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Growing Cloud-Computing Costs

" Drastic increase in enterprise spending on
Infrastructure-as-a-Service (laaS) clouds

— 41.7% annual growth rate by 2016 [Cloud
Times’12]

— laaS cloud is the fastest-growing segment
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Tradeoffs in Cloud Pricing Options

" On-demand Instances
— No commitment
— Pay-as-you-go

= Reserved Instances

— Reservation fee + discounted price
— Suitable for long-term usage commitment

Instance Type Pricing Option | Upfront | Hourly

On-Demand $0 $0.08
amazo n Standard Small I-Year Reserved $69 $0.039
webservices On-Demand $0 $0.16

Standard Medium

1-Year Reserved $138 $0.078




Multi-Instance Acquisition Problem

» Workload (demand) is time-varying
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Predict the Future?

" Existing works rely on prediction of future
demand

— [Hong SIGMETRICS’11, Bodenstein ICIS'11,
Vermeersch Thesis’11, Wang ICDCS’13]
= However...

— Prediction is needed for long-term future
" |[nstance reservation period is typically months to years

— Precise prediction not possible

— Demand history may be limited
= E.g., startup companies, new services




How well can we make instance
reservation decisions online, without
any a priori information about the
future demand?



Our Main Contributions

" Propose two online reservation algorithms
that offer the best provable cost guarantees
— Deterministic: (2-a)-competitive
— Randomized: e/(e-1+a)-competitive

" o : normalized discounted price under reservation (0 <
a<1)

= Study practical performance gains using
Google cluster workload traces



Problem Formulation



Pricing of On-Demand and
Reserved Instances

" On-demand Instances
— Fixed hourly price: p
— Cost of running for /4 hours: ph

= Reserved Instances
— Upfront reservation fee + discounted price
— Normalized reservation fee: 1
— Reservation period: t hours

— Cost of running for 4 hours: 1 + aph

" o : normalized discounted price under reservation (0 <
a<1)



User Demand and Reservation

At time ¢ (discrete time), the user

* Has demand for d, instances (time-varying)
= Newly reserves r, instances

f
— Available reserved instances: Z -
(A

1=t—71+1
" Launches o, on-demand instances
— Total available instances:



Optimal Offline Algorithm

= Make instance purchase decisions o, and r,
with knowledge of all future demands d,. ;, d,

_|_2, o o o
T On-demand cost Reservation cost

min C = (otp|+ ¢ + ap(dy — o))

— Can be solved by dynamic programming, but is
computationally prohibitive
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Online Instance Reservation

= Make instance purchase decisions o, and r,
without seeing future demands d,. ;, d,.,, ...

T On-demand cost Reservation cost

min  C =) (ow

+ 1 + ap(ds — o))

— What is the best that one can do?



Measure of Optimality

= Compare an online reservation algorithm with
the optimal offline reservation

" An online algorithm A is y-competitive if it
incurs at most y times the optimal offline cost
— For any demand sequenced =d,.,d,,...

C(d) <y Copr(d)

— Aims to minimize the competitive ratio y



The Best Possible Outcome

Lemma 1: The best achievable competitive ratio is
2-a for deterministic online algorithms, and is e/
(e-1+ a) for randomized online algorithmes.

Bahncard problem [Fleischer TCS'01]:

— Goal: reduce cost of using the Deutsche Bahn

— User may buy tickets on-demand or buy an annual
Bahncard to enjoy discounted tickets

— No knowledge about user’s travel plans or travel
frequency



Is the optimal competitive ratio
achievable with multiple instances?

= “Multi-Bahncard” problem

= Naive extension: separate Bahncards
— Does not work



Optimal Deterministic Online
Algorithm



Demand and Reservation Curves
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Break-Even Point

" Let c be the cost of one on-demand instance to
serve workload that spans a reservation period.

" Using a reserved instance instead, the cost is
1+ac

" Break-even point: ¢ = 1+ac
— Let p=1/(1- o)
—c = f: Break even

— ¢ < f: On-demand is better
— ¢ > [ . Reservation is better



Regret and Compensation

= At time ¢, look back for one reservation period.

" |f the incurred on-demand cost > f, reserve a
new instance: r, = r+1.

One reservation period

== Demand curve

— Reservation curve &

Demand
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Time
Shaded demand should have been
served by a reserved instance




Update Reservation Curve

" |[f a new instance is reserved, update the
reservation curve, both forward and
backward.

— Demand curve d

— Reservation curve &

Demand
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Repeat until No Regret

= Repeat to reserve more new instances, until
the (virtual) incurred on-demand cost < §.
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Proposition 1: The deterministic online
algorithm is (2-a)-competitive, and hence is
optimal among all deterministic online
algorithms.
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Optimal Randomized Online
Algorithm



Basic Idea

= Can use different thresholds z (other than the

break-even point f) to decide whether to
reserve an instance

— A family of deterministic algorithms {4_}

" The smaller z, the more aggressive the
reservation strategy

—z=20: All-reserved
— z = +oo: All-on-demand



Basic Idea (Cont’d)

= Randomly choose from the family of
deterministic algorithms {4 _}

— Strike balance between reserving too aggressively
and too conservatively

— Randomly pick threshold z according to the
following density function

(1= a)ell=2 /(e — 1+ ), z€]0,p),
/() —{ 5(z—B)-alle—1+a),  ow,

— Make instance reservation decisions based on
deterministic algorithm A,



= Proposition 2: The randomized online
algorithm is e/(e-1+a)-competitive, and hence
is optimal among all online algorithms.



Trace-Driven Simulations



Dataset and Preprocessing

= Google cluster traces
— 900+ users’ usage traces in 1 month

— We convert users’ computing demand data to 1aaS
instance demands
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= Users are classified into 3 groups based on
demand fluctuation level

— Standard deviation vs. mean in hourly demand
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CDF of Cost Normalized to All-On-Demand
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“Separate”: stack demands and treat each layer as a virtual
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CDF of Cost Normalized to All-On-Demand
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CDF of Cost Normalized to All-On-Demand
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Conclusions

= Deterministic and randomized online multi-
instance reservation algorithms without future
demand information
— Optimal competitive ratio vs. optimal offline algorithm
— Substantial performance gain over a wide range of

demand fluctuation levels

= Extension to cases where short-term predictions

are reliable

= Open problem: multiple reservation options



