To Reserve or Not to Reserve: Optimal Online Multi-Instance Acquisition in IaaS Clouds

Wei Wang, Baochun Li, *Ben Liang*Department of Electrical and Computer Engineering

University of Toronto

Growing Cloud-Computing Costs

- Drastic increase in enterprise spending on Infrastructure-as-a-Service (IaaS) clouds
 - 41.7% annual growth rate by 2016 [Cloud Times'12]
 - laaS cloud is the fastest-growing segment

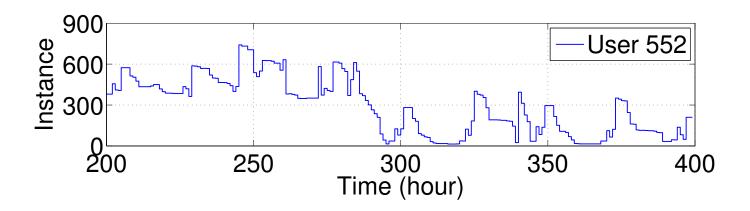
Tradeoffs in Cloud Pricing Options

- On-demand Instances
 - No commitment
 - Pay-as-you-go
- Reserved Instances
 - Reservation fee + discounted price
 - Suitable for long-term usage commitment

Instance Type	Pricing Option	Upfront	Hourly
Standard Small	On-Demand	\$0	\$0.08
	1-Year Reserved	\$69	\$0.039
Standard Medium	On-Demand	\$0	\$0.16
	1-Year Reserved	\$138	\$0.078

Multi-Instance Acquisition Problem

Workload (demand) is time-varying



- When should I reserve an instance?
- How many instances should I reserve?

Predict the Future?

- Existing works rely on prediction of future demand
 - [Hong SIGMETRICS'11, Bodenstein ICIS'11, Vermeersch Thesis'11, Wang ICDCS'13]
- However...
 - Prediction is needed for long-term future
 - Instance reservation period is typically months to years
 - Precise prediction not possible
 - Demand history may be limited
 - E.g., startup companies, new services

How well can we make instance reservation decisions online, without any *a priori* information about the future demand?

Our Main Contributions

- Propose two online reservation algorithms that offer the best provable cost guarantees
 - Deterministic: $(2-\alpha)$ -competitive
 - Randomized: $e/(e-1+\alpha)$ -competitive
 - α : normalized discounted price under reservation $(0 \le \alpha \le 1)$
- Study practical performance gains using Google cluster workload traces

Problem Formulation

Pricing of On-Demand and Reserved Instances

- On-demand Instances
 - Fixed hourly price: p
 - Cost of running for h hours: ph
- Reserved Instances
 - Upfront reservation fee + discounted price
 - Normalized reservation fee: 1
 - Reservation period: τ hours
 - Cost of running for h hours: $1 + \alpha ph$
 - α : normalized discounted price under reservation $(0 \le \alpha \le 1)$

User Demand and Reservation

At time t (discrete time), the user

- Has demand for d_t instances (time-varying)
- Newly reserves r_t instances
 - Available reserved instances:

$$\sum_{i=t-\tau+1}^{t} r_i$$

- Launches o_t on-demand instances
 - Total available instances:

$$o_t + \sum_{i=t-\tau+1}^{t} r_i \ge d_t$$

Optimal Offline Algorithm

■ Make instance purchase decisions o_t and r_t with knowledge of all future demands d_{t+1} , d_t

$$\min_{\{r_t,o_t\}} C = \sum_{t=1}^{T} (o_t p) + [r_t + \alpha p(d_t - o_t)],$$
 s.t. $o_t + \sum_{i=t-\tau+1}^{t} r_i \geq d_t$, $o_t, r_t \in \{0, 1, 2, \dots\}, t = 1, \dots, T$.

 Can be solved by dynamic programming, but is computationally prohibitive

Online Instance Reservation

■ Make instance purchase decisions o_t and r_t without seeing future demands d_{t+1} , d_{t+2} , ...

$$\min_{\{r_t,o_t\}} \quad C = \sum_{t=1}^T (o_t p) + r_t + \alpha p(d_t - o_t),$$
 s.t.
$$o_t + \sum_{i=t-\tau+1}^t r_i \geq d_t,$$

$$o_t, r_t \in \{0,1,2,\dots\}, t=1,\dots,T.$$

— What is the best that one can do?

Measure of Optimality

- Compare an online reservation algorithm with the optimal offline reservation
- An online algorithm A is γ -competitive if it incurs at most γ times the optimal offline cost
 - For any demand sequence $\mathbf{d} = d_1, d_2, \dots$

$$C_A(\mathbf{d}) \leq \gamma C_{\mathrm{OPT}}(\mathbf{d})$$

– Aims to minimize the competitive ratio γ

The Best Possible Outcome

Lemma 1: The best achievable competitive ratio is $2-\alpha$ for *deterministic* online algorithms, and is $e/(e-1+\alpha)$ for *randomized* online algorithms.

Bahncard problem [Fleischer TCS'01]:

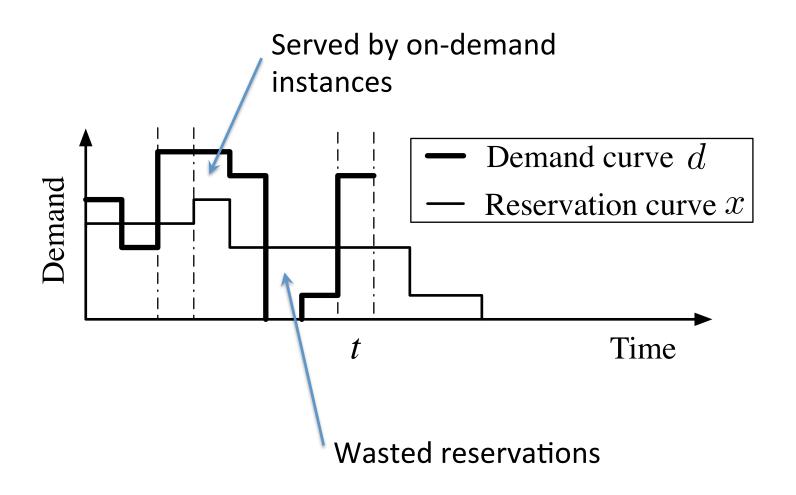
- Goal: reduce cost of using the Deutsche Bahn
- User may buy tickets on-demand or buy an annual Bahncard to enjoy discounted tickets
- No knowledge about user's travel plans or travel frequency

Is the optimal competitive ratio achievable with multiple instances?

- "Multi-Bahncard" problem
- Naïve extension: separate Bahncards
 - Does not work

Optimal Deterministic Online Algorithm

Demand and Reservation Curves

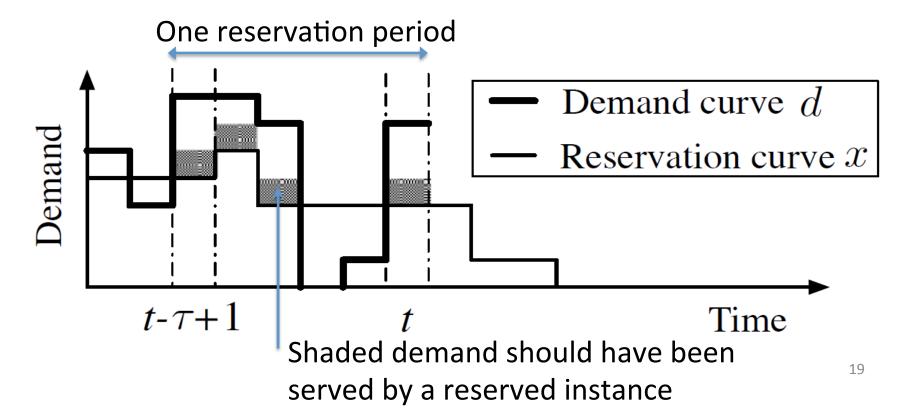


Break-Even Point

- Let c be the cost of one on-demand instance to serve workload that spans a reservation period.
- Using a reserved instance instead, the cost is $1+\alpha c$
- Break-even point: $c = 1 + \alpha c$
 - Let $\beta = 1/(1 \alpha)$
 - $-c = \beta$: Break even
 - $-c < \beta$: On-demand is better
 - $-c > \beta$: Reservation is better

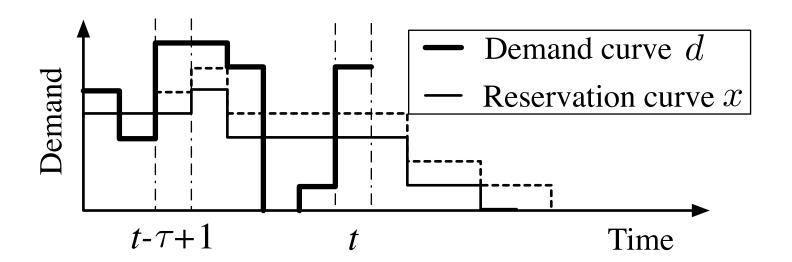
Regret and Compensation

- At time t, look back for one reservation period.
- If the incurred on-demand cost $> \beta$, reserve a new instance: $r_t = r_t + 1$.



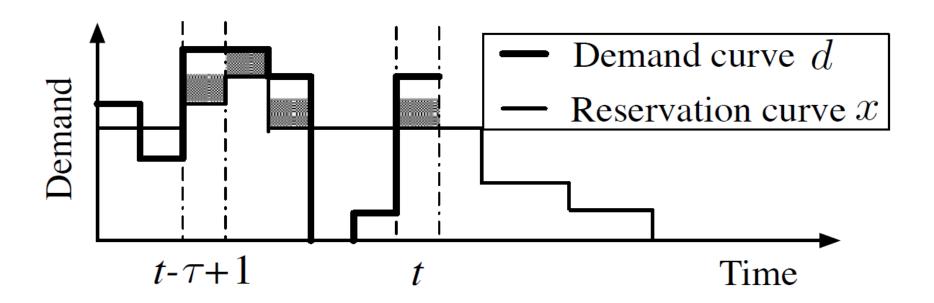
Update Reservation Curve

If a new instance is reserved, update the reservation curve, both forward and backward.



Repeat until No Regret

■ Repeat to reserve more new instances, until the (virtual) incurred on-demand cost $< \beta$.



Proposition 1: The deterministic online algorithm is $(2-\alpha)$ -competitive, and hence is *optimal* among all deterministic online algorithms.

Optimal Randomized Online Algorithm

Basic Idea

- Can use different thresholds z (other than the break-even point β) to decide whether to reserve an instance
 - A family of deterministic algorithms $\{A_z\}$
- The smaller z, the more aggressive the reservation strategy
 - -z = 0: All-reserved
 - $-z = +\infty$: All-on-demand

Basic Idea (Cont'd)

- Randomly choose from the family of deterministic algorithms $\{A_z\}$
 - Strike balance between reserving too aggressively and too conservatively
 - Randomly pick threshold z according to the following density function

$$f(z) = \begin{cases} (1-\alpha)e^{(1-\alpha)z}/(e-1+\alpha), & z \in [0,\beta), \\ \delta(z-\beta) \cdot \alpha/(e-1+\alpha), & \text{o.w.,} \end{cases}$$

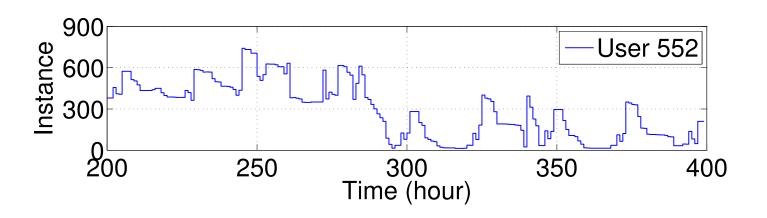
– Make instance reservation decisions based on deterministic algorithm A_z

■ **Proposition 2:** The randomized online algorithm is $e/(e-1+\alpha)$ -competitive, and hence is *optimal* among all online algorithms.

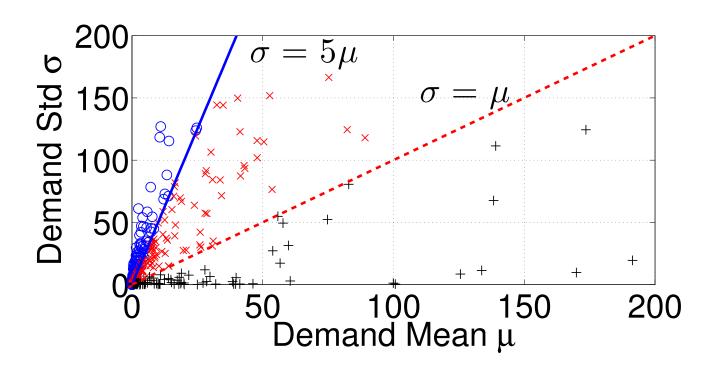
Trace-Driven Simulations

Dataset and Preprocessing

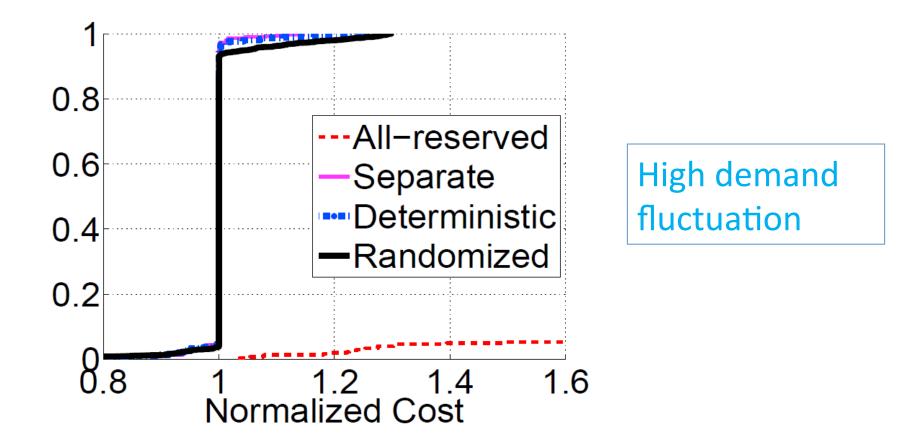
- Google cluster traces
 - 900+ users' usage traces in 1 month
 - We convert users' computing demand data to laaS instance demands



- Users are classified into 3 groups based on demand fluctuation level
 - Standard deviation vs. mean in hourly demand

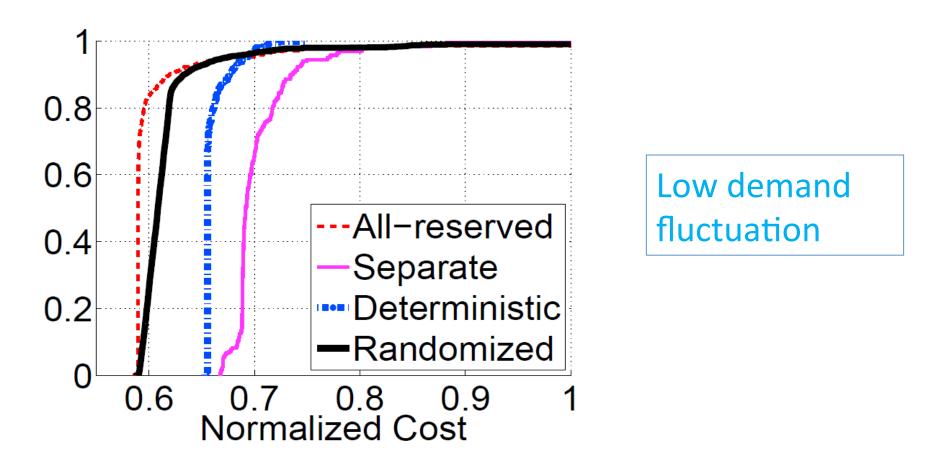


CDF of Cost Normalized to All-On-Demand



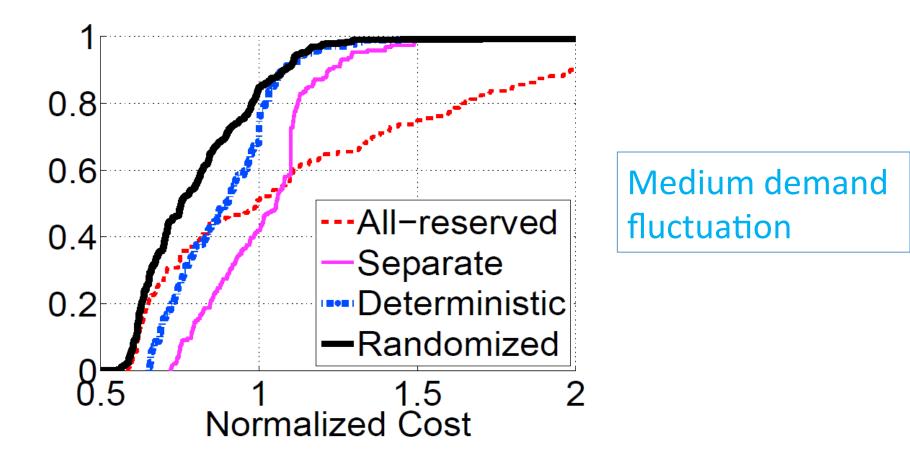
"Separate": stack demands and treat each layer as a virtual user, each individualy solving the Bahncard problem.

CDF of Cost Normalized to All-On-Demand



"Separate": stack demands and treat each layer as a virtual user, each individually solving the Bahncard problem.

CDF of Cost Normalized to All-On-Demand



"Separate": stack demands and treat each layer as a virtual user, each individually solving the Bahncard problem.

Conclusions

- Deterministic and randomized online multiinstance reservation algorithms without future demand information
 - Optimal competitive ratio vs. optimal offline algorithm
 - Substantial performance gain over a wide range of demand fluctuation levels
- Extension to cases where short-term predictions are reliable
- Open problem: multiple reservation options