
On Fairness-Efficiency Tradeoffs for
Multi-Resource Packet Processing

Wei Wang, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
July 8, 2013

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Background

Middleboxes (MBs) are ubiquitous in datacenter networks

The sheer number is on par with the L2/L3 infrastructures

Perform a wide range of critical network functionalities

WAN optimization, intrusion detection and prevention, etc.

2

Private
Network

Public
Network

Middleboxes
(Packet filter,

NAT)

Servers

Users

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Multi-resource packet processing in MBs

Performing different network functionalities requires different
amounts of MB resources

3

Figure 1: Normalized resource usage of four middlebox func-
tions implemented in Click: basic forwarding, flow monitoring,
redundancy elimination, and IPSec encryption.

of servers than users, they decide how many resources each user
should get on each server. In contrast, middleboxes require sharing
in time; given a small number of resources (e.g., NICs or CPUs)
that can each process only one packet at a time, the scheduler must
interleave packets to achieve the right resource shares over time.
Achieving DRF allocations in time is challenging, especially doing
so in a memoryless manner, i.e., a flow should not be penalized for
having had a high resource share in the past when fewer flows were
active [24]. This memoryless property is key to guaranteeing that
flows cannot be starved in a work-conserving system.

We design a new queuing algorithm called Dominant Resource
Fair Queuing (DRFQ), which generalizes the concept of virtual
time from classical fair queuing [10, 24] to multiple resources that
are consumed at different rates over time. We evaluate DRFQ using
a Click [22] implementation and simulations, and we show that it
provides better isolation and throughput than existing schemes.

To summarize, our contributions in this work are three-fold:
1. We identify the problem of multi-resource fair queueing, which

is a generalization of traditional single-resource fair queueing.

2. We provide the first analysis of two natural packet scheduling
schemes—bottleneck fairness and per-resource fairness—and
show that they suffer from problems including poor isolation,
oscillations, and manipulation.

3. We propose the first multi-resource queuing algorithm that pro-
vides both share guarantees and strategy-proofness: Dominant
Resource Fair Queuing (DRFQ). DRFQ implements DRF allo-
cations in the time domain.

2. MOTIVATION
Others have observed that middleboxes and software routers can

bottleneck on any of CPU, memory bandwidth, and link bandwidth,
depending on the processing requirements of the traffic. Dreger
et al. report that CPU can be a bottleneck in the Bro intrusion
detection system [13]. They demonstrated that, at times, the CPU
can be overloaded to the extent that each second of incoming traffic
requires 2.5 seconds of CPU processing. Argyraki et al. [8] found
that memory bandwidth can be a bottleneck in software routers,
especially when processing small packets. Finally, link bandwidth
can clearly be a bottleneck for flows that need no processing. For
example, many middleboxes let encrypted SSL flows pass through
without processing.

To confirm and quantify these observations, we measured the re-
source footprints of several canonical middlebox applications im-
plemented in Click [22]. We developed a trace generator that takes
in real traces with full payloads [4] and analyzes the resource con-
sumption of Click modules using the Intel(R) Performance Counter
Monitor API [3]. Figure 1 shows the results for four applications.
Each application’s maximum resource consumption was normal-
ized to 1. We see that the resource consumption varies across mod-

Figure 2: Performing fair sharing based on a single resource
(NIC) fails to meet the share guarantee. In the steady-state pe-
riod from time 2–11, flow 2 only gets a third of each resource.

ules: basic forwarding uses a higher relative fraction of link band-
width than of other resources, redundancy elimination bottlenecks
on memory bandwidth, and IPSec encryption is CPU-bound.

Many middleboxes already perform different functions for dif-
ferent traffic (e.g., HTTP caching for some flows and basic forward-
ing for others), and future software-defined middlebox proposals
suggest consolidating more functions onto the same device [28,
27]. Moreover, further functionality is being incorporated into hard-
ware accelerators [30, 23, 5], increasing the resource diversity of
middleboxes. Thus, packet schedulers for middleboxes will need
to take into account flows’ consumption across multiple resources.

Finally, we believe multi-resource scheduling to be important in
other contexts too. One such example is multi-tenant scheduling
in deep software stacks. For example, a distributed key-value store
might be layered on top of a distributed file system, which in turn
runs over the OS file system. Different layers in this stack can
bottleneck on different resources, and it is desirable to isolate the
resource consumption of different tenants’ requests. Another ex-
ample is virtual machine (VM) scheduling inside a hypervisor. Dif-
ferent VMs might consume different resources, so it is desirable to
fairly multiplex their access to physical resources.

3. BACKGROUND
Designing a packet scheduler for multiple resources turns out to

be non-trivial due to several problems that do not occur with one
resource [16]. In this section, we review these problems and pro-
vide background on the allocation scheme we ultimately build on,
DRF. In addition, given that our goal is to design a packet queuing
algorithm that achieves DRF, we cover background on fair queuing.

3.1 Challenges in Multi-Resource Scheduling
Previous work on DRF identifies several problems that can occur

in multi-resource scheduling and shows that several simple schedul-
ing schemes lack key properties [16].

Share Guarantee: The essential property of fair queuing is isola-
tion. Fair queuing ensures that each of n flows can get a guaranteed
1
n fraction of a resource (e.g., link bandwidth), regardless of the de-
mand of other flows [24].1 Weighted fair queuing generalizes this
concept by assigning a weight wi to each flow and guaranteeing
that flow i can get at least wiP

j2W wj
of the sole resource, where W

is the set of active flows.
We generalize this guarantee to multiple resources as follows:

Share Guarantee. A backlogged flow with weight wi should
get at least wiP

j2W wj
fraction of one of the resources it uses.

1By “flow,” we mean a set of packets defined by a subset of header
fields. Administrators can choose which fields to use based on or-
ganizational policies, e.g., to enforce weighted fair shares across
users (based on IP addresses) or applications (based on ports).

2

Ghodsi et al SIGCOMM12

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

How to schedule traffic
#ows in a fair and
efficient manner?

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Fairness and efficiency

Dominant Resource Fairness

Offer predictable service isolation
Such service isolation is independent of other "ows’ behaviours

Efficiency

Flows should #nish their services as fast as possible
High resource utilization

Ideally, we would like to have a scheduling algorithm that is
both fair and efficient

5

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

However...

Achieving both fairness and efficiency may not be possible
when multiple resources are to be scheduled

There exists a fairness-efficiency tradeoff

6

On Fairness-Efficiency Tradeoffs for
Multi-Resource Packet Processing

Wei Wang, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Middleboxes are widely deployed in today’s data-
center networks. They perform a variety of network functions,
each requiring multiple hardware resources, such as CPU cycles
and link bandwidth. Depending on the functions they go through,
packet processing of different traffic flows may consume a vastly
different amount of hardware resources. An effective algorithm
is therefore highly desired to schedule packets in a way such
that multiple resources are shared in a fair and efficient manner.
However, we show in this paper that there exists a fairness-
efficiency tradeoff when multiple resources are scheduled. Such
a tradeoff has never been a problem for traditional single-
resource fair queueing (e.g., GPS, WFQ, SCFQ, DRR) — as
long as the queueing schemes are work conserving, both fairness
and efficiency can be achieved simultaneously — and hence has
received little attention. Therefore, a new and important research
problem arises: given a desired fairness-efficiency tradeoff, how
can we design a packet scheduling algorithm to reinforce such
a tradeoff? We present our thoughts and observations in this
paper.

I. INTRODUCTION

Middleboxes have found widespread adoption in today’s
enterprise and datacenter networks. According to [1], [2], the
sheer number of middleboxes deployed is already comparable
to the traditional L2/L3 infrastructures. These middleboxes
perform a wide range of important network functions, such
as WAN optimization, intrusion detection, and firewalls at the
network or application layers.

Unlike basic forwarding, most network functions performed
by middleboxes require deep packet processing based on the
packet contents, and hence consume a variety of hardware
resources, e.g., CPU, memory bandwidth, and link bandwidth.
Packet processing for these middlebox functions differs signif-
icantly in terms of the amount of hardware resources required.
For example, forwarding a large amount of small packets
via software routers congests the memory bandwidth [3].
The intrusion detection system, on the other hand, usually
suffers bottlenecks on the CPU, as packets of external traffic
flows need to be analyzed before being sent to the internal
destinations. In general, depending on the network functions
they go through, different traffic flows may require vastly
different types and amounts of middlebox resources [4].

Having heterogeneous resource requirements among traffic
flows significantly complicates resource scheduling in mid-
dleboxes. It is highly desirable to have a queueing algorithm
to schedule packets in a way such that multiple middlebox
resources (e.g., CPU and link bandwidth) are shared among
flows in a fair and efficient manner. By “fair” we mean that
each flow should receive predictable service isolation that

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8 P9

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8

CPU

Link

...

...

Time0 6 8 12 14 182 4 10 16

(a) Packet scheduling that is efficient yet unfair.

P1 P2 Q1 P3 Q2P4 P5 Q3P6

P1 ...

...

P1 P2 P3Q1

...

P4 P5Q2 P6 P7Q3CPU

Link
Time0 6 8 12 14 182 4 10 16

(b) Packet scheduling that is fair yet inefficient.

Fig. 1. The tradeoff between fairness and efficiency when multi-
ple resources are scheduled. Flow 1 sends P1, P2, ..., each requiring
h1 CPU time, 2 Transmission timei. Flow 2 sends Q1, Q2, ..., each requiring
h4 CPU time, 1 Transmission timei.

is independent of others’ demand. By “efficient” we mean
that flows should finish their services as fast as possible with
maximum resource utilization.

However, achieving both fairness and efficiency at the same
time may not be possible when multiple resources are to be
scheduled. In fact, there may exist a tradeoff between the
scheduling fairness and the scheduling efficiency. Consider the
following example. Suppose there are two traffic flows that
keep sending packets. Packets of Flow 1, denoted by P1, P2,
..., need basic forwarding only. Each of them requires 1 time
unit for CPU processing and 2 time units for link transmission.
Packets of Flow 2 (denoted by Q1, Q2, ...), on the other hand,
need encryption before transmission, each requiring 4 time
units for CPU processing and 1 time unit for link transmission.
Fig. 1a illustrates a schedule with the maximum resource
utilizations on both CPU and link bandwidth. As we will see
later in Sec. II, this schedule, though highly efficient, allocates
too much resource to Flow 1, and is unfair to Flow 2. Another
schedule, shown in Fig. 1b, allocates the same processing time
to two flows on their most congested resources, and is fair
according to the definition of Dominant Resource Fairness
(DRF) [5]. However, it is inefficient as the link bandwidth is
not fully utilized. As shown in Fig. 1b, it takes 17 time units
for the schedule to finish the service of the first 6 packets of
Flow 1 (i.e., P1, ..., P6) and the first two packets of Flow 2
(i.e., Q1, Q2). In comparison, the schedule shown in Fig. 1a
takes only 15 time units to serve the same amount of traffic.

Such a fairness-efficiency tradeoff has received little atten-

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A new research problem

Received little attention before in the fair queueing literature

Traditional fair queueing has only one resource to schedule, i.e., output
bandwidth
Fairness-efficiency tradeoff does not exist!
As long as the fair queueing algorithm is work conserving, it is the
most efficient with the maximum resource utilization

Fairness-efficiency tradeoff has only been discussed in multi-
resource allocations [Joe-Wong12]

Multiple resources are concurrently shared among users in space
In middleboxes, hardware resources are limited and have to be
multiplexed by multiple "ows in time

7

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

A new design concern

Fairness is not the only objective to pursue for resource
scheduling

Some applications may have a loose requirement on fairness, but
emphasize more on efficiency and resource utilization
We do not want to sacri#ce efficiency for fairness in all cases

Allow a user to specify the tradeoff requirement and design a
scheduling algorithm to implement it

8

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

How to express the fairness-efficiency
tradeoff?

How to implement the speci$ed tradeoff?

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

An initial step

We give two representations of the fairness-efficiency
tradeoffs

The #rst uni#es both fairness and efficiency concerns into a unifying
framework
The second optimizes efficiency under the fairness constraints

We discuss their implementation issues and share some of our
insights

10

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The Fairness and
Efficiency Measures

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Dominant Resource Fairness (DRF)

Dominant resource

the one that requires the most processing time
A packet requires 1ms for CPU processing and 4 ms for link
transmission
Link bandwidth is the dominant resource

DRF

Allocate equal processing time on the dominant resources of all
backlogged "ows

12

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Fairness measure

Relative fairness bound (RFB)

The gap of the processing time two "ows receive on their dominant
resources

The less RFB, the fairer the scheduler

13

Q1P1 P2 P3

Q1P1 P2

CPU
100%

0%
3 Time0 6

Link

0%

9

100%

Time30 6 9

...

...

Q2

Q2

P3 Q3

t

(a) Real scheduling.

P1 P2 P3

Q1

CPU
100%

0%
3 Time0 6

Link

0%

9

100%

Time30 6 9

...

...

Q2 Q3

t

(b) Service on the dominant resource.

Fig. 7. Even packets are scheduled as entities, the gap of service that two
flows received on their dominant resources could be 0.

RFB as the maximum gap of the normalized service received
on the dominant resource between two backlogged flows.

Definition 2: For any packet arrival process, let Ti(t1, t2)
be the aggregate service (processing time) flow i receives on
its dominant resource in the time interval (t

1

, t
2

). Let B(t
1

, t
2

)

be the set of flows that are backlogged in (t
1

, t
2

). We define
the Relative Fairness Bound (RFB) as

R = sup

t1,t2;i,j2B(t1,t2)

����
Ti(t1, t2)

wi
� Tj(t1, t2)

wj

���� . (18)

RFB is well justified in the multi-resource setting. The
service gap accurately reflects the fairness of the scheduler.
Intuitively, RFB measures the degree to which the DRF
allocation is violated. The smaller the measure is, the more
closely the scheme approximates DRGPS, and the fairer the
scheduler is. As an extreme example, we see that the RFB of
DRGPS is 0.

Proposition 5: The RFB of DRGPS is 0. In particular, we
have

Ti(t1, t2)

wi
=

Tj(t1, t2)

wj
, (19)

for any two flows i, j 2 B(t
1

, t
2

),
Proof: It is easy to verify that under DRGPS, for any

flow i, we have

Ti(t1, t2) =

Z t2

t1

f t
i,r⇤i

dt . (20)

By (4), we see that for any two flows i, j 2 B(t
1

, t
2

),

Ti(t1, t2)

wi
� Tj(t1, t2)

wj
=

Z t2

t1

f t
i,r⇤i

wi
�

f t
j,r⇤j

wj

!
dt = 0, (21)

for all t. This implies that the RFB of DRGPS is 0.
There is an important result regarding RFB in the tra-

ditional fair queueing literature. The well-known work of
Golestani [16] shows that no packet-by-packet queueing
scheme can achieve zero RFB, as packets are scheduled as
discrete entities. Golestani further gives a lower bound on
the maximum service gap between a pair of busy flows. This
result, however, no longer holds in the multi-resource setting,
which we show via a counter-example.

Consider two equally weighted traffic flows that keep send-
ing packets, where flow 1 sends P1, P2, . . . while flow 2 sends
Q1, Q2, Except packet P1, which requires 1 time unit
for CPU processing and 2 for link transmission, each of the
other packets requires 2 time units on both CPU and link

transmission. In this case, we can view link bandwidth as
the dominant resource of flow 1, while CPU is the dominant
resource of flow 2. As illustrated in Fig. 7a, if flow 1 and
flow 2’s packets are scheduled alternately, then both flows will
receive exactly the same amount of service on their dominant
resources at all times (see Fig. 7b), i.e.,

T
1

(t
1

, t
2

) = T
2

(t
1

, t
2

) . (22)

It is easy to see that RFB of the given schedule is 0.
This is a pleasant surprise. The example above indicates that

under some circumstance, scheduling multiple resources may
be “fairer” than scheduling a single one. The key reason here
is that, even when packets are scheduled as discrete entities,
two flows can receive service on their dominant resources in
parallel, which is impossible under the single-resource setting.
This demonstrates the significant difference between single-
resource and multi-resource scheduling.

Despite such difference, with DRGPS, the insights and
techniques derived for single-resource queueing could still be
leveraged in the multi-resource scenario. We briefly discuss
this in the next subsection.

B. Packet-By-Packet Scheduling Based on DRGPS

A significant benefit of the idealized DRGPS model is that
it enables us to leverage the extensive fair queueing literature
to design packet-by-packet scheduling algorithms. Below we
give high-level discussions on several design approaches. A
detailed case study is deferred to Sec. V.

As an analogy to the single-resource fair queueing, there
are three potential approaches for packet-based scheduling to
approximate DRGPS. First, similarly to [8], [13], [9], [12], we
can emulate DRGPS in the background, using the algorithm
in Sec. III-D, and serve packets by referencing the algorithm’s
scheduling results. Just as in the single-resource case, multiple
scheduling choices are available. For example, packets can be
scheduled based on either the order of starting time (e.g., FQS
[13]) or finishing time (e.g., WFQ [8], [9]) in the referencing
DRGPS system. A more complicated scheduling algorithm
is also possible. For example, similarly to WF2Q [12], an
admission control scheme might be applied when multiple
packets are available to schedule – those that are not yet served
in the referencing DRGPS system are ineligible for scheduling.

Second, algorithms that emulate DRGPS (or GPS) are
usually competitive in terms of both fairness and delay, but
they might suffer from high computational complexity in the
emulation process. A well-known approach to alleviate this
difficulty in the fair queueing literature is to estimate the
work progress of GPS based on packets that are currently
served (e.g., SCFQ, SFQ, etc.). Similar approaches can also
be adopted in the multi-resource setting. Since the main com-
plexity of emulating DRGPS is contributed by evaluating the
virtual time defined in (12), the key challenge is to efficiently
estimate it. The insights derived for the single-resource case
can be applied. In fact, the scheduling discipline proposed in
[6] may be considered to belong to this category of design,
although it directly extends SFQ without referencing DRGPS.

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Fairness measure (cont’d)

14

On Fairness-Efficiency Tradeoffs for
Multi-Resource Packet Processing

Wei Wang, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Middleboxes are widely deployed in today’s data-
center networks. They perform a variety of network functions,
each requiring multiple hardware resources, such as CPU cycles
and link bandwidth. Depending on the functions they go through,
packet processing of different traffic flows may consume a vastly
different amount of hardware resources. An effective algorithm
is therefore highly desired to schedule packets in a way such
that multiple resources are shared in a fair and efficient manner.
However, we show in this paper that there exists a fairness-
efficiency tradeoff when multiple resources are scheduled. Such
a tradeoff has never been a problem for traditional single-
resource fair queueing (e.g., GPS, WFQ, SCFQ, DRR) — as
long as the queueing schemes are work conserving, both fairness
and efficiency can be achieved simultaneously — and hence has
received little attention. Therefore, a new and important research
problem arises: given a desired fairness-efficiency tradeoff, how
can we design a packet scheduling algorithm to reinforce such
a tradeoff? We present our thoughts and observations in this
paper.

I. INTRODUCTION

Middleboxes have found widespread adoption in today’s
enterprise and datacenter networks. According to [1], [2], the
sheer number of middleboxes deployed is already comparable
to the traditional L2/L3 infrastructures. These middleboxes
perform a wide range of important network functions, such
as WAN optimization, intrusion detection, and firewalls at the
network or application layers.

Unlike basic forwarding, most network functions performed
by middleboxes require deep packet processing based on the
packet contents, and hence consume a variety of hardware
resources, e.g., CPU, memory bandwidth, and link bandwidth.
Packet processing for these middlebox functions differs signif-
icantly in terms of the amount of hardware resources required.
For example, forwarding a large amount of small packets
via software routers congests the memory bandwidth [3].
The intrusion detection system, on the other hand, usually
suffers bottlenecks on the CPU, as packets of external traffic
flows need to be analyzed before being sent to the internal
destinations. In general, depending on the network functions
they go through, different traffic flows may require vastly
different types and amounts of middlebox resources [4].

Having heterogeneous resource requirements among traffic
flows significantly complicates resource scheduling in mid-
dleboxes. It is highly desirable to have a queueing algorithm
to schedule packets in a way such that multiple middlebox
resources (e.g., CPU and link bandwidth) are shared among
flows in a fair and efficient manner. By “fair” we mean that
each flow should receive predictable service isolation that

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8 P9

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8

CPU

Link

...

...

Time0 6 8 12 14 182 4 10 16

(a) Packet scheduling that is efficient yet unfair.

P1 P2 Q1 P3 Q2P4 P5 Q3P6

P1 ...

...

P1 P2 P3Q1

...

P4 P5Q2 P6 P7Q3CPU

Link
Time0 6 8 12 14 182 4 10 16

(b) Packet scheduling that is fair yet inefficient.

Fig. 1. The tradeoff between fairness and efficiency when multi-
ple resources are scheduled. Flow 1 sends P1, P2, ..., each requiring
h1 CPU time, 2 Transmission timei. Flow 2 sends Q1, Q2, ..., each requiring
h4 CPU time, 1 Transmission timei.

is independent of others’ demand. By “efficient” we mean
that flows should finish their services as fast as possible with
maximum resource utilization.

However, achieving both fairness and efficiency at the same
time may not be possible when multiple resources are to be
scheduled. In fact, there may exist a tradeoff between the
scheduling fairness and the scheduling efficiency. Consider the
following example. Suppose there are two traffic flows that
keep sending packets. Packets of Flow 1, denoted by P1, P2,
..., need basic forwarding only. Each of them requires 1 time
unit for CPU processing and 2 time units for link transmission.
Packets of Flow 2 (denoted by Q1, Q2, ...), on the other hand,
need encryption before transmission, each requiring 4 time
units for CPU processing and 1 time unit for link transmission.
Fig. 1a illustrates a schedule with the maximum resource
utilizations on both CPU and link bandwidth. As we will see
later in Sec. II, this schedule, though highly efficient, allocates
too much resource to Flow 1, and is unfair to Flow 2. Another
schedule, shown in Fig. 1b, allocates the same processing time
to two flows on their most congested resources, and is fair
according to the definition of Dominant Resource Fairness
(DRF) [5]. However, it is inefficient as the link bandwidth is
not fully utilized. As shown in Fig. 1b, it takes 17 time units
for the schedule to finish the service of the first 6 packets of
Flow 1 (i.e., P1, ..., P6) and the first two packets of Flow 2
(i.e., Q1, Q2). In comparison, the schedule shown in Fig. 1a
takes only 15 time units to serve the same amount of traffic.

Such a fairness-efficiency tradeoff has received little atten-

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Time

D
o
m

in
a
n
t
S

e
rv

ic
e

Flow 1

Flow 2

(a) Services recevied in Fig. 1a.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Time

D
o
m

in
a
n
t
S

e
rv

ic
e

Flow 1

Flow 2

(b) Services recevied in Fig. 1b.

Fig. 2. Illustration of the accumulated services received by two flows on
their dominant resources, under the schedules of Figs. 1a and 1b.

B. The Efficiency Measure

Besides fairness, scheduling efficiency is another important
concern for a queueing scheme. When there is only a single
resource to schedule, the efficiency is simply the utilization
of that resource. In this case, maximizing the efficiency of a
queueing scheme is trivially achieved by requiring the scheme
to be work conserving. That is, whenever there are flows
that are backlogged in the system, the resource must be fully
utilized to serve them.

We can extend similar requirements to the multi-resource
setting. In particular, a multi-resource queueing scheme is
work conserving if whenever there is a flow that is backlogged
in the system, then at least one resource will be fully utilized
[10]. However, having this requirement will not lead to the
optimal efficiency. As a counterexample, the schedule shown
in Fig. 1b is work conserving. Yet it is clearly less efficient
than that in Fig. 1a.

The reason that the efficiency measure becomes much
more complicated in the multi-resource setting is due to
the heterogeneous resource requirements of traffic flows. In
this case, the resulting utilizations of different resources may
differ significantly. After all, which one should be used as
the efficiency measure? We explore two alternatives in the
following.

Our first idea is inspired by the fairness measure. When
measuring the fairness of a queueing scheme, we compare
the services that a pair of flows receive on their dominant
resources, while those on non-dominant resources are ignored.
Based on this insight, we measure the efficiency as the
aggregate services received on the dominant resources of all
flows.

Definition 2 (Aggregate Dominant Service): Given an
arbitrary packet arrival process, the efficiency of a schedule
up to time t is measured as the aggregate dominant services
(i.e., processing time) that all flows receive, i.e.,

Et =

X

i

Ti(0, t) , (2)

where Ti(0, t) is the dominant service flow i receives in (0, t).
Intuitively, the more the aggregate dominant services re-

ceived, the higher the efficiency of a scheduling scheme. As
an example, Fig. 3 depicts the aggregate dominant services of
the schedules shown in Figs. 1a and 1b. We see that though the
two schedules exhibit similar efficiencies at the beginning, as

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Time

D
o

m
in

a
n

t
S

e
rv

ic
e

 o
f

A
ll

F
lo

w
s

Efficienct−yet−unfair
Fair−yet−inefficient

Fig. 3. Aggregate dominant services received by all flows under the schedules
of Figs. 1a (referred to as Efficient-yet-unfair) and 1b (referred to as Fair-yet-
inefficient), respectively.

1 2 n
1 2 n

Resource 1

Time0 t

Resource 2

1 2 nResource m

...

...
...... ...

...

...

Makespan

Fig. 4. Illustration of a makespan of a schedule serving n packets.

time goes by, the schedule of Fig. 1a becomes more efficient
than that of Fig. 1b. In fact, in Fig. 1a, up to sufficiently
long time t, Flow 1 receives roughly 6t/7 dominant services
on link bandwidth, while Flow 2 receives 4t/7 dominant
services on CPU. The aggregate dominant service is then
10t/7. In comparison, in Fig. 1b, both flows receive roughly
the same services of 2t/3 on their dominant resources, leading
to an aggregate dominant service of 4t/3. As a result, the
schedule of Fig. 1a is more efficient than that in Fig. 1b (i.e.,
10t/7 > 4t/3), and their efficiency gap (10/7�4/3)t linearly
increases with time t.

Another way to measure the efficiency is more direct. We
compute the time span required to finish all services of traffic
flows, and use it as the efficiency measure.

Definition 3 (Makespan): For any packet arrival process,
the efficiency of a scheduling algorithm is measured as the
makespan, i.e., the total time that is required to completely
process all packets.

Fig. 4 depicts the makespan of a schedule serving n packets
on m resources. Intuitively, the smaller the makespan, the more
efficient the schedule.

Though both aggregate dominant service (Definition 2)
and makespan (Definition 3) reflect the scheduling effi-
ciency and can be used as the efficiency measure, they are
not equivalent. For example, suppose there are two traffic
flows both sending 6 packets. Packet of Flow 1 requires
h1 CPU time, 3 Transmission timei, while packet of Flow 2
requires h3 CPU time, 3� ✏ Transmission timei, where ✏ > 0

is arbitrarily small. Now consider two schedules shown in
Figs. 5a and 5b, respectively. We see that the makespans of
the two schedules are exactly the same. As a result, the two
schemes are considered equally efficient when the makespan
is used as the efficiency measure. However, as shown in
Fig. 6, if the efficiency is measured by the aggregate dominant

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Efficiency as aggregate dominant services

The efficiency is measured as the aggregate dominant services
that all #ows receive

15

On Fairness-Efficiency Tradeoffs for
Multi-Resource Packet Processing

Wei Wang, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Middleboxes are widely deployed in today’s data-
center networks. They perform a variety of network functions,
each requiring multiple hardware resources, such as CPU cycles
and link bandwidth. Depending on the functions they go through,
packet processing of different traffic flows may consume a vastly
different amount of hardware resources. An effective algorithm
is therefore highly desired to schedule packets in a way such
that multiple resources are shared in a fair and efficient manner.
However, we show in this paper that there exists a fairness-
efficiency tradeoff when multiple resources are scheduled. Such
a tradeoff has never been a problem for traditional single-
resource fair queueing (e.g., GPS, WFQ, SCFQ, DRR) — as
long as the queueing schemes are work conserving, both fairness
and efficiency can be achieved simultaneously — and hence has
received little attention. Therefore, a new and important research
problem arises: given a desired fairness-efficiency tradeoff, how
can we design a packet scheduling algorithm to reinforce such
a tradeoff? We present our thoughts and observations in this
paper.

I. INTRODUCTION

Middleboxes have found widespread adoption in today’s
enterprise and datacenter networks. According to [1], [2], the
sheer number of middleboxes deployed is already comparable
to the traditional L2/L3 infrastructures. These middleboxes
perform a wide range of important network functions, such
as WAN optimization, intrusion detection, and firewalls at the
network or application layers.

Unlike basic forwarding, most network functions performed
by middleboxes require deep packet processing based on the
packet contents, and hence consume a variety of hardware
resources, e.g., CPU, memory bandwidth, and link bandwidth.
Packet processing for these middlebox functions differs signif-
icantly in terms of the amount of hardware resources required.
For example, forwarding a large amount of small packets
via software routers congests the memory bandwidth [3].
The intrusion detection system, on the other hand, usually
suffers bottlenecks on the CPU, as packets of external traffic
flows need to be analyzed before being sent to the internal
destinations. In general, depending on the network functions
they go through, different traffic flows may require vastly
different types and amounts of middlebox resources [4].

Having heterogeneous resource requirements among traffic
flows significantly complicates resource scheduling in mid-
dleboxes. It is highly desirable to have a queueing algorithm
to schedule packets in a way such that multiple middlebox
resources (e.g., CPU and link bandwidth) are shared among
flows in a fair and efficient manner. By “fair” we mean that
each flow should receive predictable service isolation that

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8 P9

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8

CPU

Link

...

...

Time0 6 8 12 14 182 4 10 16

(a) Packet scheduling that is efficient yet unfair.

P1 P2 Q1 P3 Q2P4 P5 Q3P6

P1 ...

...

P1 P2 P3Q1

...

P4 P5Q2 P6 P7Q3CPU

Link
Time0 6 8 12 14 182 4 10 16

(b) Packet scheduling that is fair yet inefficient.

Fig. 1. The tradeoff between fairness and efficiency when multi-
ple resources are scheduled. Flow 1 sends P1, P2, ..., each requiring
h1 CPU time, 2 Transmission timei. Flow 2 sends Q1, Q2, ..., each requiring
h4 CPU time, 1 Transmission timei.

is independent of others’ demand. By “efficient” we mean
that flows should finish their services as fast as possible with
maximum resource utilization.

However, achieving both fairness and efficiency at the same
time may not be possible when multiple resources are to be
scheduled. In fact, there may exist a tradeoff between the
scheduling fairness and the scheduling efficiency. Consider the
following example. Suppose there are two traffic flows that
keep sending packets. Packets of Flow 1, denoted by P1, P2,
..., need basic forwarding only. Each of them requires 1 time
unit for CPU processing and 2 time units for link transmission.
Packets of Flow 2 (denoted by Q1, Q2, ...), on the other hand,
need encryption before transmission, each requiring 4 time
units for CPU processing and 1 time unit for link transmission.
Fig. 1a illustrates a schedule with the maximum resource
utilizations on both CPU and link bandwidth. As we will see
later in Sec. II, this schedule, though highly efficient, allocates
too much resource to Flow 1, and is unfair to Flow 2. Another
schedule, shown in Fig. 1b, allocates the same processing time
to two flows on their most congested resources, and is fair
according to the definition of Dominant Resource Fairness
(DRF) [5]. However, it is inefficient as the link bandwidth is
not fully utilized. As shown in Fig. 1b, it takes 17 time units
for the schedule to finish the service of the first 6 packets of
Flow 1 (i.e., P1, ..., P6) and the first two packets of Flow 2
(i.e., Q1, Q2). In comparison, the schedule shown in Fig. 1a
takes only 15 time units to serve the same amount of traffic.

Such a fairness-efficiency tradeoff has received little atten-

Efficiency gap: (10/7 - 4/3)t

Aggregate Dominant
Services: 10/7 t

Aggregate Dominant
Services: 4/3 t

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Efficiency as the makespan

16

Makespan

The total time that is required to #nish processing all packets

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Time

D
o

m
in

a
n

t
S

e
rv

ic
e

Flow 1

Flow 2

(a) Services recevied in Fig. 1a.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Time

D
o

m
in

a
n

t
S

e
rv

ic
e

Flow 1

Flow 2

(b) Services recevied in Fig. 1b.

Fig. 2. Illustration of the accumulated services received by two flows on
their dominant resources, under the schedules of Figs. 1a and 1b.

B. The Efficiency Measure

Besides fairness, scheduling efficiency is another important
concern for a queueing scheme. When there is only a single
resource to schedule, the efficiency is simply the utilization
of that resource. In this case, maximizing the efficiency of a
queueing scheme is trivially achieved by requiring the scheme
to be work conserving. That is, whenever there are flows
that are backlogged in the system, the resource must be fully
utilized to serve them.

We can extend similar requirements to the multi-resource
setting. In particular, a multi-resource queueing scheme is
work conserving if whenever there is a flow that is backlogged
in the system, then at least one resource will be fully utilized
[10]. However, having this requirement will not lead to the
optimal efficiency. As a counterexample, the schedule shown
in Fig. 1b is work conserving. Yet it is clearly less efficient
than that in Fig. 1a.

The reason that the efficiency measure becomes much
more complicated in the multi-resource setting is due to
the heterogeneous resource requirements of traffic flows. In
this case, the resulting utilizations of different resources may
differ significantly. After all, which one should be used as
the efficiency measure? We explore two alternatives in the
following.

Our first idea is inspired by the fairness measure. When
measuring the fairness of a queueing scheme, we compare
the services that a pair of flows receive on their dominant
resources, while those on non-dominant resources are ignored.
Based on this insight, we measure the efficiency as the
aggregate services received on the dominant resources of all
flows.

Definition 2 (Aggregate Dominant Service): Given an
arbitrary packet arrival process, the efficiency of a schedule
up to time t is measured as the aggregate dominant services
(i.e., processing time) that all flows receive, i.e.,

Et =

X

i

Ti(0, t) , (2)

where Ti(0, t) is the dominant service flow i receives in (0, t).
Intuitively, the more the aggregate dominant services re-

ceived, the higher the efficiency of a scheduling scheme. As
an example, Fig. 3 depicts the aggregate dominant services of
the schedules shown in Figs. 1a and 1b. We see that though the
two schedules exhibit similar efficiencies at the beginning, as

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Time

D
o
m

in
a
n
t
S

e
rv

ic
e
 o

f
A

ll
F

lo
w

s

Efficienct−yet−unfair
Fair−yet−inefficient

Fig. 3. Aggregate dominant services received by all flows under the schedules
of Figs. 1a (referred to as Efficient-yet-unfair) and 1b (referred to as Fair-yet-
inefficient), respectively.

1 2 n
1 2 n

Resource 1

Time0 t

Resource 2

1 2 nResource m

...

...
...... ...

...

...

Makespan

Fig. 4. Illustration of a makespan of a schedule serving n packets.

time goes by, the schedule of Fig. 1a becomes more efficient
than that of Fig. 1b. In fact, in Fig. 1a, up to sufficiently
long time t, Flow 1 receives roughly 6t/7 dominant services
on link bandwidth, while Flow 2 receives 4t/7 dominant
services on CPU. The aggregate dominant service is then
10t/7. In comparison, in Fig. 1b, both flows receive roughly
the same services of 2t/3 on their dominant resources, leading
to an aggregate dominant service of 4t/3. As a result, the
schedule of Fig. 1a is more efficient than that in Fig. 1b (i.e.,
10t/7 > 4t/3), and their efficiency gap (10/7�4/3)t linearly
increases with time t.

Another way to measure the efficiency is more direct. We
compute the time span required to finish all services of traffic
flows, and use it as the efficiency measure.

Definition 3 (Makespan): For any packet arrival process,
the efficiency of a scheduling algorithm is measured as the
makespan, i.e., the total time that is required to completely
process all packets.

Fig. 4 depicts the makespan of a schedule serving n packets
on m resources. Intuitively, the smaller the makespan, the more
efficient the schedule.

Though both aggregate dominant service (Definition 2)
and makespan (Definition 3) reflect the scheduling effi-
ciency and can be used as the efficiency measure, they are
not equivalent. For example, suppose there are two traffic
flows both sending 6 packets. Packet of Flow 1 requires
h1 CPU time, 3 Transmission timei, while packet of Flow 2
requires h3 CPU time, 3� ✏ Transmission timei, where ✏ > 0

is arbitrarily small. Now consider two schedules shown in
Figs. 5a and 5b, respectively. We see that the makespans of
the two schedules are exactly the same. As a result, the two
schemes are considered equally efficient when the makespan
is used as the efficiency measure. However, as shown in
Fig. 6, if the efficiency is measured by the aggregate dominant

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The Fairness-Efficiency
Tradeoffs

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Two tradeoff representations

Representing the tradeoff using a unifying framework

Efficiency is measured as the aggregate dominant service
More rigorous, but hard to implement

Representing the tradeoff as efficiency optimization under
fairness constraints

Heuristic, but amenable to implement

18

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Tradeoff using a unifying
framework

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The idealized #uid #ow model

Multi-Resource Fluid Model

Flows are assumed to be served in arbitrarily small increments
Multiple "ows can be served in parallel

20

On Fairness-Efficiency Tradeoffs for
Multi-Resource Packet Processing

Wei Wang, Ben Liang, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Middleboxes are widely deployed in today’s data-
center networks. They perform a variety of network functions,
each requiring multiple hardware resources, such as CPU cycles
and link bandwidth. Depending on the functions they go through,
packet processing of different traffic flows may consume a vastly
different amount of hardware resources. An effective algorithm
is therefore highly desired to schedule packets in a way such
that multiple resources are shared in a fair and efficient manner.
However, we show in this paper that there exists a fairness-
efficiency tradeoff when multiple resources are scheduled. Such
a tradeoff has never been a problem for traditional single-
resource fair queueing (e.g., GPS, WFQ, SCFQ, DRR) — as
long as the queueing schemes are work conserving, both fairness
and efficiency can be achieved simultaneously — and hence has
received little attention. Therefore, a new and important research
problem arises: given a desired fairness-efficiency tradeoff, how
can we design a packet scheduling algorithm to reinforce such
a tradeoff? We present our thoughts and observations in this
paper.

I. INTRODUCTION

Middleboxes have found widespread adoption in today’s
enterprise and datacenter networks. According to [1], [2], the
sheer number of middleboxes deployed is already comparable
to the traditional L2/L3 infrastructures. These middleboxes
perform a wide range of important network functions, such
as WAN optimization, intrusion detection, and firewalls at the
network or application layers.

Unlike basic forwarding, most network functions performed
by middleboxes require deep packet processing based on the
packet contents, and hence consume a variety of hardware
resources, e.g., CPU, memory bandwidth, and link bandwidth.
Packet processing for these middlebox functions differs signif-
icantly in terms of the amount of hardware resources required.
For example, forwarding a large amount of small packets
via software routers congests the memory bandwidth [3].
The intrusion detection system, on the other hand, usually
suffers bottlenecks on the CPU, as packets of external traffic
flows need to be analyzed before being sent to the internal
destinations. In general, depending on the network functions
they go through, different traffic flows may require vastly
different types and amounts of middlebox resources [4].

Having heterogeneous resource requirements among traffic
flows significantly complicates resource scheduling in mid-
dleboxes. It is highly desirable to have a queueing algorithm
to schedule packets in a way such that multiple middlebox
resources (e.g., CPU and link bandwidth) are shared among
flows in a fair and efficient manner. By “fair” we mean that
each flow should receive predictable service isolation that

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8 P9

P1 P2 P3 Q1 P4 P5 P6 Q2 P7 P8

CPU

Link

...

...

Time0 6 8 12 14 182 4 10 16

(a) Packet scheduling that is efficient yet unfair.

P1 P2 Q1 P3 Q2P4 P5 Q3P6

P1 ...

...

P1 P2 P3Q1

...

P4 P5Q2 P6 P7Q3CPU

Link
Time0 6 8 12 14 182 4 10 16

(b) Packet scheduling that is fair yet inefficient.

Fig. 1. The tradeoff between fairness and efficiency when multi-
ple resources are scheduled. Flow 1 sends P1, P2, ..., each requiring
h1 CPU time, 2 Transmission timei. Flow 2 sends Q1, Q2, ..., each requiring
h4 CPU time, 1 Transmission timei.

is independent of others’ demand. By “efficient” we mean
that flows should finish their services as fast as possible with
maximum resource utilization.

However, achieving both fairness and efficiency at the same
time may not be possible when multiple resources are to be
scheduled. In fact, there may exist a tradeoff between the
scheduling fairness and the scheduling efficiency. Consider the
following example. Suppose there are two traffic flows that
keep sending packets. Packets of Flow 1, denoted by P1, P2,
..., need basic forwarding only. Each of them requires 1 time
unit for CPU processing and 2 time units for link transmission.
Packets of Flow 2 (denoted by Q1, Q2, ...), on the other hand,
need encryption before transmission, each requiring 4 time
units for CPU processing and 1 time unit for link transmission.
Fig. 1a illustrates a schedule with the maximum resource
utilizations on both CPU and link bandwidth. As we will see
later in Sec. II, this schedule, though highly efficient, allocates
too much resource to Flow 1, and is unfair to Flow 2. Another
schedule, shown in Fig. 1b, allocates the same processing time
to two flows on their most congested resources, and is fair
according to the definition of Dominant Resource Fairness
(DRF) [5]. However, it is inefficient as the link bandwidth is
not fully utilized. As shown in Fig. 1b, it takes 17 time units
for the schedule to finish the service of the first 6 packets of
Flow 1 (i.e., P1, ..., P6) and the first two packets of Flow 2
(i.e., Q1, Q2). In comparison, the schedule shown in Fig. 1a
takes only 15 time units to serve the same amount of traffic.

Such a fairness-efficiency tradeoff has received little atten-

P1

P1

Q1

Q1

P2 Q2 P3 Q3 P4 Q4

P2 Q2 P3 Q3

P5 Q5

P4

Time0

...

...

CPU

Link

2 4 6 8 10 12 14 16 18

(a) Scheduling without waiting on CPU for Flow 2.

P1

P1

CPU

Link

Q1

Q1

P2 Q2 P3 Q3 P4 Q4

P2 Q2 P3 Q3 P4

...

...

Time0 2 4 6 8 10 12 14 16 18

(b) Scheduling with waiting on CPU for Flow 2.

Fig. 5. Two schedules, with and without waiting on CPU for Flow 2.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

Time

D
o
m

in
a
n
t
S

e
rv

ic
e
 o

f
A

ll
F

lo
w

s

Without CPU Waiting
With CPU Waiting

Fig. 6. Under the efficiency measure of aggregate dominant services, the
scheduling without waiting on CPU is more efficient than that waiting on
CPU.

services, then scheduling without CPU waiting (Fig. 5a) is
more efficient than that with CPU waiting (Fig. 5b) before
time 34, after which, both schemes are equally efficient.

Despite the difference of the two efficiency measures, the
fairness-efficiency tradeoffs generally exist for multi-resource
fair queueing. The key question is: how can such tradeoffs be
expressed as a design objective of a scheduling algorithm? We
investigate this problem in the next section.

III. THE FAIRNESS-EFFICIENCY TRADEOFF

In this section, we present two ways to represent the
fairness-efficiency tradeoff for a scheduling algorithm. The
first representation adopts the aggregate dominant service
as the efficiency measure, and is more rigorous in theory.
However, it is complicated to implement in real systems. The
second representation, on the other hand, uses the makespan as
the efficiency measure. This representation, though heuristic,
is more friendly to implement with packet-based scheduling.

A. Tradeoff Representation Using a Unifying Framework

Our first representation is based on the recent work of
[11], where a unifying framework is proposed to specify
the fairness-efficiency tradeoff for multi-resource allocation.
Though the framework is designed for sharing multiple re-
sources in space, we show that via the idealized multi-resource
fluid flow model [10], it can also be applied to resource
scheduling, where resources are multiplexed in time.

Multi-Resource Fluid Model: In the multi-resources fluid
model, flows are assumed to be served in arbitrarily small

P1
Q1
P2 P3 P4

Q2
P5 P6

4/7
3/7}

} ...

P4 P5 P7
Q2

P1 P2 P3
Q1 1/7

6/7}
}

...

CPU

Link

Time0 6 8 12 14 182 4 10 16

{
{

(a) The fluid version of the schedule shown in Fig. 1a.

...

1/6
2/3}

}
...

P1
Q1 Q2 Q3

} 1/3
2/3}

P1 P2 P3 P4 P5 P6
Q1

P2 P3 P4 P5 P6

Q2 Q3

CPU

Link

Time0 6 8 12 14 182 4 10 16

{
{

(b) The fluid version of the schedule shown in Fig. 1b.

Fig. 7. The fluid version of the two schedules shown in Figs. 1a and 1b.

increments. That is to say, a packet can be infinitely di-
vided and processed partially on every resource. Equivalently,
this implies that multiple flows can be served in parallel,
each receiving fractional resources that are consumed at the
same time. For example, Fig. 7 depicts the fluid versions
of the two packet-based schedules shown in Fig. 1. The
schedule of Fig. 1a allocates h3/7 CPU, 6/7 Linki to Flow 1
and h4/7 CPU, 1/7 Linki to Flow 2. The corresponding fluid
schedule (Fig. 7a) allocates the same amount of resources
to both flows as Fig. 1a does, except that all resources
are processed simultaneously. We see that the fluid schedule
retains the same fairness-efficiency tradeoff as the packet-by-
packet alternative: the schedule of Fig. 7a has higher resource
utilization than that of Fig. 7b, but the latter is fairer than the
former.

The Fairness-Efficiency Tradeoffs: With the fluid model,
a resource scheduling problem can be translated into a re-
source allocation problem, in which the framework of fairness-
efficiency tradeoff proposed in [11] can be applied. In partic-
ular, let B(t) be the set of flows that are backlogged at time t.
Let xt

i be the share (fraction) of dominant resource allocated to
flow i at time t, and x

t
= hxt

1, . . . , x
t
ni the allocation vector for

all n flows. We express the fairness-efficiency tradeoff using
the following measure originally defined in [11]:

f�,�(x
t
) =

sgn(1� �)

0

@
X

i2B(t)

x

t
iP

j2B(t) x
t
j

!1��
1

A

1
�
0

@
X

i2B(t)

x

t
i

1

A
�

.

(3)

Here, � and � are pre-specified parameters representing the
emphasis on fairness and efficiency, respectively. As men-
tioned in [11], the measure defined by (3) is divided into two
components, one representing fairness and another efficiency.
The term 0

@
X

i2B(t)

x

t
i

1

A
�

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Fairness-Efficiency Tradeoffs [Joe-Wong12]

 : the fraction of dominant resource allocated to "ow i at time t
 : the allocation vector

 : fairness parameter
 : efficiency parameter

Tradeoff using a unifying framework

21

x

t
i

P1

P1

Q1

Q1

P2 Q2 P3 Q3 P4 Q4

P2 Q2 P3 Q3

P5 Q5

P4

Time0

...

...

CPU

Link

2 4 6 8 10 12 14 16 18

(a) Scheduling without waiting on CPU for Flow 2.

P1

P1

CPU

Link

Q1

Q1

P2 Q2 P3 Q3 P4 Q4

P2 Q2 P3 Q3 P4

...

...

Time0 2 4 6 8 10 12 14 16 18

(b) Scheduling with waiting on CPU for Flow 2.

Fig. 5. Two schedules, with and without waiting on CPU for Flow 2.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

Time

D
o

m
in

a
n

t
S

e
rv

ic
e

 o
f

A
ll

F
lo

w
s

Without CPU Waiting
With CPU Waiting

Fig. 6. Under the efficiency measure of aggregate dominant services, the
scheduling without waiting on CPU is more efficient than that waiting on
CPU.

services, then scheduling without CPU waiting (Fig. 5a) is
more efficient than that with CPU waiting (Fig. 5b) before
time 34, after which, both schemes are equally efficient.

Despite the difference of the two efficiency measures, the
fairness-efficiency tradeoffs generally exist for multi-resource
fair queueing. The key question is: how can such tradeoffs be
expressed as a design objective of a scheduling algorithm? We
investigate this problem in the next section.

III. THE FAIRNESS-EFFICIENCY TRADEOFF

In this section, we present two ways to represent the
fairness-efficiency tradeoff for a scheduling algorithm. The
first representation adopts the aggregate dominant service
as the efficiency measure, and is more rigorous in theory.
However, it is complicated to implement in real systems. The
second representation, on the other hand, uses the makespan as
the efficiency measure. This representation, though heuristic,
is more friendly to implement with packet-based scheduling.

A. Tradeoff Representation Using a Unifying Framework

Our first representation is based on the recent work of
[11], where a unifying framework is proposed to specify
the fairness-efficiency tradeoff for multi-resource allocation.
Though the framework is designed for sharing multiple re-
sources in space, we show that via the idealized multi-resource
fluid flow model [10], it can also be applied to resource
scheduling, where resources are multiplexed in time.

Multi-Resource Fluid Model: In the multi-resources fluid
model, flows are assumed to be served in arbitrarily small

P1
Q1
P2 P3 P4

Q2
P5 P6

4/7
3/7}

} ...

P4 P5 P7
Q2

P1 P2 P3
Q1 1/7

6/7}
}

...

CPU

Link

Time0 6 8 12 14 182 4 10 16

{
{

(a) The fluid version of the schedule shown in Fig. 1a.

...

1/6
2/3}

}
...

P1
Q1 Q2 Q3

} 1/3
2/3}

P1 P2 P3 P4 P5 P6
Q1

P2 P3 P4 P5 P6

Q2 Q3

CPU

Link

Time0 6 8 12 14 182 4 10 16

{
{

(b) The fluid version of the schedule shown in Fig. 1b.

Fig. 7. The fluid version of the two schedules shown in Figs. 1a and 1b.

increments. That is to say, a packet can be infinitely di-
vided and processed partially on every resource. Equivalently,
this implies that multiple flows can be served in parallel,
each receiving fractional resources that are consumed at the
same time. For example, Fig. 7 depicts the fluid versions
of the two packet-based schedules shown in Fig. 1. The
schedule of Fig. 1a allocates h3/7 CPU, 6/7 Linki to Flow 1
and h4/7 CPU, 1/7 Linki to Flow 2. The corresponding fluid
schedule (Fig. 7a) allocates the same amount of resources
to both flows as Fig. 1a does, except that all resources
are processed simultaneously. We see that the fluid schedule
retains the same fairness-efficiency tradeoff as the packet-by-
packet alternative: the schedule of Fig. 7a has higher resource
utilization than that of Fig. 7b, but the latter is fairer than the
former.

The Fairness-Efficiency Tradeoffs: With the fluid model,
a resource scheduling problem can be translated into a re-
source allocation problem, in which the framework of fairness-
efficiency tradeoff proposed in [11] can be applied. In partic-
ular, let B(t) be the set of flows that are backlogged at time t.
Let xt

i be the share (fraction) of dominant resource allocated to
flow i at time t, and x

t
= hxt

1, . . . , x
t
ni the allocation vector for

all n flows. We express the fairness-efficiency tradeoff using
the following measure originally defined in [11]:

f�,�(x
t
) =

sgn(1� �)

0

@
X

i2B(t)

x

t
iP

j2B(t) x
t
j

!1��
1

A

1
�
0

@
X

i2B(t)

x

t
i

1

A
�

.

(3)

Here, � and � are pre-specified parameters representing the
emphasis on fairness and efficiency, respectively. As men-
tioned in [11], the measure defined by (3) is divided into two
components, one representing fairness and another efficiency.
The term 0

@
X

i2B(t)

x

t
i

1

A
�

f�,�(x
t) = sgn(1� �)

0

@
X

i2B(t)

x

t
iP

j2B(t) x
t
j

!1��
1

A

1
�
0

@
X

i2B(t)

x

t
i

1

A
�

.

�

�

EfficiencyFairness

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Tradeoff using a unifying framework (cont’d)

Idealized #uid model implements the speci$ed tradeoff at all
times

22

represents efficiency and is the dominant services received by
all flows at time t. The remainder of (3) is parameterized by �

and represents the fairness of allocation. Generally speaking, a
larger � emphasizes more on fairness, while a larger � places
efficiency at a higher priority. In extreme cases, by taking � =

1, the fairness term reduces to a constant, and efficiency is the
only objective to optimize. On the other hand, as � ! 1 and
� =

1��
� , the measure f�,� reduces to max-min fairness on the

dominant shares, in which the notion of Dominant Resource
Fairness (DRF) [4] is the only objective to pursue.

With the fairness-efficiency tradeoff specified as (3), we
make resource allocation decisions x

t at all times t, so that
the tradeoff measure (3) is always maximized. Specifically, let
⌧i,r be flow i’s packet processing time required on resource
r = 1, 2, . . . ,m. Let

�i = argmaxr{⌧i,r} (4)

be the dominant resource of flow i. Also, let

⌧̄i,r =

⌧i,r

⌧i,�i

, r = 1, 2, . . . ,m, (5)

be the normalized processing time on resource r. Then x

t
i ⌧̄i,r

is the share of resource r allocated to flow i at time t. We solve
the following optimization problem to determine the dominant
resource allocation x

t for each flow at time t:
max

x

t
f�,�(x

t
)

s.t.
X

i2B(t)

x

t
i ⌧̄i,r 1, r = 1, 2, . . . ,m,

(6)

where the constraints ensure that the allocations will not
exceed the resource capacities.

By solving (6), we obtain an idealized fluid schedule that
strictly implements the specified fairness-efficiency tradeoff
at all times. For example, the schedule shown in Fig. 7a
(resp., 7b) is the resulting fluid schedule when efficiency (resp.,
fairness) is the only objective to optimize.

Packet-by-Packet Scheduling: Though the idealized fluid
schedule cannot be implemented as packets are not scheduled
as entities, it can be approximated by packet-by-packet queue-
ing algorithms. Similar to how GPS [6] is approximated by
fair queueing such as WFQ [6] and PGPS [7], we can maintain
fluid schedule as a referencing system in the background.
Whenever there is a scheduling opportunity, the packet that
finishes its service the earliest in the referencing system is
scheduled. For example, Fig. 8 shows the resulting packet-by-
packet approximations to the two fluid schedules depicted in
Fig. 7. It is easy to verify that both approximations closely
track the progress of the fluid ideals. More complicated
approximation techniques, such as those adopted by WF2Q
[12], can also be applied in a similar way.

However, we emphasize that the packet-by-packet queue-
ing algorithm described above may be very complicated to
implement, mainly due to the requirement of maintaining
the referencing fluid schedule: Whenever a flow changes its
state from idle to busy or from busy to idle, we have to

P1 P2 P3Q1 P4 P5 P6Q2 P7

P1 P2 P3Q1 P4 P5 P6Q2 P7

...

...

CPU

Link
Time0 6 8 12 14 182 4 10 16

Q3

(a) Packet-by-packet approximation to the schedule of Fig. 7a.

P1 P2Q1 P3 Q2 P4 P5 Q3 P6

P1 ...

...

P1 P2 P3Q1 P4 P5Q2 P6 P7Q3CPU

Link
Time0 6 8 12 14 182 4 10 16

(b) Packet-by-packet approximation to the schedule of Fig. 7b.

Fig. 8. The packet-by-packet approximations to the two fluid schedules
shown in Fig. 7.

solve the optimization problem (6), which is generally non-
convex and incurs high computational complexity. To avoid
this complexity, packet-by-packet scheduling should track the
progress of a fluid scheme without actually emulating it.
Though this can be achieved in single-resource fair queueing,
e.g., [13], [14], it remains open how this can be done when
multiple resources are to be scheduled.

B. Tradeoff Representation as Efficiency Optimization under
Fairness Constraints

The tradeoff representation presented above unifies the two
requirements on both fairness and efficiency into a single
design objective (6), which turns out to be complicated to
implement. We now consider another tradeoff representation
that takes the fairness requirement as a design constraint,
under which we optimize efficiency. In particular, the fairness
requirement is expressed as the RFB defined in (1), and is pre-
specified by the network operator. Efficiency is measured as
the scheduling makespan. The design objective is to schedule
packets in a way such that they can be processed as quickly
as possible, as long as the specified fairness requirement RFB
is not violated. The key question here is how packets can be
scheduled “as quickly as possible”.

To answer this question, we derive some insights from
existing solutions in the literature that consider the extreme
case where efficiency is the only objective to optimize. That
is, given a sequence of packets that have already arrived, how
should they be scheduled to minimize the overall makespan?
This is equivalent to a multi-stage flow shop problem [15]. In
the flow shop problem, the equivalent of a packet is a job,
while the equivalent of a resource is a machine. A sequence
of jobs have to undergo m-stage operations on m machines,
where Operation 1 must be done first on Machine 1, followed
by Operation 2 on Machine 2, and so on. Different operations
of a job may require different processing times. No two
operations can be carried out on the same machine in parallel.
The objective is to minimize the job makespan by deciding an
optimal scheduling order.

When there are two resources (m = 2), the flow shop
problem can be optimally solved within linear time using
Johnson’s algorithm [15] as follows. Partition the packets

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Packet-by-packet scheduling

Just like how GPS is approximated by WFQ

Maintain an idealized "uid scheduling as a referencing system in
background
Whenever there is a scheduling opportunity, the packet that #nishes
its service the earliest in the referencing system is scheduled

23

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Packet-by-packet scheduling (cont’d)

24

P1

P1

Q1

Q1

P2 Q2 P3 Q3 P4 Q4

P2 Q2 P3 Q3

P5 Q5

P4

Time0

...

...

CPU

Link

2 4 6 8 10 12 14 16 18

(a) Scheduling without waiting on CPU for Flow 2.

P1

P1

CPU

Link

Q1

Q1

P2 Q2 P3 Q3 P4 Q4

P2 Q2 P3 Q3 P4

...

...

Time0 2 4 6 8 10 12 14 16 18

(b) Scheduling with waiting on CPU for Flow 2.

Fig. 5. Two schedules, with and without waiting on CPU for Flow 2.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

Time

D
o

m
in

a
n

t
S

e
rv

ic
e

 o
f

A
ll

F
lo

w
s

Without CPU Waiting
With CPU Waiting

Fig. 6. Under the efficiency measure of aggregate dominant services, the
scheduling without waiting on CPU is more efficient than that waiting on
CPU.

services, then scheduling without CPU waiting (Fig. 5a) is
more efficient than that with CPU waiting (Fig. 5b) before
time 34, after which, both schemes are equally efficient.

Despite the difference of the two efficiency measures, the
fairness-efficiency tradeoffs generally exist for multi-resource
fair queueing. The key question is: how can such tradeoffs be
expressed as a design objective of a scheduling algorithm? We
investigate this problem in the next section.

III. THE FAIRNESS-EFFICIENCY TRADEOFF

In this section, we present two ways to represent the
fairness-efficiency tradeoff for a scheduling algorithm. The
first representation adopts the aggregate dominant service
as the efficiency measure, and is more rigorous in theory.
However, it is complicated to implement in real systems. The
second representation, on the other hand, uses the makespan as
the efficiency measure. This representation, though heuristic,
is more friendly to implement with packet-based scheduling.

A. Tradeoff Representation Using a Unifying Framework

Our first representation is based on the recent work of
[11], where a unifying framework is proposed to specify
the fairness-efficiency tradeoff for multi-resource allocation.
Though the framework is designed for sharing multiple re-
sources in space, we show that via the idealized multi-resource
fluid flow model [10], it can also be applied to resource
scheduling, where resources are multiplexed in time.

Multi-Resource Fluid Model: In the multi-resources fluid
model, flows are assumed to be served in arbitrarily small

P1
Q1
P2 P3 P4

Q2
P5 P6

4/7
3/7}

} ...

P4 P5 P7
Q2

P1 P2 P3
Q1 1/7

6/7}
}

...

CPU

Link

Time0 6 8 12 14 182 4 10 16

{
{

(a) The fluid version of the schedule shown in Fig. 1a.

...

1/6
2/3}

}
...

P1
Q1 Q2 Q3

} 1/3
2/3}

P1 P2 P3 P4 P5 P6
Q1

P2 P3 P4 P5 P6

Q2 Q3

CPU

Link

Time0 6 8 12 14 182 4 10 16

{
{

(b) The fluid version of the schedule shown in Fig. 1b.

Fig. 7. The fluid version of the two schedules shown in Figs. 1a and 1b.

increments. That is to say, a packet can be infinitely di-
vided and processed partially on every resource. Equivalently,
this implies that multiple flows can be served in parallel,
each receiving fractional resources that are consumed at the
same time. For example, Fig. 7 depicts the fluid versions
of the two packet-based schedules shown in Fig. 1. The
schedule of Fig. 1a allocates h3/7 CPU, 6/7 Linki to Flow 1
and h4/7 CPU, 1/7 Linki to Flow 2. The corresponding fluid
schedule (Fig. 7a) allocates the same amount of resources
to both flows as Fig. 1a does, except that all resources
are processed simultaneously. We see that the fluid schedule
retains the same fairness-efficiency tradeoff as the packet-by-
packet alternative: the schedule of Fig. 7a has higher resource
utilization than that of Fig. 7b, but the latter is fairer than the
former.

The Fairness-Efficiency Tradeoffs: With the fluid model,
a resource scheduling problem can be translated into a re-
source allocation problem, in which the framework of fairness-
efficiency tradeoff proposed in [11] can be applied. In partic-
ular, let B(t) be the set of flows that are backlogged at time t.
Let xt

i be the share (fraction) of dominant resource allocated to
flow i at time t, and x

t
= hxt

1, . . . , x
t
ni the allocation vector for

all n flows. We express the fairness-efficiency tradeoff using
the following measure originally defined in [11]:

f�,�(x
t
) =

sgn(1� �)

0

@
X

i2B(t)

x

t
iP

j2B(t) x
t
j

!1��
1

A

1
�
0

@
X

i2B(t)

x

t
i

1

A
�

.

(3)

Here, � and � are pre-specified parameters representing the
emphasis on fairness and efficiency, respectively. As men-
tioned in [11], the measure defined by (3) is divided into two
components, one representing fairness and another efficiency.
The term 0

@
X

i2B(t)

x

t
i

1

A
�

represents efficiency and is the dominant services received by
all flows at time t. The remainder of (3) is parameterized by �

and represents the fairness of allocation. Generally speaking, a
larger � emphasizes more on fairness, while a larger � places
efficiency at a higher priority. In extreme cases, by taking � =

1, the fairness term reduces to a constant, and efficiency is the
only objective to optimize. On the other hand, as � ! 1 and
� =

1��
� , the measure f�,� reduces to max-min fairness on the

dominant shares, in which the notion of Dominant Resource
Fairness (DRF) [4] is the only objective to pursue.

With the fairness-efficiency tradeoff specified as (3), we
make resource allocation decisions x

t at all times t, so that
the tradeoff measure (3) is always maximized. Specifically, let
⌧i,r be flow i’s packet processing time required on resource
r = 1, 2, . . . ,m. Let

�i = argmaxr{⌧i,r} (4)

be the dominant resource of flow i. Also, let

⌧̄i,r =

⌧i,r

⌧i,�i

, r = 1, 2, . . . ,m, (5)

be the normalized processing time on resource r. Then x

t
i ⌧̄i,r

is the share of resource r allocated to flow i at time t. We solve
the following optimization problem to determine the dominant
resource allocation x

t for each flow at time t:
max

x

t
f�,�(x

t
)

s.t.
X

i2B(t)

x

t
i ⌧̄i,r 1, r = 1, 2, . . . ,m,

(6)

where the constraints ensure that the allocations will not
exceed the resource capacities.

By solving (6), we obtain an idealized fluid schedule that
strictly implements the specified fairness-efficiency tradeoff
at all times. For example, the schedule shown in Fig. 7a
(resp., 7b) is the resulting fluid schedule when efficiency (resp.,
fairness) is the only objective to optimize.

Packet-by-Packet Scheduling: Though the idealized fluid
schedule cannot be implemented as packets are not scheduled
as entities, it can be approximated by packet-by-packet queue-
ing algorithms. Similar to how GPS [6] is approximated by
fair queueing such as WFQ [6] and PGPS [7], we can maintain
fluid schedule as a referencing system in the background.
Whenever there is a scheduling opportunity, the packet that
finishes its service the earliest in the referencing system is
scheduled. For example, Fig. 8 shows the resulting packet-by-
packet approximations to the two fluid schedules depicted in
Fig. 7. It is easy to verify that both approximations closely
track the progress of the fluid ideals. More complicated
approximation techniques, such as those adopted by WF2Q
[12], can also be applied in a similar way.

However, we emphasize that the packet-by-packet queue-
ing algorithm described above may be very complicated to
implement, mainly due to the requirement of maintaining
the referencing fluid schedule: Whenever a flow changes its
state from idle to busy or from busy to idle, we have to

P1 P2 P3Q1 P4 P5 P6Q2 P7

P1 P2 P3Q1 P4 P5 P6Q2 P7

...

...

CPU

Link
Time0 6 8 12 14 182 4 10 16

Q3

(a) Packet-by-packet approximation to the schedule of Fig. 7a.

P1 P2Q1 P3 Q2 P4 P5 Q3 P6

P1 ...

...

P1 P2 P3Q1 P4 P5Q2 P6 P7Q3CPU

Link
Time0 6 8 12 14 182 4 10 16

(b) Packet-by-packet approximation to the schedule of Fig. 7b.

Fig. 8. The packet-by-packet approximations to the two fluid schedules
shown in Fig. 7.

solve the optimization problem (6), which is generally non-
convex and incurs high computational complexity. To avoid
this complexity, packet-by-packet scheduling should track the
progress of a fluid scheme without actually emulating it.
Though this can be achieved in single-resource fair queueing,
e.g., [13], [14], it remains open how this can be done when
multiple resources are to be scheduled.

B. Tradeoff Representation as Efficiency Optimization under
Fairness Constraints

The tradeoff representation presented above unifies the two
requirements on both fairness and efficiency into a single
design objective (6), which turns out to be complicated to
implement. We now consider another tradeoff representation
that takes the fairness requirement as a design constraint,
under which we optimize efficiency. In particular, the fairness
requirement is expressed as the RFB defined in (1), and is pre-
specified by the network operator. Efficiency is measured as
the scheduling makespan. The design objective is to schedule
packets in a way such that they can be processed as quickly
as possible, as long as the specified fairness requirement RFB
is not violated. The key question here is how packets can be
scheduled “as quickly as possible”.

To answer this question, we derive some insights from
existing solutions in the literature that consider the extreme
case where efficiency is the only objective to optimize. That
is, given a sequence of packets that have already arrived, how
should they be scheduled to minimize the overall makespan?
This is equivalent to a multi-stage flow shop problem [15]. In
the flow shop problem, the equivalent of a packet is a job,
while the equivalent of a resource is a machine. A sequence
of jobs have to undergo m-stage operations on m machines,
where Operation 1 must be done first on Machine 1, followed
by Operation 2 on Machine 2, and so on. Different operations
of a job may require different processing times. No two
operations can be carried out on the same machine in parallel.
The objective is to minimize the job makespan by deciding an
optimal scheduling order.

When there are two resources (m = 2), the flow shop
problem can be optimally solved within linear time using
Johnson’s algorithm [15] as follows. Partition the packets

Referencing "uid system Practical system

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Open problem

Maintaining the #uid model requires high computational
complexity

The optimization problem is generally non-convex

25

represents efficiency and is the dominant services received by
all flows at time t. The remainder of (3) is parameterized by �

and represents the fairness of allocation. Generally speaking, a
larger � emphasizes more on fairness, while a larger � places
efficiency at a higher priority. In extreme cases, by taking � =

1, the fairness term reduces to a constant, and efficiency is the
only objective to optimize. On the other hand, as � ! 1 and
� =

1��
� , the measure f�,� reduces to max-min fairness on the

dominant shares, in which the notion of Dominant Resource
Fairness (DRF) [4] is the only objective to pursue.

With the fairness-efficiency tradeoff specified as (3), we
make resource allocation decisions x

t at all times t, so that
the tradeoff measure (3) is always maximized. Specifically, let
⌧i,r be flow i’s packet processing time required on resource
r = 1, 2, . . . ,m. Let

�i = argmaxr{⌧i,r} (4)

be the dominant resource of flow i. Also, let

⌧̄i,r =

⌧i,r

⌧i,�i

, r = 1, 2, . . . ,m, (5)

be the normalized processing time on resource r. Then x

t
i ⌧̄i,r

is the share of resource r allocated to flow i at time t. We solve
the following optimization problem to determine the dominant
resource allocation x

t for each flow at time t:
max

x

t
f�,�(x

t
)

s.t.
X

i2B(t)

x

t
i ⌧̄i,r 1, r = 1, 2, . . . ,m,

(6)

where the constraints ensure that the allocations will not
exceed the resource capacities.

By solving (6), we obtain an idealized fluid schedule that
strictly implements the specified fairness-efficiency tradeoff
at all times. For example, the schedule shown in Fig. 7a
(resp., 7b) is the resulting fluid schedule when efficiency (resp.,
fairness) is the only objective to optimize.

Packet-by-Packet Scheduling: Though the idealized fluid
schedule cannot be implemented as packets are not scheduled
as entities, it can be approximated by packet-by-packet queue-
ing algorithms. Similar to how GPS [6] is approximated by
fair queueing such as WFQ [6] and PGPS [7], we can maintain
fluid schedule as a referencing system in the background.
Whenever there is a scheduling opportunity, the packet that
finishes its service the earliest in the referencing system is
scheduled. For example, Fig. 8 shows the resulting packet-by-
packet approximations to the two fluid schedules depicted in
Fig. 7. It is easy to verify that both approximations closely
track the progress of the fluid ideals. More complicated
approximation techniques, such as those adopted by WF2Q
[12], can also be applied in a similar way.

However, we emphasize that the packet-by-packet queue-
ing algorithm described above may be very complicated to
implement, mainly due to the requirement of maintaining
the referencing fluid schedule: Whenever a flow changes its
state from idle to busy or from busy to idle, we have to

P1 P2 P3Q1 P4 P5 P6Q2 P7

P1 P2 P3Q1 P4 P5 P6Q2 P7

...

...

CPU

Link
Time0 6 8 12 14 182 4 10 16

Q3

(a) Packet-by-packet approximation to the schedule of Fig. 7a.

P1 P2Q1 P3 Q2 P4 P5 Q3 P6

P1 ...

...

P1 P2 P3Q1 P4 P5Q2 P6 P7Q3CPU

Link
Time0 6 8 12 14 182 4 10 16

(b) Packet-by-packet approximation to the schedule of Fig. 7b.

Fig. 8. The packet-by-packet approximations to the two fluid schedules
shown in Fig. 7.

solve the optimization problem (6), which is generally non-
convex and incurs high computational complexity. To avoid
this complexity, packet-by-packet scheduling should track the
progress of a fluid scheme without actually emulating it.
Though this can be achieved in single-resource fair queueing,
e.g., [13], [14], it remains open how this can be done when
multiple resources are to be scheduled.

B. Tradeoff Representation as Efficiency Optimization under
Fairness Constraints

The tradeoff representation presented above unifies the two
requirements on both fairness and efficiency into a single
design objective (6), which turns out to be complicated to
implement. We now consider another tradeoff representation
that takes the fairness requirement as a design constraint,
under which we optimize efficiency. In particular, the fairness
requirement is expressed as the RFB defined in (1), and is pre-
specified by the network operator. Efficiency is measured as
the scheduling makespan. The design objective is to schedule
packets in a way such that they can be processed as quickly
as possible, as long as the specified fairness requirement RFB
is not violated. The key question here is how packets can be
scheduled “as quickly as possible”.

To answer this question, we derive some insights from
existing solutions in the literature that consider the extreme
case where efficiency is the only objective to optimize. That
is, given a sequence of packets that have already arrived, how
should they be scheduled to minimize the overall makespan?
This is equivalent to a multi-stage flow shop problem [15]. In
the flow shop problem, the equivalent of a packet is a job,
while the equivalent of a resource is a machine. A sequence
of jobs have to undergo m-stage operations on m machines,
where Operation 1 must be done first on Machine 1, followed
by Operation 2 on Machine 2, and so on. Different operations
of a job may require different processing times. No two
operations can be carried out on the same machine in parallel.
The objective is to minimize the job makespan by deciding an
optimal scheduling order.

When there are two resources (m = 2), the flow shop
problem can be optimally solved within linear time using
Johnson’s algorithm [15] as follows. Partition the packets

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Tradeoff as a constrained
optimization problem

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Intuition

Schedule packets as quickly as possible, as long as the speci#ed
fairness requirement (RFB) is not violated

How can packets be scheduled “as quickly as possible”?

Minimize the makespan

27

Tradeoff as a constrained optimization Problem

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Schedule packets as quickly as possible

Consider an extreme case where the efficiency (makespan) is
the only objective to optimize

Multi-stage "ow shop problem

When there are two resources, e.g., CPU and bandwidth

Johnson’s algorithm is optimal

When there are more than two resources, the problem is NP-
hard!

Extending Johnson’s algorithm offers a good heuristic

28

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The scheduler keeps track of the dominant services allocated
to every traffic #ow

As long as the service gap does not exceed the speci$ed
fairness requirement (RFB), we schedule packets using
Johnson’s heuristic for higher efficiency

Once the gap exceeds some threshold, the #ow that receives
the least dominant services will have the highest priority to be
served, until the gap falls below the threshold

After that, the efficiency will become the primary concern

29

Implement fairness-efficiency tradeoff

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Conclusions

Unlike single-resource packet scheduling, there exists a
tradeoff between fairness and efficiency

We raise attention to two important research problems

How can fairness-efficiency tradeoff be expressed?
How can a queueing scheme be designed to implement the speci#ed
tradeoff?

As an initial step

We present two tradeoff representations for multi-resource packet
scheduling
We discuss their implementation issues

30

Friday, 12 July, 13

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Thanks!
http://iqua.ece.toronto.edu/~weiwang/

Friday, 12 July, 13

http://iqua.ece.toronto.edu/~weiwang/
http://iqua.ece.toronto.edu/~weiwang/

