
Unraveling the RTT-fairness Problem for BBR: A
Queueing Model

Yuechen Tao, Jingjie Jiang, Shiyao Ma, Luping Wang, Wei Wang, and Bo Li
Hong Kong University of Science and Technology

Abstract—BBR is a congestion-based congestion control al-
gorithm recently proposed by Google. It proactively measures
the bottleneck bandwidth and round trip times (RTTs) of a
connection pipe, based on which it governs its sending behaviors.
Despite the significant throughput gains and latency reduction,
some experimental studies reveal that BBR may result in a salient
RTT-fairness problem, in that short-RTT flows can be starved
of bandwidth allocation when competing with long-RTT flows.

In this paper, we study BBR’s RTT-fairness problem from
a theoretic perspective. We present a closed-form solution that
characterizes the intrinsic dynamics of BBR flows and their
interactions. Specifically, we model BBR’s sending behaviors and
bandwidth dynamics, based on which we establish an exponential
relationship between the flows’ bandwidth shares and their
RTTs. We show that the degree of unfairness is dictated by the
RTT ratio between two flows, irrespective of the other network
parameters, such as the initial sending rates or link capacity. In
particular, when the RTT ratio of the two flows is greater than 2,
the short-RTT flow is starved of bandwidth allocation (≤ 0.1%).
Our theoretical results are corroborated by simulations in a wide
range of settings.

I. INTRODUCTION

BBR [1] (Bottleneck Bandwidth and RTT) has attracted
great attentions due to its high throughput, low latency and
loss irrelevancy. Unlike traditional loss-based TCP congestion
control (e.g., CUBIC [2]), BBR proactively estimates the
bottleneck bandwidth and propagation delay of a connection
pipe. Based on this information, BBR governs its sending
rates, so as to deliver at the full bottleneck bandwidth without
creating an excess queue in the pipe. According to Google [3],
BBR achieved 133× throughput gains in B4 network, and
reduced the average delay by ∼ 80% in YouTube [1].

However, prior experimental studies [4], [5] revealed that
BBR has a significant bias towards long-RTT flows, in
that long-RTT flows could take up almost all bandwidth,
irrespective of the capacity of the bottleneck links. Despite
those findings in experiments, prior works do not expose the
intrinsic behaviors of BBR flows or explain the bandwidth
dynamics. There are several important questions remained
to be answered. First, existing work has not mathematically
modeled BBR’s bandwidth dynamics. Second, experimental
results do not quantitatively capture the bias towards long-RTT
flows. Third, it is not conclusive whether short-RTT flows can
obtain any bandwidth shares, and under what conditions.

To answer those questions, we develop a theoretical model
based on queueing network to rigorously analyze the behav-

The research was support in part by RGC GRF grants under the contracts
16211715 and 16206417, a RGC CRF grant under the contract C7036-15G.

iors of BBR flows. We study the relationship between flow
bandwidth share and several key parameters including flow
RTT, initial sending rate and network capacity. Our main
contributions are summarized as follows:

1) The closed-form model of BBR bandwidth dynamics.
We briefly review the BBR algorithm and derive the evolution
of a BBR flow’s sending behavior. Based on the sending rates
and RTTs, we compute the flow’s inflight in the next round
trip. The inflight then determines the queue sharing and the
estimated bandwidth, which in turn decides the next round of
the sending rate. Through this feedback loop, we are able to
quantify BBR’s bandwidth dynamics and prove that analyzing
the sending rate is sufficient to characterize BBR’s behavior.

2) The quantified relationship between the flows’ band-
width share and their RTT difference. We undertake a rigor-
ous analysis of the parameters that determine the bandwidth
share of a long-RTT flow and a short-RTT flow. We find
that the bandwidth share of the long-RTT flow increases
exponentially with the RTT ratio. This formulation further
confirms the experimental observation that a marginal increase
in RTT difference may result in a huge difference in bandwidth
share [4]. Furthermore, the final bandwidth share of the two
flows is dictated by the RTT difference. A larger network
capacity only accelerates the exponential growth toward the
final share but has no influence on the final value, whereas
the initial rate of the two flows has no influence at all.

3) The lower bound on the bandwidth share of the short-
RTT flow. Although experimental results show that the long-
RTT flow quickly obtains 99.9% bandwidth share in most
cases [4], we are able to discover the conditions on whether
there exists a lower bound (> 0.1%) for the short-RTT flow’s
bandwidth share.

We find that the RTT ratio of the two flows determines
the final bandwidth share. A larger RTT ratio implies a lower
possibility of getting more than 0.1% bandwidth share for
the short-RTT flow. When the ratio is larger than a derived
threshold, the short-RTT flow is essentially drained out. On
the other hand, when the ratio is smaller than the threshold,
the short-RTT flow can still get some bandwidth (> 0.1%),
the amount of which depends on its RTT. For example, a flow
with 200-ms RTT will not be starved when competing with a
240-ms flow, where the RTT ratio is 1.2. In contrast, a 5-ms
flow only gets 0.1% bandwidth share when competing with a
6-ms flow, though the RTT ratio remains 1.2.

978-1-5386-4727-1/18/$31.00 ©2018 IEEE

II. RELATED WORK

For loss-based congestion control protocols, these are plenty
of theoretic analyses on the RTT fairness problem. In [6] and
[7], the authors have modeled the RTT fairness of the tra-
ditional AIMD algorithm for synchronous and asynchronous
flows. In [8], Poojary and Sharma used a Markov chain to
analyze the fairness between CUBIC [9] and TCP NewReno
[10] towards RTTs and loss rates. Alizadeh et al. applied a
fluid model to qualify the bandwidth allocation in DCTCP
[11], [12]. For delay-based congestion control protocols,
Boutremans et al. mathematically analyzed the sensitivity of
Vegas [13] towards RTT estimation [14].

Experiment-based works found the severe RTT unfairness
problem of BBR flows [4], [5]. In [4], Ma et al. further demon-
strate that the bias towards long-RTT flows is pervasive under
different network settings. However, neither of them analyzed
this issue mathematically. To the best of our knowledge, we
are the first to model the bandwidth dynamics of BBR and
present the closed-formed formulation on BBR’s RTT fairness.

III. MODELING BBR’S BEHAVIOR

A. BBR Behavior

BBR uses the maximum bottleneck bandwidth (MaxBw) and
the minimum RTT (MinRTT) to model the network. By using
MaxBw as the sending rate, a BBR flow can transfer data at
full bottleneck bandwidth without creating an excess queue,
hence minimizing the transfer delay.

A BBR flow periodically probes for more bandwidth by
pacing faster than the MaxBw. If it increases the pacing_gain

to 1.25, meaning that the flow sends data 25% faster than the
current MaxBw. Therefore, higher MaxBw can be detected by
a pacing_gain greater than 1. This, however, may create an
excess queue in the bottleneck link, which could be drained
out by setting the pacing_gain less than 1.

There are there phases in BBR, Startup, Drain and
Steady State. A BBR flow spends most of the time in
the Steady State. Therefore, we will focus on the flows’
bandwidth dynamics during this phase. The Steady State

contains two modes, ProbeBW and ProbeRTT. In the ProbeBW
mode, BBR cycles through eight phases with the following
pacing_gain values: 5/4, 3/4, 1, 1, 1, 1, 1, 1. With a
pacing_gain greater than 1, this BBR flow probes for higher
bandwidth. It then drains the queue with a pacing_gain

below 1, after which it cruises with a pacing_gain 1.0.
In this way, a BBR flow can transfer data using the full
bandwidth, while maintaining the minimal queue at the same
time. If a BBR flow does not see smaller MinRTT for 10
seconds, it enters the ProbeRTT mode, in which it maintains
the inflight at 4 packets for at least 200 ms or a round trip
time, so as to drain out the queue and expose a new MinRTT.
The total process is illustrated in Fig. 1.

B. System Model

We consider a simple scenario where two BBR flows
compete with each other on a bottleneck link. We assume a
deep buffer in the bottleneck switch, meaning that the switch

startup ProbeBW state

pacing_gain 2/ln2 1.25 0.75 1 1 1 1 1 1

ProbeRTT ProbeBW

Fig. 1. BBR’s periodic behavior

never drops a packet. We also assume that in the Steady

State phase, the total inflight of the two flows is bounded
by the two times of the network’s bandwidth-delay product,
which is the amount of packets the network can hold without
a buffer. The flow RTTs are assumed to be between 5-500 ms,
a typical range in the Internet.

Without loss of generality, our analysis mainly focuses on
one ProbeBW phase. This is because the dynamics of the
bandwidth share of the two BBR flows exhibits a periodic
pattern as shown in prior experiments [4], [5]. A period
consists of one ProbeBW phase and one ProbeRTT process.
Once a flow enters the ProbeRTT mode, the two flows are
synchronized, as can be shown by the following argument.

When flow 0’s MinRTT time stamp1 expires, flow 0 enters
the ProbeRTT mode and defers its MinRTT time stamp for
10s. In this way, the queue in the bottleneck dips quickly, and
flow 1’s MinRTT expires. As a result, the MinRTT time stamp
of flow 1 is also put off by 10s based on current time instance.
This implies at the time instance flow 0 exits ProbeRTT, these
two flows have the same time stamp value for MinRTT.

IV. ANALYSIS OF BBR BANDWIDTH DYNAMICS

In this section, we analytically characterize the bandwidth
shares of the two BBR flows through three steps. First, we
model the BBR’s sending behaviors. Second, we give an
iterative formulation to describe the relationship between the
sending rates and other parameters, such as RTT ratio, network
capacity and initial rate. Third, we derive a lower bound of
the bandwidth share for the short-RTT flow. Fourth, we extend
the analysis to the multiple-flows scenario.

A. Modeling BBR

Consider a slotted system with two competing BBR flows
in a system with capacity c as shown in Fig. 2. Each flow
adjusts its sending rate based on the measurements from the
previous time slot. The RTTs of the two flows are denoted
by RTT0 and RTT1, where RTT0 ≤ RTT1. Let a be the RTT
ratio of the long and short flows, i.e., RTT1 = a ∗ RTT0. At
the end of each time slot [j, j + 1], let inflighti(j) be the ith
flow’s inflight, eBWi(j) the estimated BtlBW, and Si(j) the
sending rate in the next slot [j+1, j+2]. Table I summarizes
the notations used in the paper.

Then we start formulating the BBR flow’s sending rate.
First, we formulate the sending rate based on the feedback at
the end of each time slot. In BBR, a flow updates its sending
rate based on the maximum estimated bandwidth (MaxBW)
upon each arrival. We consider the moment at which a flow
exits ProbeRTT and enters the ProbeBW. If the flow comes

1The minRTT time stamp records when a BBR flow should enter the
ProbeRTT mode.

switch: queueing happens

S0(j)

S1(j) S1(j − 1)

S0(j − 1)C0(j)

C1(j)

flow0

flow1

Fig. 2. The feedback model for the two-flow scenario

TABLE I
NOTATIONS IN THE MODEL

Notation Meaning
c network capacity
ri The ith flow’s initial rate
a RTT ratio

RTTi The ith flow’s RTT
Si(j) The ith flow’s sending rate for the time slot [j + 1, j + 2]

inflighti(j) The ith flow’s inflight during the time slot [j, j + 1]
eBWi(j) The ith flow’s estimated bandwidth

after the time slot[j, j + 1]

into the 3rd phase among the 8-phase cycle,2 pacing_gain is
1.25 during the 8m+7th RTT, and is 0.75 during the 8m+8th
RTT. According to the BBR behavior, we have

MaxBW = max{eBW(j), MaxBW}, eBW(j) = MaxBW,

S(j) =

 1.25 ∗ eBW(j), (j − 6) % 8 < 1;
0.75 ∗ eBW(j), (j − 7) % 8 < 1;
eBWi(j), otherwise.

(1)

Second, we formulate the inflight of the two flows based on
the flow’s sending rate Si. Note that when flow 0 gets new
estimated bandwidth at the end of time slot [n − 1, n], flow
1 may still use the sending rate from the last time slot [aj −
a, aj]. Therefore, the inflight of each flow at the end of time
slot [n, n+ 1] is

j = b(n− 1)/ac, inflight0(n) = S0(n− 1) ∗ RTT0, (2)
inflight1(n) = S1(j) ∗ (n%a) ∗ RTT0 + S1(j − 1)∗
(a− n%a) ∗ RTT0. (3)

The inflight of each flow at the end of [n, n+ a] is

inflight0(n) = ((anRTT0)%1) ∗ S0(ba(n− 1)c)+
(RTT0 − (anRTT0)%RTT0) ∗ S0(ba(n− 1)c − 1), (4)
inflight1(n) = aRTT0 ∗ S1(n− 1) (5)

Third, we formulate the estimated bandwidth of the two
flows through the queueing theory. According to the queueing
theory, the bandwidth share of competing flows is determined
by their backlog, which means a flow’s inflight determines its
estimated bandwidth. Combining (2), (3), (5), and (4):

eBWi(n) = c ∗ inflighti(n)∑1
i=0 infighti(n)

. (6)

From the model, flows’ sending rate determines throughput
and thus bandwidth share. Therefore, analyzing Si(j) alone
is sufficient to quantify BBR’s bandwidth dynamics.

2BBR randomly selects from the six phases with pacing_gain=1, but
such random indexing has no effect on our analysis.

B. Bandwidth Dynamics vs. Parameters

We further analyze the relationship between the sending rate
Si(j) and the RTT based on the model in IV-A through four
steps. First, we derive two cases by whether the RTT ratio
is greater than 8. Second, we formulate S1(j) when a < 8.
Third, we analyze BBR bandwidth dynamics when a < 8.
Fourth, we formulate and analyze S0(j) when a > 8.

1) Step 1: Two cases for different RTT ratio: If the time
slot Ja 3 of flow 1 contains a time slot I1 of flow 0, then S1

during I1 is a constant, further to inflight1. We then define
the two time slots Ja and I1 as overlapping here. Flow 0
updates MaxBW according to eBW0 every 8 RTT0s, indicating
flow 0’s sending rate may not change.

If we take the 8 RTT0s as a large time slot I8, when a < 8,
I8 may contain a flow 1’s time slot Ja. If so, S0 and inflight0
in the time slot Ja are constants. These two time slots overlap.

If a > 8, after flow 0 updates its MaxBW according to eBW0,
it is possible that flow 1 has not finished one round trip. This
suggests that flow 1’s time slot Ja contains more than eight
flow 0’s time slots I8. Therefore, S1 and inflight1 in the time
slots I8 are constants. These two time slots hence overlap.

Therefore, we divide our discussions into two cases
depending on whether RTT ratio a is larger than 8.

2) Step 2: Formulate BBR bandwidth dynamics when a <
8: From (1), (5), (4), (6):

t = na, n0 = b(n− 1)ac, (7)

S1(n) =
acS1(n− 1)

aS1(n−1)+(t%1)S0(n0) + (1−t%1)S0(n0 − 1)
.

(8)

Recall that inflight0 is the inflight of flow 0. From (4), (8):

1

S1(n)
=

1

c
+

1

ac
∗ inflight0
S1(n− 1)

. (9)

3) Step 3: How RTT ratio, network capacity and initial rate
contribute to BBR unfairness: When the time slots of the
two flows overlap, S0 and inflight0 are constants. Therefore,
1/S1(n) follows an exponential function:

x =
a

inflight0 − ac
, y =

inflight0
ac

,

1

S1(n+ 1)
= yn

(
1

r1
+ x

)
− x.

(10)

First, the bandwidth share is exponential to RTT ratio a. Since
inflight0 < c always exists and a > 1, we see that y < 1
always holds. Meaning, S1 increases exponentially in terms
of RTT ratio a. Second, network capacity helps RTT ratio to
accelerate achieving final bandwidth share. In y, c appears
in denominator together with a, which means higher network
capacity contributes to more extreme overwhelming towards
flow 0. Specifically, network capacity is not a flow’s property,
which means that network capacity has nothing to do with

3Ja means the time slot from j to j+a, which is [j, j+a]. This simplified
writing format always holds in this paper.

RTT unfairness. Third, initial rate does not affect bandwidth
allocation because r0 does not appear in y.

If the time slots of the two flows don’t overlap, S0 is
not a constant, where S1 still increases. Because from (9):

1

S1(n)
=

1

c
+

1

ac
∗ inflight0
S1(n− 1)

<
1

S1(n− 1)
(11)

Then we analyze the increasing speed of S1. The function in
(10) iterates 1 time if S0 is not a constant. The only way to
control the rising speed of S1 is increasing inflight0. However,
higher S1 results in higher eBW1, indicating flow 1 keeps
preempting bandwidth from flow 0. Therefore, y decreases as
time goes by. S1 increases even faster than exponential.

In conclusion, when 1 < a < 8, flow updates throughput
exponentially towards RTT ratio, meaning, BBR suffers a
severe RTT fairness problem.

4) Step 4: Model BBR bandwidth dynamics when a > 8:
We use the same method to analyze flow 0’s behavior when
a > 8. According to (2), (3), (6), S0 decreases exponentially
when the time slots of the two flows overlap:

1

S0(n+ 1)
=

S0(n) + inflight1
S0(n) ∗ c

. (12)

When the time slots of the two flows do not overlap, S0

quickly decreases, and the previous analysis remains applied.
In other words, the bandwidth shares that flow 0 can obtain
deteriorates exponentially fast.

C. Bandwidth Share Final State vs. RTT Ratio

In the last section, it has been showed that, during the
ProbeBW mode, S1 keeps increasing while S0 keeps de-
creasing. The experimental data in [4] also shows that even
though a 10 ms-RTT flow gets about 6 Mbps bandwidth
on average when competing with a 50 ms-RTT flow on a
100Mbps bottleneck link, its cwnd is only 4 most of the time,
corresponding to less than 0.1% bandwidth share.

However, in the ProbeRTT mode, the short-RTT flow could
increase bandwidth share because the inflight of long-RTT
flow is only 4. The experiment in [4] also shows that the 10 ms
RTT flow can increase the bandwidth share in ProbeRTT.

In this section, we capture possibilities on bandwidth share
of the short-RTT flow except being drained out. We discuss
this question in three moves. First, based on (10), we analyze
S0(j)’s final state possibilities when a > 8. Second, we
discuss the final bandwidth share based on (12) when a < 8.
Third, we derive a lower bound on bandwidth share of flow
0 if the lower bound exists. Here, if flow 0 gets at most 0.1%
bandwidth share, it is considered as being drained out.

1) Step 1: When a > 8, flow 0 gets at most 0.1% bandwidth
share finally: If flow 0 drains out at the end of the time slot
D when a > 8, it suffices to show the inequalities below:

‖S0(D)‖ < ε, ε→ 0, and (13)
D ∗ 8 ∗ RTT0 < 10s− a ∗ RTT0, (14)

10s− a ∗ RTT0 > a ∗ RTT0. (15)

ε means the bandwidth share threshold towards draining
out, which is close unlimitedly to 0. Therefore, (13) means
at the end of time slot D, flow 0 is drained out. (14) and
(15) means when D ends, ProbeRTT in the next period has
not come, indicating flow 0 is drained out during ProbeBW.
According to (12), (13), we have

D ≤ loga

 1
c−ε − 1

c

1

c/2
− 1

c

 . (16)

We then apply (16) to (14) and (15), it shows that when
a > 8, these inequalities above must be satisfied. This means
when a > 8, there is no possibility for the short-RTT flow
to scratch more than 0.1% bandwidth.

2) Step 2: When 2 < a < 8, flow 0 is drained out finally:
If flow 0 is drained out at the time slot X , it suffices to show
these inequalities:

‖S1(X)− c‖ < ε, ε→ 0, and (17)
10s− 200ms > 8RTT0 (18)
a ∗X ∗ RTT0 < 10s− a ∗ RTT0 (19)

(17) means at the end of the time slot X , flow 1 drains
out flow 0. (18) and (19) means when X ends, ProbeRTT in
the next period has not come, indicating flow 0 is drained out
during ProbeBW4. Now according to (10) and (17) we have,

X ≤ log 1
a

1
c−ε − a

c∗(a−1)

1
c/2 − a

c∗(a−1)

. (20)

Applying (20) to (18) and (19), we find that when a > 2,
all of these equalities must hold, meaning flow 0 is drained
out. When a > 2, there is no possibility for the short-RTT
flow to get more than 0.1% bandwidth share.

3) Step 3: When a < 2, the final bandwidth share of
flow 0 has a lower bound L, related to RTT0 and a:
Whether flow 0 is drained out depends on whether flow 0 losts
all the bandwidth share before the next period’s ProbeRTT,
because the bandwidth share of flow 0 keeps decreasing in
the ProbeBW mode. Therefore, the final bandwidth share of
flow 0 is the flow 0’s bandwidth share at the point when the
current period ends.

The closed form iteration is described as follows,

N = b10s− 200ms
a ∗ RTT0

c, and (21)

L >= c− S1(N) (22)

N means the number of RTTs of flow 1 in one ProbeBW.
L is the lower bound of flow 0’s final bandwidth share.

This is an iterative closed form description, we conduct
numerical analyses using MATLAB and compare the result
with simulations in the next section.

4200ms is the lasting time of ProbeRTT mode in one period of BBR.

D. Extension to the Multi-Flows Scenario

We first discuss the existence of the unfair bandwidth allo-
cation problem. From the analysis above, the BBR unfairness
rises from the imbalance of the buffering in the network
bottleneck. Since longer RTT time always means more inflight
in the network, long RTT flows always grab more bandwidth.

Then we discuss the severity of the unfair dynamics qual-
itatively. The multi-flows scenario can be divided to several
two-flows scenario. Based on the above bound analysis, during
a ProbeBW, if the longest flow can grab all the bandwidth
whatever its initial rate is, the draining out finally happens
in multiple-flows scenario. In other words, if there is a flow
whose difference with the longest flow in RTT is less than 2,
the draining never happens.

Therefore, to improve the BBR unfair situation, the core
issue is to decrease or increase the buffering amount of long
or short flows respectively. Several changes are likely to made.
For example, if a flows detects continuous bandwidth decreas-
ing, it selfishly paces x× for T RTTs, where x ≥ 2/ln2, to
validate whether it is drained out by others. Further, long flows
may conduct ProbeBW slowly when detecting continuous
estimated bandwidth increasing.

V. EVALUATION

In this section, we simulate BBR flow dynamics in a two-
flow scenario to verify our theoretical results.

Three findings are derived through our evaluation. First, the
number of RTTs to drain out the 10 ms RTT flow decreases
exponentially to RTT ratio with the base of 2.7. Second, when
a is greater than 2, the short-RTT flow must be drained out.
Third, the bandwidth share is determined solely by the RTT
difference.

Unless otherwise specified, we set the total bandwidth to
100 Mbps, and the RTT ratio is set to 5.

A. Validation of Simulation

To verify that our simulation is able to reflect BBR flow’s
behavior, we simulated the throughput of a 10-ms RTT flow
and a 50-ms RTT flow when they compete on a 100 Mbps
bottleneck link. In [4], the same competition is conducted in an
in-house server. We compare the results of the simulation and
the experiment in Fig. 3. The bandwidth share of the two flows
in the simulation is close to the one measured in the real-world
experiment. Moreover, the 50 ms RTT flow spends about 1
second to reach the final steady state in both simulation and
experiment. The result shows that our simulation is consistent
with the real-world experiment.

B. Bandwidth Dynamics

First, we verify the relationship between the bandwidth
dynamics and the initial rate. At first, r0 = 10 Mpbs,
r1 = 10 Mbps, after 10s, we change the initial rate to
r0 = 40 Mbps, r1 = 10 Mbps. The final bandwidth share
keeps unchanged as shown in Fig. 4.

Second, we verify the relationship between the bandwidth
dynamics and the network capacity. At first, the bottleneck

12 14 16 18 20 22
Time (sec.)

0

25

50

75

100

125

G
oo

dp
ut
 (M

bp
s)

50-ms RTT flow 10-ms RTT flow

8 10 12 14 16 18 20

Time(Sec)

0

25

50

75

100

T
h

ro
u

g
h

p
u

t(
M

b
p

s
)

flow0

flow1

Fig. 3. Both the final bandwidth share and the increasing trend in the
simulation are similar to experimental data.

link is 100 Mbps, after 10s, we change the bottleneck link
to 200 Mbps as shown in Fig. 5. The final bandwidth share
doesn’t change with different network capacity. Moreover,
higher network capacity corresponds to higher increasing rate
of flow 1’s bandwidth share. This verifies that higher network
capacity helps to accelerate the draining out process.

0 2 4 6 8 10 12 14 16 18 20

Time(Sec)

0

25

50

75

100

B
a

n
d

w
id

th
 S

h
a

re
(%

)

flow0

flow1

Fig. 4. At time = 10s, we increase the initial rate of flow 0 by 4 times, but
the final bandwidth share of the two flows remains the same.

0 2 4 6 8 10 12 14 16 18 20

Time(Sec)

0

25

50

75

100

B
a

n
d

w
id

th
 S

h
a

re
(%

)

flow0

flow1

Fig. 5. At time = 10s, we increase the network capacity by two times, and
the final bandwidth share of the two flows remains the same.

Third, we verify the exponential function between the
bandwidth share and the RTT ratio. From Fig. 4 and 5, we can
find a long-RTT flow increases its bandwidth share sharply.
To make this conclusion more quantitive, we incorporate a
10 ms RTT flow to compete with a long-RTT flow with RTT
ratio ranging from 2 to 9.5. We record the number of RTTs
for the long-RTT flow to drain out the 10 ms flow. The result
is shown in Fig. 6.

We fit this curve to an exponentially decreasing function as
RTT = 4 + 2.76−a.

C. Bandwidth Bound Existence of Short BBR Flows
We verify the lower bound on bandwidth share of the short-

RTT flow here. The verification is in 3 steps.

2 3 4 5 6 7 8 9

RTT Ratio

0

15

30

45

60

75

N
u

m
b

e
r

o
f

R
T

T
s

Fig. 6. RTT ratio is from 2-9.5, the number of RTTs of long-RTT flow to
drain out the 10 ms RTT flow is from 60 to 6.

First, we draw a bandwidth share curve of flow 0 under the
configuration of a = 1.1,RTT0 = 10 ms in Fig. 7. Flow 0
gets a 5% bandwidth share finally from Fig. 7. And the final
state of flow 0’s bandwidth share appears between 10s to 12s,
when the current period terminates.

0 2 20 4 8 10 12 14 16 18 20

Time(Sec)

0

10

20

30

40

B
a

n
d

w
id

th
 S

h
a

re
(%

)

Fig. 7. RTT ratio is from 1.1, the bandwidth share of flow 0 with time

Second, we verify if flow 0’s lower bound on bandwidth
share by our model is reasonable. We calculate flow 0’s lower
bound on bandwidth share when competing with a long-RTT
flow with different RTT ratios, then compare the calculated
lower bound with the simulation result. The configuration is:
RTT0 = 10 ms, a ∈ [1.01, 1.11]. The result is shown in Fig.
8.

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11

RTT Ratio

0

20

40

60

B
a
n

d
w

id
th

 S
h

a
re

(%
)

Simulation

Model

Fig. 8. RTT ratio is from 1.01-1.11, flow 0’s lower bound on bandwidth
share from simulation and model.

At last, note that the final bandwidth share is only related
to RTT0 and RTT ratio from (18), (19)and(20). To figure out
how RTT0 affects final bandwidth share together with RTT
ratio, we get the upper bound of RTT ratio where flow 0 is
not drained out under different RTT0 through the model and
the simulation. RTT0 ranges from 5 ms to 500 ms, which is
common in Internet. The result is shown in Fig. 9.

Although both of the lines fluctuate, larger RTT0 still cor-
responds to higher RTT ratio to be drained out. This indicates
that RTT0 actually takes minor effect on final bandwidth share.
Moreover, if a is large than 1.25, flow 0 must be drained out
if RTT0 is less than 500 ms.

50 100 150 200 250 300 350 400 450 500

RTT(ms)

1

1.05

1.1

1.15

1.2

1.25

R
T

T
 R

a
ti

o

Model

Simulation

Fig. 9. X: Differrent RTT0, Y: The largest RTT ratio to drain out the short
flow.

VI. CONCLUSION

In this paper, we build a theoretic model to characterize
BBR bandwidth dynamics. We demonstrate that the bandwidth
share between different flows exhibits an exponential behavior
dictated by the RTT ratio, irrelevant with the initial sending
rate and link capacity. In addition, we show there exists a
threshold on the RTT ratio, beyond which the short RTT flow
will be drained out. Simulations are carried out to verify our
model and evaluate the results, which we believe present new
insights in the understanding of intrinsic behavior of BBR and
searching for improvement in its fairness.

REFERENCES

[1] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh et al., “BBR:
Congestion-Based Congestion Control,” Commun. ACM, vol. 60, no. 2,
pp. 58–66, 2017.

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS operating systems review, vol. 42, no. 5,
pp. 64–74, 2008.

[3] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
A Globally-Deployed Software Defined WAN,” in ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp.
3–14.

[4] S. Ma, J. Jiang, W. Wang, and B. Li, “Towards RTT Fair-
ness of Congestion-Based Congestion Control,” arXiv preprint
arXiv:1706.09115, 2017.

[5] M. Hock, R. Bless, and M. Zitterbart, “Experimental Evaluation of BBR
Congestion Control,” in IEEE ICNP, 2017, pp. 1–10.

[6] V. Jacobson, “Congestion Avoidance and Control,” in ACM SIGCOMM,
1988, pp. 314–329.

[7] E. Altman, C. Barakat, E. Laborde, P. Brown, and D. Collange, “Fairness
Analysis of TCP/IP,” in Proceedings of IEEE Conference on Decision
and Control, vol. 1, 2000, pp. 61–66.

[8] S. Poojary and V. Sharma, “Analytical Model for Congestion Control
and Throughput with TCP CUBIC Connections,” in IEEE GLOBECOM,
2011, pp. 1–6.

[9] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new tcp-friendly high-speed
tcp variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[10] V. Jacobson, “Berkeley TCP Evolution from 4.3-tahoe to 4.3-reno,” in
IETF, 1990.

[11] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of DCTCP:
Stability, Convergence, and Fairness,” in ACM SIGMETRICS. ACM,
2011, pp. 73–84.

[12] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP(DCTCP),” in
ACM SIGCOMM, vol. 40, no. 4. ACM, 2010, pp. 63–74.

[13] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE J. Selected Areas in Commun.,
vol. 13, no. 8, pp. 1465–1480, 1995.

[14] C. Boutremans and J.-Y. Le Boudec, “A Note on the Fairness of TCP
Vegas,” in 2000 IEEE International Zurich Seminar on Broadband
Communications, pp. 163–170.

