
Optimizing Batched Winograd Convolution on GPUs
Da Yan
HKUST

dyanab@cse.ust.hk

Wei Wang
HKUST

weiwa@cse.ust.hk

Xiaowen Chu
Hong Kong Baptist University
chxw@comp.hkbu.edu.hk

Abstract
In this paper, we present an optimized implementation for
single-precisionWinograd convolution onNVIDIAVolta and
Turing GPUs. Compared with the state-of-the-art Winograd
convolution in cuDNN 7.6.1, our implementation achieves
up to 2.13× speedup on Volta V100 and up to 2.65× speedup
on Turing RTX2070. On both Volta and Turing GPUs, our
implementation achieves up to 93% of device peak.
Apart from analyzing and benchmarking different high-

level optimization options, we also build a SASS assembler
TuringAs for Volta and Turing that enables tuning the per-
formance at the native assembly level. The new optimization
opportunities uncovered by TuringAs not only improve the
Winograd convolution but can also benefit CUDA compil-
ers and native assembly programming. We have released
TuringAs as an open-source software. To the best of our
knowledge, this is the first public-available assembler for
Volta and Turing GPUs.

CCS Concepts • Theory of computation→Massively
parallel algorithms; •Computingmethodologies→Neu-
ral networks; • Software and its engineering→ Assembly
languages;

Keywords Convolution, GPU, Performance

1 Introduction
Convolutional Neural Network (CNN) has demonstrated
state-of-the-art performance in many computer vision and
machine learning applications [4, 8, 22, 24]. However, train-
ing CNN models on large datasets is computationally expen-
sive, often requiring hundreds of GPU-hours [3]. The key
to improving the training performance is to accelerate the
convolutional operations used in the convolutional layers of
CNN models, which are computation-intensive by nature
and usually dominate the training time [23].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00
https://doi.org/10.1145/3332466.3374520

Winograd [11] was proposed recently as an efficient al-
gorithm to speed up convolutional operations in CNNs. It
reduces the number of arithmetic operations required in
convolution using Shmuel Winograd’s minimal filtering al-
gorithm [26]. Theoretical analysis shows that Winograd con-
volution can reduce the arithmetic complexity by 2.25× for
popular 3 × 3 filters in the state-of-the-art CNN models [11].
Owing to its significant performance benefits, Winograd
convolution has quickly gained its popularity and has been
supported by modern deep learning libraries such as Nvidia
cuDNN and Intel(R) MKL-DNN.
However, it remains a challenge to efficiently implement

Winograd convolution on GPUs: the state-of-the-art im-
plementation fails to deliver the full speedup as promised
in theory. We benchmarked the performance of Winograd
convolution in cuDNN 7.6.1 for all 3 × 3 convolutional lay-
ers in ResNet [4] on an Nvidia Tesla V100 GPU. Compared
with GEMM-based convolution, Winograd convolution only
achieves 0.81×-1.67× speedup with an average of 1.4× (Sec-
tion 2.2), which is far below the expected speedup with 2.25×
reduction of multiplications shown in theory.
To bridge the gap between the theoretical benefits and

those achieved in practice, we need to address the following
implementation challenges:

1. As a multi-step algorithm, Winograd convolution re-
quires data transposing between two steps, in which
globalmemory accesses should be coalesced and shared
memory accesses should be free of bank conflict. Both
requirements pose more constraints to the data layout
design.

2. Compared with the heavily studied matrix multiplica-
tion, the computation intensity of Winograd convolu-
tion is lower, leaving less room for latency hiding.

3. GPU hardware has limited regular and predicate reg-
isters. We need to tailor the implementation to meet
the constraints while achieving high performance.

In this paper, we tackle the aforementioned challenges
with the following approaches:

1. We redesign the workload partition and data layout
to make the global memory access fully coalesced and
shared memory access bank conflict-free.

2. We enlarge the cache blocking size to increase the com-
putation intensity.We also hide global memory latency
and shared memory latency with software pipelining.

3. We ensure that the registers required by the main loop
are below the hardware constraint. Predicate registers

32

https://doi.org/10.1145/3332466.3374520
https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#replicated

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Da Yan, Wei Wang, and Xiaowen Chu

are packed to regular register to eliminate the recom-
putation of zero-padding masks.

To implement these optimization techniques, we must
address two problems. First, configuring a large cache block
size enforces more threads to run in a synchronized manner,
making the performance more sensitive to the balance of
the progress on different warps. Second, efficient predicate
register to regular register packing (the P2R (Predicate to
Register) instruction) is not exposed at CUDA C/C++ or
PTX level. Without such capability, more regular registers
are required to hold predicate information, which leads to
register spilling.
Note that the P2R instruction and the control logic to

balance the progress between different warps are only ac-
cessible at the SASS (Shader ASSembly) level. Yet, there is
no publicly available SASS assembler for NVIDIA Volta and
Turing GPUs. We therefore build a SASS assembler1 for Volta
and Turing, with which we can achieve a balanced progress
between warps and P2R instructions, so as to fully saturate
the hardware.
Combining the high-level and SASS-level optimizations,

we implement an efficient Winograd convolution. We eval-
uate our implementation on NVIDIA Turing RTX2070 and
Volta V100GPUs on all 3×3 convolutional layers in ResNet [4].
The results show that compared with the state-of-the-art
implementation of Winograd convolution in cuDNN 7.6.1,
our implementation delivers up to 2.65× (1.96× on aver-
age) speedup on RTX2070, and up to 2.13× (1.5× on aver-
age) speedup on V100. On both devices, our implementation
achieves up to 93% of theoretical peak, narrowing the gap
between theory and practice.

We summarize our main contributions as follows:
• We build a SASS assembler for NVIDIA Volta and Tur-
ing GPUs. To the best of our knowledge, this is the
first publicly available SASS assembler for Volta and
Turing architectures.
• We implement a single-precision Winograd convolu-
tion for 3 × 3 kernels. The optimized Winograd con-
volution achieves up to 93% of device peak and up to
2.65× speedup over the state-of-the-art cuDNN 7.6.1.
• We study the effect of different SASS-level optimiza-
tion techniques, including the warp load balancing
with yield flag and the load/store instruction sched-
uling strategies. Our experiment shows that tuning
the yield flag alone contributes to around 10% higher
throughput. To our knowledge, this is the first study
on the effect of the yield flag.

2 Background and Motivation
In this section, we briefly introduce the Winograd convo-
lution algorithm. We show through measurement studies
that the state-of-the-art implementations fail to deliver the
1https://github.com/daadaada/turingas

performance speedup as promised in theory. We also sum-
marize the major technical challenges posed by an efficient
implementation of Winograd algorithm. We refer to [18] for
a CUDA programming guide and [17] for a detailed descrip-
tion of the Turing architecture.

2.1 Winograd Convolution
In CNN models, the 3 × 3 convolutional layers serve as im-
portant building blocks. For example, in VGG19 model [24],
16 out of 19 layers are 3×3 convolutional layers; in ResNet34
model [4], 32 out of 34 layers are 3 × 3 convolutional layers.
The Winograd convolution employs the Winograd mini-

mal filtering algorithm [26] and can reduce the number of
multiplications for 3 × 3 layers by at least 2.25× [11]. We
briefly illustrate how this can be done yet refer to [11] for a
detailed description of the algorithm.
To compute the convolution O = I ∗ F , where I is 4 ×

4 input, F is 3 × 3 filter, and O is 2 × 2 output (denoted
F (2 × 2, 3 × 3)), direct convolution needs 2 × 2 × 3 × 3 =
36 multiplications while Winograd convolution only needs
16 (element-wise) multiplications2 through the following
equivalent computation:

O = AT [(GFGT) ⊙ (BT IB)]A. (1)

where ⊙ denotes element-wise multiplication, and AT ,G,BT
are respectively

AT =

[
1 1 1 0
0 1 −1 −1

]
, (2)

G =


1 0 0
1
2

1
2

1
21

2 − 1
2

1
2

0 0 1

 ,B
T =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 . (3)

Here, F̂ = GFGT is the filter transformation (FTF),
which needs 28 float instructions; Î = BT IB is the input
transformation (ITF), which needs 32 float additions; Ô =
F̂ ⊙ Î is the element-wise multiplication (EWMM); O =
AT ÔA is the output transformation (OTF), which needs
24 float additions.

Note that the transformation matrices for the F (3×3, 2×2),
F (4 × 4, 3 × 3) and the other cases are also given in [11, 26].
In this paper, we limit the discussion to F (2 × 2, 3 × 3) only,
a common case in practice.

2.2 Efficiency of Current Implementation
Weevaluate the performance ofWinograd convolution against
GEMM-based convolution in cuDNN 7.6.1 on all 3× 3 convo-
lutional layers in ResNet (parameters listed in Table 1) with
different batch sizes on a V100 GPU. ResNet is a widely used
CNN model that has been included in the standard machine
learning benchmarks like MLPerf [21].
2We only consider element-wise multiplication as the operations needed
by transformation can be amortized by a large number of channels.

33

Optimizing Batched Winograd Convolution on GPUs PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Layer Output(H ×W) Filter (C,R × S,K)
Conv2 56 × 56 [64, 3 × 3, 64]
Conv3 28 × 28 [128, 3 × 3, 128]
Conv4 14 × 14 [256, 3 × 3, 256]
Conv5 7 × 7 [512, 3 × 3, 512]

Table 1. All 3 × 3 convolutional layers in ResNet. In the rest
of this work, we use ConvxNn to represent convolution layer
x with batch size n. For example, Conv2N32 represent Conv2
layer with batch size 32.

We use speedup over GEMM-based convolution as a proxy
for the gap between the current implementation and the
upper bound. The speedup is expected to be around 2.25×.
However, our experimental results in Table 2 show that the
average speedup over GEMM-based convolution is only 1.4×,
suggesting a significant room for improvement.

Layers
N Conv2 Conv3 Conv4 Conv5
32 1.57× 1.53× 1.62× 1.10×
64 1.54× 1.50× 1.57× 0.91×
96 1.59× 1.53× 1.58× 0.81×
128 1.55× 1.48× 1.67× 0.86×

Table 2. Speedup of cuDNN’s Winograd convolution over
cuDNN’s GEMM-based convolution on V100.

2.3 Challenges in Optimizing Winograd
Convolution

It is harder to optimize Winograd convolution than the
GEMM-based convolution due to the following challenges.
First, the multiple steps make the algorithm hard to opti-

mize in nature. We need to design the layout to maximize
throughput when transposing data. We summarize our lay-
out in Section 4. Moreover, batched GEMM is a subproblem
of Winograd convolution. All the techniques we have devel-
oped in Section 4.3 can be applied to batched GEMM.

Second, the computation intensity of F (2 × 2, 3 × 3)Wino-
grad convolution is 2.25× lower than the GEMM-based con-
volution (Figure 2), which poses a tighter constraint on la-
tency hiding. We enlarge the cache block size to increase
computation intensity. As a result, more registers are used
to do software pipelining compared with GEMM. The high
pressure on registers pushes us to save registers with P2R3,
which is only accessible at SASS level.

3For example, we can pack P0 to P3 (4 predicate registers) to one 32-bit
register (R0) with P2R R0, 0xf;, and unpack the 0 to 3 bits of R0 to P0 to
P3 with R2P R0, 0xf;.

2.4 Necessity of SASS Programming
With our SASS assembler, TuringAs, we can not only access
P2R, but also place load/store instructions at better locations
(Section 6.2). Also, we found that the suboptimality of yield
flag4 in the NVCC and cuDNN hurts performance. We show
that by changing the yield flag, we can achieve 10% higher
throughput than NVCC-generated code and cuDNN’s code
in Section 6.1. To the best of our knowledge, this is the first
time that the effect of yield flag is investigated.

TuringAs enables more applications beyond performance
optimization. First, developers can use it to benchmark per-
formance without worrying about the compiler reordering or
optimizing away some code. Second, it will enable a deeper
understanding of the GPU hardware. Finally, comparing the
human-optimized SASS code and compiler-generated SASS
code gives insights to improving algorithms in the compiler.

3 Design Overview
In this section, we introduce the basic workflow and how
we partition and map the workload to tens of SMs on a GPU
card. These are the fundamentals of the implementation.
We also introduce the philosophy based on which we

choose the important cache block size, the software pipelin-
ing technique to hide memory access latency, and how we
do zero-padding implicitly.

Notations used in this work are listed in Table 3.

Symbol Meaning
Ic,h,w,n Input data element
Fc,r,s,k Filter element

h̃ Tile index in height
w̃ Tile index in width

Îc,h̃,w̃,n Transformed input tile
F̂c,k Transformed filter tile

Ôk,h̃,w̃,n Pre-transform output tile
Ok,h̃,w̃,n Output tile

bk Filters assigned to each thread block
bn Input tiles assigned to each thread block
bc Channels loaded in each iteration

Table 3. Summary of notations. h̃ is computed as ⌈h/2⌉ and
w̃ is computed as ⌈w/2⌉ (h andw are indexed from 1).

4The 1-bit yield flag is embedded in each instruction to balance the workload
on each warp scheduler [5]. When this flag is set, the scheduler prefers to
issue the next instruction from the current warp. When the bit is cleared,
the scheduler prefers to switch to another warp. This costs one extra cycle
to switch to another warp.

34

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Da Yan, Wei Wang, and Xiaowen Chu

3.1 Workflow Overview
The 2D batched 3 × 3 convolution can be written as:

Ok,h,w,n =

R∑
r=1

S∑
s=1

C∑
c=1

Ic,h+r,w+s,n × Fc,r,s,k (4)

The equivalent 2D batched F (2 × 2, 3 × 3)Winograd convo-
lution can be written in the following steps:

Filter transform (FTF) for each 3 × 3 filter tile:
F̂c,k = GFc,kG

T (5)
Input transform (ITF) for each 4 × 4 input tile:

Îc,h̃,w̃,n = BT Ic,h̃,w̃,nB (6)

Element-wisemultiply (EWMM) and accumulate along
channels c (also called batchedmatrixmultiplication step):

Ôk,h̃,w̃,n =

C∑
c=1

Îc,h̃,w̃,n ⊙ F̂c,k (7)

Output transform (OTF) for each output tile:

Ok,h̃,w̃,n = AT Ôk,h̃,w̃,nA (8)

We use a separate kernel to transform the filter. The input
transform (ITF) and element-wise multiplication (EWMM)
steps form the main loop. After the main loop, we will
transform output, with shared memory as buffer to transpose
the data.

3.2 Workload Mapping
In the EWMM step (Equation (7)), ⌈H/2⌉ ⌈W /2⌉N ×K ×C of
4 × 4 EWMMs and accumulation along C will be computed.

Two-level cache blocking. Since the fast memory (shared
memory, registers) on GPUs are relatively small, we adopt
cache blocking strategy [10] to maximize data reuse.

Following the practice in previousworks [25, 27], we adopt
two-level blocking strategy. In each iteration, a thread block
will load bk × bc of filter tiles and bn × bc of input tiles. And
as Figure 1 shows, each thread block will compute bk × bn
of 2 × 2 output tiles. After the transformation, each thread
will load 2 of (transformed input and filter) 8 float elements
fragment to do matrix multiplication. The performance is
sensitive to cache block size. We illustrate how we choose
cache block size in the next subsection.

3.3 Choosing Cache Block Size
In cuDNN [1] and Neon [16], they choose cache block size
as follows: bk = 32, bn = 32, i.e., each thread block computes
32 × 32 output tiles. Having observed that the number of
filters (K) for all convolutional layers on many recent CNN
models, including VGG and ResNet, is a multiple of 64, we
adopt a more aggressive cache block size: bk = 64, bn = 32,
bc = 8. Since input data needs to be loaded and transformed
K/bk times, doubling the bk can reduce the times of loading
input data and performing input transform by half.

N * #tiles

C

C

32

64

K

Input data

Filter

Figure 1. Workload mapping overview. We adopt the cache
blocking strategy. Each thread block will compute bk ×bn of
output tiles. The grey block represents the output area that
one thread block is responsible for.

2−2 20 22 24 26

Ops:bytes ratio

2−3

2−2

2−1

20

21

22

23

24

At
ta

in
ab

le
 T

FL
OP

S

DRAM (9
00

GB/s)

L2
cac

he
(2.

5TB
/s)

Di
re

ct
 C

on
vo

lu
tio

n
(b

k
=

64
)

ba
tc

he
d

GE
M

M
 (b

k
=

64
)

ba
tc

he
d

GE
M

M
 (b

k
=

32
)

ITF FTF
OTF

V100 Global Memory Roofline

Figure 2. Roofline model of different steps of the Winograd
convolution on V100 (peak FP32 FLOPS: 15.7T). Input, filter
and output transform steps are memory-bound. Increasing
the cache block size can increase arithmetic intensity.

As Figure 2 shows, the input transform (ITF), filter trans-
form (FTF) and output transform (OTF) steps are memory-
bound. Even the batched GEMM step also requires a certain
level of L2 hit rate to keep the math pipe busy. Increasing the
cache block size bk from 32 to 64 can increase the arithmetic
intensity from 8 ops/byte to 10.67 ops/byte (+33%), making
the implementation more robust to L2 cache miss.

3.4 Software Pipelining
LDG (load data from global) instruction has a latency up
to more than 1000 cycles (L2 cache miss + TLB miss) [5,
13, 14]. Hiding global load latency is the most important
consideration in many applications. We hide the long global
memory access latency by software pipelining.
32 registers are used to hold prefetched 2 filter tiles and

16 registers are needed to hold prefetched one input tile in
our implementation.

35

Optimizing Batched Winograd Convolution on GPUs PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

The latency of shared memory loading (LDS) is around
20 cycles and can grow to hundreds of cycles when the
load/store units are busy [5]. We also hide the latency of
LDS with software pipelining. 4 × 8 = 32 registers are used
to hold the data to do matrix multiplication for the next
iteration.

3.5 Implicit Zero-Padding
We implicitly do zero-padding by masking LDG instructions
with predicate mask5. Each of predicate registers stores one
bool value. Since each thread will always load input tile
at the same location (same h,w), we can precompute the
zero-padding mask.

We need 16 bool values to mask one 4 × 4 input tile. How-
ever, the hardware only provides 7 predicate registers for
each thread [5]. The NVCC compiler will choose to store
one bool value in one regular register. This strategy leads to
register spilling since the total register requirement exceeds
255. We leverage P2R instruction to pack 16 predicates to
one regular register before the main loop and unpack the
register inside the loop with R2P to avoid register spilling.

4 Implementation Detail
In this section, we describe the implementation of each step
in detail. We also introduce our optimization techniques in
this part. All techniques in this section can be applied at
CUDA C++ level except for register allocation. SASS level
optimizations are discussed in Section 5 and 6.
In each thread block, 256 threads cooperate to compute

bk × bn = 2048 of 2 × 2 output tiles. In each iteration, each
thread block will loadbk×bc = 512 of filter tiles andbn×bc =
256 of input tiles, and perform element-wise multiplication
and accumulation on them.

We show how our implementation works in Algorithm 1.
We omit details including software pipelining, barrier syn-
chronization and index calculation for brevity. Line 6 to 16
is the main loop.

4.1 Filter Transform
We implement the filter transformation in a separate kernel
(called FX variant in [6, 11]). Since the filter is usually much
smaller than the input, this step only contributes to a small
fraction of the total running time.
Each thread block will load bk × bc = 64 × 8 = 512 filter

tiles in each iteration. And each thread will load 512/256 = 2
tiles. Threads within a warp will load filter of continuous k .
Since the transformed filters are stored in CR’S’K layout, the
global memory access is fully coalesced. 32KB (512×4B×4×4)
shared memory is used to store the transformed filter.

5E.g., @P1 LDG R0, [R2]; will only load data to R0 when P1 is true.

Algorithm 1: Simplified workflow of ourWinograd con-
volution. Fragments reside in registers. We configure
bc = 8, bn = 32, bk = 64.
1 __shared__ input_smem[16][bc][bn];
2 __shared__ filter_smem[16][bc][bk];
3 input_frag[2][8];
4 filter_frag[2][8];
5 accumulator[2][64];
6 for iter←0 to C by bc do
7 filter_smem← bk × bc of transformed filter tiles;
8 input_smem← bn × bc of transformed input tiles;
9 for i←0 to bc do

10 filter_frag← 2 × 8 elements from filter_smem;
11 input_frag← 2 × 8 elements from input_smem;
12 foreach element in accumulator do
13 accumulator[][]← accumulator[][] +

input_frag[][]× filter_frag[][];
14 end
15 end
16 end
17 Transpose and transform accumulated result;
18 Store result to global memory;

4.2 Input Transform
In each iteration, bn ×bc = 32×8 = 256 input tiles are loaded
and transformed (line 8 in Algorihtm 1). Each thread will
load 256/256 = 1 input tile. Threads within a warp will load
input of continuous batches. The CHWN layout makes the
loading fully coalesced. 16KB shared memory is used to store
the transformed input data.
Each thread uses 32 FADDs to transform a tile. The 32

FADDs add 32/1024 = 3.1% more pressure to the float pipe
(As we will show in the later section, 1024 FFMAs are used
in each thread in the EWMM step).

4.3 Batched Matrix Multiply
The EWMM step (line 9 to 15 in Algorithm 1) is where most
of the computation happens. In this step, each thread block
computes 16-batched 64 × 32 × 8 GEMM. Each thread com-
putes two 8 × 8 × 8 GEMM with 1024 FFMAs.
Since tiles of different channels are scattered in different

threads, we need to transpose the data first. The data trans-
posing buffer is arranged as (16, 8, 64) for filter data and
(16, 8, 32) for input data (Table 4) to make both store-to and
load-from the shared memory bank conflict-free.

To make the discussion easier, we simply the notations as:
µ is the local (private to each thread block, range from 1 to
64) filter tile index, and ν is the local input tile index (range

36

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Da Yan, Wei Wang, and Xiaowen Chu

from 1 to 32). We can then write the EWMM step as:

Ôµ,ν =

C∑
c=1

Îc,ν ⊙ F̂c,µ . (9)

We can rewrite the accumulation for each element in the
tile:

Ô
(x,y)
µ,ν =

C∑
c=1

Î
(x,y)
c,ν × F̂

(x,y)
c,µ , (10)

where Ô (x,y)µ,ν represents the element at location (x ,y) of tile
Ôµ,ν . And the accumulation of different elements in each tile
is independent of each other.

Element-wise multiplication to batched matrix multi-
plication. Since the accumulation on each element (Equa-
tion (10)) is independent of each other, we can perform equiv-
alent 16-batched Ôµ,ν =

∑C
c=1 Îc,ν × F̂c,µ matrix multiplica-

tion.
Doing batched matrix multiplication can increase com-

putation intensity. The computation intensity to compute
a 4 × 4 element-wise multiplication is (16 × 2)/(32 × 4) =
0.25(ops/bytes), and shared memory is not fast enough to
feed the data. However, if we do matrix multiplication and
let each thread compute two 8× 8×bc matrix multiplication,
the computation intensity is now 2(ops/bytes).

Thread arrangement. The 64 × 32 × 8 GEMM (workload
of a warp) is split to 32 of 8 × 8 × 8 GEMM (workload of a
thread) and dispatched to 32 lanes as Figure 3 shows. The
arrangement decides how to compute the shared memory
access offset (line 10, 11 in Algorithm 1) based on lane ID.

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

4 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

8 16 18 20 22 24 26 28 30 16 18 20 22 24 26 28 30

12 17 19 21 23 25 27 29 31 17 19 21 23 25 27 29 31

16 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

20 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

24 16 18 20 22 24 26 28 30 16 18 20 22 24 26 28 30

28 17 19 21 23 25 27 29 31 17 19 21 23 25 27 29 31

Lane ID

Filter Data Offset

In
pu

t
D

at
a

O
ff

se
t

Figure 3. Lane ID arrangement. Input data and filter data
offset stands for offset in element (4 bytes). For example,
lane0 will load filter at location 0,1,2,3 (128bits) with one
LDS.128. And lane1 will load input data at location 4,5,6,7
(128bits) with one LDS.128.

The arrangement in Figure 3 is the only pattern we find
so far to eliminate shared memory bank conflict for LDS.128.
The previous belief that "a shared memory request for a warp
does not generate a bank conflict between two threads that
access any address within the same 32-bit word" [18], is not
complete. According to this belief, other patterns should also
be bank conflict-free since the data is expected to broadcast

to all threads. However, the profiling results show other
patterns do lead to bank conflict.

Register allocation. In each iteration, each thread will com-
pute two 8× 8× 8 GEMM (line 9 to 14 in Algorithm 1). 2× 64
registers are used as accumulators, 2× 8 registers are used to
hold input, and 2 × 8 are for filter data. The shared memory
latency is hidden by software pipelining, and 2 × (8 + 8)
registers are needed to hold data in the next loop (Figure 4).
Also, the allocation needs to fulfill the following require-

ments to maximize performance: (i) Destination of LDS.128
must be a 128-bit vector register (4 continuous registers,
starting from a multiple of 4, e.g., R0, R1, R2, R3); (ii) FFMA
sequence to be register bank conflict6 free. Our allocation
can fulfill these requirements, and is depicted in Figure 4.

88 89 90 91 92 93 94 95

80 81 82 83 84 85 86 87

72 64 0 8 16 24 32 40 48 56

73 65 1 9 17 25 33 41 49 57

74 66 2 10 18 26 34 42 50 58

75 67 3 11 19 27 35 43 51 59

76 68 4 12 20 28 36 44 52 60

77 69 5 13 21 29 37 45 53 61

78 70 6 14 22 30 38 46 54 62

79 71 7 15 23 31 39 47 55 63

Filter Data

In
pu
t

Accumulators

Figure 4. Register allocation of the EWMM step. This cor-
responds to the declaration in line 3 to 5 in Algorithm 1.
Number in the cell is register index. Odd registers reside in
one bank and even registers reside in the other bank.

Thanks to the wider 64-bit register bank (Section 5.2.2),
the register bank conflict can be eliminated easier compared
with previous architectures [9, 27]. We propose the following
way to avoid register bank conflict:

1. For even columns (indexed from 0) of the accumulators,
start with the odd row (indexed from 0), reuse the filter
register, then compute the even row. (e.g., FFMA R1,
R65, R80.reuse, R1; FFMA R0, R64, R80, R0;)

2. For odd columns of the accumulators, start with the
even row, reuse the filter register, then compute the
odd row. (e.g., FFMA R8, R64, R81.reuse, R8; FFMA R9,
R65, R81, R9;)

4.4 Output Transform
After the accumulation, we have the pre-transform output
data Ô in registers. Since elements of a tile are scattered over
different warps, we need to transpose the data to do the final
output transform. There are 128KB of Ô in registers, while
shared memory on Turing GPUs can be configured up to

6If all three source registers are odd or are even, register bank conflict occurs
and the FFMA will occupy the float pipe for one more cycle.

37

Optimizing Batched Winograd Convolution on GPUs PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

64KB [17]. So we do the output transform in 4 rounds. In each
round, 1/4 of Ô(32KB) will be transposed and transformed.

We use padding to avoid shared memory store bank con-
flict. The layout of the buffer is depicted in Figure 5.

0 1 16 17 0 1 16 17
pad pad 2 3 18 19 2 3
18 19 pad pad 4 5 20 21
4 5 20 21 pad pad 6 7
22 23 6 7 22 23 pad pad

Output transform buffer

128 bytes

Figure 5. Output transform buffer. Number in the cell is the
laneID. For example, lane0 ∼ lane7 will store output element
of 32 continuous batch to shared memory on different banks.

4.5 Summary
We summarize the data layout in Table 4 and register usage
in Table 5.

Data Layout. We use 32KB shared memory to store filter
tiles, 16KB shared memory to store input tiles. In the output
transform step, we reuse the shared memory allocated for
filter and input tiles. 40KB shared memory is used as a buffer
to transpose the output data.

Variable Layout Value Location
Input (C,H,W,N) (C,H,W,N) GMEM
Filter (C,R,S,K) (C,3,3,K) GMEM

Transformed filter (C,R’,S’,K) (C,4,4,K) GMEM
Local input buffer (16, bc , bn) (16,8,32) SMEM
Local filter buffer (16, bc , bk) (16,8,64) SMEM
Local output buffer (16, 2, 8, b ′n) (16,2,8,40) SMEM

Output (K,H,W,N) (K,H,W,N) GMEM
Table 4. Data layout in global memory (GMEM) and shared
memory (SMEM), where 16 represents 16 elements in a 4× 4
tile, and b ′n represents bn with 8 padding elements.

Register Usage. We keep the registers for the main loop
under 255 to avoid register spilling. The register usage is
listed in Table 5.

5 Native Assembly Code Programming on
Volta and Turing

The needs for P2R/R2P instructions and the temptation of
manually scheduling instructions drive us to develop the
SASS assembler, TuringAs.

We document instruction encoding, hardware details and
other key components in this section.

Usage #Registers
Accumulators 128

Data from SMEM to do outer product 32
Prefetch data from SMEM 32
Prefetch filter from GMEM 32
Prefetch input from GMEM 16

Filter data pointer 2
Input data pointer 2

SMEM filter/input read offset 2
SMEM filter/input write offset 2

Zero-padding mask 1
Current iteration 1

Input transform workspace 3
Total 253

Table 5. Number of registers for the main loop.

5.1 ISA Encoding on Volta and Turing
A typical SASS instruction is specified as

@P1 LDG R0, [R2]; (11)

where P1 is the predicate mask, i.e., only when P1 is true will
the instruction be executed. Unlike the pre-Volta architec-
tures employing 64-bit instructions, both Volta and Turing
use 128 bits to encode an instruction with an embedded
control logic. Figure 6 shows the typical instruction format
consisting of four components: (1) Opcode, (2) Operands, (3)
Flags, and (4) Control code. We next explain them in detail.

5.1.1 Opcode
Contrary to the previous belief [5] that Volta and Turing use
various bit lengths to encode opcode, we believe that the
opcode is 12-bit. Examples include FFMA(0x223), FADD(0x221),
LDG(0x381), and LDS(0x984).

5.1.2 Operands
An operand can be a regular register, a predicate register,
constant memory, or an immediate value.

1. Regular register. The 32-bit regular register is in-
dexed by 8 bits. Each thread can access 32-bit registers
ranging from R0 to R254. Zero register (RZ) is indexed
by 0xff.

2. Predicate register. Each thread can access 7 predicate
registers, indexed by 4 bits. 0xf is the true predicate
register (PT). Instructions like ISETP and R2P can set
the value of predicate registers. Carry-in information
is stored in predicate registers. The indices of predicate
registers are encoded at different places in a regular
register, usually at [25:17].

3. Immediate. Volta and Turing use 32-bit immediate,
which can be used to represent a float or an integer,

38

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Da Yan, Wei Wang, and Xiaowen Chu

127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Y

OpcodePred maskDestination register (rd)Source register 0 (rs0)Immediate/Constant/Source register 1 (rs1)

Flags/Source register 2 (rs2)Reuse Barrier mask Read barrierWrite barrier Stalls

Figure 6. Instruction encoding on Nvidia Volta and Turing. White parts are left unused and are filled with 0.

whereas the pre-Volta architectures use 24-bit imme-
diate.

4. Constant memory. Many instructions accept con-
stant memory (e.g., c[0x0][0x160]) as one of the
operands. Parameters passed to CUDA kernels are
stored in constant memory. Other information like
gridDim is also stored in constant memory.

5.1.3 Flags
Instructions usually specify flags (also known as funct in
some literature) to modify its behavior. For example, LDG can
change its width with .16, .32, .64, and .128 flag, and SHF
(funnel shift) can choose to shift left or right with .L or .R
flag. The flag information is usually encoded at [26:0].

5.1.4 Control Code
An interesting feature of Nvidia GPUs is that it is the pro-
grammer’s/compiler’s responsibility to prevent data hazards.
For fixed-latency instructions like FFMA and IADD3, the com-
piler just needs to stall this instruction for certain cycles if
the next instruction reads its output. For variable-latency
instructions like LDG and STG, the compiler will associate the
instruction with a (read) barrier, and the instructions which
rely on its output, will wait on that barrier.

The aforementioned mechanism is supported by the con-
trol code. Control code stores information to prevent data
hazards, control reuse flag, and balance progress between
warps. A detailed introduction of the control code can be
found in Section 2.1 in [5]. We give a detailed description of
the yield flag (at [45]), since we found this flag will affect the
overall performance.

The yield flag. Multiple warps may reside on one warp
scheduler concurrently. To balance the progress of different
warps on the same warp scheduler, a one-bit yield flag is
used. When the yield flag is set to 1, the warp scheduler
prefers to issuing the next instruction from the current warp.
Otherwise, the warp scheduler prefers to issuing the next
instruction from other warps, but this will take one more
clock cycle and disable the register reuse cache. Currently,
the NVCC compiler seems to simply set the yield flag to 0
every 7 instructions. We have shown that this strategy may
hurt performance for certain applications.

5.2 GPU Hardware
5.2.1 Resource Limitations on GPU Device
On Volta and Turing, each thread can use up to 255 32-bit
regular registers7, indexed by 8 bits.
There are 7 predicate registers (P0-P6) for each thread,

indexed by 4 bits. Each predicate register stores a bool value.
Carry-in information also occupies a predicate register.

Each thread has 6 wait barriers to prevent data hazard for
instructions with variable latency like LDG.

5.2.2 Register Banks
Pre-Volta architectures have four 32-bit register banks. If two
source registers fall in the same bank, register bank conflict
will occur. The instruction will occupy the pipe for one more
cycle.

The four 32-bit register banks have been replaced by two
64-bit register banks in Volta and Turing [5], with odd in-
dexed registers reside in one bank and even indexed registers
in the other bank. The wide 64-bit register bank makes the
register bank conflict less likely to happen.

5.3 TuringAs Implementation
We have implemented TuringAs in 1,400 lines of Python code.
TuringAs is a lightweight assembler using built-in Python
libraries. Our current implementation supports an essential
subset of instructions for linear algebra routines. Our de-
sign is extensible and is easy to add support for additional
instructions.

TuringAs supports features like inline Python code, which
we use to print the long sequence unrolled SASS loop, and
register name mapping, which allows us to use a meaning-
ful register name (e.g., index) rather than a register index
(e.g., R1). TuringAs accepts the SASS source file as input and
generates .cubin files. The .cubin file can be loaded with
CUDA runtime APIs.

6 Assembly-Level Optimizations
In this section, we discuss some optimizations that can only
be applied at SASS level and evaluate their effects. The re-
ported throughput is the average of 10 repeated experiments
on an RTX2070. CUDA C code is compiled with NVCC 10.1.

7In our experiment, the number of registers must be smaller than 253;
otherwise, the hardware will not recognize the instruction.

39

Optimizing Batched Winograd Convolution on GPUs PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

6.1 Load Balancing with Yield Flag
At least since Maxwell architecture[15], a 1-bit yield flag
is used to balance the load between different warps on the
same warp scheduler [5].

By observing theNVCC-generated SASS code and cuDNN’s
SASS code, we speculate that NVCC and cuDNN use the fol-
lowing heuristic to scatter yield flag:
• NVCC8: scatter yield flag every 8 float instructions.
• cuDNN: scatter yield flag every 7 float instructions.

We adopt a new Natural yield strategy, which is not to scat-
ter yield flag at all. Tests show that the Natural strategy
achieves 1.09× speedup for the main loop over NVCC’s strat-
egy and 1.11× speedup over cuDNN’s strategy. We show the
throughput of the main loop under different yield strategies
in Figure 7.

Con
v2N

32

Con
v2N

64

Con
v2N

96

Con
v2N

128

Con
v3N

32

Con
v3N

64

Con
v3N

96

Con
v3N

128

Con
v4N

32

Con
v4N

64

Con
v4N

96

Con
v4N

128

Con
v5N

32

Con
v5N

64

Con
v5N

96

Con
v5N

128

Layers

6.0

6.5

7.0

7.5

TF
LO

PS

cuDNN
NVCC
Natural

Figure 7. Throughput of the main loop on different layers
with different yield strategies.

The yield flag can hurt performance in two ways. First,
the yield flag takes one more cycle to switch to another warp
[5]. Second, the yield flag will disable the reuse flag of the
current instruction and may lead to register bank conflict.

6.2 Scheduling Load/Store Instructions
Apart from FFMAs, load/store instructions are another im-
portant part of the implementation. We interleave load/store
instructions with FFMAs to not overwhelm load/store unit.

Globalmemory access. The cuDNN’sWinograd implemen-
tation interleaves LDG with 2 FFMAs (4 cycles). Rather, we
interleave LDG with 8 FFMAs. This can contribute to 1.24×
speedup. The throughput of different LDG scheduling strate-
gies is shown in Figure 8.

Shared memory access. By checking the NVCC-generated
assembly code, we speculate that the NVCC compiler and
cuDNN use a heuristic to interleave STS with 2 FFMAs
(4 cycles). Rather, we increase the distance between con-
secutive STS instruction from 2 FFMAs to 6 FFMAs. And
this contributes to 2% of higher throughput of the main
8Their heuristic is more complex than this, but this is enough to illustrate
the effect of the yield flag.

Con
v2N

32

Con
v2N

64

Con
v2N

96

Con
v2N

128

Con
v3N

32

Con
v3N

64

Con
v3N

96

Con
v3N

128

Con
v4N

32

Con
v4N

64

Con
v4N

96

Con
v4N

128

Con
v5N

32

Con
v5N

64

Con
v5N

96

Con
v5N

128

Layers

5

6

7

TF
LO

PS

LDG2
LDG4
LDG8

Figure 8. Throughput of the main loop on different layers
with different LDG scheduling strategies. LDGn represents
to interleave LDGs with n FFMAs.

loop. Throughputs of different STS scheduling strategies are
shown in Figure 9.

Con
v2N

32

Con
v2N

64

Con
v2N

96

Con
v2N

128

Con
v3N

32

Con
v3N

64

Con
v3N

96

Con
v3N

128

Con
v4N

32

Con
v4N

64

Con
v4N

96

Con
v4N

128

Con
v5N

32

Con
v5N

64

Con
v5N

96

Con
v5N

128

Layers

6.6

6.8

7.0

7.2

7.4

TF
LO

PS
STS2
STS4
STS6

Figure 9. Throughput of the main loop on different layers
with different STS scheduling strategies. STSn represents to
interleave STSs with n FFMAs.

7 Evaluation
In this section, we evaluate our optimized Winograd con-
volution on Volta V100 and Turing RTX2070 GPUs on all
3 × 3 convolution layers in ResNet. Parameters of different
layers are listed in Table 1. Kernel running time is collected
using CUDA event [19] and the reported running time is
the average of 20 times of measurement. We compared the
performance of our implementation against Winograd con-
volution9 and other algorithms of cuDNN 7.6.1, which was
released in June 2019, with NCHW data layout.

7.1 Compare with cuDNN’s Winograd Convolution
The speedups of our implementation over cuDNN’s Wino-
grad convolution are shown in Table 6. On RTX2070, we see
up to 2.65× and on average 1.95× speedup. On V100 we see
up to 2.13× and on average 1.5× speedup.

On both devices, the speedups on Conv5 are significantly
better than other layers. This is because the Conv5 layer
9CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD in cuDNN

40

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Da Yan, Wei Wang, and Xiaowen Chu

Layers
Device N Conv2 Conv3 Conv4 Conv5
RTX2070 32 1.67× 1.85× 1.73× 2.59×

64 1.65× 1.83× 1.79× 2.47×
96 1.68× 1.83× 1.74× 2.65×
128 1.67× 1.82× 1.77× 2.57×

V100 32 1.32× 1.42× 1.31× 1.95×
64 1.24× 1.40× 1.41× 1.77×
96 1.24× 1.38× 1.34× 2.13×
128 1.23× 1.38× 1.38× 1.97×

Table 6. Speedup over cuDNN’s Winograd convolution.

has the greatest number of filters (K = 512), making the
overfetch of input data a more serious problem. Our imple-
mentation has a larger bk and is less vulnerable to the large
filter size.
The speedups on RTX2070 are higher than the speedups

on V100. The main reason is that the occupancy on V100 is
twice as the occupancy on RTX2070. The shared memory of
V100 can be configured to 96KB, while the shared memory
on RTX2070 (and other Turing GPUs) is limited to 64KB [17].
cuDNN’s Winograd convolution needs 48KB shared memory
per block (Table 7). Each SM can hold 2 thread blocks on
V100 but only 1 on RTX2070. More concurrent thread blocks
give the warp scheduler chance to switch to other warps to
hide latency, and thus increase performance.

Parameters Ours cuDNN’s
(bk ,bn ,bc) (64, 32, 8) (32, 32, 8)

Threads per block 256 256
SMEM per block 48KB 48KB

Registers per thread 253 126
Registers per block 64768 32256

Table 7. Parameters of our implementation and cuDNN
7.6.1’s Winograd convolution.

7.2 Percentage of Peak
We use the Speed Of Light (SOL, SM[%]) value to represent
the percentage of peak achieved by this implementation.
The SOL value is the "achieved percentage of utilization with
respect to the theoretical maximum", reported by the Nsight
Compute [20] profiler.
We give two SOL values. One is the SOL of the whole

program, except for filter transformation (labeled with Total).
The other is the SOL of the main loop (labeled with Main
loop). Since we cannot mix the compute-bound main loop
and the memory-bound output transform, the SOL of the
whole program is smaller than the SOL of the main loop.

Conv2N32

Conv2N64

Conv2N96

Conv2N128

Conv3N32

Conv3N64

Conv3N96

Conv3N128

Conv4N32

Conv4N64

Conv4N96

Conv4N128

Conv5N32

Conv5N64

Conv5N96

Conv5N128

Layers

80

85

90

SO
L

%

Total
Main loop

Figure 10. Speed of Light (SOL) on RTX2070. The SOL value
represents the achieved percentage of utilization to the the-
oretical peak.

Conv2N32

Conv2N64

Conv2N96

Conv2N128

Conv3N32

Conv3N64

Conv3N96

Conv3N128

Conv4N32

Conv4N64

Conv4N96

Conv4N128

Conv5N32

Conv5N64

Conv5N96

Conv5N128

Layers

75.0
77.5
80.0
82.5
85.0
87.5
90.0
92.5
95.0

SO
L

%
Total
Main loop

Figure 11. Speed of Light (SOL) on V100.

On both devices, the SOL of the main loop can be above
87.5% and up to 93% for large batch size. And the SOL of the
whole program can be above 90%.

For layers like Conv4N32 and Conv5N32, there is a drop in
the SOL value. This is because there are not enough thread
blocks to keep the GPU busy. If we increase the batch size,
the SOL will increase dramatically.

7.3 Compare with Other Algorithms
We compare our Winograd convolution with all other con-
volution algorithms10 in cuDNN. The speedups on RTX2070
and V100 are shown in Figure 12 and Figure 13, respectively.
The workspace required by different algorithms are listed in
Figure 14. Our implementation only needs a small workspace
to hold 16KC transformed filter data (0.25MB for Conv2, 1MB
for Conv3, 4MB for Conv4, 16MB for Conv5). We have the
following observations:

1. Compared with GEMM-based convolution (the IM-
PLICIT PRECOMPversion), our implementation achieves

10IMPLICIT_PRECOMP_GEMM computes convolution by doing matrix
multiplication (GEMM) implicitly. WINOGRAD_NONFUSED computes
convolutionwith theWinograd algorithm. Comparedwith the fused version,
which stores the intermediate result in shared memory, the non-fused
version stores the intermediate result in global memory.

41

Optimizing Batched Winograd Convolution on GPUs PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

FFT

FFT
_TIL

ING GEM
M

IMP
LICI

T_G
EMM

IMP
LICI

T_P
REC

OM
P_G

EMM

WIN
OGR

AD_
NON

FUS
ED

Algorithm

Conv2N32

Conv2N64

Conv2N96

Conv2N128

Conv3N32

Conv3N64

Conv3N96

Conv3N128

Conv4N32

Conv4N64

Conv4N96

Conv4N128

Conv5N32

Conv5N64

Conv5N96

Conv5N128

La
ye
rs

3.21 1.94 6.27 3.68 1.86 2.00
2.81 1.76 6.47 3.72 1.85 2.15
2.62 1.65 6.43 3.79 1.86 2.16
2.53 1.68 6.44 3.80 1.87 2.15
2.21 1.73 3.85 2.78 2.12 1.09
1.41 1.42 3.95 2.81 1.94 1.10
1.32 1.32 3.92 2.76 2.00 1.10
1.26 1.27 3.93 2.73 1.96 1.12
2.15 5.11 3.36 2.61 2.14 1.01
1.36 4.53 3.20 2.59 2.12 1.06
1.20 4.10 3.14 2.49 2.13 1.05
1.15 4.03 3.08 2.39 2.04 1.08
6.07 14.11 2.35 2.38 2.05 0.83
3.38 11.34 2.36 2.27 1.66 0.71
3.24 11.44 2.55 2.19 1.78 0.73
2.94 10.57 2.15 1.92 1.60 0.70

1.2

1.8

2.4

3.0

3.6

Figure 12. Speedup over all other algorithms on RTX2070.

FFT

FFT
_TIL

ING GEM
M

IMP
LICI

T_G
EMM

IMP
LICI

T_P
REC

OM
P_G

EMM

WIN
OGR

AD_
NON

FUS
ED

Algorithm

Conv2N32

Conv2N64

Conv2N96

Conv2N128

Conv3N32

Conv3N64

Conv3N96

Conv3N128

Conv4N32

Conv4N64

Conv4N96

Conv4N128

Conv5N32

Conv5N64

Conv5N96

Conv5N128

La
ye
rs

2.84 1.93 5.13 16.06 2.09 1.56
2.61 1.68 5.66 2.71 1.93 1.92
2.42 1.67 4.84 2.71 1.98 1.98
2.33 1.85 4.85 2.71 1.91 2.01
2.14 1.51 3.21 2.56 2.19 1.15
1.32 1.16 3.26 2.46 2.10 1.09
1.19 1.08 3.33 2.45 2.13 1.05
1.16 1.00 3.21 2.40 2.04 1.05
2.05 4.01 2.63 2.44 2.13 0.98
1.39 3.60 2.89 2.67 2.23 1.06
1.14 3.07 2.73 2.45 2.12 0.97
1.12 3.10 2.85 2.70 2.31 1.00
5.82 10.45 1.98 2.27 2.16 0.79
3.15 8.11 1.85 1.88 1.63 0.69
3.22 8.74 1.97 1.97 1.73 0.78
2.87 7.87 1.93 1.94 1.71 0.72

1.2

1.8

2.4

3.0

3.6

Figure 13. Speedup over all other algorithms on V100.

1.6× to 2.31×, and on average 1.99× speedup, which
is close to the 2.25× multiplication reduction.

2. For the Conv5 layer, the speedup over GEMM-based
convolution is smaller. This is because the size of the
input is 7×7, and the F (2×2, 3×3)Winograd computes
one more pixel, which will be discarded later.

3. For the Conv2 layer, our Winograd convolution is at
least 1.56× faster than all other algorithms in cuDNN
on all layers on both devices and consumes little (0.25MB)
global memory as workspace.

4. For the Conv3 layer, our implementation is 5% to 15%
faster than the non-fused Winograd convolution in
cuDNN. FFT-based convolution also gives good per-
formance on this layer, but not as fast as ours.

5. For the Conv4 layer, the performance of our imple-
mentation is comparable with the non-fused version

FFT

FFT
_TIL

ING GEM
M

IMP
LICI

T_G
EMM

IMP
LICI

T_P
REC

OM
P_G

EMM

WIN
OGR

AD_
NON

FUS
ED

Algorithm

Conv2N32

Conv2N64

Conv2N96

Conv2N128

Conv3N32

Conv3N64

Conv3N96

Conv3N128

Conv4N32

Conv4N64

Conv4N96

Conv4N128

Conv5N32

Conv5N64

Conv5N96

Conv5N128

La
ye
rs

198.1 51.0 220.5 0.0 0.0 110.8
264.1 85.0 441.0 0.0 0.0 221.1
330.1 119.0 661.5 0.0 0.0 331.3
396.1 153.1 882.0 0.0 0.0 441.6
170.6 102.0 110.2 0.0 0.0 57.4
204.6 136.0 220.5 0.0 0.0 112.5
238.6 170.0 330.8 0.0 0.0 167.6
272.6 204.0 441.0 0.0 0.0 222.8
164.2 340.0 55.1 0.0 0.0 45.0
182.2 408.0 110.2 0.0 0.0 81.0
200.2 476.0 165.4 0.0 0.0 117.0
218.2 544.0 220.5 0.0 0.0 153.0
621.0 1224.0 27.6 0.0 0.0 54.0
657.0 1360.0 55.1 0.0 0.0 72.0
693.0 1496.0 82.7 0.0 0.0 90.0
729.0 1632.0 110.2 0.0 0.0 108.0

0

100

200

300

400

500

Figure 14.Workspace (MB) required by different algorithms
in cuDNN.

(with smaller workspace) and faster than all other al-
gorithms. Moreover, compared with the non-fused ver-
sion, our implementation requires fewer requests to
GPU’s DRAM, which reduces overall power consump-
tion.

6. For the Conv5 layer, our performance is considerably
faster than all other algorithms but slower than the
non-fused version. This is because the non-fused ver-
sion uses F (4 × 4, 3 × 3)Winograd, which reduces the
number of multiplication by a factor of 4 [11]. The
input and output of this layer are relatively small. The
benefit of more reduction in multiplication outweighs
the time to store (and load) transformed data to (from)
global memory at this layer.

8 Discussion
8.1 Fused or Non-fused Winograd Convolution
For 3×3 convolutional layers, F (2×2, 3×3) and F (4×4, 3×3)
Winograd are popular options. Other variants like F (6×6, 3×
3) may bring numerical issue and require considerably large
workspace for intermediate result. Usually, the fused version
adopts F (2 × 2, 3 × 3) variant (in this work and cuDNN’s
fused Winograd) and non-fused implementations apply the
F (4 × 4, 3 × 3) variant. We analyze which one will be faster
under different conditions.
For the fused F (2 × 2, 3 × 3) version, we assume the data

loading time can be hidden by computation and ignore data
transformation time for brevity, thus the total time for fused
F (2 × 2, 3 × 3) is

2NCHWKRS

2.25FLOPS ,

where R = 3 and S = 3 are the filter height and width.
For the non-fused F (4× 4, 3× 3) version, the data transfor-

mation steps are memory-bound, and the size of transformed

42

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Da Yan, Wei Wang, and Xiaowen Chu

input is (6 × 6)/(4 × 4) = 2.25 times of the original input,
thus the total running time can be computed as

2NCHWKRS

4FLOPS +
NCHW × (1 + 2.25) × 2 × 4 Bytes

DRAM Bandwidth .

By substituting the FLOPS and bandwidth data of V100 and
RTX2070, we find the break-even point for V100 is K = 129
(when K < 129, fused F (2 × 2, 3 × 3) is faster, and when
K > 129, non-fused F (4 × 4, 3 × 3) is faster), and the break-
even point for RTX2070 is K = 127. These analytical results
are in accordance with our evaluation results in Figure 12
and 13.

We expect greater speedup in the future if the fused F (4×
4, 3 × 3) is well optimized.

8.2 Integrate with Compiler
To achieve comparable performance at a higher level rather
than SASS can increase productivity. We make the following
suggestions to help the compiler generate better code.

Expose P2R and R2P instructions at PTX level. The
P2R and R2P instructions can pack and unpack multiple pred-
icate registers, thus save registers. They can also help to save
instructions. Besides, we notice that this pair of instructions
exist in all architectures since Fermi.

New algorithm to scatter the yield flag. In Section 6.1,
we have shown that changing the strategy of scattering yield
flag alone can increase the performance by 10%. To look
into its mechanism and how to set yield flag under different
conditions would be valuable.

Increase space between load/store instructions. Cur-
rent space between continuous load/store instructions is
not enough. The program may be stalled by busy load/store
units. Besides, the width of memory accesses is known at
compile time. Such information can help the compiler to
interleave load/store instructions of different width with
different space.

8.3 Generality of This Work
Our implementation will achieve maximum performance
when N is a multiple of 32, K is a multiple of 64 and C is
a multiple of 8, which are common cases for many widely
used CNNs [4, 24].
The implementation can be ported to the fp16 version

by increasing bn to 64. To further increase the throughput
with newly introduced tensor core, the data layout needs a
redesign. Nevertheless, many techniques introduced in this
work, like large cache block size and load balancing between
warps, can be adopted. These techniques can also be applied
to other dense linear algebra routines.

8.4 For Other Data Layout
The implementation in this work can be ported to NCHW
layout with little effort. For example, each thread block can
load and transform a 16 × 8 input tile (32 of 2 × 2 tiles) to

make the global load fully coalesced. The offsets of global
and shared memory accesses need to be recomputed, while
all other optimizations can be adopted.

9 Related Work
There are other works focusing on optimizing Winograd
convolution. Zhen et al. optimized Winograd convolution
on manycore CPUs [6]. Scott implemented Winograd con-
volution in SASS for Maxwell and Pascal GPUs [11, 15].

The other strategy used to implement Winograd convolu-
tion is to store intermediate results in global memory (non-
fused version). It is easier to implement because it can utilize
optimized batched matrix multiplication routines. However,
it needs significant amount of global memory as workspace
and data loading can be the new bottleneck.

Other than Winograd convolution, researchers have made
different efforts to reduce the CNN training time, including:
1. To optimize direct convolution on CPUs [2] and GPUs
[7]. 2. To express convolution as matrix multiplication [1] to
utilize the highly optimized matrix multiplication routines.
3. To use the FFT approach to compute the convolution [12].
Compared with Winograd convolution, FFT-based convo-
lution performs better at large filter size [11], while small
filters like 3 × 3 are more popular in today’s CNNs.

10 Conclusion
In this work, we have presented a solution to optimize the
performance of single-precision F (2 × 2, 3 × 3) Winograd
convolution on NVIDIA Volta and Turing GPUs.
Apart from the high-level optimizations, we also build a

SASS assembler for NVIDIA Volta and Turing GPUs to tune
the performance at SASS level and propose new insights to
increase the performance. We make the assembler publicly
available to inspire more works in this area.

Acknowledgments
We thankAndrew Lavin for the advice in SASS programming,
and the anonymous reviewers for their feedbacks that help
improve the qualitiy of this work. This research is supported
by HK Research Grants Council under Grant No. 26213818.

References
[1] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:
Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014),
1–9.

[2] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj D.
Kalamkar, Greg Henry, Hans Pabst, and Alexander Heinecke. 2018.
Anatomy of high-performance deep learning convolutions on SIMD
architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis, SC 2018.
IEEE/ACM, Dallas, TX, USA, 66:1–66:12.

[3] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming

43

Optimizing Batched Winograd Convolution on GPUs PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

He. 2017. Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour. CoRR abs/1706.02677 (2017), 1–12.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016. IEEE Computer Soci-
ety, Las Vegas, NV, USA, 770–778.

[5] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo
Scarpazza. 2018. Dissecting the NVIDIA Volta GPU Architecture via
Microbenchmarking. CoRR abs/1804.06826 (2018), 1–66.

[6] Zhen Jia, Aleksandar Zlateski, Frédo Durand, and Kai Li. 2018. Op-
timizing N-dimensional, winograd-based convolution for manycore
CPUs. In Proceedings of the 23rd ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP 2018. ACM, Vienna,
Austria, 109–123.

[7] Alex Krizhevsky. 2015. cuda-convnet2. Retrieved Jan 12, 2019 from
https://github.com/akrizhevsky/cuda-convnet2

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In
Advances in Neural Information Processing Systems, NIPS 2012. NIPS,
Lake Tahoe, NV, USA, 1106–1114.

[9] Junjie Lai and André Seznec. 2013. Performance upper bound analysis
and optimization of SGEMM on Fermi and Kepler GPUs. In Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2013. IEEE Computer Society, Shenzhen, China,
4:1–4:10.

[10] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. 1991. The
Cache Performance and Optimizations of Blocked Algorithms. In Pro-
ceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems , ASPLOS 1991.
ACM, Santa Clara, CA, USA, 63–74.

[11] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional
neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016. IEEE Computer Society, Las
Vegas, NV, USA, 4013–4021.

[12] Michaël Mathieu, Mikael Henaff, and Yann LeCun. 2013. Fast Training
of Convolutional Networks through FFTs. CoRR abs/1312.5851 (2013),
1–9.

[13] Xinxin Mei and Xiaowen Chu. 2017. Dissecting GPU Memory Hierar-
chy Through Microbenchmarking. IEEE TPDS 28 (2017), 72–86.

[14] Xinxin Mei, Kaiyong Zhao, Chengjian Liu, and Xiaowen Chu. 2014.
Benchmarking the memory hierarchy of modern GPUs. In IFIP Inter-
national Conference on Network and Parallel Computing. Springer, Ilan,

Taiwan, 144–156.
[15] NervanaSystems. 2016. Maxas. Retrieved Jan 12, 2019 from https:

//github.com/NervanaSystems/maxas
[16] NervanaSystems. 2016. Neon. Retrieved Jan 12, 2019

from https://github.com/NervanaSystems/neon/tree/master/neon/
backends/kernels/sass

[17] NVIDIA. 2018. NVIDIA TURING GPU ARCHITECTURE. Retrieved
Jan 12, 2019 from https://www.nvidia.com/content/dam/en-zz/
Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf

[18] NVIDIA. 2019. CUDA C Programming Guide. Retrieved Jul 2, 2019
from https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html

[19] NVIDIA. 2019. How to Implement Performance Metrics in CUDA
C/C++. Retrieved Jul 2, 2019 from https://devblogs.nvidia.com/
how-implement-performance-metrics-cuda-cc/

[20] NVIDIA. 2019. Nsight Compute. Retrieved Jul 2, 2019 from https:
//docs.nvidia.com/nsight-compute/NsightCompute/index.html

[21] MLPerf Org. 2019. MLPerf. Retrieved Jul 2, 2019 from https://mlperf.
org/

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-
cnn: Towards real-time object detectionwith region proposal networks.
In Advances in Neural Information Processing Systems, NIPS 2015. NIPS,
Montreal, Quebec, Canada, 91–99.

[23] Shaohuai Shi, QiangWang, Pengfei Xu, and Xiaowen Chu. 2016. Bench-
marking state-of-the-art deep learning software tools. In 2016 7th In-
ternational Conference on Cloud Computing and Big Data (CCBD). IEEE,
Macau, China, 99–104.

[24] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolu-
tional networks for large-scale image recognition. CoRR abs/1409.1556
(2014), 1–14.

[25] Vasily Volkov and James W. Demmel. 2008. Benchmarking GPUs
to Tune Dense Linear Algebra. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing (SC). IEEE Press, Piscataway, NJ, USA,
31:1–31:11.

[26] ShmuelWinograd. 1980. Arithmetic complexity of computations. Vol. 33.
Siam, Salt Lake City, UT, USA.

[27] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,
and Mingyu Chen. 2017. Understanding the GPU Microarchitecture
to Achieve Bare-Metal Performance Tuning. In Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP 2017. ACM, Austin, TX, USA, 31–43.

44

https://github.com/akrizhevsky/cuda-convnet2
https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/neon/tree/master/neon/backends/kernels/sass
https://github.com/NervanaSystems/neon/tree/master/neon/backends/kernels/sass
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/
https://devblogs.nvidia.com/how-implement-performance-metrics-cuda-cc/
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://mlperf.org/
https://mlperf.org/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Winograd Convolution
	2.2 Efficiency of Current Implementation
	2.3 Challenges in Optimizing Winograd Convolution
	2.4 Necessity of SASS Programming

	3 Design Overview
	3.1 Workflow Overview
	3.2 Workload Mapping
	3.3 Choosing Cache Block Size
	3.4 Software Pipelining
	3.5 Implicit Zero-Padding

	4 Implementation Detail
	4.1 Filter Transform
	4.2 Input Transform
	4.3 Batched Matrix Multiply
	4.4 Output Transform
	4.5 Summary

	5 Native Assembly Code Programming on Volta and Turing
	5.1 ISA Encoding on Volta and Turing
	5.2 GPU Hardware
	5.3 TuringAs Implementation

	6 Assembly-Level Optimizations
	6.1 Load Balancing with Yield Flag
	6.2 Scheduling Load/Store Instructions

	7 Evaluation
	7.1 Compare with cuDNN's Winograd Convolution
	7.2 Percentage of Peak
	7.3 Compare with Other Algorithms

	8 Discussion
	8.1 Fused or Non-fused Winograd Convolution
	8.2 Integrate with Compiler
	8.3 Generality of This Work
	8.4 For Other Data Layout

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

