To Reserve or Not to Reserve:
Optimal Online Multi-Instance
Acquisition in laaS Clouds

Wei Wang, Baochun Lij,
Department of Electrical and Computer Engineering
University of Toronto

Growing Cloud-Computing Costs

" Drastic increase in enterprise spending on
Infrastructure-as-a-Service (laaS) clouds

— 41.7% annual growth rate by 2016 [Cloud
Times’12]

— laaS cloud is the fastest-growing segment

amazon =4
webservices™

ElasticHosts S GRID

Flexible Servers in the Cloud

Control in the Cloud™

Tradeoffs in Cloud Pricing Options

" On-demand Instances
— No commitment
— Pay-as-you-go

= Reserved Instances

— Reservation fee + discounted price
— Suitable for long-term usage commitment

Instance Type Pricing Option | Upfront | Hourly

On-Demand $0 $0.08
amazo n Standard Small I-Year Reserved $69 $0.039
webservices On-Demand $0 $0.16

Standard Medium

1-Year Reserved $138 $0.078

Multi-Instance Acquisition Problem

» Workload (demand) is time-varying

900 x w x
Q —User 552
= 600} | |
2300 T
800 250 ~ 300 350 400
Time (hour)

3

T @

= When should | reserve an instance? (7

3
= How many instances should | reserveN

4

Predict the Future?

" Existing works rely on prediction of future
demand

— [Hong SIGMETRICS’11, Bodenstein ICIS'11,
Vermeersch Thesis’11, Wang ICDCS’13]
= However...

— Prediction is needed for long-term future
" |[nstance reservation period is typically months to years

— Precise prediction not possible

— Demand history may be limited
= E.g., startup companies, new services

How well can we make instance
reservation decisions online, without
any a priori information about the
future demand?

Our Main Contributions

" Propose two online reservation algorithms
that offer the best provable cost guarantees
— Deterministic: (2-a)-competitive
— Randomized: e/(e-1+a)-competitive

" o : normalized discounted price under reservation (0 <
a<1)

= Study practical performance gains using
Google cluster workload traces

Problem Formulation

Pricing of On-Demand and
Reserved Instances

" On-demand Instances
— Fixed hourly price: p
— Cost of running for /4 hours: ph

= Reserved Instances
— Upfront reservation fee + discounted price
— Normalized reservation fee: 1
— Reservation period: t hours

— Cost of running for 4 hours: 1 + aph

" o : normalized discounted price under reservation (0 <
a<1)

User Demand and Reservation

At time ¢ (discrete time), the user

* Has demand for d, instances (time-varying)
= Newly reserves r, instances

f
— Available reserved instances: Z -
(A

1=t—71+1
" Launches o, on-demand instances
— Total available instances:

Optimal Offline Algorithm

= Make instance purchase decisions o, and r,
with knowledge of all future demands d,. ;, d,

_|_2, o o o
T On-demand cost Reservation cost

min C = (otp|+ ¢ + ap(dy — o))

— Can be solved by dynamic programming, but is
computationally prohibitive

11

Online Instance Reservation

= Make instance purchase decisions o, and r,
without seeing future demands d,. ;, d,.,, ...

T On-demand cost Reservation cost

min C =) (ow

+ 1 + ap(ds — o))

— What is the best that one can do?

Measure of Optimality

= Compare an online reservation algorithm with
the optimal offline reservation

" An online algorithm A is y-competitive if it
incurs at most y times the optimal offline cost
— For any demand sequenced =d,.,d,,...

C(d) <y Copr(d)

— Aims to minimize the competitive ratio y

The Best Possible Outcome

Lemma 1: The best achievable competitive ratio is
2-a for deterministic online algorithms, and is e/
(e-1+ a) for randomized online algorithmes.

Bahncard problem [Fleischer TCS'01]:

— Goal: reduce cost of using the Deutsche Bahn

— User may buy tickets on-demand or buy an annual
Bahncard to enjoy discounted tickets

— No knowledge about user’s travel plans or travel
frequency

Is the optimal competitive ratio
achievable with multiple instances?

= “Multi-Bahncard” problem

= Naive extension: separate Bahncards
— Does not work

Optimal Deterministic Online
Algorithm

Demand and Reservation Curves

Served by on-demand

instances
A . |
i I | | == Demand curve d
=
S ' | — Reservation curve &
= | |
L | i
Q | | |
| | | |
4 Time

Wasted reservations

Break-Even Point

" Let c be the cost of one on-demand instance to
serve workload that spans a reservation period.

" Using a reserved instance instead, the cost is
1+ac

" Break-even point: ¢ = 1+ac
— Let p=1/(1- o)
—c = f: Break even

— ¢ < f: On-demand is better
— ¢ > [. Reservation is better

Regret and Compensation

= At time ¢, look back for one reservation period.

" |f the incurred on-demand cost > f, reserve a
new instance: r, = r+1.

One reservation period

== Demand curve

— Reservation curve &

Demand

I >

Time
Shaded demand should have been
served by a reserved instance

Update Reservation Curve

" |[f a new instance is reserved, update the
reservation curve, both forward and
backward.

— Demand curve d

— Reservation curve &

Demand

Repeat until No Regret

= Repeat to reserve more new instances, until
the (virtual) incurred on-demand cost < §.

== Demand curve

— Reservation curve &

Demand

Time

Proposition 1: The deterministic online
algorithm is (2-a)-competitive, and hence is
optimal among all deterministic online
algorithms.

22

Optimal Randomized Online
Algorithm

Basic Idea

= Can use different thresholds z (other than the

break-even point f) to decide whether to
reserve an instance

— A family of deterministic algorithms {4_}

" The smaller z, the more aggressive the
reservation strategy

—z=20: All-reserved
— z = +oo: All-on-demand

Basic Idea (Cont’d)

= Randomly choose from the family of
deterministic algorithms {4 _}

— Strike balance between reserving too aggressively
and too conservatively

— Randomly pick threshold z according to the
following density function

(1= a)ell=2 /(e — 1+), z€]0,p),
/() —{ 5(z—B)-alle—1+a), ow,

— Make instance reservation decisions based on
deterministic algorithm A,

= Proposition 2: The randomized online
algorithm is e/(e-1+a)-competitive, and hence
is optimal among all online algorithms.

Trace-Driven Simulations

Dataset and Preprocessing

= Google cluster traces
— 900+ users’ usage traces in 1 month

— We convert users’ computing demand data to 1aaS
instance demands

900 w w w
3 — User 552
= 600" | 1
E 300¢r M
QOO 250 300 350 400

Time (hour)

= Users are classified into 3 groups based on
demand fluctuation level

— Standard deviation vs. mean in hourly demand

200

—h
0
S

Demand Std o
o
o

o
= O

100 150 200

Demand Mean u

CDF of Cost Normalized to All-On-Demand

os | T

---All-reserved |
061 —Separate High demand

oa | ==Deterministic, | fluctuation

—Randomized |
0_2_ __ _________________________

85 1 S 14 16
Normalized Cost

“Separate”: stack demands and treat each layer as a virtual
user, each individualy solving the Bahncard problem. 2

CDF of Cost Normalized to All-On-Demand

0.8_ _______ ::', _________ 5 ___

06 """" E """"" g """" I_OW demand
_______] = | |---All-reserved | fluctuation

0.4 = |

: | |—Separate |

0.2 i = | |=Deterministic|

/ ~ |==Randomized |

0 | » | | | j

06 07 08 0.9 1

Normalized Cost

“Separate”: stack demands and treat each layer as a virtual
user, each individually solving the Bahncard problem. .

CDF of Cost Normalized to All-On-Demand

0.8y

1 _ ____________

: .
mm™
p =

O6t ot

---All-reserved |

04 f 4

| —Separate |

0.2 §# /| =Deterministic|

~ |=—Randomized |

8.5 1 1.5 2
Normalized Cost

Medium demand
fluctuation

“Separate”: stack demands and treat each layer as a virtual
user, each individually solving the Bahncard problem. -

Conclusions

= Deterministic and randomized online multi-
instance reservation algorithms without future
demand information
— Optimal competitive ratio vs. optimal offline algorithm
— Substantial performance gain over a wide range of

demand fluctuation levels

= Extension to cases where short-term predictions

are reliable

= Open problem: multiple reservation options

