# Revenue Maximization with Dynamic Auctions in IaaS Cloud Markets



<u>Wei Wang</u>, Ben Liang, Baochun Li Department of Electrical and Computer Engineering University of Toronto June 3, 2013

# **Prevalent Pricing Schemes for IaaS Clouds**

#### **On-demand (pay-as-you-go)**

Static hourly rate

#### Reservation

One-time reservation fee to reserve one instance for a long period Free or discount rate during the reservation period

### **Bid-based (spot market)**

Users bids for computing instances

A spot price is posted periodically

#### No service guarantee

Instance terminates when the spot price exceeds the submitted bid

# Prevalent Pricing for IaaS Clouds (Cont'd)

#### Comparison

|                               | Upfront<br>commitment | Service<br>guarantee | Market<br>responsiveness |
|-------------------------------|-----------------------|----------------------|--------------------------|
| On-demand (pay-as-<br>you-go) | N                     | Y                    | Slow                     |
| Reservation                   | Y                     | Y                    | Slow                     |
| Bid-based                     | N                     | Ν                    | Fast                     |

# Can we do better?

|                               | Upfront<br>commitment | Service<br>guarantee | Market<br>responsiveness |
|-------------------------------|-----------------------|----------------------|--------------------------|
| On-demand (pay-as-<br>you-go) | N                     | Y                    | Slow                     |
| Reservation                   | Y                     | Y                    | Slow                     |
| Bid-based                     | N                     | N                    | Fast                     |
| New design                    | N                     | Y                    | Fast                     |

# **Dynamic Auctions**

#### A sequence of auctions periodically carried out

- Users bid for a number of computing instances (VMs)
- Each winning user receives a fixed usage fee (hourly rate) throughout its usage

#### **Guaranteed services**

A user's instance will never be terminated against its will

#### Quick response to market dynamics

Use the auction to discover the "right price" More flexible and profitable than the static pricing

### Near-optimal dynamic auctions with provable performance

The optimal design is NP-hard (0-1 knapsack problem)

#### **Computationally efficient**

By taking use of some optimization structures, we significantly reduce the computational complexity

### Truthfulness

A user has no incentive to lie on its bids

# **General model**

A cloud provider has allocated a fixed capacity C to host a type of instance

At any time, the number of hosted instances cannot exceed C

A sequence of auctions, indexed by *t*=1,2,..., are periodically carried out

In period *t*,  $N_t$  users arrive, bidding for instances

# User model

#### User *i* arrives at *t* and bids for computing instances

- Reported bid = (# of requested instances, maximum price)
- True bid: private information
- It is possible that the user lies on its bid
- No partial fulfilment: A user is either rejected or gets all requests fulfilled

### User receives a fixed hourly rate if it wins

# **User's Problem**

User *i* chooses the best bid to maximize its utility

$$u_{i}(r_{i}, b_{i}) = \begin{cases} \sum_{j=1}^{n_{i}} (v_{i} - p_{i}) l_{i,j} - \sum_{j=n_{i}+1}^{r_{i}} p_{i} l_{i,j}, & \text{if } r_{i} \ge n_{i}; \\ 0, & \text{o.w.} \end{cases}$$
(1)

User *i* has no incentive to lie on its bid (truthful) if and only if its true bid maximizes the utility

 $n_k$  $eq \phi(v_k)$ Decide how many instances to auction off at e  $Q_t$ 0 Cap

### Design the optimal auction mechanism M<sub>t</sub> at each time t

Decide the winners and their prices

$$V_t^*(C_t) = \mathbf{E} \bigg[ \max_{\mathcal{M}_t, 0 \le Q_t \le C_t} \big\{ \Gamma_{\mathcal{M}_t}(Q_t) \quad \text{Revenue generated at time t} \\ + \mathbf{E}_K \big[ V_{t+1}^*(C_t - Q_t + K) \big] \big\} \bigg].$$
  
Future revenue

Ct: # of instances available at time t

Q<sub>t</sub>: # of instances auctioned off at time t

# How many instances should be auctioned off?

# **NP-Hardness and Relaxations**

### Directly solving the problem is at least as hard as a 0-1 Knapsack problem

Because no partial fulfillment is allowed

A relaxed problem

Solve the problem *as if* partial fulfillment is allowed

$$\bar{V}_t(C_t) = \mathbf{E} \begin{bmatrix} \max_{\mathcal{M}_t, 0 \le Q_t \le C_t} \{ \bar{\Gamma}_{\mathcal{M}_t}(Q_t) & \text{Auction revenue with} \\ + \mathbf{E}_K [ \bar{V}_{t+1}(C_t - Q_t + K) ] \} \end{bmatrix}.$$

#### Directly solving the relaxed problem is inefficient

Dynamic programming takes O(C<sup>3</sup>) time, where C is the number of instances that can be hosted (capacity)

# Reduce the computational complexity based on some optimization structures

No need to compute from scratch

Reuse previous computation results

$$Q_{\tau}^{*}(c+1) - 1 \le Q_{\tau}^{*}(c) \le Q_{\tau}^{*}(c+1)$$

Reduce the complexity to O(C<sup>2</sup>)

# Truthful auction based on the capacity allocation strategy

# Design a truthful auction mechanism

# The following auction mechanism is truthful based on the previous capacity allocation strategy

Algorithm 1 The Truthful Mechanism  $\mathcal{M}_t$  with  $Q_t^*$  Instances Allocated

1. Let k be the index such that  $\sum_{j=1}^{k} r_j \leq Q_t^* < \sum_{j=1}^{k+1} r_j$ 

2. Let 
$$s = \sum_{j=1}^{k} r_j$$
  
3. Let  $\hat{b}_s = \phi^{-1}(q\nabla \bar{\mu}_{t+1}(C_t - s + 1))$ 

4. Top k bidders win, each paying  $p = \max\{b_{k+1}, \hat{b}_s\}$ 

# **Evaluations**

#### Asymptotical optimality for high-demand market

**Proposition 3:** The expected revenue  $V_t \to V_t^*$  w.p.1 if the user number  $N_\tau \to \infty$  for all  $\tau = t, \ldots, T$ .

## **Low-Demand Market**

# Outperform the *fixed pricing* by 30% in terms of the revenue < 1% revenue loss compared to the optimal design



# Conclusions

Dynamic auctions offer service guarantees while capturing the market dynamics quickly

We have designed near-optimal dynamic auctions

Truthful

Asymptotically optimal for high-demand market

**Computationally efficient** 

Dynamic auctions generate more revenue than the traditional static pricing scheme

# Thanks!

### http://iqua.ece.toronto.edu/~weiwang/

Wei Wang, Ben Liang and Baochun Li, Revenue Maximization with Dynamic Auctions in IaaS Cloud Markets

Saturday, 29 June, 13