
Towards Optimal Capacity
Segmentation with Hybrid

Cloud Pricing

Wei Wang, Baochun Li, Ben Liang
Department of Electrical and Computer Engineering

University of Toronto

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

IaaS clouds offer multiple pricing options

On-demand (pay-as-you-go)
Static hourly rate x run hours =

Subscription (reservation)
One-time subscription fee
Free/discounted usage fee during the reservation period

Auction-like pricing (spot market)
Users bid for computing instances
No service guarantee

2

prt

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

IaaS clouds offer multiple pricing options

3

GoGrid,
ElasticHosts,
BitRefinery,

Ninefold
...

Amazon EC2

On-demand

Subscription

Auction-like pricing

On-demand

Subscription

�

�

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Why multiple pricing?

Compensate the deficiency of individual pricing
Static pricing: awkward to market dynamics, easy to
understand, risk-free with a static price
Spot price: agile to demand/supply changes, hard to
understand, risky due to price fluctuations

Expand the market demand
Long-term users go for subscription
Price-sensitive users bid in the spot market

X

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

How do cloud
providers allocate its
capacity to different
pricing channels?

4

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

How to set the prices?
How many instances to offer in each pricing channel?
Objective: Revenue maximization

5

tt
Spot market demandPay-as-you-go demand Subscription demand

PricePrice

Cloud resources

Subscriptions

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

How many instances to offer in each channel
in hour 1?

An on-demand user requests 80 instances for 3 hours,
starting from hour 1, with on-demand rate $1
A spot user bids for 100 instances each at $1.5 per
instance-hour, starting from hour 2
The available capacity of a cloud can only support 100
additional instances

6

Time(hour)

Spot user $150 $150

On-demand user $80$80 $80

1 2 3

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto 7

Time(hour)

Spot user $150 $150

On-demand user $80$80 $80

1 2 3

Strategy 1: Serve the on-demand user in hour 1 (revenue
=$240)
Strategy 2: Strategically hold resources in hour 1 and
serve the spot user in hour 2 (revenue = $300)

How many instances to offer in each channel
in hour 1?

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Our focus

Dynamic capacity segmentation in two channels
On-demand channel with a fixed hourly rate
Periodic auction channel similar to EC2 spot market

8

tt
Periodic auctions demandPay-as-you-go demand

PricePrice

Cloud resources

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Problem formulation

9

time horizons indexed by t = 1, 2, . . . in the following
analysis.

A. User Model

Pay-as-you-go users. The pay-as-you-go market offers
guaranteed services. Users can run their instances for as
long as they wish, and are charged what they used based
on a constant regular price pr. In particular, denote by ti,j
the running time of instance j hosted for user i. User i
is then charged prti,j for using that instance. To make the
analysis tractable, we take a technical assumption that ti,j’s
are i.i.d. exponential. In discrete settings, this implies that
ti,j follows the geometric distribution with p.m.f. P (ti,j =

k) = q(1� q)k�1, where q is the probability that a currently
running instance will be terminated by its user in the next
period. Therefore, the expected overall payment for using one
instance is E[prti,j] = prE[ti,j] = pr/q. This is a simple
model to allow tractable analysis, but it has been shown to
give interesting insights into practical systems and is widely
adopted in many economic models [19].

Because pr is constant, pay-as-you-go users have no
purchasing strategy as the auction bidders do. We assume
there are Rt

r instance requests received at time t, and if
the available capacity allocated to the pay-as-you-go market
is below Rt

r, some users do not receive their requested
instances. The exact mechanism for user admission (e.g.,
first-come-first-serve) is unimportant to the problem under
consideration since the same price pr is charged for each
instance.

Users in the auction market. Instances purchased in
the auction market offer no service guarantees and will
be terminated by the provider whenever the bid has been
exceeded by the clearing price. Suppose at time t, there are
N t

a bidders joining the auction. Each bidder i (1  i  N t
a)

wishes to access ni instances and has a maximum affordable
price vi, also known as the reservation price, for using one
instance at one period. User i then submits a two-dimensional
bid (rti , b

t
i) requesting rti instances with a bid price bti. Note

that user i could strategically misreport its bid (i.e., bti 6= vi
or rti 6= ni) as long as it believes that this is more beneficial.

After all bids are collected, the cloud provider runs the
auction and charges a take-it-or-leave-it clearing price pta to
all winners: each user i with bti > pta (resp. bti < pta) either
has its new requests fulfilled (resp. rejected) or has its running
instances continued (resp. terminated). Those with bti = pta
may or may not be accepted depending on the specific auction
mechanism. The value of pta is calculated based on some
specified mechanism that is publicly known to all bidders.
We therefore define user i’s utility at time t as follows:

ut
i(r

t
i , b

t
i) =

⇢
nivi � rtip

t
a , if pta < bti and rti � ni;

0 , otherwise.
(1)

Here, both ni and vi are private information known only to
user i, and are distributed with joint p.d.f. fn,v and c.d.f.
Fn,v on the support [n, n̄]⇥ [v, v̄]. The user i’s problem is to

find the optimal bid such that the utility is maximized, i.e.,
maxrti ,b

t
i
ut
i(r

t
i , b

t
i).

It is worth mentioning that the auction described above
is substantially different from the uniform-price auction con-
sidered in the literature of economics [13], [14], as bidders
in the later mechanism accept partial fulfillment and have
different utility functions other than (1).

B. The Problem of Optimal Capacity Segmentation
The cloud provider aims to optimally segment its available

capacity between the pay-as-you-go and auction markets, to
maximize its obtained revenue. Let the available capacity at
time t be Ct. In addition to knowing the exact number of
requests in the current time slot t, we assume that the provider
may predict the demand in the near future: it knows the
distributions of N⌧

a (the user number in the auction market)
and R⌧

r (the total requests in the pay-as-you-go market) for
⌧  T = t+w, with w being some prediction window. Note
that forecasting future demand has already been addressed in
some literature [10], [20].

Given Ct at time t, denote by �

t
(Ct

) the maximum ex-
pected aggregate revenue obtained from t to T . Let �a(c) and
�r(c) be the revenues of allocating c instances in the auction
and the pay-as-you-go markets, respectively. The problem of
optimal capacity segmentation is to find the optimal capacity
allocations to the two markets such that the revenue collected
within the prediction window is maximized. This can be
expressed in the following recursive form:

�

t
(Ct

) = E


max

0Ct
aCt

�
�a(C

t
a) + �r(C

t � Ct
a)

+ECt+1

⇥
�

t+1
(Ct+1

)

⇤ �
, (2)

where Ct
a is the capacity allocated to the auction market,

and the boundary conditions are �

T+1
(c) = 0 for all c =

0, 1, . . . , C.
Since the pay-as-you-go price is infrequently changed [1],

in this work we consider only the shorter time-scale problem
of capacity segmentation given a fixed pr. Then we have

�r(c) =

⇢
prc/q , if c  Rt

r;
prR

t
r/q , otherwise, (3)

Note that a discussion on how to optimize pr can be con-
ducted based on the proposed revenue maximizing method,
but it additionally requires knowledge of the yet unknown
supply-demand relation and hence is left open for future
research.

To determine the value of Ct+1 in (2), we note that at
time t, Ct

a instances are allocated to the auction market, and
C �Ct

a instances held for the pay-as-you-go users. Suppose
that right before t + 1, X of them are terminated by pay-
as-you-go users and are returned to the system. As a result,
there are Ct+1

= Ct
a +X instances being available for new

requests at the beginning of t + 1. From the assumption of
exponential life cycle as explained in Sec. III-A, it is easy
to see that X follows a binomial distribution with P (X =

Auction revenue On-demand revenue

Future revenue

t
Periodic auctions demand

Price

t
Pay-as-you-go demand

Price

Cloud resources

Ct � Ct
a Ct

a

 : the optimal revenue collected during the prediction
window
�⌧ (C⌧)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Revenue from the on-demand channel

q: the probability that a currently running on-demand
instance is terminated by its user in the next time slot

10

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Revenue from the on-demand channel

q: the probability that a currently running on-demand
instance is terminated by its user in the next time slot
Revenue from the on-demand channel, with c instances
allocated to it

11

time horizons indexed by t = 1, 2, . . . in the following
analysis.

A. User Model

Pay-as-you-go users. The pay-as-you-go market offers
guaranteed services. Users can run their instances for as
long as they wish, and are charged what they used based
on a constant regular price pr. In particular, denote by ti,j
the running time of instance j hosted for user i. User i
is then charged prti,j for using that instance. To make the
analysis tractable, we take a technical assumption that ti,j’s
are i.i.d. exponential. In discrete settings, this implies that
ti,j follows the geometric distribution with p.m.f. P (ti,j =

k) = q(1� q)k�1, where q is the probability that a currently
running instance will be terminated by its user in the next
period. Therefore, the expected overall payment for using one
instance is E[prti,j] = prE[ti,j] = pr/q. This is a simple
model to allow tractable analysis, but it has been shown to
give interesting insights into practical systems and is widely
adopted in many economic models [19].

Because pr is constant, pay-as-you-go users have no
purchasing strategy as the auction bidders do. We assume
there are Rt

r instance requests received at time t, and if
the available capacity allocated to the pay-as-you-go market
is below Rt

r, some users do not receive their requested
instances. The exact mechanism for user admission (e.g.,
first-come-first-serve) is unimportant to the problem under
consideration since the same price pr is charged for each
instance.

Users in the auction market. Instances purchased in
the auction market offer no service guarantees and will
be terminated by the provider whenever the bid has been
exceeded by the clearing price. Suppose at time t, there are
N t

a bidders joining the auction. Each bidder i (1  i  N t
a)

wishes to access ni instances and has a maximum affordable
price vi, also known as the reservation price, for using one
instance at one period. User i then submits a two-dimensional
bid (rti , b

t
i) requesting rti instances with a bid price bti. Note

that user i could strategically misreport its bid (i.e., bti 6= vi
or rti 6= ni) as long as it believes that this is more beneficial.

After all bids are collected, the cloud provider runs the
auction and charges a take-it-or-leave-it clearing price pta to
all winners: each user i with bti > pta (resp. bti < pta) either
has its new requests fulfilled (resp. rejected) or has its running
instances continued (resp. terminated). Those with bti = pta
may or may not be accepted depending on the specific auction
mechanism. The value of pta is calculated based on some
specified mechanism that is publicly known to all bidders.
We therefore define user i’s utility at time t as follows:

ut
i(r

t
i , b

t
i) =

⇢
nivi � rtip

t
a , if pta > bti and rti � ni;

0 , otherwise.
(1)

Here, both ni and vi are private information known only to
user i, and are distributed with joint p.d.f. fn,v and c.d.f.
Fn,v on the support [n, n̄]⇥ [v, v̄]. The user i’s problem is to

find the optimal bid such that the utility is maximized, i.e.,
maxrti ,b

t
i
ut
i(r

t
i , b

t
i).

It is worth mentioning that the auction described above
is substantially different from the uniform-price auction con-
sidered in the literature of economics [13], [14], as bidders
in the later mechanism accept partial fulfillment and have
different utility functions other than (1).

B. The Problem of Optimal Capacity Segmentation
The cloud provider aims to optimally segment its available

capacity between the pay-as-you-go and auction markets, to
maximize its obtained revenue. Let the available capacity at
time t be Ct. In addition to knowing the exact number of
requests in the current time slot t, we assume that the provider
may predict the demand in the near future: it knows the
distributions of N⌧

a (the user number in the auction market)
and R⌧

r (the total requests in the pay-as-you-go market) for
⌧  T = t+w, with w being some prediction window. Note
that forecasting future demand has already been addressed in
some literature [10], [20].

Given Ct at time t, denote by �

t
(Ct

) the maximum ex-
pected aggregate revenue obtained from t to T . Let �a(c) and
�r(c) be the revenues of allocating c instances in the auction
and the pay-as-you-go markets, respectively. The problem of
optimal capacity segmentation is to find the optimal capacity
allocations to the two markets such that the revenue collected
within the prediction window is maximized. This can be
expressed in the following recursive form:

�

t
(Ct

) = E


max

0Ct
aCt

�
�a(C

t
a) + �r(C

t � Ct
a)

+ECt+1

⇥
�

t+1
(Ct+1

)

⇤ �
, (2)

where Ct
a is the capacity allocated to the auction market,

and the boundary conditions are �

T+1
(c) = 0 for all c =

0, 1, . . . , C.
Since the pay-as-you-go price is infrequently changed [1],

in this work we consider only the shorter time-scale problem
of capacity segmentation given a fixed pr. Then we have

�r(c) =

⇢
prc/q , if c  Rt

r;
prR

t
r/q , otherwise, (3)

Note that a discussion on how to optimize pr can be con-
ducted based on the proposed revenue maximizing method,
but it additionally requires knowledge of the yet unknown
supply-demand relation and hence is left open for future
research.

To determine the value of Ct+1 in (2), we note that at
time t, Ct

a instances are allocated to the auction market, and
C �Ct

a instances held for the pay-as-you-go users. Suppose
that right before t + 1, X of them are terminated by pay-
as-you-go users and are returned to the system. As a result,
there are Ct+1

= Ct
a +X instances being available for new

requests at the beginning of t + 1. From the assumption of
exponential life cycle as explained in Sec. III-A, it is easy
to see that X follows a binomial distribution with P (X =

Rt
r : # of on-demand requests received at time t

A simple model yet gives interesting insights!

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Periodic auctions
Auctions are carried out periodically
Each user i bids for computing instances

True demand: instances each with utility
Bid for instances each at a price
 follows a joint p.d.f.

A uniform clearing price is posted in every time t
User i wins if the bid exceeds the clearing price

Upon losing, all running instances are terminated

12

pta

(ni, vi) fn,v

bti > pta

ni vi
rti bti

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Auction bidder
No partial fulfilment

Lose all or win all
The same as Amazon EC2 and other clouds

Utility function of bidder i

13

time horizons indexed by t = 1, 2, . . . in the following
analysis.

A. User Model

Pay-as-you-go users. The pay-as-you-go market offers
guaranteed services. Users can run their instances for as
long as they wish, and are charged what they used based
on a constant regular price pr. In particular, denote by ti,j
the running time of instance j hosted for user i. User i
is then charged prti,j for using that instance. To make the
analysis tractable, we take a technical assumption that ti,j’s
are i.i.d. exponential. In discrete settings, this implies that
ti,j follows the geometric distribution with p.m.f. P (ti,j =

k) = q(1� q)k�1, where q is the probability that a currently
running instance will be terminated by its user in the next
period. Therefore, the expected overall payment for using one
instance is E[prti,j] = prE[ti,j] = pr/q. This is a simple
model to allow tractable analysis, but it has been shown to
give interesting insights into practical systems and is widely
adopted in many economic models [19].

Because pr is constant, pay-as-you-go users have no
purchasing strategy as the auction bidders do. We assume
there are Rt

r instance requests received at time t, and if
the available capacity allocated to the pay-as-you-go market
is below Rt

r, some users do not receive their requested
instances. The exact mechanism for user admission (e.g.,
first-come-first-serve) is unimportant to the problem under
consideration since the same price pr is charged for each
instance.

Users in the auction market. Instances purchased in
the auction market offer no service guarantees and will
be terminated by the provider whenever the bid has been
exceeded by the clearing price. Suppose at time t, there are
N t

a bidders joining the auction. Each bidder i (1  i  N t
a)

wishes to access ni instances and has a maximum affordable
price vi, also known as the reservation price, for using one
instance at one period. User i then submits a two-dimensional
bid (rti , b

t
i) requesting rti instances with a bid price bti. Note

that user i could strategically misreport its bid (i.e., bti 6= vi
or rti 6= ni) as long as it believes that this is more beneficial.

After all bids are collected, the cloud provider runs the
auction and charges a take-it-or-leave-it clearing price pta to
all winners: each user i with bti > pta (resp. bti < pta) either
has its new requests fulfilled (resp. rejected) or has its running
instances continued (resp. terminated). Those with bti = pta
may or may not be accepted depending on the specific auction
mechanism. The value of pta is calculated based on some
specified mechanism that is publicly known to all bidders.
We therefore define user i’s utility at time t as follows:

ut
i(r

t
i , b

t
i) =

⇢
nivi � rtip

t
a , if pta < bti and rti � ni;

0 , otherwise.
(1)

Here, both ni and vi are private information known only to
user i, and are distributed with joint p.d.f. fn,v and c.d.f.
Fn,v on the support [n, n̄]⇥ [v, v̄]. The user i’s problem is to

find the optimal bid such that the utility is maximized, i.e.,
maxrti ,b

t
i
ut
i(r

t
i , b

t
i).

It is worth mentioning that the auction described above
is substantially different from the uniform-price auction con-
sidered in the literature of economics [13], [14], as bidders
in the later mechanism accept partial fulfillment and have
different utility functions other than (1).

B. The Problem of Optimal Capacity Segmentation
The cloud provider aims to optimally segment its available

capacity between the pay-as-you-go and auction markets, to
maximize its obtained revenue. Let the available capacity at
time t be Ct. In addition to knowing the exact number of
requests in the current time slot t, we assume that the provider
may predict the demand in the near future: it knows the
distributions of N⌧

a (the user number in the auction market)
and R⌧

r (the total requests in the pay-as-you-go market) for
⌧  T = t+w, with w being some prediction window. Note
that forecasting future demand has already been addressed in
some literature [10], [20].

Given Ct at time t, denote by �

t
(Ct

) the maximum ex-
pected aggregate revenue obtained from t to T . Let �a(c) and
�r(c) be the revenues of allocating c instances in the auction
and the pay-as-you-go markets, respectively. The problem of
optimal capacity segmentation is to find the optimal capacity
allocations to the two markets such that the revenue collected
within the prediction window is maximized. This can be
expressed in the following recursive form:

�

t
(Ct

) = E


max

0Ct
aCt

�
�a(C

t
a) + �r(C

t � Ct
a)

+ECt+1

⇥
�

t+1
(Ct+1

)

⇤ �
, (2)

where Ct
a is the capacity allocated to the auction market,

and the boundary conditions are �

T+1
(c) = 0 for all c =

0, 1, . . . , C.
Since the pay-as-you-go price is infrequently changed [1],

in this work we consider only the shorter time-scale problem
of capacity segmentation given a fixed pr. Then we have

�r(c) =

⇢
prc/q , if c  Rt

r;
prR

t
r/q , otherwise, (3)

Note that a discussion on how to optimize pr can be con-
ducted based on the proposed revenue maximizing method,
but it additionally requires knowledge of the yet unknown
supply-demand relation and hence is left open for future
research.

To determine the value of Ct+1 in (2), we note that at
time t, Ct

a instances are allocated to the auction market, and
C �Ct

a instances held for the pay-as-you-go users. Suppose
that right before t + 1, X of them are terminated by pay-
as-you-go users and are returned to the system. As a result,
there are Ct+1

= Ct
a +X instances being available for new

requests at the beginning of t + 1. From the assumption of
exponential life cycle as explained in Sec. III-A, it is easy
to see that X follows a binomial distribution with P (X =

Gain Cost

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

What is the optimal
auction mechanism?

14

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Optimal auction design

15

�(vi) = vi �
1� Fv(vi|ni)

fv(vi|ni)

(m+1)-price auction with a seller reservation price
Sort all bidders in a descending order of their bid prices,
i.e.,
Reservation price = ,

bt1 � bt2 � . . .

��1(0)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Optimal auction design

16

�(vi) = vi �
1� Fv(vi|ni)

fv(vi|ni)

(m+1)-price auction with a seller reservation price
Sort all bidders in a descending order of their bid prices,
i.e.,
Reservation price = ,

Keep accommodating top bidders, until (1) there is no
available capacity to serve more or (2) no one bids
higher than the reservation price. For the former case,
winners are charged the highest bid of losers. For the
later case, winners are charged the reservation price.

bt1 � bt2 � . . .

��1(0)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Optimal auction design (Cont.)

X

Case 2:

Case 1:

rt1
Capacity0 c

rt2 rt3

Bid
bt1 bt2

bt3
��1(0)

rt1
Capacity0 crt2 rt3

Bid bt1 bt2
bt3

��1(0)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Optimal auction design (Cont.)

17

Proposition 1: The design maximizes the revenue
among all auctions producing a uniform clearing price
Proposition 2: The design is two-dimensionally truthful

A user always reports true demand:

rti

Capacity0 Ct
a

Capacity0 Ct
a

rti +�

pta

Bid price Bid price

pta

(a) Increasing rti raises the clearing price.

bti = pta

Capacity0 Ct
a

Capacity0 Ct
a

Bid price Bid price
pta > btibti +�

bti +�

rti

rti

(b) Increasing bti raises the clearing price.

Fig. 2. Effect of demand rti and bid price bti on the clearing price pta.

truthful for the case where each bidder demands no more
than one unit of the auctioned goods [25], it is well known
that in general, the truthfulness no longer holds when bidders
have multi-unit demands [13], [14]. However, we show that
for the specific problem considered in this paper, GSP is
two-dimensionally truthful in both ni and vi. To see this, we
require the following lemmas.

Lemma 2: For every bidder i, fix all others’ submissions.
Denote by pta(b

t
i, r

t
i) the clearing price when i bids (bti, r

t
i).

Then for all bti (resp. rti), pta(b
t
i, r

t
i) is increasing w.r.t. rti

(resp. bti).
Lemma 2 reflects the basic economic principle: with the

same supply, the market price rises as the bidders’ demand
increases. The proof can be easily deduced by consulting the
illustrations in Figs. 2a and 2b and is omitted here due to
space constraints.

Lemma 2 immediately suggests Lemma 3, whose proof is
given in Appendix A.

Lemma 3: For every bidder i, there is no advantage to
overbook instances, i.e., given bti, ut

i(r
t
i , b

t
i)  ut

i(ni, b
t
i) for

all rti > ni.
Since no user has the incentive to request fewer instances

than needed (as ut
i(r

t
i , b

t
i) = 0 whenever rti < ni), Lemma 3

essentially indicates that the users always truthfully report
their ni value. This leads to the truthfulness statement as
follows.

Proposition 2: Algorithm 1 is two-dimensionally truthful,
i.e., ut

i(ni, vi) � ut
i(r

t
i , b

t
i) for all (rti , bti), i = 1, 2, . . . , N t

a.
The detailed proof is given in Appendix A. Intuitively,

given that all users report ni truthfully as dictated by
Lemma 3, the market can be viewed as a second price auction
in terms of the bid price only, which is well-known to be
truthful. We point out that the two-dimensional truthfulness
of this special case of GSP in our problem is due to the
specific characteristics of cloud users that they do not accept
partial fulfillment.

The revenue optimality of Algorithm 1 follows naturally
from Proposition 2:

Proposition 3: Among all mechanisms offering a uniform

take-it-or-leave-it price, Algorithm 1 is optimal in terms of
revenue maximization.

Proof: Since Algorithm 1 is truthful, all bidders bid rti =
ni and bti = vi. In this case, Algorithm 1 optimally solves
problem (7). By Proposition 1, this implies that Algorithm 1
maximizes the revenue among all truthful auctions offering
uniform clearing prices. Due to the Revelation Principle [21],
imposing the truthfulness to the auction design does not
hurt the revenue. We therefore conclude that the statement
generally holds.

C. Optimal Revenue

To derive the revenue obtained from Algorithm 1, one
has to deal with two cases, with or without sufficient ca-
pacity to accommodate all profitable requests. To combine
both cases in our subsequent discussion, we artificially
insert a virtual bidder to the market, who requests an
infinite amount of instances at a price ��1

(0). Inserting
a virtual bidder has no effect on the auction result, but
it significantly simplifies the revenue expression. Based on
Algorithm 1, pta = vm+1, and �a(C

t
a) = vm+1

Pm
i=1 ni,

where
Pm

i=1 ni  Ct
a <

Pm+1
i=1 ni. By Proposition 1, we

have E[�a(C
t
a)] = E[vm+1

Pm
i=1 ni] = E[

Pm
i=1 ni�(vi)].

Therefore, in expectation, it is equivalent to write

�a(c) =
mX

i=1

ni�(vi) , (8)

where
Pm

i=1 ni  c <
Pm+1

i=1 ni. In this sense, ni�(vi) can
be viewed as the marginal revenue generated by accepting
the requests of bidder i.

D. Connections to EC2 Spot Market

It is interesting to see some connections between the
auction market discussed in this paper and the spot market
adopted by Amazon EC2 Spot Instances [1]. Similar to the
auction market, spot users periodically submit bids (rti , bti) to
Amazon, requesting rti instances at the price bti. A uniform
spot price pts is periodically posted by Amazon to charge the
winners, i.e., those who bid higher than the spot price. All
winners can use the instances as long as the price does not
rise above their bids.

Though similar in description, the pricing of Spot Instances
is by no means an auction market. Since Amazon has
revealed no detailed information regarding how the spot price
pts is calculated, there is no way for spot users to know what
pts is going to be, even with the complete information of
demand (i.e., users’ bids) and supply (i.e., the amount of
instances offered in the spot market). This is not the case
in a real auction, where the mechanism details are publicly
known to every participant.

We now investigate the optimal bidding strategy for Spot
Instances. Without pricing details, the only valid approach
for spot users is to view pts as a random variable, with p.d.f.
fs and c.d.f. Fs learned from the price history published by
Amazon [1]. Suppose the utility defined for user i is similar

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Optimal auction design (Cont.)

18

Proposition 1: The design maximizes the revenue
among all auctions producing a uniform clearing price
Proposition 2: The design is two-dimensionally truthful

A user always reports true demand:

Remarks
Generally, (m+1)-price auction suffers from the problem of
demand reduction and is neither truthful nor optimal when a
bidder bids for multiple items
We show that it is truthful and optimal in cloud markets
where partial fulfilment is unaccepted

rti

Capacity0 Ct
a

Capacity0 Ct
a

rti +�

pta

Bid price Bid price

pta

(a) Increasing rti raises the clearing price.

bti = pta

Capacity0 Ct
a

Capacity0 Ct
a

Bid price Bid price
pta > btibti +�

bti +�

rti

rti

(b) Increasing bti raises the clearing price.

Fig. 2. Effect of demand rti and bid price bti on the clearing price pta.

truthful for the case where each bidder demands no more
than one unit of the auctioned goods [25], it is well known
that in general, the truthfulness no longer holds when bidders
have multi-unit demands [13], [14]. However, we show that
for the specific problem considered in this paper, GSP is
two-dimensionally truthful in both ni and vi. To see this, we
require the following lemmas.

Lemma 2: For every bidder i, fix all others’ submissions.
Denote by pta(b

t
i, r

t
i) the clearing price when i bids (bti, r

t
i).

Then for all bti (resp. rti), pta(b
t
i, r

t
i) is increasing w.r.t. rti

(resp. bti).
Lemma 2 reflects the basic economic principle: with the

same supply, the market price rises as the bidders’ demand
increases. The proof can be easily deduced by consulting the
illustrations in Figs. 2a and 2b and is omitted here due to
space constraints.

Lemma 2 immediately suggests Lemma 3, whose proof is
given in Appendix A.

Lemma 3: For every bidder i, there is no advantage to
overbook instances, i.e., given bti, ut

i(r
t
i , b

t
i)  ut

i(ni, b
t
i) for

all rti > ni.
Since no user has the incentive to request fewer instances

than needed (as ut
i(r

t
i , b

t
i) = 0 whenever rti < ni), Lemma 3

essentially indicates that the users always truthfully report
their ni value. This leads to the truthfulness statement as
follows.

Proposition 2: Algorithm 1 is two-dimensionally truthful,
i.e., ut

i(ni, vi) � ut
i(r

t
i , b

t
i) for all (rti , bti), i = 1, 2, . . . , N t

a.
The detailed proof is given in Appendix A. Intuitively,

given that all users report ni truthfully as dictated by
Lemma 3, the market can be viewed as a second price auction
in terms of the bid price only, which is well-known to be
truthful. We point out that the two-dimensional truthfulness
of this special case of GSP in our problem is due to the
specific characteristics of cloud users that they do not accept
partial fulfillment.

The revenue optimality of Algorithm 1 follows naturally
from Proposition 2:

Proposition 3: Among all mechanisms offering a uniform

take-it-or-leave-it price, Algorithm 1 is optimal in terms of
revenue maximization.

Proof: Since Algorithm 1 is truthful, all bidders bid rti =
ni and bti = vi. In this case, Algorithm 1 optimally solves
problem (7). By Proposition 1, this implies that Algorithm 1
maximizes the revenue among all truthful auctions offering
uniform clearing prices. Due to the Revelation Principle [21],
imposing the truthfulness to the auction design does not
hurt the revenue. We therefore conclude that the statement
generally holds.

C. Optimal Revenue

To derive the revenue obtained from Algorithm 1, one
has to deal with two cases, with or without sufficient ca-
pacity to accommodate all profitable requests. To combine
both cases in our subsequent discussion, we artificially
insert a virtual bidder to the market, who requests an
infinite amount of instances at a price ��1

(0). Inserting
a virtual bidder has no effect on the auction result, but
it significantly simplifies the revenue expression. Based on
Algorithm 1, pta = vm+1, and �a(C

t
a) = vm+1

Pm
i=1 ni,

where
Pm

i=1 ni  Ct
a <

Pm+1
i=1 ni. By Proposition 1, we

have E[�a(C
t
a)] = E[vm+1

Pm
i=1 ni] = E[

Pm
i=1 ni�(vi)].

Therefore, in expectation, it is equivalent to write

�a(c) =
mX

i=1

ni�(vi) , (8)

where
Pm

i=1 ni  c <
Pm+1

i=1 ni. In this sense, ni�(vi) can
be viewed as the marginal revenue generated by accepting
the requests of bidder i.

D. Connections to EC2 Spot Market

It is interesting to see some connections between the
auction market discussed in this paper and the spot market
adopted by Amazon EC2 Spot Instances [1]. Similar to the
auction market, spot users periodically submit bids (rti , bti) to
Amazon, requesting rti instances at the price bti. A uniform
spot price pts is periodically posted by Amazon to charge the
winners, i.e., those who bid higher than the spot price. All
winners can use the instances as long as the price does not
rise above their bids.

Though similar in description, the pricing of Spot Instances
is by no means an auction market. Since Amazon has
revealed no detailed information regarding how the spot price
pts is calculated, there is no way for spot users to know what
pts is going to be, even with the complete information of
demand (i.e., users’ bids) and supply (i.e., the amount of
instances offered in the spot market). This is not the case
in a real auction, where the mechanism details are publicly
known to every participant.

We now investigate the optimal bidding strategy for Spot
Instances. Without pricing details, the only valid approach
for spot users is to view pts as a random variable, with p.d.f.
fs and c.d.f. Fs learned from the price history published by
Amazon [1]. Suppose the utility defined for user i is similar

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Auction revenue
Revenue: ,where

X

rt1
Capacity0

c

�(·)

rt2 rt3

rt1
Capacity0 c

�(·)

rt2 rt3

�a(c) =
mX

i=1

rti�(b
t
i)

mX

i=1

rti  c <
m+1X

i=1

rti

Revenue = shaded area

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Optimal capacity
segmentation

19

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Capacity segmentation revisit

X: # of instances terminated by on-demand users at
time t

20

Find the optimal segmentation at time t

Ct+1 = Ct
a +X

time horizons indexed by t = 1, 2, . . . in the following
analysis.

A. User Model

Pay-as-you-go users. The pay-as-you-go market offers
guaranteed services. Users can run their instances for as
long as they wish, and are charged what they used based
on a constant regular price pr. In particular, denote by ti,j
the running time of instance j hosted for user i. User i
is then charged prti,j for using that instance. To make the
analysis tractable, we take a technical assumption that ti,j’s
are i.i.d. exponential. In discrete settings, this implies that
ti,j follows the geometric distribution with p.m.f. P (ti,j =

k) = q(1� q)k�1, where q is the probability that a currently
running instance will be terminated by its user in the next
period. Therefore, the expected overall payment for using one
instance is E[prti,j] = prE[ti,j] = pr/q. This is a simple
model to allow tractable analysis, but it has been shown to
give interesting insights into practical systems and is widely
adopted in many economic models [19].

Because pr is constant, pay-as-you-go users have no
purchasing strategy as the auction bidders do. We assume
there are Rt

r instance requests received at time t, and if
the available capacity allocated to the pay-as-you-go market
is below Rt

r, some users do not receive their requested
instances. The exact mechanism for user admission (e.g.,
first-come-first-serve) is unimportant to the problem under
consideration since the same price pr is charged for each
instance.

Users in the auction market. Instances purchased in
the auction market offer no service guarantees and will
be terminated by the provider whenever the bid has been
exceeded by the clearing price. Suppose at time t, there are
N t

a bidders joining the auction. Each bidder i (1  i  N t
a)

wishes to access ni instances and has a maximum affordable
price vi, also known as the reservation price, for using one
instance at one period. User i then submits a two-dimensional
bid (rti , b

t
i) requesting rti instances with a bid price bti. Note

that user i could strategically misreport its bid (i.e., bti 6= vi
or rti 6= ni) as long as it believes that this is more beneficial.

After all bids are collected, the cloud provider runs the
auction and charges a take-it-or-leave-it clearing price pta to
all winners: each user i with bti > pta (resp. bti < pta) either
has its new requests fulfilled (resp. rejected) or has its running
instances continued (resp. terminated). Those with bti = pta
may or may not be accepted depending on the specific auction
mechanism. The value of pta is calculated based on some
specified mechanism that is publicly known to all bidders.
We therefore define user i’s utility at time t as follows:

ut
i(r

t
i , b

t
i) =

⇢
nivi � rtip

t
a , if pta < bti and rti � ni;

0 , otherwise.
(1)

Here, both ni and vi are private information known only to
user i, and are distributed with joint p.d.f. fn,v and c.d.f.
Fn,v on the support [n, n̄]⇥ [v, v̄]. The user i’s problem is to

find the optimal bid such that the utility is maximized, i.e.,
maxrti ,b

t
i
ut
i(r

t
i , b

t
i).

It is worth mentioning that the auction described above
is substantially different from the uniform-price auction con-
sidered in the literature of economics [13], [14], as bidders
in the later mechanism accept partial fulfillment and have
different utility functions other than (1).

B. The Problem of Optimal Capacity Segmentation
The cloud provider aims to optimally segment its available

capacity between the pay-as-you-go and auction markets, to
maximize its obtained revenue. Let the available capacity at
time t be Ct. In addition to knowing the exact number of
requests in the current time slot t, we assume that the provider
may predict the demand in the near future: it knows the
distributions of N⌧

a (the user number in the auction market)
and R⌧

r (the total requests in the pay-as-you-go market) for
⌧  T = t+w, with w being some prediction window. Note
that forecasting future demand has already been addressed in
some literature [10], [20].

Given Ct at time t, denote by �

t
(Ct

) the maximum ex-
pected aggregate revenue obtained from t to T . Let �a(c) and
�r(c) be the revenues of allocating c instances in the auction
and the pay-as-you-go markets, respectively. The problem of
optimal capacity segmentation is to find the optimal capacity
allocations to the two markets such that the revenue collected
within the prediction window is maximized. This can be
expressed in the following recursive form:

�

t
(Ct

) = E


max

0Ct
aCt

�
�a(C

t
a) + �r(C

t � Ct
a)

+ECt+1

⇥
�

t+1
(Ct+1

)

⇤ �
, (2)

where Ct
a is the capacity allocated to the auction market,

and the boundary conditions are �

T+1
(c) = 0 for all c =

0, 1, . . . , C.
Since the pay-as-you-go price is infrequently changed [1],

in this work we consider only the shorter time-scale problem
of capacity segmentation given a fixed pr. Then we have

�r(c) =

⇢
prc/q , if c  Rt

r;
prR

t
r/q , otherwise, (3)

Note that a discussion on how to optimize pr can be con-
ducted based on the proposed revenue maximizing method,
but it additionally requires knowledge of the yet unknown
supply-demand relation and hence is left open for future
research.

To determine the value of Ct+1 in (2), we note that at
time t, Ct

a instances are allocated to the auction market, and
C �Ct

a instances held for the pay-as-you-go users. Suppose
that right before t + 1, X of them are terminated by pay-
as-you-go users and are returned to the system. As a result,
there are Ct+1

= Ct
a +X instances being available for new

requests at the beginning of t + 1. From the assumption of
exponential life cycle as explained in Sec. III-A, it is easy
to see that X follows a binomial distribution with P (X =

X ⇠ B(C � Ct
a, k, q)

Ct
a

Auction On-demand

FutureState transition

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Solving the capacity segmentation problem

Direct solution is via numerical dynamic programming
Hight computational complexity:
C is the cloud capacity, and is usually huge
Capacity segmentation is time sensitive: it has to be made
in the beginning of every period

21

Ct+1 = Ct
a +X

time horizons indexed by t = 1, 2, . . . in the following
analysis.

A. User Model

Pay-as-you-go users. The pay-as-you-go market offers
guaranteed services. Users can run their instances for as
long as they wish, and are charged what they used based
on a constant regular price pr. In particular, denote by ti,j
the running time of instance j hosted for user i. User i
is then charged prti,j for using that instance. To make the
analysis tractable, we take a technical assumption that ti,j’s
are i.i.d. exponential. In discrete settings, this implies that
ti,j follows the geometric distribution with p.m.f. P (ti,j =

k) = q(1� q)k�1, where q is the probability that a currently
running instance will be terminated by its user in the next
period. Therefore, the expected overall payment for using one
instance is E[prti,j] = prE[ti,j] = pr/q. This is a simple
model to allow tractable analysis, but it has been shown to
give interesting insights into practical systems and is widely
adopted in many economic models [19].

Because pr is constant, pay-as-you-go users have no
purchasing strategy as the auction bidders do. We assume
there are Rt

r instance requests received at time t, and if
the available capacity allocated to the pay-as-you-go market
is below Rt

r, some users do not receive their requested
instances. The exact mechanism for user admission (e.g.,
first-come-first-serve) is unimportant to the problem under
consideration since the same price pr is charged for each
instance.

Users in the auction market. Instances purchased in
the auction market offer no service guarantees and will
be terminated by the provider whenever the bid has been
exceeded by the clearing price. Suppose at time t, there are
N t

a bidders joining the auction. Each bidder i (1  i  N t
a)

wishes to access ni instances and has a maximum affordable
price vi, also known as the reservation price, for using one
instance at one period. User i then submits a two-dimensional
bid (rti , b

t
i) requesting rti instances with a bid price bti. Note

that user i could strategically misreport its bid (i.e., bti 6= vi
or rti 6= ni) as long as it believes that this is more beneficial.

After all bids are collected, the cloud provider runs the
auction and charges a take-it-or-leave-it clearing price pta to
all winners: each user i with bti > pta (resp. bti < pta) either
has its new requests fulfilled (resp. rejected) or has its running
instances continued (resp. terminated). Those with bti = pta
may or may not be accepted depending on the specific auction
mechanism. The value of pta is calculated based on some
specified mechanism that is publicly known to all bidders.
We therefore define user i’s utility at time t as follows:

ut
i(r

t
i , b

t
i) =

⇢
nivi � rtip

t
a , if pta < bti and rti � ni;

0 , otherwise.
(1)

Here, both ni and vi are private information known only to
user i, and are distributed with joint p.d.f. fn,v and c.d.f.
Fn,v on the support [n, n̄]⇥ [v, v̄]. The user i’s problem is to

find the optimal bid such that the utility is maximized, i.e.,
maxrti ,b

t
i
ut
i(r

t
i , b

t
i).

It is worth mentioning that the auction described above
is substantially different from the uniform-price auction con-
sidered in the literature of economics [13], [14], as bidders
in the later mechanism accept partial fulfillment and have
different utility functions other than (1).

B. The Problem of Optimal Capacity Segmentation
The cloud provider aims to optimally segment its available

capacity between the pay-as-you-go and auction markets, to
maximize its obtained revenue. Let the available capacity at
time t be Ct. In addition to knowing the exact number of
requests in the current time slot t, we assume that the provider
may predict the demand in the near future: it knows the
distributions of N⌧

a (the user number in the auction market)
and R⌧

r (the total requests in the pay-as-you-go market) for
⌧  T = t+w, with w being some prediction window. Note
that forecasting future demand has already been addressed in
some literature [10], [20].

Given Ct at time t, denote by �

t
(Ct

) the maximum ex-
pected aggregate revenue obtained from t to T . Let �a(c) and
�r(c) be the revenues of allocating c instances in the auction
and the pay-as-you-go markets, respectively. The problem of
optimal capacity segmentation is to find the optimal capacity
allocations to the two markets such that the revenue collected
within the prediction window is maximized. This can be
expressed in the following recursive form:

�

t
(Ct

) = E


max

0Ct
aCt

�
�a(C

t
a) + �r(C

t � Ct
a)

+ECt+1

⇥
�

t+1
(Ct+1

)

⇤ �
, (2)

where Ct
a is the capacity allocated to the auction market,

and the boundary conditions are �

T+1
(c) = 0 for all c =

0, 1, . . . , C.
Since the pay-as-you-go price is infrequently changed [1],

in this work we consider only the shorter time-scale problem
of capacity segmentation given a fixed pr. Then we have

�r(c) =

⇢
prc/q , if c  Rt

r;
prR

t
r/q , otherwise, (3)

Note that a discussion on how to optimize pr can be con-
ducted based on the proposed revenue maximizing method,
but it additionally requires knowledge of the yet unknown
supply-demand relation and hence is left open for future
research.

To determine the value of Ct+1 in (2), we note that at
time t, Ct

a instances are allocated to the auction market, and
C �Ct

a instances held for the pay-as-you-go users. Suppose
that right before t + 1, X of them are terminated by pay-
as-you-go users and are returned to the system. As a result,
there are Ct+1

= Ct
a +X instances being available for new

requests at the beginning of t + 1. From the assumption of
exponential life cycle as explained in Sec. III-A, it is easy
to see that X follows a binomial distribution with P (X =

X ⇠ B(C � Ct
a, k, q)

O(C3)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Approximation: solve the
upper-bound problem

22

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The upper-bound problem

23

� = c �
Pm

i=1 ni instances leftover as these resources are
not sufficient to accommodate bidder m+ 1’s requests, i.e.,
� < nm+1. However, if bidder m+ 1 accepts partial fulfill-
ment, then those � instances generate ��(vm+1) additional
revenue to the provider. Let �̄a(·) be the revenue obtained
when partial fulfillment is acceptable, i.e.,

�̄a(c) = �a(c) + ��(vm+1)

=

mX

i=1

ni�(vi) + ��(vm+1) , (11)

Clearly �̄a is an upper bound of �a. The following Proposi-
tion bounds the gap between �a and �̄a.

Lemma 4: If c � ↵n̄ for some ↵ � 1, then �a(c) �
(1� 1

↵)�̄a(c).
Proof: By (11), we have �̄a(c) � �a(c) = ��(vm+1). It

suffices to consider the following two cases.
Case 1: nm+1 = 1. In this case, m + 1 is the virtual

bidder with �(vm+1) = 0. We see the statement holds with
�̄a(c) = �a(c).

Case 2: nm+1 < 1. In this case, m + 1 is a regular
bidder. We have � < nm+1  n̄  c/↵. Hence �̄a(c) �
�a(c) = ��(vm+1)  c�(vm+1)/↵  �̄a(c)/↵, where the
last inequality holds since �(v1) � · · · � �(vm+1).

By Lemma 4, we see that the upper bound �̄a is a close
approximation to �a in practical settings, where the capacity
allocated to the auction market is usually enormous compared
with a single bidder’s requests (i.e., ↵ � 1). We therefore
consider an approximate problem by replacing �a with �̄a in
(4), i.e.,

¯

�

t
(Ct

) = E


max

0Ct
aCt

�
�̄a(C

t
a) + �r(C

t � Ct
a)

+EX

⇥
¯

�

t+1
(Ct

a +X)

⇤ �
. (12)

The boundary conditions are ¯

�

T+1
(c) = 0 for all c =

0, 1, . . . , C. Let ˜Ct
a be the optimal solution to (12). The

provider then uses it as an approximate, sub-optimal solution
to (4), generating revenue

˜

�

t
(Ct

) = E


�a(˜C

t
a) + �r(C

t � ˜Ct
a)

+EX

⇥
˜

�

t+1
(

˜Ct
a +X)

⇤�
. (13)

We justify the intuition of the approximation above with
the following proposition, which conditionally bounds the
competitive ratio of ˜

�

t to �

t.
Proposition 6: In (12), if ˜C⌧

a � ↵n̄ for all ⌧ = t, . . . , T ,
then (1� 1

↵)�
t
(Ct

)  ˜

�

t
(Ct

)  �

t
(Ct

).
Proof: It is trivial to show the second inequality as �

t is
the optimal solution. To show the first inequality, we have

˜

�

t
(Ct

) = E

"
TX

⌧=t

�a(˜C
⌧
a) + �r(C

⌧ � ˜C⌧
a)

#

� (1� 1

↵
)E

"
TX

⌧=t

�̄a(˜C
⌧
a) + �r(C

⌧ � ˜C⌧
a)

#

= (1� 1

↵
)�

t
(Ct

) , (14)

where the second inequality holds due to Lemma 4.
The condition of Proposition 6 is frequently satisfied in

practice. Due to the large number of bidders, the volume of
each bidder’s requests is much smaller than the total capacity.
As a result, the revenue obtained from the approximation
does not deviate too far away from the optimal one. We later
verify this point by extensive simulations in Sec. VI.

We now show that (12) has an important optimization
structure that lead to an efficient solution within O(C2

). First,
we see that �̄a(·) is concave, as stated below.

Lemma 5: Given n and v, �̄a(c) defined in (11) is
concave. That is, r�̄a(c) = �̄a(c)� �̄a(c� 1) is decreasing
w.r.t. c.

Lemma 5 suggests the concavity of ¯

�

t
(·) as follows.

Lemma 6: For every ⌧ = t, . . . , T , ¯�⌧
(C⌧

) is increasing
and concave for all C⌧

= 0, 1, . . . , C.
This concavity finally leads to an interesting structure

described in the following proposition.
Proposition 7: For every realization n and v at time ⌧ =

t, t + 1, . . . , T , let ˜C⌧
a (C

⌧
) be the optimal solution to (12).

For all C⌧
= 0, 1, . . . , C, we have

˜C⌧
a (C

⌧
+ 1)� 1  ˜C⌧

a (C
⌧
)  ˜C⌧

a (C
⌧
+ 1). (15)

The proofs of Lemmas 5 and 6, as well as Proposition 7,
are all presented in Appendix B.

Proposition 7 indicates that previously calculated results
can be reused in subsequent computations. We therefore run
dynamic programming from the last stage T and proceed
backwards to t. Within each stage ⌧ , ¯�⌧

(C⌧
) is sequentially

computed as C⌧
= C,C � 1, . . . , 0. When computing

˜C⌧
a (C

⌧
), instead of exhaustively searching the entire solution

space from 0 to C, one only needs to try two values,
˜C⌧
a (C

⌧
+ 1) and ˜C⌧

a (C
⌧
+ 1) � 1, and the one resulting

in higher revenue is selected as ˜C⌧
a . The entire computation

only takes O(C2
) operations.

In terms of computational efficiency, the approximate
solution significantly outperforms the optimal one, as the
total capacity of a provider is usually enormous in practice.
As an example, when C = 10

5, the approximation is 10

5

times faster than the exact solution.

VI. SIMULATION RESULTS

We evaluate the revenue performance of the proposed
approximate solution via extensive simulations. We adopt
a typical scenario where C = 10

5. That is, the provider
is able to host up to 10

5 virtual instances of a certain
type simultaneously. We simulate the markets for 100 time
periods. In each period t, cloud users arrive into the system
following a Poisson process with intensity �, which are then
randomly split into the pay-as-you-go and auction markets
with equal probability. Our evaluation adopts three demand

 : Revenue upper bound of the auction channel,
calculated as if partial fulfilment is accepted in periodic
auctions

�̄a(C
t
a)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The upper-bound problem

24

� = c �
Pm

i=1 ni instances leftover as these resources are
not sufficient to accommodate bidder m+ 1’s requests, i.e.,
� < nm+1. However, if bidder m+ 1 accepts partial fulfill-
ment, then those � instances generate ��(vm+1) additional
revenue to the provider. Let �̄a(·) be the revenue obtained
when partial fulfillment is acceptable, i.e.,

�̄a(c) = �a(c) + ��(vm+1)

=

mX

i=1

ni�(vi) + ��(vm+1) , (11)

Clearly �̄a is an upper bound of �a. The following Proposi-
tion bounds the gap between �a and �̄a.

Lemma 4: If c � ↵n̄ for some ↵ � 1, then �a(c) �
(1� 1

↵)�̄a(c).
Proof: By (11), we have �̄a(c) � �a(c) = ��(vm+1). It

suffices to consider the following two cases.
Case 1: nm+1 = 1. In this case, m + 1 is the virtual

bidder with �(vm+1) = 0. We see the statement holds with
�̄a(c) = �a(c).

Case 2: nm+1 < 1. In this case, m + 1 is a regular
bidder. We have � < nm+1  n̄  c/↵. Hence �̄a(c) �
�a(c) = ��(vm+1)  c�(vm+1)/↵  �̄a(c)/↵, where the
last inequality holds since �(v1) � · · · � �(vm+1).

By Lemma 4, we see that the upper bound �̄a is a close
approximation to �a in practical settings, where the capacity
allocated to the auction market is usually enormous compared
with a single bidder’s requests (i.e., ↵ � 1). We therefore
consider an approximate problem by replacing �a with �̄a in
(4), i.e.,

¯

�

t
(Ct

) = E


max

0Ct
aCt

�
�̄a(C

t
a) + �r(C

t � Ct
a)

+EX

⇥
¯

�

t+1
(Ct

a +X)

⇤ �
. (12)

The boundary conditions are ¯

�

T+1
(c) = 0 for all c =

0, 1, . . . , C. Let ˜Ct
a be the optimal solution to (12). The

provider then uses it as an approximate, sub-optimal solution
to (4), generating revenue

˜

�

t
(Ct

) = E


�a(˜C

t
a) + �r(C

t � ˜Ct
a)

+EX

⇥
˜

�

t+1
(

˜Ct
a +X)

⇤�
. (13)

We justify the intuition of the approximation above with
the following proposition, which conditionally bounds the
competitive ratio of ˜

�

t to �

t.
Proposition 6: In (12), if ˜C⌧

a � ↵n̄ for all ⌧ = t, . . . , T ,
then (1� 1

↵)�
t
(Ct

)  ˜

�

t
(Ct

)  �

t
(Ct

).
Proof: It is trivial to show the second inequality as �

t is
the optimal solution. To show the first inequality, we have

˜

�

t
(Ct

) = E

"
TX

⌧=t

�a(˜C
⌧
a) + �r(C

⌧ � ˜C⌧
a)

#

� (1� 1

↵
)E

"
TX

⌧=t

�̄a(˜C
⌧
a) + �r(C

⌧ � ˜C⌧
a)

#

= (1� 1

↵
)�

t
(Ct

) , (14)

where the second inequality holds due to Lemma 4.
The condition of Proposition 6 is frequently satisfied in

practice. Due to the large number of bidders, the volume of
each bidder’s requests is much smaller than the total capacity.
As a result, the revenue obtained from the approximation
does not deviate too far away from the optimal one. We later
verify this point by extensive simulations in Sec. VI.

We now show that (12) has an important optimization
structure that lead to an efficient solution within O(C2

). First,
we see that �̄a(·) is concave, as stated below.

Lemma 5: Given n and v, �̄a(c) defined in (11) is
concave. That is, r�̄a(c) = �̄a(c)� �̄a(c� 1) is decreasing
w.r.t. c.

Lemma 5 suggests the concavity of ¯

�

t
(·) as follows.

Lemma 6: For every ⌧ = t, . . . , T , ¯�⌧
(C⌧

) is increasing
and concave for all C⌧

= 0, 1, . . . , C.
This concavity finally leads to an interesting structure

described in the following proposition.
Proposition 7: For every realization n and v at time ⌧ =

t, t + 1, . . . , T , let ˜C⌧
a (C

⌧
) be the optimal solution to (12).

For all C⌧
= 0, 1, . . . , C, we have

˜C⌧
a (C

⌧
+ 1)� 1  ˜C⌧

a (C
⌧
)  ˜C⌧

a (C
⌧
+ 1). (15)

The proofs of Lemmas 5 and 6, as well as Proposition 7,
are all presented in Appendix B.

Proposition 7 indicates that previously calculated results
can be reused in subsequent computations. We therefore run
dynamic programming from the last stage T and proceed
backwards to t. Within each stage ⌧ , ¯�⌧

(C⌧
) is sequentially

computed as C⌧
= C,C � 1, . . . , 0. When computing

˜C⌧
a (C

⌧
), instead of exhaustively searching the entire solution

space from 0 to C, one only needs to try two values,
˜C⌧
a (C

⌧
+ 1) and ˜C⌧

a (C
⌧
+ 1) � 1, and the one resulting

in higher revenue is selected as ˜C⌧
a . The entire computation

only takes O(C2
) operations.

In terms of computational efficiency, the approximate
solution significantly outperforms the optimal one, as the
total capacity of a provider is usually enormous in practice.
As an example, when C = 10

5, the approximation is 10

5

times faster than the exact solution.

VI. SIMULATION RESULTS

We evaluate the revenue performance of the proposed
approximate solution via extensive simulations. We adopt
a typical scenario where C = 10

5. That is, the provider
is able to host up to 10

5 virtual instances of a certain
type simultaneously. We simulate the markets for 100 time
periods. In each period t, cloud users arrive into the system
following a Poisson process with intensity �, which are then
randomly split into the pay-as-you-go and auction markets
with equal probability. Our evaluation adopts three demand

Proposition 3: The upper-bound problem can be
solved within O(C2)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The upper-bound problem

25

� = c �
Pm

i=1 ni instances leftover as these resources are
not sufficient to accommodate bidder m+ 1’s requests, i.e.,
� < nm+1. However, if bidder m+ 1 accepts partial fulfill-
ment, then those � instances generate ��(vm+1) additional
revenue to the provider. Let �̄a(·) be the revenue obtained
when partial fulfillment is acceptable, i.e.,

�̄a(c) = �a(c) + ��(vm+1)

=

mX

i=1

ni�(vi) + ��(vm+1) , (11)

Clearly �̄a is an upper bound of �a. The following Proposi-
tion bounds the gap between �a and �̄a.

Lemma 4: If c � ↵n̄ for some ↵ � 1, then �a(c) �
(1� 1

↵)�̄a(c).
Proof: By (11), we have �̄a(c) � �a(c) = ��(vm+1). It

suffices to consider the following two cases.
Case 1: nm+1 = 1. In this case, m + 1 is the virtual

bidder with �(vm+1) = 0. We see the statement holds with
�̄a(c) = �a(c).

Case 2: nm+1 < 1. In this case, m + 1 is a regular
bidder. We have � < nm+1  n̄  c/↵. Hence �̄a(c) �
�a(c) = ��(vm+1)  c�(vm+1)/↵  �̄a(c)/↵, where the
last inequality holds since �(v1) � · · · � �(vm+1).

By Lemma 4, we see that the upper bound �̄a is a close
approximation to �a in practical settings, where the capacity
allocated to the auction market is usually enormous compared
with a single bidder’s requests (i.e., ↵ � 1). We therefore
consider an approximate problem by replacing �a with �̄a in
(4), i.e.,

¯

�

t
(Ct

) = E


max

0Ct
aCt

�
�̄a(C

t
a) + �r(C

t � Ct
a)

+EX

⇥
¯

�

t+1
(Ct

a +X)

⇤ �
. (12)

The boundary conditions are ¯

�

T+1
(c) = 0 for all c =

0, 1, . . . , C. Let ˜Ct
a be the optimal solution to (12). The

provider then uses it as an approximate, sub-optimal solution
to (4), generating revenue

˜

�

t
(Ct

) = E


�a(˜C

t
a) + �r(C

t � ˜Ct
a)

+EX

⇥
˜

�

t+1
(

˜Ct
a +X)

⇤�
. (13)

We justify the intuition of the approximation above with
the following proposition, which conditionally bounds the
competitive ratio of ˜

�

t to �

t.
Proposition 6: In (12), if ˜C⌧

a � ↵n̄ for all ⌧ = t, . . . , T ,
then (1� 1

↵)�
t
(Ct

)  ˜

�

t
(Ct

)  �

t
(Ct

).
Proof: It is trivial to show the second inequality as �

t is
the optimal solution. To show the first inequality, we have

˜

�

t
(Ct

) = E

"
TX

⌧=t

�a(˜C
⌧
a) + �r(C

⌧ � ˜C⌧
a)

#

� (1� 1

↵
)E

"
TX

⌧=t

�̄a(˜C
⌧
a) + �r(C

⌧ � ˜C⌧
a)

#

= (1� 1

↵
)�

t
(Ct

) , (14)

where the second inequality holds due to Lemma 4.
The condition of Proposition 6 is frequently satisfied in

practice. Due to the large number of bidders, the volume of
each bidder’s requests is much smaller than the total capacity.
As a result, the revenue obtained from the approximation
does not deviate too far away from the optimal one. We later
verify this point by extensive simulations in Sec. VI.

We now show that (12) has an important optimization
structure that lead to an efficient solution within O(C2

). First,
we see that �̄a(·) is concave, as stated below.

Lemma 5: Given n and v, �̄a(c) defined in (11) is
concave. That is, r�̄a(c) = �̄a(c)� �̄a(c� 1) is decreasing
w.r.t. c.

Lemma 5 suggests the concavity of ¯

�

t
(·) as follows.

Lemma 6: For every ⌧ = t, . . . , T , ¯�⌧
(C⌧

) is increasing
and concave for all C⌧

= 0, 1, . . . , C.
This concavity finally leads to an interesting structure

described in the following proposition.
Proposition 7: For every realization n and v at time ⌧ =

t, t + 1, . . . , T , let ˜C⌧
a (C

⌧
) be the optimal solution to (12).

For all C⌧
= 0, 1, . . . , C, we have

˜C⌧
a (C

⌧
+ 1)� 1  ˜C⌧

a (C
⌧
)  ˜C⌧

a (C
⌧
+ 1). (15)

The proofs of Lemmas 5 and 6, as well as Proposition 7,
are all presented in Appendix B.

Proposition 7 indicates that previously calculated results
can be reused in subsequent computations. We therefore run
dynamic programming from the last stage T and proceed
backwards to t. Within each stage ⌧ , ¯�⌧

(C⌧
) is sequentially

computed as C⌧
= C,C � 1, . . . , 0. When computing

˜C⌧
a (C

⌧
), instead of exhaustively searching the entire solution

space from 0 to C, one only needs to try two values,
˜C⌧
a (C

⌧
+ 1) and ˜C⌧

a (C
⌧
+ 1) � 1, and the one resulting

in higher revenue is selected as ˜C⌧
a . The entire computation

only takes O(C2
) operations.

In terms of computational efficiency, the approximate
solution significantly outperforms the optimal one, as the
total capacity of a provider is usually enormous in practice.
As an example, when C = 10

5, the approximation is 10

5

times faster than the exact solution.

VI. SIMULATION RESULTS

We evaluate the revenue performance of the proposed
approximate solution via extensive simulations. We adopt
a typical scenario where C = 10

5. That is, the provider
is able to host up to 10

5 virtual instances of a certain
type simultaneously. We simulate the markets for 100 time
periods. In each period t, cloud users arrive into the system
following a Poisson process with intensity �, which are then
randomly split into the pay-as-you-go and auction markets
with equal probability. Our evaluation adopts three demand

Proposition 3: The upper-bound problem can be
solved within
Intuition: previously calculated results can be reused in
the following calculations
 : optimal solution to the upper-bound problem

O(C2)

� = c �
Pm

i=1 ni instances leftover as these resources are
not sufficient to accommodate bidder m+ 1’s requests, i.e.,
� < nm+1. However, if bidder m+ 1 accepts partial fulfill-
ment, then those � instances generate ��(vm+1) additional
revenue to the provider. Let �̄a(·) be the revenue obtained
when partial fulfillment is acceptable, i.e.,

�̄a(c) = �a(c) + ��(vm+1)

=

mX

i=1

ni�(vi) + ��(vm+1) , (11)

Clearly �̄a is an upper bound of �a. The following Proposi-
tion bounds the gap between �a and �̄a.

Lemma 4: If c � ↵n̄ for some ↵ � 1, then �a(c) �
(1� 1

↵)�̄a(c).
Proof: By (11), we have �̄a(c) � �a(c) = ��(vm+1). It

suffices to consider the following two cases.
Case 1: nm+1 = 1. In this case, m + 1 is the virtual

bidder with �(vm+1) = 0. We see the statement holds with
�̄a(c) = �a(c).

Case 2: nm+1 < 1. In this case, m + 1 is a regular
bidder. We have � < nm+1  n̄  c/↵. Hence �̄a(c) �
�a(c) = ��(vm+1)  c�(vm+1)/↵  �̄a(c)/↵, where the
last inequality holds since �(v1) � · · · � �(vm+1).

By Lemma 4, we see that the upper bound �̄a is a close
approximation to �a in practical settings, where the capacity
allocated to the auction market is usually enormous compared
with a single bidder’s requests (i.e., ↵ � 1). We therefore
consider an approximate problem by replacing �a with �̄a in
(4), i.e.,

¯

�

t
(Ct

) = E


max

0Ct
aCt

�
�̄a(C

t
a) + �r(C

t � Ct
a)

+EX

⇥
¯

�

t+1
(Ct

a +X)

⇤ �
. (12)

The boundary conditions are ¯

�

T+1
(c) = 0 for all c =

0, 1, . . . , C. Let ˜Ct
a be the optimal solution to (12). The

provider then uses it as an approximate, sub-optimal solution
to (4), generating revenue

˜

�

t
(Ct

) = E


�a(˜C

t
a) + �r(C

t � ˜Ct
a)

+EX

⇥
˜

�

t+1
(

˜Ct
a +X)

⇤�
. (13)

We justify the intuition of the approximation above with
the following proposition, which conditionally bounds the
competitive ratio of ˜

�

t to �

t.
Proposition 6: In (12), if ˜C⌧

a � ↵n̄ for all ⌧ = t, . . . , T ,
then (1� 1

↵)�
t
(Ct

)  ˜

�

t
(Ct

)  �

t
(Ct

).
Proof: It is trivial to show the second inequality as �

t is
the optimal solution. To show the first inequality, we have

˜

�

t
(Ct

) = E

"
TX

⌧=t

�a(˜C
⌧
a) + �r(C

⌧ � ˜C⌧
a)

#

� (1� 1

↵
)E

"
TX

⌧=t

�̄a(˜C
⌧
a) + �r(C

⌧ � ˜C⌧
a)

#

= (1� 1

↵
)�

t
(Ct

) , (14)

where the second inequality holds due to Lemma 4.
The condition of Proposition 6 is frequently satisfied in

practice. Due to the large number of bidders, the volume of
each bidder’s requests is much smaller than the total capacity.
As a result, the revenue obtained from the approximation
does not deviate too far away from the optimal one. We later
verify this point by extensive simulations in Sec. VI.

We now show that (12) has an important optimization
structure that lead to an efficient solution within O(C2

). First,
we see that �̄a(·) is concave, as stated below.

Lemma 5: Given n and v, �̄a(c) defined in (11) is
concave. That is, r�̄a(c) = �̄a(c)� �̄a(c� 1) is decreasing
w.r.t. c.

Lemma 5 suggests the concavity of ¯

�

t
(·) as follows.

Lemma 6: For every ⌧ = t, . . . , T , ¯�⌧
(C⌧

) is increasing
and concave for all C⌧

= 0, 1, . . . , C.
This concavity finally leads to an interesting structure

described in the following proposition.
Proposition 7: For every realization n and v at time ⌧ =

t, t + 1, . . . , T , let ˜C⌧
a (C

⌧
) be the optimal solution to (12).

For all C⌧
= 0, 1, . . . , C, we have

˜C⌧
a (C

⌧
+ 1)� 1  ˜C⌧

a (C
⌧
)  ˜C⌧

a (C
⌧
+ 1). (15)

The proofs of Lemmas 5 and 6, as well as Proposition 7,
are all presented in Appendix B.

Proposition 7 indicates that previously calculated results
can be reused in subsequent computations. We therefore run
dynamic programming from the last stage T and proceed
backwards to t. Within each stage ⌧ , ¯�⌧

(C⌧
) is sequentially

computed as C⌧
= C,C � 1, . . . , 0. When computing

˜C⌧
a (C

⌧
), instead of exhaustively searching the entire solution

space from 0 to C, one only needs to try two values,
˜C⌧
a (C

⌧
+ 1) and ˜C⌧

a (C
⌧
+ 1) � 1, and the one resulting

in higher revenue is selected as ˜C⌧
a . The entire computation

only takes O(C2
) operations.

In terms of computational efficiency, the approximate
solution significantly outperforms the optimal one, as the
total capacity of a provider is usually enormous in practice.
As an example, when C = 10

5, the approximation is 10

5

times faster than the exact solution.

VI. SIMULATION RESULTS

We evaluate the revenue performance of the proposed
approximate solution via extensive simulations. We adopt
a typical scenario where C = 10

5. That is, the provider
is able to host up to 10

5 virtual instances of a certain
type simultaneously. We simulate the markets for 100 time
periods. In each period t, cloud users arrive into the system
following a Poisson process with intensity �, which are then
randomly split into the pay-as-you-go and auction markets
with equal probability. Our evaluation adopts three demand

C̃⌧
a (C

⌧)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The approximation
We solve the upper-bound problem and offer
instances in the auction channel at time t
 : revenue of the approximate solution

26

C̃t
a(C

t)

�̃t

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The approximation
We solve the upper-bound problem and offer
instances in the auction channel at time t
 : revenue of the approximate solution
Proposition 4 (asymptotic optimality): w.p. 1
if the number of bidders for all

27

�̃t ! �t

N⌧
a ! 1 ⌧ = t, . . . , t+ w

C̃t
a(C

t)

�̃t

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

The approximation
We solve the upper-bound problem and offer
instances in the auction channel at time t
 : revenue of the approximate solution
Proposition 4 (asymptotic optimality): w.p. 1
if the number of bidders for all
Remarks

The condition is naturally satisfied in cloud
environments as there are always a large amount of cloud
users requesting computing instances

28

�̃t ! �t

N⌧
a ! 1 ⌧ = t, . . . , t+ w

N⌧
a ! 1

C̃t
a(C

t)

�̃t

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Asymptotically optimal solution
We turn to an efficient approximate solution

Proved to be asymptotically optimal
Almost optimal in simulations: performance gap < 2%
Highly efficient, with time complexity

X

O(C2)

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Auction revenue upper bound

X

�a(c)

�̄a(c)

rt1
Capacity0 c

�(·)

rt2 rt3

rt1
Capacity0 c

�(·)

rt2 rt3

As if partial
ful!lment

is accepted

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Evaluations

29

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Revenue performance

30

Users arrive into the two pricing channels following a
Poisson process, with intensity being low (=100),
medium (=200), and high (=500).

�

� �

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

N
o
rm

a
liz

e
d
 R

e
ve

n
u
e

Approxn., λ = 100

UB, λ = 100

Approxn., λ = 200

UB, λ = 200

Approxn., λ = 500

UB, λ = 500

(a) Normalized revenue vs. time.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Market share of periodic auctions (%)

C
D

F

λ = 100

λ = 200

λ = 500

(b) CDF of the market share of peri-
odic auctions.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Auction price

C
D

F

λ = 100

λ = 200

λ = 500

(c) CDF of the auction price.

 100 200 500
0

5

10

15

λ

R
e

ve
n

u
e

 c
o

n
tr

ib
u

tio
n

 (
%

)

Auction (approxn.)
Auction (UB)

(d) Revenue contribution of periodic
auctions.

Fig. 4. Performance evaluation of the approximate capacity segmentation algorithm, where “UB” stands for upper bound while “approxn.” is short for
approximation.

illustrates the CDF of the market share of periodic auctions
in all three demand patterns. Here, the market share is defined
as the ratio, between the capacity allocated to the auction
market and the entire capacity that the provider has. It is
worth mentioning that the allocated capacity might not be
fully used to accommodate auction bidders, even for the case
where the auction demand exceeds the supply. The provider
would strategically reserve some instances by rejecting low-
bid requests, since accepting them lowers the clearing price,
which may decrease the revenue.

As illustrated in Fig. 4b, when demand is low (i.e., � =

100), about half of the capacity is allocated to the auction
market, leading to a 50% market share. Fig. 4c shows the
corresponding clearing price that is around the mean bid E[vi]
of auction bidders. In this case, since cloud instances are over-
provisioned, some of them are auctioned at a discounted price
to increase the revenue. It is worth mentioning that though
auction bidders enjoy using the resources at a lower price,
they bear the risks that the services might be interrupted.

As demand increases, the market share drops, while the
auction price rises. For the case where � = 200, Fig. 4b
shows that almost all instances are hosted to accommodate
pay-as-you-go requests, with less than 10% capacity allocated
to auction markets. This is essentially due to the simulation
settings that instances are less valued in periodic auctions than
they are in pay-as-you-go market, as the mean bid is only half
of the pay-as-you-go price (i.e., E[vi] = 0.5pr). In this case,
pay-as-you-go requests are considered more profitable than
auction bids. Only a few high-value bids are accepted by the
provider, resulting in a higher clearing price in the auction
channel as illustrated in Fig. 4c.

It is interesting to observe that, when demand keeps increas-
ing, the market share of periodic auctions rebounds, which
is shown in Fig. 4b with � = 500. In this case, the entire
market demand significantly exceeds the provider’s capacity.
As a result, more high-bid requests are received from the
auction market. Since these requests are more profitable than
those in the pay-as-you-go market, the provider fulfills them by
allocating more resources to the auction market. The clearing
price is also observed to rise in Fig. 4c.

All discussions above show that augmenting pay-as-you-
go pricing with periodic auctions essentially increases the

provider’s ability to respond to demand uncertainties. Periodic
auctions help to fulfill some leftover revenue when resources
are over-provisioned in the pay-as-you-go market. On the other
hand, it extracts more revenue by charging high prices to high-
bid requests when demand exceeds supply.

C. Comparisons Between Pay-as-You-Go and Auctions
The two markets do not make equal revenue contributions.

As presented in Fig. 4d, the pay-as-you-go market contributes
more than 85% revenue to the provider in all three demand
patterns. Note that the pay-as-you-go market takes up only
66% of the overall demand3. Therefore, it provides a dispro-
portionately large share of revenue. Similar observations are
made when different demand ratios between the two markets
are considered.

By offering guaranteed services with a static price, instances
in the pay-as-you-go market often demand a higher premium
than those in the auction market. For this reason, pay-as-
you-go requests are usually more profitable than most auc-
tion bids, and are accepted at a higher priority for revenue
maximization. Table II further validates this point, where
the request acceptance rates are listed for all three demand
patterns. We see that pay-as-you-go requests are generally
accepted with a considerably higher probability than auction
bids. However, this does not mean that auction bidders are
always secondary customers. As stated in Proposition 5, those
who bid sufficiently high will always be accommodated first.
In our simulation, these are the top 5% bidders. As illustrated
in Table II, their requests are least affected by the specific
demand pattern. Therefore, the auction market offers an option
to the users to increase the priority of their requests.

VII. CONCLUSIONS

In this paper, we investigate the problem of optimal capacity
segmentation in an EC2-like cloud market with the regular
pay-as-you-go pricing augmented by periodic auctions. To
this end, we analytically characterize the revenue of uniform-
price auctions, and present an optimal design with maximum
revenue. Contrary to the well-known result that uniform-price

3New demand arrivals are equal for both markets, but each new pay-as-
you-go instance requires twice the capacity of each new auction instance since
q = 0.5.

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Market share and the clearing price

31

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

N
o
rm

a
liz

e
d
 R

e
ve

n
u
e

Approxn., λ = 100

UB, λ = 100

Approxn., λ = 200

UB, λ = 200

Approxn., λ = 500

UB, λ = 500

(a) Normalized revenue vs. time.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Market share of periodic auctions (%)

C
D

F

λ = 100

λ = 200

λ = 500

(b) CDF of the market share of peri-
odic auctions.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Auction price
C

D
F

λ = 100

λ = 200

λ = 500

(c) CDF of the auction price.

 100 200 500
0

5

10

15

λ

R
e
ve

n
u
e
 c

o
n
tr

ib
u
tio

n
 (

%
)

Auction (approxn.)
Auction (UB)

(d) Revenue contribution of periodic
auctions.

Fig. 4. Performance evaluation of the approximate capacity segmentation algorithm, where “UB” stands for upper bound while “approxn.” is short for
approximation.

illustrates the CDF of the market share of periodic auctions
in all three demand patterns. Here, the market share is defined
as the ratio, between the capacity allocated to the auction
market and the entire capacity that the provider has. It is
worth mentioning that the allocated capacity might not be
fully used to accommodate auction bidders, even for the case
where the auction demand exceeds the supply. The provider
would strategically reserve some instances by rejecting low-
bid requests, since accepting them lowers the clearing price,
which may decrease the revenue.

As illustrated in Fig. 4b, when demand is low (i.e., � =

100), about half of the capacity is allocated to the auction
market, leading to a 50% market share. Fig. 4c shows the
corresponding clearing price that is around the mean bid E[vi]
of auction bidders. In this case, since cloud instances are over-
provisioned, some of them are auctioned at a discounted price
to increase the revenue. It is worth mentioning that though
auction bidders enjoy using the resources at a lower price,
they bear the risks that the services might be interrupted.

As demand increases, the market share drops, while the
auction price rises. For the case where � = 200, Fig. 4b
shows that almost all instances are hosted to accommodate
pay-as-you-go requests, with less than 10% capacity allocated
to auction markets. This is essentially due to the simulation
settings that instances are less valued in periodic auctions than
they are in pay-as-you-go market, as the mean bid is only half
of the pay-as-you-go price (i.e., E[vi] = 0.5pr). In this case,
pay-as-you-go requests are considered more profitable than
auction bids. Only a few high-value bids are accepted by the
provider, resulting in a higher clearing price in the auction
channel as illustrated in Fig. 4c.

It is interesting to observe that, when demand keeps increas-
ing, the market share of periodic auctions rebounds, which
is shown in Fig. 4b with � = 500. In this case, the entire
market demand significantly exceeds the provider’s capacity.
As a result, more high-bid requests are received from the
auction market. Since these requests are more profitable than
those in the pay-as-you-go market, the provider fulfills them by
allocating more resources to the auction market. The clearing
price is also observed to rise in Fig. 4c.

All discussions above show that augmenting pay-as-you-
go pricing with periodic auctions essentially increases the

provider’s ability to respond to demand uncertainties. Periodic
auctions help to fulfill some leftover revenue when resources
are over-provisioned in the pay-as-you-go market. On the other
hand, it extracts more revenue by charging high prices to high-
bid requests when demand exceeds supply.

C. Comparisons Between Pay-as-You-Go and Auctions
The two markets do not make equal revenue contributions.

As presented in Fig. 4d, the pay-as-you-go market contributes
more than 85% revenue to the provider in all three demand
patterns. Note that the pay-as-you-go market takes up only
66% of the overall demand3. Therefore, it provides a dispro-
portionately large share of revenue. Similar observations are
made when different demand ratios between the two markets
are considered.

By offering guaranteed services with a static price, instances
in the pay-as-you-go market often demand a higher premium
than those in the auction market. For this reason, pay-as-
you-go requests are usually more profitable than most auc-
tion bids, and are accepted at a higher priority for revenue
maximization. Table II further validates this point, where
the request acceptance rates are listed for all three demand
patterns. We see that pay-as-you-go requests are generally
accepted with a considerably higher probability than auction
bids. However, this does not mean that auction bidders are
always secondary customers. As stated in Proposition 5, those
who bid sufficiently high will always be accommodated first.
In our simulation, these are the top 5% bidders. As illustrated
in Table II, their requests are least affected by the specific
demand pattern. Therefore, the auction market offers an option
to the users to increase the priority of their requests.

VII. CONCLUSIONS

In this paper, we investigate the problem of optimal capacity
segmentation in an EC2-like cloud market with the regular
pay-as-you-go pricing augmented by periodic auctions. To
this end, we analytically characterize the revenue of uniform-
price auctions, and present an optimal design with maximum
revenue. Contrary to the well-known result that uniform-price

3New demand arrivals are equal for both markets, but each new pay-as-
you-go instance requires twice the capacity of each new auction instance since
q = 0.5.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

N
o

rm
a

liz
e

d
 R

e
ve

n
u

e

Approxn., λ = 100

UB, λ = 100

Approxn., λ = 200

UB, λ = 200

Approxn., λ = 500

UB, λ = 500

(a) Normalized revenue vs. time.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Market share of periodic auctions (%)

C
D

F

λ = 100

λ = 200

λ = 500

(b) CDF of the market share of peri-
odic auctions.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Auction price
C

D
F

λ = 100

λ = 200

λ = 500

(c) CDF of the auction price.

 100 200 500
0

5

10

15

λ

R
e
ve

n
u
e
 c

o
n
tr

ib
u
tio

n
 (

%
)

Auction (approxn.)
Auction (UB)

(d) Revenue contribution of periodic
auctions.

Fig. 4. Performance evaluation of the approximate capacity segmentation algorithm, where “UB” stands for upper bound while “approxn.” is short for
approximation.

illustrates the CDF of the market share of periodic auctions
in all three demand patterns. Here, the market share is defined
as the ratio, between the capacity allocated to the auction
market and the entire capacity that the provider has. It is
worth mentioning that the allocated capacity might not be
fully used to accommodate auction bidders, even for the case
where the auction demand exceeds the supply. The provider
would strategically reserve some instances by rejecting low-
bid requests, since accepting them lowers the clearing price,
which may decrease the revenue.

As illustrated in Fig. 4b, when demand is low (i.e., � =

100), about half of the capacity is allocated to the auction
market, leading to a 50% market share. Fig. 4c shows the
corresponding clearing price that is around the mean bid E[vi]
of auction bidders. In this case, since cloud instances are over-
provisioned, some of them are auctioned at a discounted price
to increase the revenue. It is worth mentioning that though
auction bidders enjoy using the resources at a lower price,
they bear the risks that the services might be interrupted.

As demand increases, the market share drops, while the
auction price rises. For the case where � = 200, Fig. 4b
shows that almost all instances are hosted to accommodate
pay-as-you-go requests, with less than 10% capacity allocated
to auction markets. This is essentially due to the simulation
settings that instances are less valued in periodic auctions than
they are in pay-as-you-go market, as the mean bid is only half
of the pay-as-you-go price (i.e., E[vi] = 0.5pr). In this case,
pay-as-you-go requests are considered more profitable than
auction bids. Only a few high-value bids are accepted by the
provider, resulting in a higher clearing price in the auction
channel as illustrated in Fig. 4c.

It is interesting to observe that, when demand keeps increas-
ing, the market share of periodic auctions rebounds, which
is shown in Fig. 4b with � = 500. In this case, the entire
market demand significantly exceeds the provider’s capacity.
As a result, more high-bid requests are received from the
auction market. Since these requests are more profitable than
those in the pay-as-you-go market, the provider fulfills them by
allocating more resources to the auction market. The clearing
price is also observed to rise in Fig. 4c.

All discussions above show that augmenting pay-as-you-
go pricing with periodic auctions essentially increases the

provider’s ability to respond to demand uncertainties. Periodic
auctions help to fulfill some leftover revenue when resources
are over-provisioned in the pay-as-you-go market. On the other
hand, it extracts more revenue by charging high prices to high-
bid requests when demand exceeds supply.

C. Comparisons Between Pay-as-You-Go and Auctions
The two markets do not make equal revenue contributions.

As presented in Fig. 4d, the pay-as-you-go market contributes
more than 85% revenue to the provider in all three demand
patterns. Note that the pay-as-you-go market takes up only
66% of the overall demand3. Therefore, it provides a dispro-
portionately large share of revenue. Similar observations are
made when different demand ratios between the two markets
are considered.

By offering guaranteed services with a static price, instances
in the pay-as-you-go market often demand a higher premium
than those in the auction market. For this reason, pay-as-
you-go requests are usually more profitable than most auc-
tion bids, and are accepted at a higher priority for revenue
maximization. Table II further validates this point, where
the request acceptance rates are listed for all three demand
patterns. We see that pay-as-you-go requests are generally
accepted with a considerably higher probability than auction
bids. However, this does not mean that auction bidders are
always secondary customers. As stated in Proposition 5, those
who bid sufficiently high will always be accommodated first.
In our simulation, these are the top 5% bidders. As illustrated
in Table II, their requests are least affected by the specific
demand pattern. Therefore, the auction market offers an option
to the users to increase the priority of their requests.

VII. CONCLUSIONS

In this paper, we investigate the problem of optimal capacity
segmentation in an EC2-like cloud market with the regular
pay-as-you-go pricing augmented by periodic auctions. To
this end, we analytically characterize the revenue of uniform-
price auctions, and present an optimal design with maximum
revenue. Contrary to the well-known result that uniform-price

3New demand arrivals are equal for both markets, but each new pay-as-
you-go instance requires twice the capacity of each new auction instance since
q = 0.5.

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Conclusions
We investigate the optimal capacity segmentation
problem with hybrid cloud pricing.
We show that optimal periodic auctions are of the form
of (m+1)-price auction with a seller reservation price.
We design an efficient capacity segmentation scheme
that is proved to be asymptotically optimal.
Simulation studies show that the solution is almost
optimal.

32

Wei Wang, Department of Electrical and Computer Engineering, University of Toronto

Thank you!

33

http://iqua.ece.toronto.edu/

http://iqua.ece.toronto.edu
http://iqua.ece.toronto.edu

