initialize models {wi}N and selected clients S0 ← N ;
// Server

2 for each round t ∈ {0, · · · , T − 1} do
3 Receive encrypted local models Cti and masks M t

i

from selected clients i ∈ St;
4 Ct,M t ← Run weighted aggregation by Alg. 2;
5 Dispatch Ct and M t to all clients;
6 Receive sketches {ht

i}i∈N of clients’ local models;
7 St+1 ← Run client selection by Alg. 3;
8 Send St+1 to clients;
// Client i ∈ N

9 for each round t ∈ {0, · · · , T − 1} do
10 for j = 0, · · · , E − 1 do
11 gi(w

t
i,j)← ▽fi(wt

i,j);
12 wt

i,j+1 ← wt
i,j − ηgi(w

t
i,j);

13 wt
i ← wt

i,E ;
14 if i ∈ St then
15 Cti ,M t

i ← Run PHE and sparsification by
Alg. 2;

16 Send Cti ,M t
i to the PS;

17 Receive encrypted global model Ct and mask M t;
18 wt

i ← Decrypt and update with global model wt;
19 Send sketch ht

i of wt
i to the PS by Alg. 3;

20 Receive the selection set St+1 from the PS;

B. Contribution-Aware Encrypted Weighted Aggregation

Building upon CKKS with sparsification, FedPHE conducts
an efficient weighted aggregation on the ciphertexts received
from selected clients as illustrated in Alg. 2. To accommodate
client heterogeneity, the aggregation weights are adjusted
based on the contributions of local updates to the global model.

CKKS-based PHE. To improve the efficiency of general
HE schemes, PHE [17] is proposed by packing and encrypt-
ing multiple plaintext values {w1, w2, · · · , wB} into a single
ciphertext, where B is the pack size. By facilitating parallel en-
cryption/decryption operations on multiple plaintexts, PHE can
greatly reduce the computation and communication overheads.
In this study, we choose CKKS as the basis of PHE, which
offers several advantages over Paillier and BFV. On one hand,
CKKS allows encryption of real numbers directly on vectors,
while Paillier and BFV take integers as input plaintext, which
requires quantizing floating-point numbers. This increases the
effectiveness of CKKS encryption and decryption operations
by packing multiple vector items into a single polynomial.
Fig. 4 illustrates this packing process concisely. On the other
hand, CKKS supports homomorphic multiplication, making
it suitable for achieving secure weighted aggregation under
heterogeneous cross-silo FL. In contrast, Paillier only enables
homomorphic addition, and BFV may encounter overflow is-

Fig. 5: Top-k sparsification for PHE.

sues when multiplying the quantized integers after encryption.
Hence, CKKS is deemed more viable to directly multiply the
encrypted parameters with encrypted weights on the PS side
during aggregation. This way, it is equivalent to performing
weighted aggregation first and then encrypting the result.

Pack-level sparsification. Sparsification is a promising
approach for reducing the communication traffic in FL [34].
In top-k sparsification, each client can sparsify its model
updates by only selecting the top-k model parameters to send
to the PS. However, sparsification is mainly implemented at
the scalar level, and becomes infeasible once data are packed
and encrypted. The reason is that if sparsification is conducted
before encryption, the PS cannot perform alignment on cipher-
texts due to inconsistent coordinate masks [30]. An alternative
method is packing model updates and then sparsifying the
packs. Fig. 5 provides a visualization of this process, where
each client conducts PHE and sparsifies encrypted packs. In
this case, the PS can align the ciphertexts based on the packs’
masks, i.e., the sparsity granularity is at the pack level.

Each selected client starts by flattening and packing the local
model and then calculates the threshold θ to identify the mask
given the sparsification ratio s%. The mask will be set to 1 for
those packs with mean values greater than θ, and the masked
packs are encrypted accordingly. The ciphertext Ct

i along with
the corresponding mask M t

i are sent to the PS. Notice that
such sparsification techniques for CKKS can be further applied
to enhance the efficiency of Paillier and BFV in heterogeneous
scenarios, where clients’ model updates are weighted locally.

Contribution-aware weighted aggregation. To accommo-
date client heterogeneity, the PS aggregates the encrypted
local updates from selected clients with encrypted weights
accounting for their contributions to the global model. Here
the contribution of client i is quantified based on the sim-
ilarity of its sketches in the last round and current round,
{ht−1

i , ht
i}. Locality-Sensitive Hashing (LSH) [35] has been

widely employed in many applications to approximate Jaccard
Similarity, i.e., JS(X,Y ) = |X ∩Y |/|X ∪Y |. The PS calcu-
lates the probability of sketch collision to estimate the Jaccard
similarity of two local updates denoted by JS(wt−1

i , wt
i), i.e.,

PrH(ht−1
i = ht

i) = JS(wt−1
i , wt

i). (4)

According to [36], lower similarity implying higher inference
loss is likely to achieve better performance improvement. Thus
it should be assigned a larger aggregation weight pti. That is,

pti =
exp(−β · JS(wt−1

i , wt
i))∑

j∈St exp(−β · JS(wt−1
j , wt

j))
, (5)



Algorithm 2: Encrypted Weighted Aggregation
Input: Selected clients St, local values {Cti ,M t

i }i∈St ,
round t, packs K, sparsity ratio s%

Output: Encrypted global model Ct and mask M t

// Server

1 Calculate weights {pti}i∈St based on Eq. (5);
2 Ct ←

∑
i∈St E(pti) · Ct

i ;
3 M t ←

∑
i∈St pti ·M t

i ;
// Client i ∈ St

4 Pi := {P1
i · · · PK

i } ← Flatten and pack model wt
i ;

5 θ ← Compute threshold s% largest in Pi;
6 for each pack Pi[l] ∈ Pi do
7 M t

i [l]← mask |Pi[l]| ≥ θ;
8 if M t

i [l] then
9 Cti ← Append E(Pi[l]);

10 Send Cti ,M t
i to the PS;

where β is a positive number used to modify the exponential
function’s curve.

After receiving ciphertexts {Ct
1, · · · , Ct

St} and masks
{M t

1, · · · ,M t
St} from selected clients St, the PS performs

encrypted weighted aggregation to get the global model, i.e.,

E(wt+1) =
∑

i∈St
E

(
pti
)
×E

(
wt

i

)
, (6)

which E (pti) denotes the encrypted weight assigned to client
i. Building upon CKKS’s homomorphic multiplication, such
aggregation in Eq. (6) is equivalent to performing weighted
aggregation on plaintexts and then encrypting the result, i.e.,

E(wt+1) =
∑

i∈St
E

(
pti ×wt

i

)
. (7)

The encrypted global model Ct and mask M t are subse-
quently distributed back to all clients for decryption and model
updates. We summarize how FedPHE conducts contribution-
aware encrypted weighted aggregation in Alg. 2.

C. Sketching-Based Client Selection

We employ client selection to address the straggler issue
arising from client heterogeneity. In practice, different clients
might send similar or redundant model updates to the PS,
causing unnecessary communication costs. Existing selection
approaches are largely conducted on plaintext, which contra-
dicts the principles of privacy-preserving FL. To this end,
we leverage the similarities of local updates to facilitate a
sketching-based client selection in a privacy-preserving man-
ner. Specifically, in each round, clients calculate and transfer
the sketches of model updates to the PS, and then the PS
clusters similar sketches together and select the fastest client
from each cluster. The main steps are summarized in Alg. 3.

Sketching local models. After decryption and model up-
dates, each client i first flattens the local model wt

i to a d
element tensor wt

i and then creates a k × d matrix called
M, which is made up of k d-dimensional vectors, using the
shared seed s. By leveraging the LSH technique, the client

Algorithm 3: Sketching-based Client Selection
Input: Clients N , round t, shared seed s, dimension

k, weights p1, · · · , pN , cluster threshold γ
Output: Selected clients St+1 in the next round
// Server

1 C ← min(G({ht
1, · · · ,ht

N}), γN );
2 At := {At

1 · · · At
C} ← Clustering {ht

i}N ;
3 for cluster At

i ∈ At do
4 st+1

i ← Select client with Fmax(δ
t−1
j , T t

j ), j ∈ At
i;

5 St+1 ← Append st+1
i ;

// Client i ∈ N
6 wt

i ← Flatten local model wt
i;

7 M← Matrix Gen(s, k);
8 ht

i ← Sketching H(wt
i ,M);

9 Send ht
i to the PS;

achieves dimensionality reduction on wt
i and obtains a sketch

ht
i. In particular, LSH is a family F of functions H: Rd → S,

with the property that if two inputs are similar in the original
data space, they will also have a high similarity after being
converted by the hash [37, 38]. For any two clients’ model
updates, wp and wq , any hash function h chosen uniformly at
random from F should satisfy

• If d(wp, wq) < R, then PrH(h(wp) = h(wq)) ≥ p1;
• If d(wp, wq) ≥ cR, then PrH(h(wp) = h(wq)) ≤ p2;

where R is the threshold and c is an approximation factor.
We exploit the properties of LSH functions to signify higher
similarity during collisions when two inputs have the same
hash code. Notice that the sketch ht

i captures a condensed
representation of local updates, ensuring no sensitive informa-
tion is exposed. Moreover, this sketch achieves communication
efficiency as it is far more compact than the original update.

Clustering sketches. After receiving sketches of lo-
cal updates, the PS computes the cluster number C =
min(G({ht

1, · · · , ht
N}), γN), where G(·) denotes the gap

statistic, a standard technique to determine the optimal cluster
number [39]. Gap statistic compares the actual intra-cluster
variation to expected values based on a null reference distribu-
tion, which is generated using Monte Carlo simulations. Here,
γ is the threshold that limits the maximum cluster number.
For any given k = 1, · · · , kmax, the gap statistic is defined as

Gn(k) = E∗
n(log Wk)− log Wk, (8)

where Wk denotes the dispersion within the cluster, by com-
paring to its expectation E∗

n under a sample size n from the
reference distribution. To correct the error in Monte Carlo
sampling, the correction factor sk can be calculated from B
copies of the reference datasets. Let w = 1

B

∑B
b=1 log (Wkb∗).

The standard deviation denoted by sd(k) can be derived, i.e.,

sd(k) =
√

1
B

∑B
b=1(log Wkb∗ − w)2. Define sk = sd(k) ×√

(1 +B)/B. Finally, we choose the smallest k as the number
of clusters such that

Gk ≥ Gk+1 − sk+1. (9)



Following that, clients can be clustered into C classes
{At

1 · · · At
C} by K-means, where those clients in the same class

share similar sketches. According to the assumption that LSH
hashes similar input items into the same buckets with a high
likelihood, similar sketches mean similar local models.

Selecting clients. Instead of randomly selecting a client
from a cluster, the PS prioritizes selecting one representative
client having the ability to train quickly. Denote T t

i as the
order of client i’s local update received by the PS in round t.
Given the participation history T 0

i , · · · , T
j−1
i , the priority Ft

i

of being selected can be determined by

Ft
i =

1

αδt−1
i + (1− α)× T t

i

, (10)

where α ∈ (0, 1) is the influencing factor, and δt−1
i =

1
t

∑t
j=0 T

j
i represents the historical engagement performance

of client i. If the cluster consists of only one client, we directly
add this client to the selection set St.

Compared to traditional similarity determination techniques
like cosine similarity, adopting the sketches of local models
as a cluster feature is not only communication-efficient but
also privacy-preserving as it maps high-dimensional model
updates to a lower dimension through entry hashing. This
advantage becomes particularly pronounced when applied to
more sophisticated machine learning models.

D. Security Analysis

In this work, we assume that the PS does not collude with
any client. The PS and clients are honest-but-curious, which
is a widely adopted threat model in FL literature [40].

Theorem 1. An honest-but-curious server cannot infer any
private information about the clients.

Proof. In the proposed FedPHE, the PS can only access the
ciphertexts since the received local updates are encrypted
before transmission. Consequently, the PS can not infer the
clients’ data and local models.

Theorem 2. An honest-but-curious client cannot eavesdrop
on any private information about others.

Proof. At the beginning of FedPHE, the PS and clients estab-
lish secure HTTPS connections, where the transferred data are
encrypted using TLS/SSL protocol, ensuring that attackers are
unable to access the data.

Theorem 3. The sketches and masks transferred in commu-
nication cannot disclose the privacy of clients.

Proof. In LSH, the matrixM is generated from a secret shared
seed s to map the parameters into an encrypted form. The mask
hints at a package, not a scalar, and does not reveal privacy.
An attacker lacks knowledge of the seed s and can only infer
the matrix M through guesswork.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of FedPHE,
including secure weighted aggregation and client selection.

A. Evaluation Setup

Platform and parameters. Evaluations are conducted on a
Dell server with NVIDIA GeForce RTX 3060 Ti GPUs using
Pytorch. Consider a cross-silo FL scenario where N = 8
clients collaboratively train a model. We study client hetero-
geneity of the Dirichlet Non-IID data setting (α = 1), similar
to [41]. We implement BFV and CKKS with TenSEAL [42],
and their poly modulus degrees are set to 8192. To mimic the
presence of stragglers, we randomly select 25% of clients as
stragglers and introduce an artificial delay of 2 − 5 rounds’
training time. The batch size is B = 64 and learning rate is
η = 1e− 3. The number of LSH hash functions is k = 200.

Datasets and models. We evaluate the results on three
real datasets: MNIST [43], FashionMNIST [44] and CIFAR-
10 [45]. In particular, we partition MNIST and FashionMNIST
into 60, 000 training data and 10, 000 test data. For CIFAR-
10, we use 50, 000 and 10, 000 images as the training data
and test samples, respectively. A straightforward LeNet-5
neural network architecture [43] is employed for MNIST. For
FashionMNIST, a CNN model with 2 convolutional layers and
1 fully connected layer is utilized. The ResNet-20 model [46]
is employed for conducting experiments on CIFAR-10 dataset.

Baselines. To validate the proposed FedPHE, we introduce
the following FL algorithms for comparison.

• Plaintext: an ideal upper bound for computation and
communication overheads, where parameter transmission
and weighted aggregation are conducted in plaintext.

• BatchCrypt: Paillier-based PHE [14], where clients quan-
tize first, then pack and encrypt the model updates, while
the PS performs aggregation on the ciphertext.

• PackedBFV: BFV-based PHE [28], where the model
updates also need to be quantized and weighted on the
client side before encryption, since BFV only supports
integer operations.

• PackedCKKS: CKKS-based PHE [29], which leverages
the ciphertext multiplication of CKKS to facilitate en-
crypted weighted aggregation on the PS side.

• FedAvg: federated averaging [31], where the PS randomly
selects the subset of clients for aggregation.

• FLANP: straggler-resilient FL with adaptive client partic-
ipation [47], which starts the training process with faster
clients and gradually includes slower clients over time
once the accuracy of current participants’ data is reached.

B. Evaluations on Secure Weighted Aggregation

We evaluate the efficiency of the proposed FedPHE by
examining the test accuracy, network traffic, and training time
under different datasets, compared to the baselines, including
plaintext training (no encryption), BatchCrypt with Paillier,
PackedBFV, and PackedCKKS. The experiments were con-
ducted until reaching convergence.

Accuracy. Fig. 6 illustrates the training process of the global
model on different datasets, i.e., MNIST, FashionMNIST, and
CIFAR-10. Basically, the accuracy curves of the plaintext and
other baselines almost overlap with each other, signifying
that the PHE technique does not lead to a reduction in
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Fig. 6: Accuracy versus global rounds of FedPHE and the baselines on different datasets.

TABLE III: Network traffic, accuracy, and training time in 100 rounds of FedPHE and the baselines on different datasets.

Dataset Metric Plaintext BatchCrypt PackedBFV PackedCKKS FedPHE

MNIST

Traffic (MB) 81 217 3959 2886 175

Accuracy 95.94% 95.50% 95.10% 95.44% 95.04%

Time (s) 342.34 1377.03 652.78 885.90 743.26

FashionMNIST

Traffic (MB) 73 196 3300 2550 151

Accuracy 89.22% 89.42% 89.10% 89.07% 88.96%

Time (s) 333.15 1590.23 650.68 823.88 690.65

CIFAR-10

Traffic (MB) 523 1256 22107 17089 5165

Accuracy 72.95% 73.79% 71.02% 74.77% 71.37%

Time (s) 1016.62 7126.14 1491.74 2419.18 1605.71

accuracy. While for FedPHE, the accuracy fluctuates within
an acceptable range of 0.26% − 1.58%, which arises from
pack-level sparsification and client selection.

Network traffic and training time. We present the network
traffic and training time in 100 rounds of FedPHE and the
baselines on different datasets in Table III.

We observe that FedPHE reduces the network footprint for
MNIST, FashionMNIST, and CIFAR-10 by up to 16.49×,
16.89×, and 3.31×, respectively, compared to PackedCKKS.
Moreover, it outperforms PackedBFV for 4.28−22.62× across
three datasets. It is worth noting that the ciphertext size is only
0.81×, 0.77×, and 4.11× compared to the BatchCrypt. This
indicates the efficiency of FedPHE in reducing the ciphertext
generated by CKKS to the level of BatchCrypt encryption with
Paillier. This achievement is truly remarkable. Additionally,
the ciphertext size, which is previously in “memory out” state
as shown in Table I, has been reduced to only 2.07 − 9.88×
larger than the plaintext baseline, making FedPHE applicable
to FL in practice. In conclusion, FedPHE achieves commu-
nication overhead reduction ranging from 1.24× to 22.62×
compared to these baselines.

As shown in Table III, BatchCrypt requires 4.02 − 7.01×
more training time compared to plaintext. In contrast, Fed-
PHE incurs only 1.58 − 2.17× training time of the plaintext
baseline, greatly enhancing the efficiency of model training.
Furthermore, leveraging sparsification and client selection,
FedPHE achieves a training acceleration of 1.85−4.44×. With
an apt sparsification threshold, FedPHE does not adversely
affect the trained model quality. Instead, it achieves significant
compression while maintaining high performance.

C. Evaluations on Client Selection

We show FedPHE with client selection alone has superior
performance over two baselines, i.e., FedAvg and FLANP.

Accuracy. Fig. 7 shows that FedPHE consistently outper-
forms the baselines in terms of test accuracy. FLANP exhibits
faster convergence compared to FedAvg since it selects fewer
stragglers to participate. Moreover, FedPHE achieves acceler-
ated convergence compared to FedAvg and FLANP. This is
because FedPHE employs sketching-based client selection to
cherry-pick representative clients hosting diverse models and
having the capability to train quickly.

Number of clusters. From Fig. 8 (a), we can see that the
cluster number fluctuates between 1 and 8, where the cluster
threshold is set to γ = 1. When there are 8 clusters, it indicates
the low similarity between clients’ local models. In this
case, clustering cannot be utilized to replace certain clients’
models, and each client is assigned to a separate cluster. A
decrease in the cluster number suggests a higher similarity
between local models. This means that similar sketches of
local models are clustered together, resulting in a reduction in
the cluster number. Throughout the process, the cluster number
is dynamically determined based on the similarity of sketches
sent by clients. There is no need for the PS to specify the
exact number of clusters, making the model more robust.

Client selection efficiency. We record the number of nor-
mal clients and stragglers of FedPHE and the baselines. As
depicted in Fig. 8 (b) with γ = 0.625, we observed that
the proportions of selected stragglers are 25%, 17%, 13% for
FedAvg, FLANP and FedPHE, respectively. FedAvg randomly
selects a subset of clients to participate, which reduces the
overall number of clients. However, many stragglers are still
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Fig. 7: Accuracy versus clock time of FedPHE and the baselines on different datasets.

(a) Number of Clusters (b) Number of Selected Clients

Fig. 8: Number of clusters in each iteration and number of selected
clients of FedPHE and the baselines.

involved in the selection process. FLANP initially selects
normal clients, but stragglers will join in the final rounds of
training. In contrast, FedPHE can efficiently ensure the min-
imal inclusion of stragglers and decrease the overall number
of clients without accuracy loss. It can reduce the straggler
effect by up to 1.71−2.39× compared to baselines. Our client
selection scheme does not compromise model accuracy. That
is, selecting a subset of representative clients to participate
during aggregation can dramatically mitigate the straggler
effect caused by client heterogeneity.

V. RELATED WORK

Communication-efficient HE. HE is a widely used privacy-
preserving technique, yet suffers from significant inefficiency
in computation and communication. To address this, Ge et al.
propose to pack multiple plaintexts into a long integer[17].
Recently, Zhang et al. design BatchCrypt for cross-silo FL,
achieving a substantial decrease in encryption overhead and
ciphertext volume [14]. Jiang et al. further propose FLASHE,
an additively symmetric HE in double masking to address
the compatibility issues with sparsification [30]. Nevertheless,
these methods rely on Paillier and fail to support weighted ag-
gregation on ciphertexts. There is still ample scope for improv-
ing communication efficiency. In a similar vein, Smart et al.
design a ciphertext-packing technique based on polynomial-
CRT [16], and Brakerski et al. further extend SIMD to
the standard LWE to achieve nearly optimal homomorphic
evaluation [15]. However, existing HE solutions largely neglect
client heterogeneity, an intrinsic problem in cross-silo FL,
and FedPHE complements these studies with secure weighted
aggregation and client selection.

Weighted aggregation. Many efforts have been devoted to
addressing the client heterogeneity challenges. Among them,

weighted aggregation is a promising technique to accelerate
convergence. Zeng et al. present a contribution-aware model
aggregation scheme, considering higher loss values are indica-
tive of more substantial performance improvements [36]. Wu
et al. adaptively assign aggregation weights to clients based
on their contributions, measured by the angle between local
and global gradient vectors [48]. Deng et al. propose FAIR
to quantify each client’s learning quality and automatically
determine the optimal aggregation weights to enhance the
global model quality [49]. Nonetheless, existing aggregation
solutions are mainly conducted on plaintexts, rendering them
inapplicable in HE-based FL scenarios.

Client selection. Client selection is widely adopted to
accelerate convergence and mitigate the straggler effect [10].
FedAvg [31] employs random selection, acting as a common
and general setting in FL. Reisizadeh et al. propose FLANP
to start training by exchanging models with fast clients and
gradually include slower clients over time [47]. Furthermore,
Fraboni et al. introduce clustered sampling based on similarity
for client selection. However, directly transmitting gradients
to the PS raises privacy concerns and substantial commu-
nication overheads[32]. Kollias et al. utilize the sketches of
local models to select clients that are similar to ours at a
high level [50]. However, it can not be applied to HE-based
FL since after encrypting with HE, the PS cannot calculate
the sketch of the global model based on the ciphertext. In
contrast, FedPHE conducts sketching-based client selection to
cherry-pick representative clients that host diverse models with
fast training capability, greatly reducing the communication
overheads, without sacrificing model accuracy.

VI. CONCLUSION

In this paper, we present FedPHE, an efficient homomorphi-
cally encrypted FL framework for heterogeneous clients. To
address the slow convergence and straggler challenges posed
by client heterogeneity, FedPHE adopts CKKS-based PHE
with sparsification to support contribution-aware encrypted
weighted aggregation, while in the meantime conducting
sketching-based client selection to cluster similar clients to-
gether and then cherry-pick the fastest client from each cluster.
Extensive evaluations conducted on real-world datasets cor-
roborate the superiority of FedPHE over existing benchmarks
in accelerating FL convergence and reducing communication
overheads without sacrificing accuracy.
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