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Background
‣ Middleboxes are widely deployed in today’s network  

‣ IPsec, Monitoring, Firewalls, WAN optimization, etc
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Background
‣ Performing complex network functions requires multiple 

middlebox resources 

‣ CPU, memory b/w, link b/w
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Figure 1: Normalized resource usage of four middlebox func-
tions implemented in Click: basic forwarding, flow monitoring,
redundancy elimination, and IPSec encryption.

of servers than users, they decide how many resources each user
should get on each server. In contrast, middleboxes require sharing
in time; given a small number of resources (e.g., NICs or CPUs)
that can each process only one packet at a time, the scheduler must
interleave packets to achieve the right resource shares over time.
Achieving DRF allocations in time is challenging, especially doing
so in a memoryless manner, i.e., a flow should not be penalized for
having had a high resource share in the past when fewer flows were
active [24]. This memoryless property is key to guaranteeing that
flows cannot be starved in a work-conserving system.

We design a new queuing algorithm called Dominant Resource
Fair Queuing (DRFQ), which generalizes the concept of virtual
time from classical fair queuing [10, 24] to multiple resources that
are consumed at different rates over time. We evaluate DRFQ using
a Click [22] implementation and simulations, and we show that it
provides better isolation and throughput than existing schemes.

To summarize, our contributions in this work are three-fold:
1. We identify the problem of multi-resource fair queueing, which

is a generalization of traditional single-resource fair queueing.

2. We provide the first analysis of two natural packet scheduling
schemes—bottleneck fairness and per-resource fairness—and
show that they suffer from problems including poor isolation,
oscillations, and manipulation.

3. We propose the first multi-resource queuing algorithm that pro-
vides both share guarantees and strategy-proofness: Dominant
Resource Fair Queuing (DRFQ). DRFQ implements DRF allo-
cations in the time domain.

2. MOTIVATION
Others have observed that middleboxes and software routers can

bottleneck on any of CPU, memory bandwidth, and link bandwidth,
depending on the processing requirements of the traffic. Dreger
et al. report that CPU can be a bottleneck in the Bro intrusion
detection system [13]. They demonstrated that, at times, the CPU
can be overloaded to the extent that each second of incoming traffic
requires 2.5 seconds of CPU processing. Argyraki et al. [8] found
that memory bandwidth can be a bottleneck in software routers,
especially when processing small packets. Finally, link bandwidth
can clearly be a bottleneck for flows that need no processing. For
example, many middleboxes let encrypted SSL flows pass through
without processing.

To confirm and quantify these observations, we measured the re-
source footprints of several canonical middlebox applications im-
plemented in Click [22]. We developed a trace generator that takes
in real traces with full payloads [4] and analyzes the resource con-
sumption of Click modules using the Intel(R) Performance Counter
Monitor API [3]. Figure 1 shows the results for four applications.
Each application’s maximum resource consumption was normal-
ized to 1. We see that the resource consumption varies across mod-

Figure 2: Performing fair sharing based on a single resource
(NIC) fails to meet the share guarantee. In the steady-state pe-
riod from time 2–11, flow 2 only gets a third of each resource.

ules: basic forwarding uses a higher relative fraction of link band-
width than of other resources, redundancy elimination bottlenecks
on memory bandwidth, and IPSec encryption is CPU-bound.

Many middleboxes already perform different functions for dif-
ferent traffic (e.g., HTTP caching for some flows and basic forward-
ing for others), and future software-defined middlebox proposals
suggest consolidating more functions onto the same device [28,
27]. Moreover, further functionality is being incorporated into hard-
ware accelerators [30, 23, 5], increasing the resource diversity of
middleboxes. Thus, packet schedulers for middleboxes will need
to take into account flows’ consumption across multiple resources.

Finally, we believe multi-resource scheduling to be important in
other contexts too. One such example is multi-tenant scheduling
in deep software stacks. For example, a distributed key-value store
might be layered on top of a distributed file system, which in turn
runs over the OS file system. Different layers in this stack can
bottleneck on different resources, and it is desirable to isolate the
resource consumption of different tenants’ requests. Another ex-
ample is virtual machine (VM) scheduling inside a hypervisor. Dif-
ferent VMs might consume different resources, so it is desirable to
fairly multiplex their access to physical resources.

3. BACKGROUND
Designing a packet scheduler for multiple resources turns out to

be non-trivial due to several problems that do not occur with one
resource [16]. In this section, we review these problems and pro-
vide background on the allocation scheme we ultimately build on,
DRF. In addition, given that our goal is to design a packet queuing
algorithm that achieves DRF, we cover background on fair queuing.

3.1 Challenges in Multi-Resource Scheduling
Previous work on DRF identifies several problems that can occur

in multi-resource scheduling and shows that several simple schedul-
ing schemes lack key properties [16].

Share Guarantee: The essential property of fair queuing is isola-
tion. Fair queuing ensures that each of n flows can get a guaranteed
1
n fraction of a resource (e.g., link bandwidth), regardless of the de-
mand of other flows [24].1 Weighted fair queuing generalizes this
concept by assigning a weight wi to each flow and guaranteeing
that flow i can get at least wiP

j2W wj
of the sole resource, where W

is the set of active flows.
We generalize this guarantee to multiple resources as follows:

Share Guarantee. A backlogged flow with weight wi should
get at least wiP

j2W wj
fraction of one of the resources it uses.

1By “flow,” we mean a set of packets defined by a subset of header
fields. Administrators can choose which fields to use based on or-
ganizational policies, e.g., to enforce weighted fair shares across
users (based on IP addresses) or applications (based on ports).
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How to fairly share multiple 
resources among flows?
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Desired Fair Queueing Algorithm
‣ Fairness 

‣ Bounded scheduling delay 

‣ Low complexity
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Dominant Resource Fairness (DRF)
‣ Dominant resource: The resource that requires 

the most processing time 

‣ A packet p requires 1 ms of CPU processing, 
and 3 ms of link transmission 

‣ Link bandwidth is its dominant resource
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‣ Max-min fairness on flow’s processing time of the 
dominant resource 

‣ Flows receive the same processing time on their 
respective dominant resources

Dominant Resource Fairness (DRF)
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Desired Fair Queueing Algorithm
‣ Fairness 

‣ Bounded scheduling delay 

‣ Low complexity

8



Scheduling Delay
‣ Scheduling delay of packet p 

‣ D(p) = t2 - t1 

‣ t1: time when p reaches the head of its queue 

‣ t2: time when p finishes service on all resources
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Bounded Scheduling Delay
‣ Scheduling delay is bounded by a small constant factor 

‣ Inversely proportional to a flow’s weight
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Di(p)  C/wi



Desired Fair Queueing Algorithm
‣ Fairness 

‣ Bounded scheduling delay 

‣ Low complexity
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Low Complexity
‣ Make scheduling decisions at O(1) time 

‣ Independent of the number of flows 

‣ Easy to implement
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The State-of-the-art
‣ Dominant Resource Fair Queueing (DRFQ) [Ghodsi12] 

‣ High complexity O(log n) 

‣ Multi-resource round robin (MR3) [ICNP13] 

‣ O(1) time 

‣ May incur unbounded delay for weighted flows
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We propose Group Multi-
Resource Round Robin (GMR3)
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GMR3

‣ O(1) time 

‣ Bounded scheduling delay 

‣ Near-perfect fairness
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Delay Problem of Multi-Resource Round Robin

‣ Flow 1 weighs 1/2, while flow 2 to 6 each weighs 1/10 

!

!

‣ Flows with large weights are served in a “burst” mode 

‣ Some packets have to wait for an entire round to be 
scheduled

16



An Improvement
‣ Spread the scheduling opportunities over time, in 

proportion to flows’ respective weights 

!

!

‣ Packets do not need to wait for a long round to get 
scheduled
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Flow Grouping
‣ Normalized flow weights 

‣ Flow group k 

!

‣ Flows with approximately the same weights 

‣ A small number of flow groups 

‣ W —
18
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performance guarantees. For now, we focus on the detailed
design in the following subsections.

B. Flow Grouping
Suppose there are n backlogged flows sharing m middlebox

resources. Without loss of generality, let the flow weight wi

be normalized such that
Pn

i=1 wi = 1 .

The scheduler collects flows with similar weights into a flow
group. Specifically, flow group Gk is defined as

Gk = {i : 2�k  wi < 2

�k+1}, k = 1, 2, . . . (3)

Thus, the weights of any two flows belonging to the same flow
group are within a factor of 2 of each other.

Such a grouping strategy leads to a small number of flow
groups ng , bounded by ng  log2 W . As pointed out in [21],
[23], [24], for a practical flow weight distribution, the number
of flow groups ng  40 and can hence be safely assumed as
a small constant. This significantly reduces the complexity of
the inter-group scheduling.

C. Inter-Group Scheduling
The inter-group scheduler determines a flow group to po-

tentially schedule a flow. Each group is associated with a
timestamp, and the one with the earliest timestamp is selected.
With appropriate timestamps, the scheduling opportunities of
a flow group would be weight-proportionally distributed over
time. Given a small number of flow groups ng , the complexity
of sorting the group timestamps is also a small constant
O(log ng). Among various timestamp-based algorithms, we
find that [21] is particularly attractive for multi-resource ex-
tension, due to its simple timestamp computation. Extending
other algorithms (e.g., [23], [24]) to multiple resources would
require referring to the idealized fluid DRGPS model [20],
incurring high complexity.

The scheduler maintains an accounting mechanism con-
sisting of a sequence of virtual slots, indexed by 0, 1, 2,
. . . . Each slot is exclusively assigned to one flow, and is the
scheduling opportunity of this flow. Each flow group Gk is
associated with a set of scheduling rounds each spanning 2

k

contiguous slots. The first scheduling round of flow group
Gk, denoted Rk

1 , starts at slot 0 and ends at slot 2

k � 1,
while the second scheduling round, denoted Rk

2 , starts at
slot 2

k and ends at slot 2

k+1 � 1, and so on. Fig. 4 gives
an example. Note that the scheduling rounds of different
flow groups overlap by design. The scheduler assigns each
backlogged flow i 2 Gk exactly one slot per scheduling round
of flow group Gk. This allows flow i to receive one scheduling
opportunity every 2

k slots, roughly matching the flow’s weight
(i.e., 2

�k  wi < 2

�k+1). The scheduling opportunities of
flows are hence weight-proportionally distributed over time.

Following [21], a flow group is called active if it contains at
least one backlogged flow. A backlogged flow i 2 Gk is called
pending if it has not yet been assigned a slot in the current
scheduling round of Gk. A flow group is called pending if it
contains at least one pending flow.
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Fig. 4. An illustration of the scheduling rounds of flow groups, where Rk
l

denotes the scheduling round l of flow group Gk .
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Fig. 5. An illustration of GMR3 scheduler assigning slots to flows in the
example of Fig. 2, where f l

i denotes the packet processing for flow i 2 Gk
in the scheduling round l of its flow group Gk . The slot axis is only for the
accounting mechanism, while the time axis shows real time elapse.

For every virtual slot t, the inter-group scheduler chooses
among all pending flow groups the one with the earliest
timestamp, defined as the ending slot of the current scheduling
round of that flow group. Ties are broken arbitrarily. From the
selected flow group, the intra-group scheduler then chooses
a pending flow and assigns it the current slot t (with details
to be described in Sec. III-D). A flow temporarily ceases to
be pending once it has been assigned a slot in the current
scheduling round of its flow group, and will become pending
again at the beginning of the next scheduling round, if it
remains backlogged. If no group is pending in slot t, the slot is
skipped. Algorithm 1 summarizes this inter-group scheduling
process.

Algorithm 1 InterGroupScheduling
1: t = 0
2: P = {flow groups that are pending in slot 0}
3: while TRUE do
4: Choose Gk 2 P , where Gk has the earliest timestamp
5: IntraGroupScheduling(Gk)
6: P = P �Gk if Gk is no longer pending
7: if P = ; then
8: Keep idle until there is a backlogged flow
9: Advance t to the next slot with pending flows

10: else
11: t = t+ 1
12: end if
13: P = P [ {flow groups that become pending in slot t}
14: end while

Fig. 5 illustrates an example of the inter-group scheduler
assigning slots to flows in the example of Fig. 2, where f l

i

denotes the packet processing for flow i in the scheduling
round l of its flow group. Flow 1 belongs to G1 as its weight
is 1/2, while flows 2 to 6 are grouped to G4 as each of their
weights is 1/10. At slot 0, both G1 and G4 are pending, with
the end of the current scheduling round at slot 1 and slot 15,
respectively. The inter-group scheduler hence picks G1, from
which the intra-group scheduler selects flow 1 as it is the only
backlogged flow in G1. Flow 1 then schedules its packets for
processing and ceases to be pending in the current scheduling
round. As a result, in slot 1, only G4 is pending and flow 2
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performance guarantees. For now, we focus on the detailed
design in the following subsections.

B. Flow Grouping
Suppose there are n backlogged flows sharing m middlebox

resources. Without loss of generality, let the flow weight wi

be normalized such that
Pn

i=1 wi = 1 .

The scheduler collects flows with similar weights into a flow
group. Specifically, flow group Gk is defined as

Gk = {i : 2�k  wi < 2

�k+1}, k = 1, 2, . . . (3)

Thus, the weights of any two flows belonging to the same flow
group are within a factor of 2 of each other.

Such a grouping strategy leads to a small number of flow
groups ng , bounded by ng  log2 W . As pointed out in [21],
[23], [24], for a practical flow weight distribution, the number
of flow groups ng  40 and can hence be safely assumed as
a small constant. This significantly reduces the complexity of
the inter-group scheduling.

C. Inter-Group Scheduling
The inter-group scheduler determines a flow group to po-

tentially schedule a flow. Each group is associated with a
timestamp, and the one with the earliest timestamp is selected.
With appropriate timestamps, the scheduling opportunities of
a flow group would be weight-proportionally distributed over
time. Given a small number of flow groups ng , the complexity
of sorting the group timestamps is also a small constant
O(log ng). Among various timestamp-based algorithms, we
find that [21] is particularly attractive for multi-resource ex-
tension, due to its simple timestamp computation. Extending
other algorithms (e.g., [23], [24]) to multiple resources would
require referring to the idealized fluid DRGPS model [20],
incurring high complexity.

The scheduler maintains an accounting mechanism con-
sisting of a sequence of virtual slots, indexed by 0, 1, 2,
. . . . Each slot is exclusively assigned to one flow, and is the
scheduling opportunity of this flow. Each flow group Gk is
associated with a set of scheduling rounds each spanning 2

k

contiguous slots. The first scheduling round of flow group
Gk, denoted Rk

1 , starts at slot 0 and ends at slot 2

k � 1,
while the second scheduling round, denoted Rk

2 , starts at
slot 2

k and ends at slot 2

k+1 � 1, and so on. Fig. 4 gives
an example. Note that the scheduling rounds of different
flow groups overlap by design. The scheduler assigns each
backlogged flow i 2 Gk exactly one slot per scheduling round
of flow group Gk. This allows flow i to receive one scheduling
opportunity every 2

k slots, roughly matching the flow’s weight
(i.e., 2

�k  wi < 2

�k+1). The scheduling opportunities of
flows are hence weight-proportionally distributed over time.

Following [21], a flow group is called active if it contains at
least one backlogged flow. A backlogged flow i 2 Gk is called
pending if it has not yet been assigned a slot in the current
scheduling round of Gk. A flow group is called pending if it
contains at least one pending flow.
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i denotes the packet processing for flow i 2 Gk
in the scheduling round l of its flow group Gk . The slot axis is only for the
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For every virtual slot t, the inter-group scheduler chooses
among all pending flow groups the one with the earliest
timestamp, defined as the ending slot of the current scheduling
round of that flow group. Ties are broken arbitrarily. From the
selected flow group, the intra-group scheduler then chooses
a pending flow and assigns it the current slot t (with details
to be described in Sec. III-D). A flow temporarily ceases to
be pending once it has been assigned a slot in the current
scheduling round of its flow group, and will become pending
again at the beginning of the next scheduling round, if it
remains backlogged. If no group is pending in slot t, the slot is
skipped. Algorithm 1 summarizes this inter-group scheduling
process.

Algorithm 1 InterGroupScheduling
1: t = 0
2: P = {flow groups that are pending in slot 0}
3: while TRUE do
4: Choose Gk 2 P , where Gk has the earliest timestamp
5: IntraGroupScheduling(Gk)
6: P = P �Gk if Gk is no longer pending
7: if P = ; then
8: Keep idle until there is a backlogged flow
9: Advance t to the next slot with pending flows

10: else
11: t = t+ 1
12: end if
13: P = P [ {flow groups that become pending in slot t}
14: end while

Fig. 5 illustrates an example of the inter-group scheduler
assigning slots to flows in the example of Fig. 2, where f l

i

denotes the packet processing for flow i in the scheduling
round l of its flow group. Flow 1 belongs to G1 as its weight
is 1/2, while flows 2 to 6 are grouped to G4 as each of their
weights is 1/10. At slot 0, both G1 and G4 are pending, with
the end of the current scheduling round at slot 1 and slot 15,
respectively. The inter-group scheduler hence picks G1, from
which the intra-group scheduler selects flow 1 as it is the only
backlogged flow in G1. Flow 1 then schedules its packets for
processing and ceases to be pending in the current scheduling
round. As a result, in slot 1, only G4 is pending and flow 2
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performance guarantees. For now, we focus on the detailed
design in the following subsections.
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group. Specifically, flow group Gk is defined as
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Thus, the weights of any two flows belonging to the same flow
group are within a factor of 2 of each other.

Such a grouping strategy leads to a small number of flow
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[23], [24], for a practical flow weight distribution, the number
of flow groups ng  40 and can hence be safely assumed as
a small constant. This significantly reduces the complexity of
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opportunity every 2

k slots, roughly matching the flow’s weight
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For every virtual slot t, the inter-group scheduler chooses
among all pending flow groups the one with the earliest
timestamp, defined as the ending slot of the current scheduling
round of that flow group. Ties are broken arbitrarily. From the
selected flow group, the intra-group scheduler then chooses
a pending flow and assigns it the current slot t (with details
to be described in Sec. III-D). A flow temporarily ceases to
be pending once it has been assigned a slot in the current
scheduling round of its flow group, and will become pending
again at the beginning of the next scheduling round, if it
remains backlogged. If no group is pending in slot t, the slot is
skipped. Algorithm 1 summarizes this inter-group scheduling
process.

Algorithm 1 InterGroupScheduling
1: t = 0
2: P = {flow groups that are pending in slot 0}
3: while TRUE do
4: Choose Gk 2 P , where Gk has the earliest timestamp
5: IntraGroupScheduling(Gk)
6: P = P �Gk if Gk is no longer pending
7: if P = ; then
8: Keep idle until there is a backlogged flow
9: Advance t to the next slot with pending flows

10: else
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13: P = P [ {flow groups that become pending in slot t}
14: end while

Fig. 5 illustrates an example of the inter-group scheduler
assigning slots to flows in the example of Fig. 2, where f l

i

denotes the packet processing for flow i in the scheduling
round l of its flow group. Flow 1 belongs to G1 as its weight
is 1/2, while flows 2 to 6 are grouped to G4 as each of their
weights is 1/10. At slot 0, both G1 and G4 are pending, with
the end of the current scheduling round at slot 1 and slot 15,
respectively. The inter-group scheduler hence picks G1, from
which the intra-group scheduler selects flow 1 as it is the only
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Distributing Scheduling Opportunities
‣ Virtual slot 0, 1, 2, …, each representing a scheduling 

opportunity of a flow 

‣ Each flow i of flow group Gk is assigned to exactly one 
slot every 2k slots, roughly matching its weight
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performance guarantees. For now, we focus on the detailed
design in the following subsections.
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The inter-group scheduler determines a flow group to po-

tentially schedule a flow. Each group is associated with a
timestamp, and the one with the earliest timestamp is selected.
With appropriate timestamps, the scheduling opportunities of
a flow group would be weight-proportionally distributed over
time. Given a small number of flow groups ng , the complexity
of sorting the group timestamps is also a small constant
O(log ng). Among various timestamp-based algorithms, we
find that [21] is particularly attractive for multi-resource ex-
tension, due to its simple timestamp computation. Extending
other algorithms (e.g., [23], [24]) to multiple resources would
require referring to the idealized fluid DRGPS model [20],
incurring high complexity.

The scheduler maintains an accounting mechanism con-
sisting of a sequence of virtual slots, indexed by 0, 1, 2,
. . . . Each slot is exclusively assigned to one flow, and is the
scheduling opportunity of this flow. Each flow group Gk is
associated with a set of scheduling rounds each spanning 2

k

contiguous slots. The first scheduling round of flow group
Gk, denoted Rk

1 , starts at slot 0 and ends at slot 2

k � 1,
while the second scheduling round, denoted Rk

2 , starts at
slot 2

k and ends at slot 2

k+1 � 1, and so on. Fig. 4 gives
an example. Note that the scheduling rounds of different
flow groups overlap by design. The scheduler assigns each
backlogged flow i 2 Gk exactly one slot per scheduling round
of flow group Gk. This allows flow i to receive one scheduling
opportunity every 2

k slots, roughly matching the flow’s weight
(i.e., 2

�k  wi < 2

�k+1). The scheduling opportunities of
flows are hence weight-proportionally distributed over time.

Following [21], a flow group is called active if it contains at
least one backlogged flow. A backlogged flow i 2 Gk is called
pending if it has not yet been assigned a slot in the current
scheduling round of Gk. A flow group is called pending if it
contains at least one pending flow.
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Fig. 4. An illustration of the scheduling rounds of flow groups, where Rk
l

denotes the scheduling round l of flow group Gk .
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Fig. 5. An illustration of GMR3 scheduler assigning slots to flows in the
example of Fig. 2, where f l

i denotes the packet processing for flow i 2 Gk
in the scheduling round l of its flow group Gk . The slot axis is only for the
accounting mechanism, while the time axis shows real time elapse.

For every virtual slot t, the inter-group scheduler chooses
among all pending flow groups the one with the earliest
timestamp, defined as the ending slot of the current scheduling
round of that flow group. Ties are broken arbitrarily. From the
selected flow group, the intra-group scheduler then chooses
a pending flow and assigns it the current slot t (with details
to be described in Sec. III-D). A flow temporarily ceases to
be pending once it has been assigned a slot in the current
scheduling round of its flow group, and will become pending
again at the beginning of the next scheduling round, if it
remains backlogged. If no group is pending in slot t, the slot is
skipped. Algorithm 1 summarizes this inter-group scheduling
process.

Algorithm 1 InterGroupScheduling
1: t = 0
2: P = {flow groups that are pending in slot 0}
3: while TRUE do
4: Choose Gk 2 P , where Gk has the earliest timestamp
5: IntraGroupScheduling(Gk)
6: P = P �Gk if Gk is no longer pending
7: if P = ; then
8: Keep idle until there is a backlogged flow
9: Advance t to the next slot with pending flows

10: else
11: t = t+ 1
12: end if
13: P = P [ {flow groups that become pending in slot t}
14: end while

Fig. 5 illustrates an example of the inter-group scheduler
assigning slots to flows in the example of Fig. 2, where f l

i

denotes the packet processing for flow i in the scheduling
round l of its flow group. Flow 1 belongs to G1 as its weight
is 1/2, while flows 2 to 6 are grouped to G4 as each of their
weights is 1/10. At slot 0, both G1 and G4 are pending, with
the end of the current scheduling round at slot 1 and slot 15,
respectively. The inter-group scheduler hence picks G1, from
which the intra-group scheduler selects flow 1 as it is the only
backlogged flow in G1. Flow 1 then schedules its packets for
processing and ceases to be pending in the current scheduling
round. As a result, in slot 1, only G4 is pending and flow 2



An example
‣ Flow group G1 — flow 1 (weight = 1/2)           

‣ Flow group G4 — flow 2 to 6 (weight = 1/10)
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Fine tune the dominant service a flow 
receives at each scheduling opportunity
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Credit System
‣ Each flow maintains a credit account 

‣ Credit balance represents the deserved dominant 
service in the current round 

‣ Deposit credits upon a scheduling opportunity 

‣ Withdraw credits at the end of a scheduling opportunity 

‣ credits = the dominant services received due to this 
scheduling opportunity

22



Depositing Credits
‣ Flow i belonging to flow group Gk: 

‣ Credits deposited upon a scheduling opportunity 

!

‣ L — Maximum packet processing time 

‣ Roughly the same amount of credits
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is assigned the slot. Flow 1 becomes pending again in slot 2
as a new scheduling round of its flow group G1 starts, and is
selected for the similar reason as in slot 0. Flow groups G1 and
G4 are hence selected alternately in the following slots until
all flows of G4 are assigned slots and cease to be pending.
Note that slots 11, 13, and 15 are not shown in Fig. 5 as no
flow is pending in these slots, and are hence skipped by the
scheduler.

Unlike single-resource scheduling [21], in the multi-
resource environment, a flow may not receive dominant ser-
vices in its assigned slots. For example, in Fig. 5, flow 1
is assigned slot 0, but receives dominant services (i.e., link
transmission) later in slot 1. Flow 2, on the other hand,
always receives dominant services (i.e., CPU processing) in
its assigned slots. Without appropriate control, the potential
service asynchronicity may lead to a significant work progress
gap between two resources, resulting in poor fairness and long
scheduling delay. We show in the next subsection that this
problem is effectively solved by the intra-group scheduler.

D. Intra-Group Scheduling
Once the flow group is determined, the intra-group sched-

uler chooses a pending flow from that group in a round-robin
manner. Compared to round robin for bandwidth sharing (e.g.,,
[5], [22], [26], [28], [21], [23], [24]), the intra-group scheduler
operates with two important differences. First, for the purpose
of DRF, the scheduler maintains a credit system to keep track
of the dominant services a flow receives, not the amount of
bits a flow transmits. Second, the scheduler employs a progress
control mechanism to reinforce a relatively consistent work
progress across resources, so as to eliminate the adverse effects
caused by the aforementioned service asynchronicity.

Credit System: Every time a flow i is assigned a slot, it
receives a credit ci (whose size is given in (4) below), which
is the time given to the flow for packet processing on its
dominant resource in the current scheduling round. As long
as there are available credits, flow i is allowed to schedule a
packet for processing, and the corresponding packet processing
time on the dominant resource is deducted from its total credit.
A flow i can overdraw the processing time by scheduling at
most one more packet than those allowed by the available
credits. The excessive consumption of dominant services is
tracked by the excess counter ei, and will be deducted from
the credit given in the next scheduling round as a penalty of
overconsumption.

While MR3 adopts a similar credit system in its design [17],
the intra-group scheduler of GMR3 operates with an important
difference. Every time a flow i is assigned a slot, instead of
receiving an elastic amount of credits in different rounds, it is
given a fixed-size credit that is proportional to its weight wi.
Specifically, for flow i 2 Gk, the given credit ci is

ci = 2

kLwi , (4)

where L is the maximum packet processing time. The moti-
vation for defining credit in this manner is two-fold.

To begin with, even if two flows i, j belong to the same
group Gk, flow i’s weight wi may be up to twice as large as

wj . Despite their weight difference, both flows are assigned
exactly 1 slot per scheduling round of Gk. Therefore, to ensure
weight-proportional dominant services, the given credits as
shown in (4) are proportional to their respective weights.

Moreover, for each flow i 2 Gk, since 2

�k  wi < 2

�k+1,
the scaling factor 2kL in (4) ensures that

L  ci < 2L . (5)

Because the given credits are larger than the maximum packet
processing time, they can always compensate for the over-
consumption of dominant service flow i incurs in the previous
scheduling round. As a result, flow i will always have available
credits when assigned a slot, and can schedule at least one
packet. In addition, by (5), the given credits are roughly the
same across all flow groups. This is significant as flow i 2 Gk

is already assigned slots in proportion to its approximate
weight 2�k, so that in each slot, the scheduler should allocate
all flows approximately the same dominant services.

Progress Control Mechanism: In addition to the credit
system, the scheduler also employs a progress control mecha-
nism to reinforce a relatively consistent processing rate across
resources. Specifically, whenever a flow i 2 Gk is assigned
a slot t in the scheduling round l of Gk, the scheduler
checks the work progress on the last resource (usually the
link bandwidth). If flow i has already received services on the
last resource in the previous scheduling round l � 1, or flow
i is a new arrival, then its packet is scheduled immediately.
Otherwise, the scheduler defers packet scheduling until flow
i starts to receive service on the last resource in the previous
scheduling round l�1 of Gk. For example, as shown in Fig. 5,
in slot 12, the packet processing for flow 1 (i.e., f7

1 ) is withheld
in round 7 until the packet processed in round 6 (i.e., f6

1 )
starts transmission. Similar deferral has also been shown in
slots 14 and 16. Intuitively, this progress control mechanism
ensures that the work progress on one resource is not ahead
of that on the other by more than 1 round, hence achieving
an approximately consistent processing rate across resources,
in spite of the potential service asynchronicity. This progress
control mechanism is essential to deriving the constant delay
bound of GMR3, as shown in our analysis in Sec. IV.

To summarize, Algorithm 2 gives detailed design of the
intra-group scheduling. Every flow group Gk maitains an
ActiveFlowList[k] for its backlogged flows. It also uses
RoundRobinCounter[k] and Round[k] to keep track of the cur-
rent scheduling round. Every time flow group Gk is selected,
the intra-group scheduler chooses flow i 2 Gk at the head
of ActiveFlowList[k]. Flow i is given a credit to compensate
for its overdraft in the previous round, and schedule packets
until no credit remains or no packet is backlogged (line 6 to
15). After that, the flow ceases to be pending and is appended
to the tail of the active list if it remains backlogged. Flow
group Gk ceases to be pending when all its backlogged flows
are serviced in the current scheduling round. If no flow is
backlogged, flow group Gk becomes inactive.

E. Handling New Packet Arrivals
In addition to determining the packet scheduling order,

GMR3 scheduler also needs to handle new packet arrivals.
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is assigned the slot. Flow 1 becomes pending again in slot 2
as a new scheduling round of its flow group G1 starts, and is
selected for the similar reason as in slot 0. Flow groups G1 and
G4 are hence selected alternately in the following slots until
all flows of G4 are assigned slots and cease to be pending.
Note that slots 11, 13, and 15 are not shown in Fig. 5 as no
flow is pending in these slots, and are hence skipped by the
scheduler.

Unlike single-resource scheduling [21], in the multi-
resource environment, a flow may not receive dominant ser-
vices in its assigned slots. For example, in Fig. 5, flow 1
is assigned slot 0, but receives dominant services (i.e., link
transmission) later in slot 1. Flow 2, on the other hand,
always receives dominant services (i.e., CPU processing) in
its assigned slots. Without appropriate control, the potential
service asynchronicity may lead to a significant work progress
gap between two resources, resulting in poor fairness and long
scheduling delay. We show in the next subsection that this
problem is effectively solved by the intra-group scheduler.

D. Intra-Group Scheduling
Once the flow group is determined, the intra-group sched-

uler chooses a pending flow from that group in a round-robin
manner. Compared to round robin for bandwidth sharing (e.g.,,
[5], [22], [26], [28], [21], [23], [24]), the intra-group scheduler
operates with two important differences. First, for the purpose
of DRF, the scheduler maintains a credit system to keep track
of the dominant services a flow receives, not the amount of
bits a flow transmits. Second, the scheduler employs a progress
control mechanism to reinforce a relatively consistent work
progress across resources, so as to eliminate the adverse effects
caused by the aforementioned service asynchronicity.

Credit System: Every time a flow i is assigned a slot, it
receives a credit ci (whose size is given in (4) below), which
is the time given to the flow for packet processing on its
dominant resource in the current scheduling round. As long
as there are available credits, flow i is allowed to schedule a
packet for processing, and the corresponding packet processing
time on the dominant resource is deducted from its total credit.
A flow i can overdraw the processing time by scheduling at
most one more packet than those allowed by the available
credits. The excessive consumption of dominant services is
tracked by the excess counter ei, and will be deducted from
the credit given in the next scheduling round as a penalty of
overconsumption.

While MR3 adopts a similar credit system in its design [17],
the intra-group scheduler of GMR3 operates with an important
difference. Every time a flow i is assigned a slot, instead of
receiving an elastic amount of credits in different rounds, it is
given a fixed-size credit that is proportional to its weight wi.
Specifically, for flow i 2 Gk, the given credit ci is

ci = 2

kLwi , (4)

where L is the maximum packet processing time. The moti-
vation for defining credit in this manner is two-fold.

To begin with, even if two flows i, j belong to the same
group Gk, flow i’s weight wi may be up to twice as large as

wj . Despite their weight difference, both flows are assigned
exactly 1 slot per scheduling round of Gk. Therefore, to ensure
weight-proportional dominant services, the given credits as
shown in (4) are proportional to their respective weights.

Moreover, for each flow i 2 Gk, since 2

�k  wi < 2

�k+1,
the scaling factor 2kL in (4) ensures that

L  ci < 2L . (5)

Because the given credits are larger than the maximum packet
processing time, they can always compensate for the over-
consumption of dominant service flow i incurs in the previous
scheduling round. As a result, flow i will always have available
credits when assigned a slot, and can schedule at least one
packet. In addition, by (5), the given credits are roughly the
same across all flow groups. This is significant as flow i 2 Gk

is already assigned slots in proportion to its approximate
weight 2�k, so that in each slot, the scheduler should allocate
all flows approximately the same dominant services.

Progress Control Mechanism: In addition to the credit
system, the scheduler also employs a progress control mecha-
nism to reinforce a relatively consistent processing rate across
resources. Specifically, whenever a flow i 2 Gk is assigned
a slot t in the scheduling round l of Gk, the scheduler
checks the work progress on the last resource (usually the
link bandwidth). If flow i has already received services on the
last resource in the previous scheduling round l � 1, or flow
i is a new arrival, then its packet is scheduled immediately.
Otherwise, the scheduler defers packet scheduling until flow
i starts to receive service on the last resource in the previous
scheduling round l�1 of Gk. For example, as shown in Fig. 5,
in slot 12, the packet processing for flow 1 (i.e., f7

1 ) is withheld
in round 7 until the packet processed in round 6 (i.e., f6

1 )
starts transmission. Similar deferral has also been shown in
slots 14 and 16. Intuitively, this progress control mechanism
ensures that the work progress on one resource is not ahead
of that on the other by more than 1 round, hence achieving
an approximately consistent processing rate across resources,
in spite of the potential service asynchronicity. This progress
control mechanism is essential to deriving the constant delay
bound of GMR3, as shown in our analysis in Sec. IV.

To summarize, Algorithm 2 gives detailed design of the
intra-group scheduling. Every flow group Gk maitains an
ActiveFlowList[k] for its backlogged flows. It also uses
RoundRobinCounter[k] and Round[k] to keep track of the cur-
rent scheduling round. Every time flow group Gk is selected,
the intra-group scheduler chooses flow i 2 Gk at the head
of ActiveFlowList[k]. Flow i is given a credit to compensate
for its overdraft in the previous round, and schedule packets
until no credit remains or no packet is backlogged (line 6 to
15). After that, the flow ceases to be pending and is appended
to the tail of the active list if it remains backlogged. Flow
group Gk ceases to be pending when all its backlogged flows
are serviced in the current scheduling round. If no flow is
backlogged, flow group Gk becomes inactive.

E. Handling New Packet Arrivals
In addition to determining the packet scheduling order,

GMR3 scheduler also needs to handle new packet arrivals.
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is assigned the slot. Flow 1 becomes pending again in slot 2
as a new scheduling round of its flow group G1 starts, and is
selected for the similar reason as in slot 0. Flow groups G1 and
G4 are hence selected alternately in the following slots until
all flows of G4 are assigned slots and cease to be pending.
Note that slots 11, 13, and 15 are not shown in Fig. 5 as no
flow is pending in these slots, and are hence skipped by the
scheduler.

Unlike single-resource scheduling [21], in the multi-
resource environment, a flow may not receive dominant ser-
vices in its assigned slots. For example, in Fig. 5, flow 1
is assigned slot 0, but receives dominant services (i.e., link
transmission) later in slot 1. Flow 2, on the other hand,
always receives dominant services (i.e., CPU processing) in
its assigned slots. Without appropriate control, the potential
service asynchronicity may lead to a significant work progress
gap between two resources, resulting in poor fairness and long
scheduling delay. We show in the next subsection that this
problem is effectively solved by the intra-group scheduler.

D. Intra-Group Scheduling
Once the flow group is determined, the intra-group sched-

uler chooses a pending flow from that group in a round-robin
manner. Compared to round robin for bandwidth sharing (e.g.,,
[5], [22], [26], [28], [21], [23], [24]), the intra-group scheduler
operates with two important differences. First, for the purpose
of DRF, the scheduler maintains a credit system to keep track
of the dominant services a flow receives, not the amount of
bits a flow transmits. Second, the scheduler employs a progress
control mechanism to reinforce a relatively consistent work
progress across resources, so as to eliminate the adverse effects
caused by the aforementioned service asynchronicity.

Credit System: Every time a flow i is assigned a slot, it
receives a credit ci (whose size is given in (4) below), which
is the time given to the flow for packet processing on its
dominant resource in the current scheduling round. As long
as there are available credits, flow i is allowed to schedule a
packet for processing, and the corresponding packet processing
time on the dominant resource is deducted from its total credit.
A flow i can overdraw the processing time by scheduling at
most one more packet than those allowed by the available
credits. The excessive consumption of dominant services is
tracked by the excess counter ei, and will be deducted from
the credit given in the next scheduling round as a penalty of
overconsumption.

While MR3 adopts a similar credit system in its design [17],
the intra-group scheduler of GMR3 operates with an important
difference. Every time a flow i is assigned a slot, instead of
receiving an elastic amount of credits in different rounds, it is
given a fixed-size credit that is proportional to its weight wi.
Specifically, for flow i 2 Gk, the given credit ci is

ci = 2

kLwi , (4)

where L is the maximum packet processing time. The moti-
vation for defining credit in this manner is two-fold.

To begin with, even if two flows i, j belong to the same
group Gk, flow i’s weight wi may be up to twice as large as

wj . Despite their weight difference, both flows are assigned
exactly 1 slot per scheduling round of Gk. Therefore, to ensure
weight-proportional dominant services, the given credits as
shown in (4) are proportional to their respective weights.

Moreover, for each flow i 2 Gk, since 2

�k  wi < 2

�k+1,
the scaling factor 2kL in (4) ensures that

L  ci < 2L . (5)

Because the given credits are larger than the maximum packet
processing time, they can always compensate for the over-
consumption of dominant service flow i incurs in the previous
scheduling round. As a result, flow i will always have available
credits when assigned a slot, and can schedule at least one
packet. In addition, by (5), the given credits are roughly the
same across all flow groups. This is significant as flow i 2 Gk

is already assigned slots in proportion to its approximate
weight 2�k, so that in each slot, the scheduler should allocate
all flows approximately the same dominant services.

Progress Control Mechanism: In addition to the credit
system, the scheduler also employs a progress control mecha-
nism to reinforce a relatively consistent processing rate across
resources. Specifically, whenever a flow i 2 Gk is assigned
a slot t in the scheduling round l of Gk, the scheduler
checks the work progress on the last resource (usually the
link bandwidth). If flow i has already received services on the
last resource in the previous scheduling round l � 1, or flow
i is a new arrival, then its packet is scheduled immediately.
Otherwise, the scheduler defers packet scheduling until flow
i starts to receive service on the last resource in the previous
scheduling round l�1 of Gk. For example, as shown in Fig. 5,
in slot 12, the packet processing for flow 1 (i.e., f7

1 ) is withheld
in round 7 until the packet processed in round 6 (i.e., f6

1 )
starts transmission. Similar deferral has also been shown in
slots 14 and 16. Intuitively, this progress control mechanism
ensures that the work progress on one resource is not ahead
of that on the other by more than 1 round, hence achieving
an approximately consistent processing rate across resources,
in spite of the potential service asynchronicity. This progress
control mechanism is essential to deriving the constant delay
bound of GMR3, as shown in our analysis in Sec. IV.

To summarize, Algorithm 2 gives detailed design of the
intra-group scheduling. Every flow group Gk maitains an
ActiveFlowList[k] for its backlogged flows. It also uses
RoundRobinCounter[k] and Round[k] to keep track of the cur-
rent scheduling round. Every time flow group Gk is selected,
the intra-group scheduler chooses flow i 2 Gk at the head
of ActiveFlowList[k]. Flow i is given a credit to compensate
for its overdraft in the previous round, and schedule packets
until no credit remains or no packet is backlogged (line 6 to
15). After that, the flow ceases to be pending and is appended
to the tail of the active list if it remains backlogged. Flow
group Gk ceases to be pending when all its backlogged flows
are serviced in the current scheduling round. If no flow is
backlogged, flow group Gk becomes inactive.

E. Handling New Packet Arrivals
In addition to determining the packet scheduling order,

GMR3 scheduler also needs to handle new packet arrivals.



Potential Progress Gap
!

!

‣ A flow may not receive dominant services in the assigned 
virtual slot 

‣ Potential progress gap may lead to arbitrary unfairness
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Progress Control Mechanism
‣ Enforce roughly consistent progress across all resources 

‣ Upon the kth scheduling opportunity, defer flow i’s service 
until it has already received service on the last resource 
due to the previous opportunity (k-1) 

‣ Work progress on any two resources will not differ too 
much
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Two-Level Hierarchical Scheduling
‣ Combine flows with similar weights into a flow group 

‣ Inter-group scheduling — determine which flow group to 
choose 

‣ Intra-group scheduling — determine which flow to 
choose from the selected flow group 

‣ Round robin 

‣ Credit system + Progress control mechanism
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Performance Analysis
‣ n — # of flows                  m — # of resources 

‣ W —                                L — Max pkt proc time
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Fig. 7. The illustration of a scenario where the scheduling delay D(P )

reaches the maximum. Here, f l
i denotes the processing of flow i in scheduling

round l of its flow group.

i must have already received its packet processing on the last
resource m in round l � 1 of Gk. Because there are at most
2

k+1 slots assigned to flows in round l � 1 and l of Gk, and
each slot is assigned to at most one flow, the number of flows
served on the last resource in (t1, t2), denoted nf , is upper
bounded by 2

k+1. Let these flows be j1, . . . , jnf , operating
in their respective scheduling rounds l1, . . . , lnf on the last
resource. In particular, jnf = i and lnf = l. By Algorithm 2,
flow j1 starts service on resource 1 in round l1 no later than
the time its previous flow i finishes being processed on the last
resource m in round l�1, which is no later than t0. Therefore,
flow j1 finishes being processed on the last resource in round
l1 no later than

t0 +mdl1j1  t0 + 3Lm , (15)

where the inequality is derived from Lemma 2. Similarly, flow
j2 starts its service on resource 1 in round l2 no later than the
time its previous flow j1 finishes being processed on the last
resource m in round l1, which is t0 + 3Lm by (15). As a
result, flow j2 finishes being processed on the last resource in
round l2 no later than

t0 + 3Lm+mdl2j2  t0 + 6Lm .

In general, flow jk finishes being processed on the last
resource in round lk no later than

t0 + 3kLm .

Now letting k = nf and noting that nf  2

k+1, we have

t1 � t0  3nfLm

 3Lm2

k+1

 12mL/wi ,

where the last inequality holds because 2

�k  wi < 2

�k+1,
which implies 2

k+1  4/wi.
We now bound the scheduling delay of GMR3 as follows.
Theorem 3: For all flow i, the scheduling delay of its packet

P is bounded by

D(P ) < 24mL/wi ,

where m is the number of resources.
Proof: For any flow i 2 Gk, the scheduling delay of its

packet P reaches its maximum when P reaches the head of
the queue in scheduling round l of Gk, but is processed in
the next round l + 1. Since there are at most 2

k+1 slots in
between and each slot is assigned to one flow, the number of
flows served during this time, nf , is upper bounded by 2

k+1.

TABLE I
SUMMARY OF PERFORMANCE OF GMR3 AND EXISTING SCHEMES, WHERE
n IS THE NUMBER OF FLOWS, AND m IS THE NUMBER OF RESOURCES.

Scheme Complexity Fairness1 Scheduling Delay
DRFQ [10] O(logn) L(1/wi + 1/wj) Unknown
MR3 [17] O(1) 2L(1/wi + 1/wj) 4(m+W )

2L/wi

GMR3 O(1) 9L(1/wi + 1/wj) 24mL/wi

Let these flows be j1, . . . , jnf , operating in their respective
current scheduling rounds l1, . . . , lnf . In particular, jnf = i
and lnf = l + 1. By Algorithm 2, flow j1 starts service on
resource 1 no later than the time its previous flow i finishes
being processed on the last resource m in round l. Similarly,
flow j2 starts its service on resource 1 no later than the time its
previous flow j1 finishes being processed on the last resource
m in round l1, and so on. Fig. 7 illustrates this scenario, where
tz is the latest time flow jz receives service on resource 1 in
round lz of its flow group, z = 1, 2, . . . . We then have

tz+1 � tz  mdlzjz  3Lm, z = 1, 2, . . . , (16)

where the second inequality is derived from Lemma 2. In other
words, the time span of processing flow jz on all resources
in round lz reaches its maximum when the processing time is
maximized on every resource.

Now let t0 be the time when packet P reaches the head of
the queue in scheduling round l of its flow group, which is
also the time when flow i finishes being processed on resource
1 in round l (see Fig. 7). By Lemma 3, we have

t1 � t0  12mL/wi . (17)

With (16) and (17), we bound the delay D(P ) as follows:

D(P ) 
Pnf

z=1(tz � tz�1)

< 12mL/wi + 3Lmnf

 12mL/wi + 3Lm2

k+1

 24mL/wi ,

where the last inequality holds because 2

�k  wi < 2

�k+1,
which implies 2

k+1  4/wi.
Theorem 3 gives a strictly weight-proportional scheduling

delay bound that is independent of the number of flows. This
implies that a flow is guaranteed to be scheduled within a
small constant amount of time that is inversely proportional
to the processing rate (weight) the flow deserves, irrespective
of the behaviours of other flows. To our knowledge, this is the
first multi-resource packet scheduler that offers this property.

To conclude, Table I compares the performance of GMR3

with DRFQ [10] and MR3 [17]. We see that GMR3 is the only
scheduler that provides provably good performance guarantees
on fairness, delay, and complexity.

V. SIMULATION RESULTS

For complementary study to our theoretical analysis, we
experimentally evaluate the fairness and delay performance of
GMR3 via simulations.

1The fairness analysis of DRFQ and MR3 requires that flows do not change
their dominant resources throughout the backlogged periods [10], [17].

max

i
wi/min

j
wj
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Fig. 8. Simulation results of the fairness and delay performance of GMR3, as compared to DRFQ and MR3. Figure (a) dedicates to the fairness evaluation,
while (b), (c), and (d) compare the scheduling delay of the three schedulers.
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APPENDIX

In this section, we analyze the scheduling delay of MR3

for flows with uneven weights. Following [17], let Dk
i be the

dominant service flow i receives in round k under MR3. The
following lemma is easy to obtain.

Lemma 4: Under MR3, for all flow i and round k, we have

Dk
i  (1 +W )L .

With Lemma 4, one can easily extend the delay analysis of
MR3 (Theorem 4 in [17]) to the case of uneven flow weights
as follows.

Lemma 5: Under MR3, for any packet P , the scheduling
delay D(P ) is bounded by

D(P )  (4m+ 4n� 2)(1 +W )L .

We are now ready to prove Theorem 1.
Proof of Theorem 1: Without loss of generality, assume

flow weights are normalized such that
nX

j=1

wj = 1 .

Dividing both sides by wi and noting that wj/wi � 1/W , we
have

n  W/wi . (18)

By Lemma 5 and (18), we derive

D(P ) < 4(m+ n)(1 +W )L

 4(m+W/wi)(1 +W )L

 4(m+W )(1 +W )L/wi (19)
 4(m+W )

2L/wi , (20)

where (19) holds because wi  1, while (20) holds because
m � 1.
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Fig. 8. Simulation results of the fairness and delay performance of GMR3, as compared to DRFQ and MR3. Figure (a) dedicates to the fairness evaluation,
while (b), (c), and (d) compare the scheduling delay of the three schedulers.
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Conclusions
‣ GMR3, a two-level hierarchical scheduling algorithm 

‣ The first multi-resource fair queueing of 

‣ O(1) complexity 

‣ near-perfect fairness 

‣ bounded scheduling delay
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