
To	
 Reserve	
 or	
 Not	
 to	
 Reserve:	

Op.mal	
 Online	
 Mul.-­‐Instance	

Acquisi.on	
 in	
 IaaS	
 Clouds	

Wei	
 Wang,	
 Baochun	
 Li,	
 Ben	
 Liang	

Department	
 of	
 Electrical	
 and	
 Computer	
 Engineering	

University	
 of	
 Toronto	

1	

Growing	
 Cloud-­‐Compu.ng	
 Costs	

§  Dras.c	
 increase	
 in	
 enterprise	
 spending	
 on	

Infrastructure-­‐as-­‐a-­‐Service	
 (IaaS)	
 clouds	

– 41.7%	
 annual	
 growth	
 rate	
 by	
 2016	
 [Cloud	
 	

Times’12]	

–  IaaS	
 cloud	
 is	
 the	
 fastest-­‐growing	
 segment	

2	

Tradeoffs	
 in	
 Cloud	
 Pricing	
 Op.ons	

§  On-­‐demand	
 Instances	

– No	
 commitment	

– Pay-­‐as-­‐you-­‐go	

§  Reserved	
 Instances	

– Reserva.on	
 fee	
 +	
 discounted	
 price	

– Suitable	
 for	
 long-­‐term	
 usage	
 commitment	

3	

To Reserve or Not to Reserve: Optimal Online
Multi-Instance Acquisition in IaaS Clouds

Wei Wang, Baochun Li, and Ben Liang
Department of Electrical and Computer Engineering

University of Toronto

Abstract—Infrastructure-as-a-Service (IaaS) clouds offer di-
verse instance purchasing options. A user can either run instances
on demand and pay only for what it uses, or it can prepay
to reserve instances for a long period, during which a usage
discount is entitled. An important problem facing a user is
how these two instance options can be dynamically combined to
serve time-varying demands at minimum cost. Existing strategies
in the literature, however, require either exact knowledge or
the distribution of demands in the long-term future, which
significantly limits their use in practice. Unlike existing works,
we propose two practical online algorithms, one deterministic and
another randomized, that dynamically combine the two instance
options online without any knowledge of the future. We show that
the proposed deterministic (resp., randomized) algorithm incurs
no more than 2 � ↵ (resp., e/(e � 1 + ↵)) times the minimum
cost obtained by an optimal offline algorithm that knows the exact
future a priori, where ↵ is the entitled discount after reservation.
Our online algorithms achieve the best possible competitive ratios
in both the deterministic and randomized cases, and can be
easily extended to cases when short-term predictions are reliable.
Simulations driven by a large volume of real-world traces show
that significant cost savings can be achieved with prevalent IaaS
prices.

I. INTRODUCTION

Enterprise spending on Infrastructure-as-a-Service (IaaS)
cloud is on a rapid growth path. According to [1], the public
cloud services market is expected to expand from $109 billion
in 2012 to $207 billion by 2016, during which IaaS is the
fastest-growing segment with a 41.7% annual growing rate [2].
IaaS cost management therefore receives significant attention
and has become a primary concern for IT enterprises.

Maintaining optimal cost management is especially chal-
lenging, given the complex pricing options offered in today’s
IaaS services market. IaaS cloud vendors, such as Amazon
EC2, ElasticHosts, GoGrid, etc., apply diverse instance (i.e.,
virtual machine) pricing models at different commitment
levels. At the lowest level, cloud users launch on-demand
instances and pay only for the incurred instance-hours, without
making any long-term usage commitments, e.g., [3], [4], [5].
At a higher level, there are reserved instances wherein users
prepay a one-time upfront fee and then reserve an instance for
months or years, during which the usage is either free, e.g.,
[4], [5], or is priced under a significant discount, e.g., [3].
Table I gives a pricing example of on-demand and reserved
instances in Amazon EC2.

Acquiring instances at the cost-optimal commitment level
plays a central role for cost management. Simply operating the
entire load with on-demand instances can be highly inefficient.

TABLE I
PRICING OF ON-DEMAND AND RESERVED INSTANCES (LIGHT

UTILIZATION, LINUX, US EAST) IN AMAZON EC2, AS OF FEB. 10, 2013.

Instance Type Pricing Option Upfront Hourly

Standard Small On-Demand $0 $0.08
1-Year Reserved $69 $0.039

Standard Medium On-Demand $0 $0.16
1-Year Reserved $138 $0.078

For example, in Amazon EC2, three years of continuous on-
demand service cost 3 times more than reserving instances
for the same period [3]. On the other hand, naively switching
to a long-term commitment incurs a huge amount of upfront
payment (more than 1,000 times the on-demand rate in EC2
[3]), making reserved instances extremely expensive for spo-
radic workload. In particular, with time-varying loads, a user
needs to answer two important questions: (1) when should I
reserve instances (timing), and (2) how many instances should
I reserve (quantity)?

Recently proposed instance reservation strategies, e.g., [6],
[7], [8], heavily rely on long-term predictions of future
demands, with historic workloads as references. These ap-
proaches, however, suffer from several significant limitations
in practice. First, historic workloads might not be available,
especially for startup companies who have just switched to
IaaS services. In addition, not all workloads are amenable
to prediction. In fact, it is observed in real production ap-
plications that workload is highly variable and statistically
nonstationary [9], [10], and as a result, history may reveal
very little information about the future. Moreover, due to the
long span of a reservation period (e.g., 1 to 3 years in Amazon
EC2), workload predictions are usually required over a very
long period of time, say, years. It would be very challenging, if
not impossible, to make sufficiently accurate predictions over
such a long term. For all these reasons, instance reservations
are usually made conservatively in practice, based on empirical
experiences [11] or professional recommendations, e.g., [12],
[13], [14].

In this paper, we are motivated by a practical yet fundamen-
tal question: Is it possible to reserve instances in an online
manner, with limited or even no a priori knowledge of the
future workload, while still incurring near-optimal instance
acquisition costs? To our knowledge, this paper represents the
first attempt to answer this question, as we make the following
contributions.

With dynamic programming, we first characterize the op-
timal offline reservation strategy as a benchmark algorithm

1

Mul.-­‐Instance	
 Acquisi.on	
 Problem	

§ Workload	
 (demand)	
 is	
 .me-­‐varying	

§ When	
 should	
 I	
 reserve	
 an	
 instance?	

§  How	
 many	
 instances	
 should	
 I	
 reserve?	
 	

4	

it is possible to have a demand prediction window that is
weeks into the future. Both our online algorithms can be easily
extended to utilize these knowledge of future demands when
making reservation decisions.

We begin by formulating the instance reservation problem
with limited information of future demands. Let w be the
prediction window. That is, at any time t, a user can predict its
future demands d

t+1, . . . , dt+w

in the next w hours. Since only
short-term predictions are reliable, one can safely assume that
the prediction window is less than a reservation period, i.e.,
w < ⌧ . The instance reservation problem resembles the online
reservation problem (1), except that the instance purchase
decisions made at each time t, i.e., the number of reserved
instances (r

t

) and on-demand instances (o
t

), are based on both
history and future demands predicted, i.e., d1, . . . , dt+w

. The
competitive analysis (Definition 1) remains valid in this case.

The Deterministic Algorithm: We extend our deterministic
online algorithm as follows. As before, all workloads are by
default served by on-demand instances. At time t, we can
predict the demands up to time t+w. Unlike the online deter-
ministic algorithm, we check the use of on-demand instances
in a reservation period across both history and future, starting
from time t+w�⌧+1 to t+w. A new instance is reserved at
time t whenever we see an on-demand instance incurring more
costs than the break-even point � and the currently effective
reservations are less than the current demand d

t

. Algorithm 3,
also denoted by A

w

�

, shows the details.

Algorithm 3 Deterministic Algorithm A

w

�

with Prediction
Window w

1. Let x

i

be the number of reserved instances at time i,
Initially, x

i

 0 for all i = 0, 1, . . .
2. Upon the arrival of demand d

t

, loop as follows:
3. while p

P
t+w

i=t+w�⌧+1 I(di > x

i

) > � and x

t

< d

t

do
4. Reserve a new instance: r

t

 r

t

+ 1.
5. Update the number of reservations that can be used in

the future: x
i

 x

i

+ 1 for i = t, . . . , t+ ⌧ � 1.
6. Add a “phantom” reservation to the history, indicating

that the history has already been “processed”: x

i

x

i

+ 1 for i = t+ w � ⌧ + 1, . . . , t� 1.
7. end while
8. Launch on-demand instances: o

t

 (d
t

� x

t

)+.
9. t t+ 1, repeat from 2.

The Randomized Algorithm: The randomized algorithm
can also be constructed as a random distribution over a family
of deterministic algorithms similar to A

w

�

. In particular, let
A

w

z

be similarly defined as algorithm A

w

�

with � replaced by
z 2 [0,�] in line 3 of Algorithm 3. The value of z reflects
the aggressiveness of instance reservation. The smaller the z,
the more aggressive the reservation strategy. Similar to the
online randomized, we introduce randomness to strike a good
balance between reserving aggressively and conservatively.
Our algorithm randomly picks z 2 [0,�] according to the same
density function f(z) defined by (21), and runs the resulting
algorithm A

w

z

. Algorithm 4 formalizes the description above.

Algorithm 4 Randomized Algorithm with Prediction Window
w

1. Randomly pick z 2 [0,�] according to a density function
f(z) defined by (21)

2. Run A

w

z

200 250 300 350 400
0

300

600

900

Time (hour)

In
s
ta

n
c
e

User 552

Fig. 2. The demand curve of User 552 in Google cluster-usage traces [16],
over 1 month.

It is easy to see that both the deterministic and the random-
ized algorithms presented above improve the cost performance
of their online counterparts, due to the knowledge of future
demands. Therefore, we have Proposition 5 below. We will
quantify their performance gains via trace-driven simulations
in the next section.

Proposition 5: Algorithm 3 is (2 � ↵)-competitive, and
Algorithm 4 is e/(e� 1 + ↵)-competitive.

VII. TRACE-DRIVEN SIMULATIONS

So far, we have analyzed the cost performance of the
proposed algorithms in a view of competitive analysis. In this
section, we evaluate their performance for practical cloud users
via simulations driven by a large volume of real-world traces.

A. Dataset Description and Preprocessing

Long-term user demand data in public IaaS clouds are often
confidential: no cloud provider has released such information
so far. For this reason, we turn to Google cluster-usage traces
that were recently released in [16]. Although Google is not a
public IaaS cloud, its cluster-usage traces record the computing
demands of its cloud services and Google engineers, which
can represent the computing demands of IaaS users to some
degree. The dataset contains 40 GB of workload resource
requirements (e.g., CPU, memory, disk, etc.) of 933 users over
29 days in May 2011, on a cluster of more than 11K Google
machines.

Demand Curve: Given the workload traces of each user,
we ask the question: How many computing instances would
this user require if it were to run the same workload in a public
IaaS cloud? For simplicity, we set an instance to have the same
computing capacity as a cluster machine, which enables us
to accurately estimate the run time of computational tasks by
learning from the original traces. We then schedule these tasks
onto instances with sufficient resources to accommodate their
requirements. Computational tasks that cannot run on the same
server in the traces (e.g., tasks of MapReduce) are scheduled
to different instances. In the end, we obtain a demand curve
for each user, indicating how many instances this user requires
in each hour. Fig. 2 illustrates such a demand curve for a user.

User Classification: To investigate how our online algo-
rithms perform under different demand patterns, we classify

7

Predict	
 the	
 Future?	

§  Exis.ng	
 works	
 rely	
 on	
 predic.on	
 of	
 future	

demand	

–  [Hong	
 SIGMETRICS’11,	
 Bodenstein	
 ICIS’11,	

Vermeersch	
 Thesis’11,	
 Wang	
 ICDCS’13]	

§  However…	

–  Predic.on	
 is	
 needed	
 for	
 long-­‐term	
 future	

§  Instance	
 reserva.on	
 period	
 is	
 typically	
 months	
 to	
 years	

–  Precise	
 predic.on	
 not	
 possible	

– Demand	
 history	
 may	
 be	
 limited	

§  E.g.,	
 startup	
 companies,	
 new	
 services	

5	

How	
 well	
 can	
 we	
 make	
 instance	

reserva.on	
 decisions	
 online,	
 without	

any	
 a	
 priori	
 informa.on	
 about	
 the	

future	
 demand?	

6	

Our	
 Main	
 Contribu.ons	

§  Propose	
 two	
 online	
 reserva.on	
 algorithms	

that	
 offer	
 the	
 best	
 provable	
 cost	
 guarantees	

– Determinis.c:	
 (2-α)-­‐compe..ve	

– Randomized:	
 e/(e-1+α)-­‐compe..ve	

§ α :	
 normalized	
 discounted	
 price	
 under	
 reserva.on	
 (0 ≤
α ≤ 1)	

§  Study	
 prac.cal	
 performance	
 gains	
 using	

Google	
 cluster	
 workload	
 traces	

7	

Problem	
 Formula.on	

8	

Pricing	
 of	
 On-­‐Demand	
 and	

Reserved	
 Instances	

§  On-­‐demand	
 Instances	

– Fixed	
 hourly	
 price:	
 p
– Cost	
 of	
 running	
 for	
 h	
 hours:	
 ph

§  Reserved	
 Instances	

– Upfront	
 reserva.on	
 fee	
 +	
 discounted	
 price	

– Normalized	
 reserva.on	
 fee:	
 1
– Reserva.on	
 period:	
 τ	
 hours	

– Cost	
 of	
 running	
 for	
 h	
 hours:	
 1 + αph

§ α :	
 normalized	
 discounted	
 price	
 under	
 reserva.on	
 (0 ≤
α ≤ 1)	
 	
 	

9	

User	
 Demand	
 and	
 Reserva.on	

At	
 .me	
 t (discrete	
 .me),	
 the	
 user	

§  Has	
 demand	
 for	
 dt	
 instances	
 (.me-­‐varying)	

§  Newly	
 reserves	
 rt	
 instances
– Available	
 reserved	
 instances:	

§  Launches	
 ot	
 on-­‐demand	
 instances	

– Total	
 available	
 instances:	

10	

and those cloud users whose workloads are highly variable
and non-stationary — in both cases reliable predictions are
unavailable. We postpone the discussions for cases when short-
term demand predictions are reliable in Sec. VI.

Since IaaS instances are billed in an hourly manner, we slot
the time to a sequence of hours indexed by t = 0, 1, 2, . . . At
each time t, demand d

t

arrives, meaning that a user requests d
t

instances, d
t

= 0, 1, 2, . . . To accommodate this demand, the
user decides to use o

t

on-demand instances and d

t

�o

t

reserved
instances. If the previously reserved instances that remain
available at time t are fewer than d

t

� o

t

, then new instances
need to be reserved. Let r

t

be the number of instances that
are newly reserved at time t, r

t

= 0, 1, 2, . . . The overall
cost incurred at time t is the on-demand cost o

t

p plus the
reservation cost r

t

+ ↵p(d
t

� o

t

), where r

t

is the upfront
payments due to new reservations, and ↵p(d

t

� o

t

) is the cost
of running d

t

� o

t

reserved instances.
The cost management problem is to make instance purchase

decisions online, i.e., r
t

and o

t

at each time t, before seeing
future demands d

t+1, dt+2, . . . The objective is to minimize
the overall instance acquisition costs. Suppose demands last
for an arbitrary time T (counted by the number of hours). We
have the following online instance reservation problem:

min
{rt,ot}

C =
TX

t=1

(o
t

p+ r

t

+ ↵p(d
t

� o

t

)) ,

s.t. o

t

+

tX

i=t�⌧+1

r

i

� d

t

,

o

t

, r

t

2 {0, 1, 2, . . . }, t = 1, . . . , T .

(1)

Here, the first constraint ensures that all d
t

instances demanded
at time t are accommodated, with o

t

on-demand instances andP
t

i=t�⌧+1 ri reserved instances that remain active at time t.
Note that instances that are reserved before time t � ⌧ + 1
have all expired at time t, where ⌧ is the reservation period.
For convenience, we set r

t

= 0 for all t  0.
The main challenge of problem (1) lies in its online setting.

Without knowledge of future demands, the online strategy may
make purchase decisions that turn out later not to be optimal.
Below we clarify the performance metrics to measure how far
away an online strategy may deviate from the optimal solution.

C. Measure of Competitiveness

To measure the cost performance of an online strategy,
we adopt the standard competitive analysis [18]. The idea is
to bound the gap between the cost of an interested online
algorithm and that of the optimal offline strategy. The latter is
obtained by solving problem (1) with the exact future demands
d1, . . . , dT given a priori. Formally, we have

Definition 1 (Competitive analysis): A deterministic on-
line reservation algorithm A is c-competitive (c is a constant)
if for all possible demand sequences d = {d1, . . . , dT }, we
have

C

A

(d)  c · COPT(d) , (2)

where C

A

(d) is the instance acquisition cost incurred by algo-
rithm A given input d, and COPT(d) is the optimal instance
acquisition cost given input d. Here, COPT(d) is obtained by
solving the instance reservation problem (1) offline, where the
exact demand sequence d is assumed to know a priori.

A similar definition of the competitive analysis also extends
to the randomized online algorithm A, where the decision
making is drawn from a random distribution. In this case, the
LHS of (2) is simply replaced by E[C

A

(d)], the expected
cost of randomized algorithm A given input d. (See [18] for
a detailed discussion.)

Competitive analysis takes an optimal offline algorithm as
a benchmark to measure the cost performance of an online
strategy. Intuitively, the smaller the competitive ratio c is, the
more closely the online algorithm A approaches the optimal
solution. Our objective is to design optimal online algorithms
with the smallest competitive ratio.

We note that the instance reservation problem (1) captures
the Bahncard problem [19] as a special case when a user
demands no more than one instance at a time, i.e., d

t

 1 for
all t. The Bahncard problem models online ticket purchasing
on the German Federal Railway, where one can opt to buy
a Bahncard (reserve an instance) and to receive a discount
on all trips within one year of the purchase date. It has been
shown in [19], [20] that the lower bound of the competitive
ratio is 2 � ↵ and e/(e � 1 + ↵) for the deterministic and
randomized Bahncard algorithms, respectively. Because the
Bahncard problem is a special case of our problem (1), we
have

Lemma 1: The competitive ratio of problem (1) is at least
2�↵ for deterministic online algorithms, and is at least e/(e�
1 + ↵) for randomized online algorithms.

However, we show in the following that the instance re-
serving problem (1) is by no means a trivial extension to the
Bahncard problem, mainly due to the time-multiplexing nature
of reserved instances.

D. Bahncard Extension and Its Inefficiency

A natural way to extend the Bahncard solutions in [19] is
to decompose problem (1) into separate Bahncard problems.
To do this, we introduce a set of virtual users indexed by 1, 2,
. . . Whenever demand d

t

arises at time t, we view the original
user as d

t

virtual users 1, 2, . . . , d
t

, each requiring one instance
at that time. Each virtual user then reserves instances (i.e., buy
a Bahncard) separately to minimize its cost, which is exactly
a Bahncard problem.

However, such an extension is highly inefficient. An in-
stance reserved by one virtual user, even idle, can never be
multiplexed with another, who still needs to pay for its own
demand. For a real user, this implies that it has to acquire
additional instances, either on-demand or reserved, even if the
user has already reserved sufficient amount of instances to
serve its demand, which inevitably incurs a large amount of
unnecessary cost.

We learn from the above failure that instances must be
reserved jointly and time multiplexed appropriately. These

3

and those cloud users whose workloads are highly variable
and non-stationary — in both cases reliable predictions are
unavailable. We postpone the discussions for cases when short-
term demand predictions are reliable in Sec. VI.

Since IaaS instances are billed in an hourly manner, we slot
the time to a sequence of hours indexed by t = 0, 1, 2, . . . At
each time t, demand d

t

arrives, meaning that a user requests d
t

instances, d
t

= 0, 1, 2, . . . To accommodate this demand, the
user decides to use o

t

on-demand instances and d

t

�o

t

reserved
instances. If the previously reserved instances that remain
available at time t are fewer than d

t

� o

t

, then new instances
need to be reserved. Let r

t

be the number of instances that
are newly reserved at time t, r

t

= 0, 1, 2, . . . The overall
cost incurred at time t is the on-demand cost o

t

p plus the
reservation cost r

t

+ ↵p(d
t

� o

t

), where r

t

is the upfront
payments due to new reservations, and ↵p(d

t

� o

t

) is the cost
of running d

t

� o

t

reserved instances.
The cost management problem is to make instance purchase

decisions online, i.e., r
t

and o

t

at each time t, before seeing
future demands d

t+1, dt+2, . . . The objective is to minimize
the overall instance acquisition costs. Suppose demands last
for an arbitrary time T (counted by the number of hours). We
have the following online instance reservation problem:

min
{rt,ot}

C =
TX

t=1

(o
t

p+ r

t

+ ↵p(d
t

� o

t

)) ,

s.t. o

t

+

tX

i=t�⌧+1

r

i

� d

t

,

o

t

, r

t

2 {0, 1, 2, . . . }, t = 1, . . . , T .

(1)

Here, the first constraint ensures that all d
t

instances demanded
at time t are accommodated, with o

t

on-demand instances andP
t

i=t�⌧+1 ri reserved instances that remain active at time t.
Note that instances that are reserved before time t � ⌧ + 1
have all expired at time t, where ⌧ is the reservation period.
For convenience, we set r

t

= 0 for all t  0.
The main challenge of problem (1) lies in its online setting.

Without knowledge of future demands, the online strategy may
make purchase decisions that turn out later not to be optimal.
Below we clarify the performance metrics to measure how far
away an online strategy may deviate from the optimal solution.

C. Measure of Competitiveness

To measure the cost performance of an online strategy,
we adopt the standard competitive analysis [18]. The idea is
to bound the gap between the cost of an interested online
algorithm and that of the optimal offline strategy. The latter is
obtained by solving problem (1) with the exact future demands
d1, . . . , dT given a priori. Formally, we have

Definition 1 (Competitive analysis): A deterministic on-
line reservation algorithm A is c-competitive (c is a constant)
if for all possible demand sequences d = {d1, . . . , dT }, we
have

C

A

(d)  c · COPT(d) , (2)

where C

A

(d) is the instance acquisition cost incurred by algo-
rithm A given input d, and COPT(d) is the optimal instance
acquisition cost given input d. Here, COPT(d) is obtained by
solving the instance reservation problem (1) offline, where the
exact demand sequence d is assumed to know a priori.

A similar definition of the competitive analysis also extends
to the randomized online algorithm A, where the decision
making is drawn from a random distribution. In this case, the
LHS of (2) is simply replaced by E[C

A

(d)], the expected
cost of randomized algorithm A given input d. (See [18] for
a detailed discussion.)

Competitive analysis takes an optimal offline algorithm as
a benchmark to measure the cost performance of an online
strategy. Intuitively, the smaller the competitive ratio c is, the
more closely the online algorithm A approaches the optimal
solution. Our objective is to design optimal online algorithms
with the smallest competitive ratio.

We note that the instance reservation problem (1) captures
the Bahncard problem [19] as a special case when a user
demands no more than one instance at a time, i.e., d

t

 1 for
all t. The Bahncard problem models online ticket purchasing
on the German Federal Railway, where one can opt to buy
a Bahncard (reserve an instance) and to receive a discount
on all trips within one year of the purchase date. It has been
shown in [19], [20] that the lower bound of the competitive
ratio is 2 � ↵ and e/(e � 1 + ↵) for the deterministic and
randomized Bahncard algorithms, respectively. Because the
Bahncard problem is a special case of our problem (1), we
have

Lemma 1: The competitive ratio of problem (1) is at least
2�↵ for deterministic online algorithms, and is at least e/(e�
1 + ↵) for randomized online algorithms.

However, we show in the following that the instance re-
serving problem (1) is by no means a trivial extension to the
Bahncard problem, mainly due to the time-multiplexing nature
of reserved instances.

D. Bahncard Extension and Its Inefficiency

A natural way to extend the Bahncard solutions in [19] is
to decompose problem (1) into separate Bahncard problems.
To do this, we introduce a set of virtual users indexed by 1, 2,
. . . Whenever demand d

t

arises at time t, we view the original
user as d

t

virtual users 1, 2, . . . , d
t

, each requiring one instance
at that time. Each virtual user then reserves instances (i.e., buy
a Bahncard) separately to minimize its cost, which is exactly
a Bahncard problem.

However, such an extension is highly inefficient. An in-
stance reserved by one virtual user, even idle, can never be
multiplexed with another, who still needs to pay for its own
demand. For a real user, this implies that it has to acquire
additional instances, either on-demand or reserved, even if the
user has already reserved sufficient amount of instances to
serve its demand, which inevitably incurs a large amount of
unnecessary cost.

We learn from the above failure that instances must be
reserved jointly and time multiplexed appropriately. These

3

Op.mal	
 Offline	
 Algorithm	

11	

§ Make	
 instance	
 purchase	
 decisions	
 ot	
 and	
 rt	

with	
 knowledge	
 of	
 all	
 future	
 demands	
 dt+1, dt

+2, …

	

– Can	
 be	
 solved	
 by	
 dynamic	
 programming,	
 but	
 is	

computa5onally	
 prohibi5ve	

and those cloud users whose workloads are highly variable
and non-stationary — in both cases reliable predictions are
unavailable. We postpone the discussions for cases when short-
term demand predictions are reliable in Sec. VI.

Since IaaS instances are billed in an hourly manner, we slot
the time to a sequence of hours indexed by t = 0, 1, 2, . . . At
each time t, demand d

t

arrives, meaning that a user requests d
t

instances, d
t

= 0, 1, 2, . . . To accommodate this demand, the
user decides to use o

t

on-demand instances and d

t

�o

t

reserved
instances. If the previously reserved instances that remain
available at time t are fewer than d

t

� o

t

, then new instances
need to be reserved. Let r

t

be the number of instances that
are newly reserved at time t, r

t

= 0, 1, 2, . . . The overall
cost incurred at time t is the on-demand cost o

t

p plus the
reservation cost r

t

+ ↵p(d
t

� o

t

), where r

t

is the upfront
payments due to new reservations, and ↵p(d

t

� o

t

) is the cost
of running d

t

� o

t

reserved instances.
The cost management problem is to make instance purchase

decisions online, i.e., r
t

and o

t

at each time t, before seeing
future demands d

t+1, dt+2, . . . The objective is to minimize
the overall instance acquisition costs. Suppose demands last
for an arbitrary time T (counted by the number of hours). We
have the following online instance reservation problem:

min
{rt,ot}

C =
TX

t=1

(o
t

p+ r

t

+ ↵p(d
t

� o

t

)) ,

s.t. o

t

+

tX

i=t�⌧+1

r

i

� d

t

,

o

t

, r

t

2 {0, 1, 2, . . . }, t = 1, . . . , T .

(1)

Here, the first constraint ensures that all d
t

instances demanded
at time t are accommodated, with o

t

on-demand instances andP
t

i=t�⌧+1 ri reserved instances that remain active at time t.
Note that instances that are reserved before time t � ⌧ + 1
have all expired at time t, where ⌧ is the reservation period.
For convenience, we set r

t

= 0 for all t  0.
The main challenge of problem (1) lies in its online setting.

Without knowledge of future demands, the online strategy may
make purchase decisions that turn out later not to be optimal.
Below we clarify the performance metrics to measure how far
away an online strategy may deviate from the optimal solution.

C. Measure of Competitiveness

To measure the cost performance of an online strategy,
we adopt the standard competitive analysis [18]. The idea is
to bound the gap between the cost of an interested online
algorithm and that of the optimal offline strategy. The latter is
obtained by solving problem (1) with the exact future demands
d1, . . . , dT given a priori. Formally, we have

Definition 1 (Competitive analysis): A deterministic on-
line reservation algorithm A is c-competitive (c is a constant)
if for all possible demand sequences d = {d1, . . . , dT }, we
have

C

A

(d)  c · COPT(d) , (2)

where C

A

(d) is the instance acquisition cost incurred by algo-
rithm A given input d, and COPT(d) is the optimal instance
acquisition cost given input d. Here, COPT(d) is obtained by
solving the instance reservation problem (1) offline, where the
exact demand sequence d is assumed to know a priori.

A similar definition of the competitive analysis also extends
to the randomized online algorithm A, where the decision
making is drawn from a random distribution. In this case, the
LHS of (2) is simply replaced by E[C

A

(d)], the expected
cost of randomized algorithm A given input d. (See [18] for
a detailed discussion.)

Competitive analysis takes an optimal offline algorithm as
a benchmark to measure the cost performance of an online
strategy. Intuitively, the smaller the competitive ratio c is, the
more closely the online algorithm A approaches the optimal
solution. Our objective is to design optimal online algorithms
with the smallest competitive ratio.

We note that the instance reservation problem (1) captures
the Bahncard problem [19] as a special case when a user
demands no more than one instance at a time, i.e., d

t

 1 for
all t. The Bahncard problem models online ticket purchasing
on the German Federal Railway, where one can opt to buy
a Bahncard (reserve an instance) and to receive a discount
on all trips within one year of the purchase date. It has been
shown in [19], [20] that the lower bound of the competitive
ratio is 2 � ↵ and e/(e � 1 + ↵) for the deterministic and
randomized Bahncard algorithms, respectively. Because the
Bahncard problem is a special case of our problem (1), we
have

Lemma 1: The competitive ratio of problem (1) is at least
2�↵ for deterministic online algorithms, and is at least e/(e�
1 + ↵) for randomized online algorithms.

However, we show in the following that the instance re-
serving problem (1) is by no means a trivial extension to the
Bahncard problem, mainly due to the time-multiplexing nature
of reserved instances.

D. Bahncard Extension and Its Inefficiency

A natural way to extend the Bahncard solutions in [19] is
to decompose problem (1) into separate Bahncard problems.
To do this, we introduce a set of virtual users indexed by 1, 2,
. . . Whenever demand d

t

arises at time t, we view the original
user as d

t

virtual users 1, 2, . . . , d
t

, each requiring one instance
at that time. Each virtual user then reserves instances (i.e., buy
a Bahncard) separately to minimize its cost, which is exactly
a Bahncard problem.

However, such an extension is highly inefficient. An in-
stance reserved by one virtual user, even idle, can never be
multiplexed with another, who still needs to pay for its own
demand. For a real user, this implies that it has to acquire
additional instances, either on-demand or reserved, even if the
user has already reserved sufficient amount of instances to
serve its demand, which inevitably incurs a large amount of
unnecessary cost.

We learn from the above failure that instances must be
reserved jointly and time multiplexed appropriately. These

3

On-­‐demand	
 cost	
 Reserva.on	
 cost	

Online	
 Instance	
 Reserva.on	

12	

§ Make	
 instance	
 purchase	
 decisions	
 ot	
 and	
 rt	

without	
 seeing	
 future	
 demands	
 dt+1, dt+2, …

	

– What	
 is	
 the	
 best	
 that	
 one	
 can	
 do?	

and those cloud users whose workloads are highly variable
and non-stationary — in both cases reliable predictions are
unavailable. We postpone the discussions for cases when short-
term demand predictions are reliable in Sec. VI.

Since IaaS instances are billed in an hourly manner, we slot
the time to a sequence of hours indexed by t = 0, 1, 2, . . . At
each time t, demand d

t

arrives, meaning that a user requests d
t

instances, d
t

= 0, 1, 2, . . . To accommodate this demand, the
user decides to use o

t

on-demand instances and d

t

�o

t

reserved
instances. If the previously reserved instances that remain
available at time t are fewer than d

t

� o

t

, then new instances
need to be reserved. Let r

t

be the number of instances that
are newly reserved at time t, r

t

= 0, 1, 2, . . . The overall
cost incurred at time t is the on-demand cost o

t

p plus the
reservation cost r

t

+ ↵p(d
t

� o

t

), where r

t

is the upfront
payments due to new reservations, and ↵p(d

t

� o

t

) is the cost
of running d

t

� o

t

reserved instances.
The cost management problem is to make instance purchase

decisions online, i.e., r
t

and o

t

at each time t, before seeing
future demands d

t+1, dt+2, . . . The objective is to minimize
the overall instance acquisition costs. Suppose demands last
for an arbitrary time T (counted by the number of hours). We
have the following online instance reservation problem:

min
{rt,ot}

C =
TX

t=1

(o
t

p+ r

t

+ ↵p(d
t

� o

t

)) ,

s.t. o

t

+

tX

i=t�⌧+1

r

i

� d

t

,

o

t

, r

t

2 {0, 1, 2, . . . }, t = 1, . . . , T .

(1)

Here, the first constraint ensures that all d
t

instances demanded
at time t are accommodated, with o

t

on-demand instances andP
t

i=t�⌧+1 ri reserved instances that remain active at time t.
Note that instances that are reserved before time t � ⌧ + 1
have all expired at time t, where ⌧ is the reservation period.
For convenience, we set r

t

= 0 for all t  0.
The main challenge of problem (1) lies in its online setting.

Without knowledge of future demands, the online strategy may
make purchase decisions that turn out later not to be optimal.
Below we clarify the performance metrics to measure how far
away an online strategy may deviate from the optimal solution.

C. Measure of Competitiveness

To measure the cost performance of an online strategy,
we adopt the standard competitive analysis [18]. The idea is
to bound the gap between the cost of an interested online
algorithm and that of the optimal offline strategy. The latter is
obtained by solving problem (1) with the exact future demands
d1, . . . , dT given a priori. Formally, we have

Definition 1 (Competitive analysis): A deterministic on-
line reservation algorithm A is c-competitive (c is a constant)
if for all possible demand sequences d = {d1, . . . , dT }, we
have

C

A

(d)  c · COPT(d) , (2)

where C

A

(d) is the instance acquisition cost incurred by algo-
rithm A given input d, and COPT(d) is the optimal instance
acquisition cost given input d. Here, COPT(d) is obtained by
solving the instance reservation problem (1) offline, where the
exact demand sequence d is assumed to know a priori.

A similar definition of the competitive analysis also extends
to the randomized online algorithm A, where the decision
making is drawn from a random distribution. In this case, the
LHS of (2) is simply replaced by E[C

A

(d)], the expected
cost of randomized algorithm A given input d. (See [18] for
a detailed discussion.)

Competitive analysis takes an optimal offline algorithm as
a benchmark to measure the cost performance of an online
strategy. Intuitively, the smaller the competitive ratio c is, the
more closely the online algorithm A approaches the optimal
solution. Our objective is to design optimal online algorithms
with the smallest competitive ratio.

We note that the instance reservation problem (1) captures
the Bahncard problem [19] as a special case when a user
demands no more than one instance at a time, i.e., d

t

 1 for
all t. The Bahncard problem models online ticket purchasing
on the German Federal Railway, where one can opt to buy
a Bahncard (reserve an instance) and to receive a discount
on all trips within one year of the purchase date. It has been
shown in [19], [20] that the lower bound of the competitive
ratio is 2 � ↵ and e/(e � 1 + ↵) for the deterministic and
randomized Bahncard algorithms, respectively. Because the
Bahncard problem is a special case of our problem (1), we
have

Lemma 1: The competitive ratio of problem (1) is at least
2�↵ for deterministic online algorithms, and is at least e/(e�
1 + ↵) for randomized online algorithms.

However, we show in the following that the instance re-
serving problem (1) is by no means a trivial extension to the
Bahncard problem, mainly due to the time-multiplexing nature
of reserved instances.

D. Bahncard Extension and Its Inefficiency

A natural way to extend the Bahncard solutions in [19] is
to decompose problem (1) into separate Bahncard problems.
To do this, we introduce a set of virtual users indexed by 1, 2,
. . . Whenever demand d

t

arises at time t, we view the original
user as d

t

virtual users 1, 2, . . . , d
t

, each requiring one instance
at that time. Each virtual user then reserves instances (i.e., buy
a Bahncard) separately to minimize its cost, which is exactly
a Bahncard problem.

However, such an extension is highly inefficient. An in-
stance reserved by one virtual user, even idle, can never be
multiplexed with another, who still needs to pay for its own
demand. For a real user, this implies that it has to acquire
additional instances, either on-demand or reserved, even if the
user has already reserved sufficient amount of instances to
serve its demand, which inevitably incurs a large amount of
unnecessary cost.

We learn from the above failure that instances must be
reserved jointly and time multiplexed appropriately. These

3

On-­‐demand	
 cost	
 Reserva.on	
 cost	

Measure	
 of	
 Op.mality	

§  Compare	
 an	
 online	
 reserva.on	
 algorithm	
 with	

the	
 op.mal	
 offline	
 reserva.on	

§  An	
 online	
 algorithm	
 A	
 is	
 γ-­‐compe55ve	
 if	
 it	

incurs	
 at	
 most	
 	
 γ	
 	
 .mes	
 the	
 op.mal	
 offline	
 cost	

– For	
 any	
 demand	
 sequence	
 d = d1,d2,…

CA(d) ≤ γ COPT(d)
– Aims	
 to	
 minimize	
 the	
 compe..ve	
 ra.o	
 γ

13	

The	
 Best	
 Possible	
 Outcome	

Lemma	
 1:	
 The	
 best	
 achievable	
 compe..ve	
 ra.o	
 is	

2-­‐α	
 for	
 determinis5c	
 online	
 algorithms,	
 and	
 is	
 e/
(e-­‐1+	
 α)	
 for	
 randomized	
 online	
 algorithms.	

	

Bahncard	
 problem	
 [Fleischer	
 TCS’01]:	

– Goal:	
 reduce	
 cost	
 of	
 using	
 the	
 Deutsche	
 Bahn	

– User	
 may	
 buy	
 .ckets	
 on-­‐demand	
 or	
 buy	
 an	
 annual	

Bahncard	
 to	
 enjoy	
 discounted	
 .ckets	

– No	
 knowledge	
 about	
 user’s	
 travel	
 plans	
 or	
 travel	

frequency	

14	

Is	
 the	
 op.mal	
 compe..ve	
 ra.o	

achievable	
 with	
 mul.ple	
 instances?	

15	

	

§  “Mul.-­‐Bahncard”	
 problem	

§  Naïve	
 extension:	
 separate	
 Bahncards	

– Does	
 not	
 work	

Op.mal	
 Determinis.c	
 Online	

Algorithm	

16	

Demand	
 and	
 Reserva.on	
 Curves	

t Time

D
em

an
d

dDemand curve
xReservation curve

17	

Served	
 by	
 on-­‐demand	

instances	

Wasted	
 reserva.ons	

Break-­‐Even	
 Point	

§  Let	
 c	
 be	
 the	
 cost	
 of	
 one	
 on-­‐demand	
 instance	
 to	

serve	
 workload	
 that	
 spans	
 a	
 reserva.on	
 period.	

§  Using	
 a	
 reserved	
 instance	
 instead,	
 the	
 cost	
 is	

1+αc

§  Break-­‐even	
 point:	
 	
 c = 1+αc	
 	

–  Let	
 	
 β=1/(1- α)
–  c = β :	
 	
 Break	
 even
–  c < β :	
 	
 On-­‐demand	
 is	
 bener	

–  c > β :	
 	
 Reserva.on	
 is	
 bener	

18	

Regret	
 and	
 Compensa.on	

19	

One	
 reserva.on	
 period	

§  At	
 .me	
 t,	
 look	
 back	
 for	
 one	
 reserva.on	
 period.	

§  If	
 the	
 incurred	
 on-­‐demand	
 cost	
 > β,	
 reserve	
 a	

new	
 instance:	
 rt = rt+1.	

Shaded	
 demand	
 should	
 have	
 been	

served	
 by	
 a	
 reserved	
 instance	

Update	
 Reserva.on	
 Curve	

tt- +1⌧ Time

D
em

an
d

dDemand curve
xReservation curve

20	

§  If	
 a	
 new	
 instance	
 is	
 reserved,	
 update	
 the	

reserva.on	
 curve,	
 both	
 forward	
 and	

backward.	

Repeat	
 un.l	
 No	
 Regret	

21	

§  Repeat	
 to	
 reserve	
 more	
 new	
 instances,	
 un.l	

the	
 (virtual)	
 incurred	
 on-­‐demand	
 cost	
 < β.	

Proposi.on	
 1:	
 The	
 determinis.c	
 online	

algorithm	
 is	
 (2-α)-­‐compe..ve,	
 and	
 hence	
 is	

op5mal	
 among	
 all	
 determinis.c	
 online	

algorithms.	

22	

Op.mal	
 Randomized	
 Online	

Algorithm	

23	

Basic	
 Idea	

§  Can	
 use	
 different	
 thresholds	
 z	
 (other	
 than	
 the	

break-­‐even	
 point	
 β)	
 to	
 decide	
 whether	
 to	

reserve	
 an	
 instance	

– A	
 family	
 of	
 determinis.c	
 algorithms	
 {Az}

§  The	
 smaller	
 z,	
 the	
 more	
 aggressive	
 the	

reserva.on	
 strategy	

– z = 0:	
 All-­‐reserved	

– z = +∞:	
 All-­‐on-­‐demand	
 	

24	

Basic	
 Idea	
 (Cont’d)	

§  Randomly	
 choose	
 from	
 the	
 family	
 of	

determinis.c	
 algorithms	
 {Az}
– Strike	
 balance	
 between	
 reserving	
 too	
 aggressively	

and	
 too	
 conserva.vely	

– Randomly	
 pick	
 threshold	
 z according	
 to	
 the	

following	
 density	
 func.on	

– Make	
 instance	
 reserva.on	
 decisions	
 based	
 on	

determinis.c	
 algorithm	
 Az

25	

Let S =
P

T

t=1 dtp be the cost of serving all demands with
on-demand instances. We bound the cost of OPT as follows:

COPT = Od(OPT) + nOPT + ↵(S �Od(OPT)) (14)
� Od(OPT) + nOPT + ↵�nOPT (15)
� nOPT/(1� ↵) . (16)

Here, (15) holds because in OPT, demands that are served by
the same reserved instance incur at least a break-even cost �
when priced at an on-demand rate p.

With (13) and (16), we bound the cost of A
�

as follows:

C

A� = Od(A
�

) + n

�

+ ↵(S �Od(A
�

))

 (1� ↵)Od(A
�

) + nOPT + ↵S (17)
 (1� ↵)(Od(OPT) + �nOPT) + ↵S + nOPT (18)
= COPT + nOPT (19)
 (2� ↵)COPT . (20)

Here, (17) holds because n

�

 nOPT (Lemma 2). Inequality
(18) follows from (13), while (20) is derived from (16).

By Lemma 1, we see that 2�↵ is already the best possible
competitive ratio for deterministic online algorithms, which
implies that Algorithm 1 is optimal in a view of competitive
analysis.

Proposition 2: Among all online deterministic algorithms
of problem (1), Algorithm 1 is optimal with the smallest
competitive ratio of 2� ↵.

As a direct application, in Amazon EC2 with reservation
discount ↵ = 0.49 (see Table I), algorithm A

�

will lead to no
more than 1.51 times the optimal instance purchase cost.

Despite the already satisfactory cost performance offered
by the proposed deterministic algorithm, we show in the next
section that the competitive ratio may be further improved if
randomness is introduced.

V. OPTIMAL RANDOMIZED ONLINE STRATEGY

In this section, we construct a randomized online strategy
that is a random distribution over a family of deterministic
online algorithms similar to A

�

. We show that such ran-
domization improves the competitive ratio to e/(e � 1 + ↵)
and hence leads to a better cost performance. As indicated
by Lemma 1, this is the best that one can expect without
knowledge of future demands.

We start by defining a family of algorithms similar to the
deterministic algorithm A

�

. Let A
z

be a similar deterministic
algorithm to A

�

with � in line 4 of Algorithm 1 replaced
by z 2 [0,�]. That is, A

z

reserves an instance whenever it
sees an on-demand instance incurring more costs than z in
the recent reservation period. Intuitively, the value of z reflects
the aggressiveness of a reservation strategy. The smaller the
z, the more aggressive the strategy. As an extreme, a user
will always reserve when z = 0. Another extreme goes to
z = � (Algorithm 1), in which the user is very conservative
in reserving new instances.

Our randomized online algorithm picks a z 2 [0,�] accord-
ing to a density function f(z) and runs the resulting algorithm

A

z

. Specifically, the density function f(z) is defined as

f(z) =

⇢
(1� ↵)e(1�↵)z

/(e� 1 + ↵), z 2 [0,�),
�(z � �) · ↵/(e� 1 + ↵), o.w., (21)

where �(·) is the Dirac delta function. That is, we pick
z = � with probability ↵/(e � 1 + ↵). It is interesting to
point out that in other online rent-or-buy problems, e.g., [22],
[20], [23], the density function of a randomized algorithm
is usually continuous1. However, we note that a continuous
density function does not lead to the minimum competitive
ratio in our problem. Algorithm 2 formalizes the descriptions
above.

Algorithm 2 Randomized Online Algorithm
1. Randomly pick z 2 [0,�] according to a density function

f(z) defined by (21)
2. Run A

z

The rationale behind Algorithm 2 is to strike a suitable bal-
ance between reserving “aggressively” and “conservatively.”
Intuitively, being aggressive is cost efficient when future
demands are long-lasting and stable, while being conservative
is efficient for sporadic demands. Given the unknown future,
the algorithm randomly chooses a strategy A

z

, with an ex-
pectation that the incurred cost will closely approach the ex
post minimum cost. The following theorem shows that the
choice of f(z) in (21) leads to the optimal competitive ratio
e/(e� 1 + ↵). The proof is given in [21].

Proposition 3: Algorithm 2 is e/(e � 1 + ↵)-competitive.
Formally, for any demand sequence,

E[C
Az] 

e

e� 1 + ↵

COPT , (22)

where the expectation is over z between 0 and � according to
density function f(z) defined in (21).

By Lemma 1, we see that no online randomized algorithm
is better than Algorithm 2 in terms of the competitive ratio.

Proposition 4: Among all online randomized algorithms
of problem (1), Algorithm 2 is optimal with the smallest
competitive ratio e/(e� 1 + ↵).

As a direct application, in Amazon EC2 with reservation
discount ↵ = 0.49 (see Table I), the randomized algorithm
will lead to a competitive ratio of 1.23, compared with the
1.51-competitiveness of the deterministic alternative.

VI. COST MANAGEMENT WITH SHORT-TERM DEMAND
PREDICTIONS

In the previous sections, our discussions focus on the
extreme cases, with either full future demand information (i.e.,
the offline case in Sec. III) or no a priori knowledge of the
future (i.e., the online case in Sec. IV and V). In this section,
we consider the middle ground in which short-term demand
predictions are reliable. For example, websites typically see
diurnal patterns exhibited on their workloads, based on which

1The density function in these works is chosen as f(z) = e

z
/(e�1), z 2

[0, 1], which is a special case of ours when ↵ = 0.

6

§  Proposi.on	
 2:	
 The	
 randomized	
 online	

algorithm	
 is	
 e/(e-1+α)-­‐compe..ve,	
 and	
 hence	

is	
 op5mal	
 among	
 all	
 online	
 algorithms.	

26	

Trace-­‐Driven	
 Simula.ons	

27	

Dataset	
 and	
 Preprocessing	

§  Google	
 cluster	
 traces	

– 900+	
 users’	
 usage	
 traces	
 in	
 1	
 month	

– We	
 convert	
 users’	
 compu.ng	
 demand	
 data	
 to	
 IaaS	

instance	
 demands	

28	

10

200 250 300 350 400
0

300

600

900

Time (hour)

In
st

a
n
ce

User 552

Fig. 6. The demand curve of User 552 in Google cluster-
usage traces [17], over 1 month.

0 50 100 150 200
0

50

100

150

200

Demand Mean µ

D
e
m

a
n
d
 S

td
 σ

� = 5µ
� = µ

Fig. 7. User demand statistics and group division.

days in May 2011, on a cluster of more than 11K Google
machines.

Demand Curve: Given the workload traces of each
user, we ask the question: How many computing in-
stances would this user require if it were to run the same
workload in a public IaaS cloud? For simplicity, we set
an instance to have the same computing capacity as a
cluster machine, which enables us to accurately estimate
the run time of computational tasks by learning from
the original traces. We then schedule these tasks onto
instances with sufficient resources to accommodate their
requirements. Computational tasks that cannot run on
the same server in the traces (e.g., tasks of MapReduce)
are scheduled to different instances. In the end, we
obtain a demand curve for each user, indicating how
many instances this user requires in each hour. Fig. 6
illustrates such a demand curve for a user.

User Classification: To investigate how our online
algorithms perform under different demand patterns, we
classify all 933 users into three groups by the demand fluc-
tuation level measured as the ratio between the standard
deviation � and the mean µ.

Specifically, Group 1 consists of users whose demands
are highly fluctuating, with �/µ � 5. As shown in Fig. 7
(circle ‘o’), these demands usually have small means,
which implies that they are highly sporadic and are best
served with on-demand instances. Group 2 includes users
whose demands are less fluctuating, with 1  �/µ < 5.
As shown in Fig. 7 (cross ‘x’), these demands cannot
be simply served by on-demand or reserved instances
alone. Group 3 includes all remaining users with rel-
atively stable demands (0  �/µ < 1). As shown in
Fig. 7 (plus ‘+’), these demands have large means and
are best served with reserved instances. Our evaluations
are carried out for each user group.

Pricing: Throughout the simulation, we adopt the pric-
ing of Amazon EC2 standard small instances with the
on-demand rate $0.08, the reservation fee $69, and the

discount rate $0.039 (Linux, US East, 1-year light utiliza-
tion). Since the Google traces only span one month, we
proportionally shorten the on-demand billing cycle from
one hour to one minute, and the reservation period from
1 year to 6 days (i.e., 24⇥ 365 = 8760 minutes = 6 days)
as well.

7.2 Evaluations of Online Algorithms
We start by evaluating the performance of online algo-
rithms without any a priori knowledge of user demands.

Benchmark Online Algorithms: We compare our
online deterministic and randomized algorithms with
three benchmark online strategies. The first is All-on-
demand, in which a user never reserves and operates all
workloads with on-demand instances. This algorithm,
though simple, is the most common strategy in practice,
especially for those users with time-varying workloads
[12]. The second algorithm is All-reserved, in which all
computational demands are served via reservations. The
third online algorithm is the simple extension to the
Bahncard algorithm proposed in [20] (see Sec. 2.4), and
is referred to as Separate because instances are reserved
separately. All three benchmark algorithms, as well as
the two proposed online algorithms, are carried out for
each user in the Google traces. All the incurred costs are
normalized to All-on-demand.

Cost Performance: We present the simulation results
in Fig. 8, where the CDF of the normalized costs are
given, grouped by users with different demand fluctu-
ation levels. We see in Fig. 8a that when applied to all
933 users, both the deterministic and randomized on-
line algorithms realize significant cost savings compared
with all three benchmarks. In particular, when switching
from All-on-demand to the proposed online algorithms,
more than 60% users cut their costs. About 50% users
save more than 40%. Only 2% incur slightly more costs
than before. For users who switch from All-reserved
to our randomized online algorithms, the improvement
is even more substantial. As shown in Fig. 8a, cost
savings are almost guaranteed, with 30% users saving
more than 50%. We also note that Separate, though
generally outperforms All-on-demand and All-reserved,
incurs more costs than our online algorithms, mainly due
to its ignorance of reservation correlations.

We next compare the cost performance of all five
algorithms at different demand fluctuation levels. As
expected, when it comes to the extreme cases, All-on-
demand is the best fit for Group 1 users whose demands
are known to be highly busty and sporadic (Fig. 8b),
while All-reserved incurs the least cost for Group 3 users
with stable workloads (Fig. 8d). These two groups of
users, should they know their demand patterns, would
have the least incentive to adopt advanced instance
reserving strategies, as naively switching to one option is
already optimal. However, even in these extreme cases,
our online algorithms, especially the randomized one,
remain highly competitive, incurring only slightly higher
cost.

§  Users	
 are	
 classified	
 into	
 3	
 groups	
 based	
 on	

demand	
 fluctua.on	
 level	
 	

– Standard	
 devia.on	
 vs.	
 mean	
 in	
 hourly	
 demand	

29	

10

200 250 300 350 400
0

300

600

900

Time (hour)
In

st
a
n
ce

User 552

Fig. 6. The demand curve of User 552 in Google cluster-
usage traces [17], over 1 month.

0 50 100 150 200
0

50

100

150

200

Demand Mean µ

D
e

m
a

n
d

 S
td

 σ

� = 5µ
� = µ

Fig. 7. User demand statistics and group division.

days in May 2011, on a cluster of more than 11K Google
machines.

Demand Curve: Given the workload traces of each
user, we ask the question: How many computing in-
stances would this user require if it were to run the same
workload in a public IaaS cloud? For simplicity, we set
an instance to have the same computing capacity as a
cluster machine, which enables us to accurately estimate
the run time of computational tasks by learning from
the original traces. We then schedule these tasks onto
instances with sufficient resources to accommodate their
requirements. Computational tasks that cannot run on
the same server in the traces (e.g., tasks of MapReduce)
are scheduled to different instances. In the end, we
obtain a demand curve for each user, indicating how
many instances this user requires in each hour. Fig. 6
illustrates such a demand curve for a user.

User Classification: To investigate how our online
algorithms perform under different demand patterns, we
classify all 933 users into three groups by the demand fluc-
tuation level measured as the ratio between the standard
deviation � and the mean µ.

Specifically, Group 1 consists of users whose demands
are highly fluctuating, with �/µ � 5. As shown in Fig. 7
(circle ‘o’), these demands usually have small means,
which implies that they are highly sporadic and are best
served with on-demand instances. Group 2 includes users
whose demands are less fluctuating, with 1  �/µ < 5.
As shown in Fig. 7 (cross ‘x’), these demands cannot
be simply served by on-demand or reserved instances
alone. Group 3 includes all remaining users with rel-
atively stable demands (0  �/µ < 1). As shown in
Fig. 7 (plus ‘+’), these demands have large means and
are best served with reserved instances. Our evaluations
are carried out for each user group.

Pricing: Throughout the simulation, we adopt the pric-
ing of Amazon EC2 standard small instances with the
on-demand rate $0.08, the reservation fee $69, and the

discount rate $0.039 (Linux, US East, 1-year light utiliza-
tion). Since the Google traces only span one month, we
proportionally shorten the on-demand billing cycle from
one hour to one minute, and the reservation period from
1 year to 6 days (i.e., 24⇥ 365 = 8760 minutes = 6 days)
as well.

7.2 Evaluations of Online Algorithms
We start by evaluating the performance of online algo-
rithms without any a priori knowledge of user demands.

Benchmark Online Algorithms: We compare our
online deterministic and randomized algorithms with
three benchmark online strategies. The first is All-on-
demand, in which a user never reserves and operates all
workloads with on-demand instances. This algorithm,
though simple, is the most common strategy in practice,
especially for those users with time-varying workloads
[12]. The second algorithm is All-reserved, in which all
computational demands are served via reservations. The
third online algorithm is the simple extension to the
Bahncard algorithm proposed in [20] (see Sec. 2.4), and
is referred to as Separate because instances are reserved
separately. All three benchmark algorithms, as well as
the two proposed online algorithms, are carried out for
each user in the Google traces. All the incurred costs are
normalized to All-on-demand.

Cost Performance: We present the simulation results
in Fig. 8, where the CDF of the normalized costs are
given, grouped by users with different demand fluctu-
ation levels. We see in Fig. 8a that when applied to all
933 users, both the deterministic and randomized on-
line algorithms realize significant cost savings compared
with all three benchmarks. In particular, when switching
from All-on-demand to the proposed online algorithms,
more than 60% users cut their costs. About 50% users
save more than 40%. Only 2% incur slightly more costs
than before. For users who switch from All-reserved
to our randomized online algorithms, the improvement
is even more substantial. As shown in Fig. 8a, cost
savings are almost guaranteed, with 30% users saving
more than 50%. We also note that Separate, though
generally outperforms All-on-demand and All-reserved,
incurs more costs than our online algorithms, mainly due
to its ignorance of reservation correlations.

We next compare the cost performance of all five
algorithms at different demand fluctuation levels. As
expected, when it comes to the extreme cases, All-on-
demand is the best fit for Group 1 users whose demands
are known to be highly busty and sporadic (Fig. 8b),
while All-reserved incurs the least cost for Group 3 users
with stable workloads (Fig. 8d). These two groups of
users, should they know their demand patterns, would
have the least incentive to adopt advanced instance
reserving strategies, as naively switching to one option is
already optimal. However, even in these extreme cases,
our online algorithms, especially the randomized one,
remain highly competitive, incurring only slightly higher
cost.

CDF	
 of	
 Cost	
 Normalized	
 to	
 All-­‐On-­‐Demand	

30	

“Separate”:	
 stack	
 demands	
 and	
 treat	
 each	
 layer	
 as	
 a	
 virtual	

user,	
 each	
 individualy	
 solving	
 the	
 Bahncard	
 problem.	

High	
 demand	

fluctua.on	

CDF	
 of	
 Cost	
 Normalized	
 to	
 All-­‐On-­‐Demand	

31	

“Separate”:	
 stack	
 demands	
 and	
 treat	
 each	
 layer	
 as	
 a	
 virtual	

user,	
 each	
 individually	
 solving	
 the	
 Bahncard	
 problem.	

Low	
 demand	

fluctua.on	

CDF	
 of	
 Cost	
 Normalized	
 to	
 All-­‐On-­‐Demand	

32	

“Separate”:	
 stack	
 demands	
 and	
 treat	
 each	
 layer	
 as	
 a	
 virtual	

user,	
 each	
 individually	
 solving	
 the	
 Bahncard	
 problem.	

Medium	
 demand	

fluctua.on	

Conclusions	

§  Determinis.c	
 and	
 randomized	
 online	
 mul.-­‐
instance	
 reserva.on	
 algorithms	
 without	
 future	

demand	
 informa.on	

– Op.mal	
 compe..ve	
 ra.o	
 vs.	
 op.mal	
 offline	
 algorithm	
 	

–  Substan.al	
 performance	
 gain	
 over	
 a	
 wide	
 range	
 of	

demand	
 fluctua.on	
 levels	

§  Extension	
 to	
 cases	
 where	
 short-­‐term	
 predic.ons	

are	
 reliable	

§  Open	
 problem:	
 mul.ple	
 reserva.on	
 op.ons	

33	

